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ABSTRACT

Separation of overlapping speakers remains an active area of speech

technology research. Many deep neural network (DNN) separa-

tion models propose modelling local and global temporal context

separately using alternating DNN layers. Two such models are

SepFormer and TD-Conformer. The largest configurations of each

have comparable computational cost and similar performance; with

SepFormer performing better on anechoic data and TD-Conformer

yielding better results on noisy reverberant data. This work com-

bines these two model types to gain insights into how their com-

putational characteristics affect their performance. The generaliza-

tion benefits of the larger model size of the conformer layers are

demonstrated both on the WHAMR and the out-of-domain far-field

evaluation set MC-WSJ-AV across a number of evaluation metrics.

The proposed model is able to achieve 22.1 dB and 14.7 dB aver-

age scale-invariant signal-to-distortion ratio (SISDR) improvement

when trained and evaluated on WSJ0-2Mix and WHAMR, respec-

tively. The model trained using WHAMR is able to achieve 4.3 dB

average SISDR improvement on the out-of-domain MC-WSJ-AV

dataset.

Index Terms— speech separation, speech enhancement, neural

networks, conformer, dual-path transformer

1. INTRODUCTION

Speech separation and related technologies such as speaker extrac-

tion are important for many real-world applications [1] such as dig-

ital assistants [2, 3], automatic meeting transcription [4, 5] and as-

sistive hearing [6]. Recent speech separation research has heavily

focused on time-domain audio separation network (TasNet), dual-

path (DP) modelling and attention (or transformer) networks [7–10].

TasNet models, first proposed in [11], are typically composed of

an encoder, a mask estimation or mapping network, and a decoder

where the encoder encodes signals from the time domain using a

neural network layer and the decoder decodes this neural represen-

tation back into the time-domain [12]. DP separation models, pro-

posed in [13], use alternating neural network layers to process local

and global contexts separately. One such DP transformer model,

known as SepFormer [14], is one of the most performant models on

separation benchmarks such as WSJ0-Mix and WHAMR [15, 16].

In this model, the input sequence is first split into fixed-size chunks

which are input to a transformer layer for processing the local con-

text. The chunk size and number of chunks axes are swapped and

the Tensor is then processed by another transformer layer to model
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the global context. An analogue of the DP structure is the conformer

model [9, 17, 18] where the local context is processed by a convo-

lution module instead of a transformer. This approach generally

has lower computational complexity for processing the local con-

text for a fixed feature dimension but comes at the cost of increased

model size. In the DP layers, the swapping of the axes, as opposed

to processing the reconstructed feature sequence, reduces the com-

putational complexity of the attention function in the global context

layer. In the time domain conformer (TD-Conformer) model, pro-

posed in [9], a subsampling layer is used to reduce the temporal res-

olution of the input sequence similarly and thus the computational

complexity of the transformer layer used to process the global con-

text.

In this work the convolutional separation transformer (ConSepT)

model is proposed. ConSepT is a mixed Conformer and DP trans-

former model. The motivation for combining the two variant layers

is that controlling for model complexity DP transformer models

have been shown to be more performant for anechoic speech mix-

tures and conformer models have been shown to be more performant

on noisy reverberant speech mixtures [9, 14]. This contrast is ex-

plored by mixing the two layer types to analyse if a higher overall

performance can be obtained by combining the two. The model

is structured so that conformer layers process the earlier features

in the network under the assumption that they contain more noise

and thus the DP transformer layers are used to process the cleaner

features. There are two key contrasts between the two model types;

firstly, the conformer layers result in a larger model size primarily

due to the convolutional local context layer in the conformer block,

and secondly, the DP transformer layers typically have significantly

more computational complexity given to processing local context

whereas conformer layers give most of their computational com-

plexity to processing global context as they are implemented in this

paper and in [9, 14]. The consequences of these characteristics of

each layer type are explored with respect to model performance as

well as model generalisation by varying the numbers of each type

of layer while keeping the overall number of layers in the network

constant. In order to do this, we contrast the generalisation benefits

gained from using dynamic mixing (DM), where new training data

is simulated for each epoch, and evaluate models trained on the sim-

ulated WHAMR dataset with the real recorded MC-WSJ-AV corpus.

A preprocessing script for aligning the MC-WSJ-AC recordings is

also provided as a part of this work.

In Section 2 the signal model is discussed. Section 3 introduces

the ConSepT model. In Section 4 the training configurations and

experimental setup are discussed. Results are given in Section 5 and

conclusions in Section 6.



2. SIGNAL MODEL

A discrete-time single-channel noisy reverberant speech mixture sig-

nal of length of Lx samples, composed of C speaker signals sc[i] ∈
{1 . . . C} is defined as

x[i] =
C
∑

i=1

hc[i] ∗ sc[i] + ν[i], (1)

where ∗ denotes the convolution, hc[i] the room impulse response

(RIR) corresponding to speaker c and ν[i] an additive noise. The

goal of this paper is to estimate the C clean speech signals sc[i];
these estimates are denoted by ŝc[i].

3. THE CONSEPT SPEECH SEPARATION MODEL

The proposed ConSepT model is described in the following. The

model uses a TasNet architecture, composed of an encoder, mask

estimation network and decoder, see Fig. 1. The mixture signal x[i]
in (1) is first chunked into Lx blocks xℓ of length LBL with 50%-

overlap. Each block xℓ with block index ℓ is then encoded into a

feature vector wℓ which is passed to the mask estimation network to

produce masks mc,ℓ for each speaker. The encoded features vectors

are then masked for each speaker before being decoded back into the

time domain.

3.1. Encoder

The encoder is composed of a single 1D convolutional layer that

encodes time-domain blocks of the mixture signal xℓ ∈ R
1×LBL

using a weight matrix B ∈ R
LBL×N with feature dimension N , and

a rectified linear unit (ReLU) activation function H(·) to give Lx

encoded feature vectors

wℓ = H (xℓB) . (2)

3.2. Mask Estimation Network

The mask estimation network is comprised of two sub-networks pro-

cessed sequentially. The first is a conformer network with subsam-

pling layers, based on [9], and the second is a dual-path transformer

network, based on [14].

The conformer sub-network uses subsampling and supersam-

pling layers to reduce the computational complexity of proceeding

transformer layers in conformer blocks. The subsampling is per-

formed using a projection layer proceeded by a 1D convolutional

layer with a kernel size of 4 and a stride of 2, thus reducing the

temporal resolution by a factor of 2. The effect of this subsampling

on performance is explored in [9], where using a single subsam-

pling layer is found to give a good trade-off between performance

and efficiency. A set of Rconf conformer layers proceeds after the

subsampling layer. Each conformer layer is composed of four mod-

ules: a feed-forward module with internal feature dimension Bcffn,

a convolution module with kernel size Pconv and dimension Bconv,

a multihead self-attention (MHSA) with positional encoding (PE)

module of dconf attention heads, and another feed-forward mod-

ule with dimension Bcffn [9]. A supersampling layer composed of

a transposed 1D convolutional layer that reverses the subsampling

layer follows the conformer layers. A final projection layer in the

sub-network transforms the feature dimension back to N .

The DP transformer network is composed of a series of alternat-

ing local and global transformer layers with each combined local and

global transformer layer being referred to as a single DP transformer

layer. The output of the supersampling layer of the conformer sub-

network is first reorganised into overlapping chunks of length PDPT.

The chunks are then processed by the local transformer of dimen-

sion Bintra with dintra attention heads. Following this, the axes for

the chunk size and the number of chunks are swapped and then the

sequence is processed by the global context transformer of dimen-

sion Binter with dinter heads. The axes are then swapped back and

passed through an additional XDPT layers and the entire network is

repeated RDPT times.

The final part of the network is a linear layer followed by a ReLU

activation function that takes the output of the DP transformer net-

work to produce a series of masks, mℓ.

3.3. Decoder

The decoder is a transposed 1D convolutional layer with weights

U ∈ R
N×LBL which transforms the masked encoded features wℓ⊙

mℓ back into overlapping time-domain blocks

ŝℓ = (wℓ ⊙mℓ)U. (3)

The estimated time-domain speech signal ŝ[i] is then reconstructed

from the signal blocks ŝℓ using the overlap-add method.

3.4. Objective function

SISDR is used as the objective function for training the networks.

A permutation invariant training (PIT) wrapper around the function

is used to resolve the speaker label permutation problem [19]. The

SISDR function is defined as

L(ŝc, sc) :=
1

C

C
∑

c=1

−10 log
10

∥

∥

∥
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∥
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∥
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∥

2
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4. EXPERIMENTAL SETUP

4.1. Data

The WSJ0-2Mix [15] and WHAMR datasets [16] are used for train-

ing and evaluating models. WSJ0-2Mix is a simulated 2-speaker

dataset of anechoic mixtures. WHAMR is a simulated noisy re-

verberant extension of WSJ0-2Mix. The 8kHz min configuration

is used. The min configuration means mixtures are truncated to the

shortest utterance as opposed to padding the shorter utterance to the

longer one. The MC-WSJ-AV dataset [20] is also used for evalu-

ating models on out-of-domain unseen data. The olap part of this

dataset contains recorded far-field multi-channel recordings of 2-

speaker mixtures. The 20k subset of the dataset is used. The 1st

channel of array 1 is used as the input mixture and headset micro-

phones are used as reference signals. Preprocessing steps were per-

formed to make the data suitable for evaluation. First, the audio is

resampled from 16kHz to 8kHz as MC-WSJ-AV was recorded at

16kHz. The headset recordings were both aligned to the array sig-

nal using a cross-correlation method for computing time delays [21].

The loudness of the array channel was adjusted to match that of the

sum of the headset channels using the pyloudnorm toolkit [22] to

minimize the possibility of signal energy having an impact on the

evaluation as the WHAMR mixture loudness is more similar to the

targets than the array channels are to the headsets in MC-WSJ-AV.
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Fig. 1. The ConSepT network composed of encoder, mask estimation network and decoder. The ⊙ symbol denotes the Hadamard product.

The preprocessing script is available on GitHub1 to allow repro-

ducibility.

4.2. Training Configuration

The models use a similar training configuration as the TD-Conformer

[9] with a learning rate of 10−5 that is fixed for 90 epochs and then

reduced if there is no performance improvement after 3 epochs.

Training signal lengths (TSLs) are limited to 4s and randomly sam-

pled from the original training example [23]. The feature dimension

of the conformers layers are the same as the TD-Conformer-XL

model in [9], i.e. Bcffn = Bconv = 1024. The feature dimen-

sion of the DP transformer layers are the same as that in [14]

Binter = Bintra = 1024. For the DP transformer layers XDPT = 2.

For the conformer layers, the number of attention heads dconf = 4
as in [9]. For the DP transformer layers dinter = dintra = 8 as

in [14]. The constraint RDPT + Rconf = 8 is used but the specific

R values are experimented with in the results section. The value 8 is

used as it corresponds to the number of conformer layers in [9] and

the number of DP transformer layers in [14].

4.3. Evaluation metrics

The main evaluation metric used to assess separation performance

is the SISDR improvement over the original mixture signal, de-

noted ∆ SISDR. Improvement in extended short-time objective

intelligibility (ESTOI), a speech intelligibility metric [24], and

perceptual evaluation of speech quality (PESQ), a speech quality

metric [25], are also reported for some results. Improvement in

speech-to-reverberation modulation energy ratio (SRMR) [26] is

used to assess the residual energy of reverberant effects in the esti-

mated signals. The computational complexity of models is assessed

using mutiply-accumulate operations (MACs). MACs are computed

on a signal length of 5.79s, equal to the mean signal length in the

WHAMR and WSJ0-2Mix corpora [23]. Model size is reported in

number of parameters.

5. RESULTS

5.1. Evaluations on in-domain data

The first evaluation analyzes performance for different ratios of con-

former layer repeats Rconf to DP transformer repeats RDPT for the

standard configuration with RDPT +Rconf = 8 on the WSJ0-2Mix

and WHAMR datasets. Rconf is varied from 0 to 8. The results

are shown for both with and without using DM in Fig. 2. For both

the WSJ0-2Mix evaluation and the WHAMR evaluation with DM

the SISDR performance improves as the number of conformer lay-

ers increases towards 6, at which point it plateaus. This corresponds

to an increase in the number of parameters and a relatively minor

decrease in computational complexity. For the WHAMR evaluation

without DM, SISDR performance remains fairly consistent for all

1https://github.com/jwr1995/mc-wsj-aligned

Fig. 2. Top and middle: separation performance against model con-

figuration for WHAMR (top) and WSJ0-2Mix (middle). Bottom:

corresponding computational complexity (in MACs) and model size

for each configuration.

Rconf . This possibly suggests that without DM there is no benefit

to having a larger model size as the model is as generalized as is

possible without providing the network with new training examples.

The biggest performance gains with DM are seen on the more chal-

lenging WHAMR dataset which demonstrates the benefit of larger

model sizes for noisy and reverberant data.

5.2. Evaluations on out-of-domain data

The models trained on WHAMR are re-evaluated using the out-of-

domain MC-WSJ-AV corpus, something seldom done in pure speech

separation research due to the lack of properly aligned data, a prob-

lem we strove to solve in this work. The results are shown in Fig. 3.

A similar trend as in the previous section is observed with the in-

crease in model size (i.e. more conformer layers than DP transformer

layers) for SISDR, PESQ and ESTOI. Thus, the models are not just

generalizing better towards the specific noisy reverberant acoustic

conditions in WHAMR but noise and reverberation in general. Note



Eval. set Rconf RDPT Params. (M) PESQ ESTOI SRMR SDR SISDR ∆ SDR ∆ SISDR

WHAMR 7 1 93.84 2.29 0.75 9.36 10 dB 8.6 dB 13.6 dB 14.7 dB

WHAMR 8 0 102.30 2.25 0.75 9.2 10.1 dB 8.6 dB 13.6 dB 14.7 dB

MC-WSJ-AV 7 1 93.84 2.20 0.53 8.84 5.8 dB -15.8 dB 8.3 dB 4.3 dB

Table 1. Full results for best performing ConSepT model trained on WHAMR using DM in terms of SISDR

that the ∆ SISDR values between the WHAMR and MC-WSJ-AV

evaluations differ by ≈ 10dB, see Table 1 for more detailed numbers

on the best performing DM models. This is partly explained by the

fact that MC-WSJ-AV is real-world data and out-of-domain. Still,

Fig. 3. Re-evaluation on MC-WSJ-AV of models trained us-

ing WHAMR with and without DM for ∆ SISDR, ∆ PESQ and

∆ ESTOI

Fig. 4. Example spectrograms from the MC-WSJ-AV dataset for

Rconf = 7 of far-field mixture x (top), estimated speaker signal ŝc
(middle) and reference “clean” speaker signal sc (bottom).

it should also be noted that the headset references of the MC-WSJ-

AV evaluation set are not as “clean” as the WHAMR references, due

to imperfect alignment and often small audio bleed from the other

speaker in the room along with some minimal noise interference as

well. This can be seen in Fig. 4 where the estimated speech sig-

nal ŝc in the middle panel appears more denoised than the “clean”

reference sc in the lower panel.

Interestingly, there is no similar trend in SRMR improvement

as Rconf increases (cf. lower panel in Fig. 3). SRMR results show

good dereverberation performance. This was subjectively confirmed

by listening through evaluation outputs. All models exhibited good

dereverberation and noise suppression for both WHAMR and MC-

WSJ-AV. The output speech however, contained notable distortions

and intelligibility was lacking, this is reflected in Fig. 3 across all

metrics in Table 1.

6. CONCLUSIONS

In this paper, a novel architecture combining DP transformer and

conformer layers was proposed for modelling local and global con-

texts differently in speech separation networks. It was shown that

for the purpose of generalisation in the case of the conformer lay-

ers, having a larger model size was beneficial particularly when DM

was being used for training. It was shown that this generalisation

finding extends to out-of-domain realistic evaluation data using an

aligned version of the MC-WSJ-AV corpus. A new mixing script to

allow the use of MC-WSJ-AV in other research was developed and

provided in GitHub.



7. REFERENCES

[1] J. Benesty, An Introduction to Blind Source Separation of

Speech Signals, p. 321–330, Kluwer Academic Publishers,

USA, 2000.

[2] R. Haeb-Umbach, S. Watanabe, T. Nakatani, M. Bacchiani,

B. Hoffmeister, M. L. Seltzer, H. Zen, and M. Souden, “Speech

processing for digital home assistants: Combining signal pro-

cessing with deep-learning techniques,” IEEE Signal Process-

ing Magazine, vol. 36, no. 6, pp. 111–124, 2019.

[3] B. Cauchi, T. Gerkmann, S. Doclo, P. Naylor, and S. Goetze,

“Spectrally and spatially informed noise suppression using

beamforming and convolutive NMF,” in Proc. AES 60th Con-

ference on Dereverberation and Reverberation of Audio, Mu-

sic, and Speech, Leuven, Belgium, Jan. 2016.

[4] R. Haeb-Umbach, J. Heymann, L. Drude, S. Watanabe,

M. Delcroix, and T. Nakatani, “Far-Field Automatic Speech

Recognition,” Proceedings of the IEEE, vol. 109, no. 2, pp.

124–148, 2021.
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