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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:The multifaceted effects of climate change on physical and biogeochemical processes are

rapidly altering marine ecosystems but often are considered in isolation, leaving our under-

standing of interactions between these drivers of ecosystem change relatively poor. This is

particularly true for shallow coastal ecosystems, which are fuelled by a combination of dis-

tinct pelagic and benthic energy pathways that may respond to climate change in fundamen-

tally distinct ways. The fish production supported by these systems is likely to be impacted

by climate change differently to those of offshore and shelf ecosystems, which have rela-

tively simpler food webs and mostly lack benthic primary production sources. We developed

a novel, multispecies size spectrum model for shallow coastal reefs, specifically designed to

simulate potential interactive outcomes of changing benthic and pelagic energy inputs and

temperatures and calculate the relative importance of these variables for the fish commu-

nity. Our model, calibrated using field data from an extensive temperate reef monitoring pro-

gram, predicts that changes in resource levels will have much stronger impacts on fish

biomass and yields than changes driven by physiological responses to temperature. Under

increased plankton abundance, species in all fish trophic groups were predicted to increase

in biomass, average size, and yields. By contrast, changes in benthic resources produced

variable responses across fish trophic groups. Increased benthic resources led to increasing

benthivorous and piscivorous fish biomasses, yields, and mean body sizes, but biomass

decreases among herbivore and planktivore species. When resource changes were com-

bined with warming seas, physiological responses generally decreased species’ biomass

and yields. Our results suggest that understanding changes in benthic production and its

implications for coastal fisheries should be a priority research area. Our modified size spec-

trummodel provides a framework for further study of benthic and pelagic energy pathways

that can be easily adapted to other ecosystems.
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Introduction

Climate change is causing a rapid and poorly understood reorganisation of natural ecosystems

worldwide [1,2], with implications for human well-being and conservation goals [3,4]. Shifts

in species distributions, altered primary production, and changing physiological rates have

been documented in terrestrial and aquatic ecosystems and are reshaping food webs [5–7].

Understanding, predicting, and mitigating consequences of these changes on food production

and biodiversity conservation represent important research priorities [8], but predictions

remain extremely difficult due to the complexity of interactions [9]. One of the main chal-

lenges in attempting to predict responses of the valuable fishes in marine ecosystems is that

changing ocean climates can impact fish populations through multiple direct and indirect

mechanisms. These include changes in primary productivity, the size distributions of their

food resources, fish community composition and size structure, and the influences of tempera-

ture on growth and other metabolic processes [10,11]. Through the long-established principles

of bioenergetics, we expect that changes in food availability (ultimately through changes in pri-

mary producers at the base of food webs) and temperature will both affect growth and size

structure of fish populations [12]. These changes, in turn, through size-based food web interac-

tions are expected to alter mortality and reproduction, affecting population abundance and

community structure [13]. To understand how these changes will affect food webs, we need

tools that can resolve physiological processes, body size structures, and species interactions

dynamically, in a robust and computationally efficient way.

Physiologically structured food web models are particularly useful for this purpose because

they incorporate key organismal processes that likely respond to temperature, resolve size

structure interactions between organisms, and allow species abundance, interactions, growth,

and yields to emerge dynamically from the assumptions and knowledge about species’ life-his-

tory, density dependence, and spatial overlap [13,14]. Such modelling tools have already been

applied to explore climate change impacts on marine ecosystems at regional and global levels

and have predicted declining fisheries yields, decreasing energy transfer efficiency, decreasing

growth rates, and smaller fish body sizes with warming [8,10,15–17]. Regardless of these

advances, climate and productivity change impacts remain highly uncertain, especially for

coastal regions, where the relative contributions of pelagic versus benthic primary production

are largely unknown [18,19]. An additional consideration is that fish populations are affected

both by overall productivity shifts and by changing food resource size composition [20].

In most food web models used to explore ecological impacts of climate change under future

climate scenarios, projected productivity and temperature changes have been applied together,

typically by forcing these models with temperature and production time series generated by

Earth SystemModels (e.g., Coupled Model Intercomparison Project), and concentrating on

long-term projections, summarising results across the entire community [16,21]. While

needed for large-scale predictions, this approach makes it hard to understand the relative

importance and uncertainties associated with production, temperature, size structure, and

their interactions. An alternative approach is to examine productivity, resource size structure,

and temperature treatments separately and combined and in this way better understand the

mechanisms and interactions driving observed ecosystem changes [22].

A major challenge for predictions in coastal ecosystems is that global Earth Systems Models

do not yet resolve benthic primary production pathways that are likely to play important roles

for coastal communities, and these models are also poor at resolving pelagic primary produc-

tion in the narrow strip of the ocean close to the coast [23]. Even though global ecological

models that capture ecological interactions between simplified benthic and pelagic pathways

do exist for climate projections [8,24,25], they are focused on shelf areas. They also assume
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that benthic production is detrital and dependent on plankton subsidies, rather than indepen-

dent primary production pathway, as is the case in shallow water systems. Yet, shallow water

marine ecosystems are undergoing some of the most rapid and accelerating changes due to

human impacts [26,27], provide livelihood for over 1 billion people, and harbour most of

marine biodiversity. For example, coral reefs alone are estimated to include approximatelyAU : PleasenotethatasperPLOSstyle; donotusethesymbol � inprosetomeanaboutorapproximately:}Hence; allinstancesofthissymbolhavebeenreplacedwith}approximately}throughoutthetext:
25% of all marine species [28].

Shallow water systems differ from open ocean in several important ways, and models devel-

oped for open ocean systems may be limited in their capacity to make predictions for shallow

ecosystems. First, light penetrates to the substratum in shallow coastal ecosystems, supporting

an additional primary production pathway through benthic producers. The benthic produc-

tion pathway encompasses production by microphytobenthos, tiny turf algae, and macroalgae

up to giant kelp or a diverse array of corals, fuelling a multitude of benthic invertebrate con-

sumers and predators [29,30]. The relative contributions of benthic and pelagic pathways in

coastal ecosystems remains debated [31] and likely varies in time and space, yet it seems rea-

sonable to expect that climate change will impact these 2 pathways in different ways. Second,

higher structural complexity in coastal ecosystems represents an important difference to open

ocean and shelf ecosystems, influencing the transferability of model-based predictions. The

habitat and resource complexity provided by corals and kelps growing on rocky and coral

reefs provides important refugia from predation [32] and supports higher functional diversity

of reef trophic groups able to capitalise on the diverse range of resources [33]. Unlike in open

ocean or shelf systems [13,25,34], many fishes on shallow reefs feed on low trophic level

resources, rather than on each other, which suggests that changes in resource abundance or

size structure might disproportionately impact the fish community [35].

One feasible approach to better understanding climate change responses in coastal systems is

thus to extend physiologically structured food web models developed for offshore systems, to

better include the features of coastal ecosystems that make them different to pelagic and shelf

systems. For this purpose, we outline a model parameterised and calibrated for a well-studied

temperate rocky coastal reef system in a climate change hotspot (Fig 1), where most of the tro-

phic groups, including some large fish species, rely on benthic resources (Fig 2). Using the

model, we attempt to unpack complex ecosystem responses, specifically focussing on evaluating

changes in coastal fish communities that can arise from varying scenarios of change in pelagic

and benthic resources (abundance and size composition) and physiological fish responses to

temperature. We ask 2 broad sets of questions: (1) Do changes in the pelagic and benthic pro-

duction pathways have similar or opposing effects on biomass, average body size, and yields of

reef fishes? (2) How do fish species and community-level responses to plankton and benthos

changes compare to their physiological responses to warming, and do temperature-driven phys-

iological changes amplify or dampen warming impacts from food resource availability?

Methods

Model system and selection of taxa

To study the impacts of global warming on coastal fish communities, we focused on Tasma-

nian reefs within the SE Australian climate change hotspot, parameterising a multispecies size

spectrum (MSSS) model for a well-studied temperate rocky reef community (Fig 1). These

communities have been monitored regularly for the last 30 years using standardised quantita-

tive underwater visual surveys undertaken as part of the Australian Temperate Reef Collabora-

tion (ATRC) monitoring program conducted since 1992 [36], and Reef Life Survey (RLS)

program since 2008 [37,38], as described in an online methods manual at http://www.

reeflifesurvey.com. In this study, we focus on 4 long-term monitored locations, all positioned
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within a single biogeographical province. Data from the 1990s were used to parameterise the

model, whereas data from 2000s and 2010s were used as an indication of empirically observed

ecosystem changes versus those simulated in alternative model scenarios (Fig G in S1 Text).

Fig 2. Schematic illustration of the model groups and 3 background resources used in this study.Detailed feeding interactions across species are not
shown; coloured arrows indicate only the dominant feedings pathways for herbivores (left, frommacroalgae), benthivores (middle, from benthos), and
planktivores (right, from plankton). All species feed on plankton in earliest life stages (indicated with the large arrow). Predators (#14–17) are shown on the top
of the figure, but for other groups, position in the figure does not reflect their trophic level. The image was drawn by Amy Coghlan.

https://doi.org/10.1371/journal.pbio.3002392.g002

Fig 1. Area of the model domain in Tasmania (shaded in orange) and survey locations used to calibrate the model
(circle area proportional to the number of surveys). Public domain map from naturalearthdata.com.

https://doi.org/10.1371/journal.pbio.3002392.g001
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Selection of functional groups for inclusion in the model can have large impacts on the pre-

dicted ecosystem responses [39]. To minimise the subjective choice of model groups, we

selected all species that satisfied the occurrence or biomass thresholds (see S1 Text section 1.2)

in standard fish surveys (500 m2 area; see [40] for survey methods) and pooled species with

similar life-history characteristics and diets. The final list comprised 14 fish and shark species

and species groups (Table 1 and Fig 2), which together accounted for over 90% of average

observed biomass per survey in the 1990s. To account for the fact that abundance of mobile

larger predators (marine mammals, tunas, mobile sharks, pelagic predatory fishes, birds) may

not be correctly reflected in underwater visual surveys on reef habitats, we did not use survey

data for predator abundance but included a general large predator species to represent the

unaccounted predation. This general predator was assumed to grow to a maximum of 5 kg,

which is an approximate average across birds, commonly observed mackerel and other

medium sized pelagic fish species (maximum size of 2 to 3 kg), but also occasional and much

larger sharks and mammals. The predator abundance was chosen based on general expert

knowledge, and we also assessed sensitivity of model outcomes to this assumption by remov-

ing the predator completely and repeating the simulations (S1 Text section 2.4). Most of the

smaller sized invertebrate species were represented through the benthic background resource,

but 2 ecologically and economically important groups (urchins and rock lobsters) were mod-

elled explicitly as dynamic size structured groups. Urchins and lobsters were included as sepa-

rate functional groups because they are very abundant in the ecosystem (urchins are the most

Table 1. List of model species and groups assigned into 4 main trophic categories, approximate maximum body size, and modelled fishing mortality.

Common name Scientific name ~w1 (kg) F (year−1)

Planktivores

Hulafish (1)
Trachinops caudimaculatus 0.04 0

Barber Perch (2) Caesioperca rasor 0.62 0.05

Benthivores

Senator wrasse (3) Pictilabrus laticlavius 0.40 0.05

Purple and bluethroat wrasse (4) Notolabrus tetricus and Notolabrus fucicola 1.60 0.15

Long-snouted boarfish (5) Pentaceropsis recurvirostris 2.20 0.15

Leatherjackets (6) Acanthaluteres vittiger andMeuschenia australis 3.00 0.05

Six-spine Leatherjacket (7) Meuschenia freycineti 4.30 0.15

Bastard Trumpeter (8) Latridopsis forsteri 5.20 0.15

Banded Morwong (9) Cheilodactylus spectabilis 13.50 0.15

Draughtboard Shark (10) Cephaloscyllium laticeps 16.00 0.10

Herbivores

Urchins (11) Heliocidaris, Centrostephanus, and Goniocidaris 0.35 0.15

Herring Cale (12) Olisthops cyanomelas 3.40 0.15

Marblefish (13) Aplodactylus arctidens 4.40 0.15

Predators

Long-fin Pike (14) Dinolestes lewini 1.00 0.15

Red Cod (15) Pseudophycis palmata 1.50 0.15

Rock lobsters (16) Jasus edwardsii 3.00 0.15

Predators (general) (17)* Mammals, birds, sharks, tunas, and other fish 5.00 0.10

FurtherAU : Pleasenotethat}FurtherdetailsaregiveninS1Textsection1:2:}and}∗Thebiomassofpredatorsisnottakenfromsurveysbut:::}havebeenmovedatthebottomofTable1andtaggedastablefootnotes:details are given in S1 Text section 1.2.

*The biomass of predators is not taken from surveys but assumed here to represent average predation from all large predators. Note that fishing mortality in a

continuous size-based model, such as the one used here, is not directly comparable to mortality in age-structured stock assessment models. AU : PleasenotethattheasteriskinTable1footnotesismissingfromthetablebody:Pleaseindicatewhereinthetablebodyshouldtheasteriskbecited:Numbers next to common

names refer to numbers in Fig 2.

https://doi.org/10.1371/journal.pbio.3002392.t001
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abundant group; see Table A in S1 Text), they play important role as herbivores and predators,

which would not be resolved if these groups were treated as a part of benthic resource spec-

trum, and because they reach sizes (Table 1) that are considerably larger than the maximum

size of the benthic resource spectrum (5 g; Table B in S1 Text). Further details on the selection

of model groups are presented in S1 Text section 1.2 and Table C.

General physiologically structured size spectrummodelling framework

To explore how temperature effects on fish physiology compare and interact with changes in

the pelagic and benthic resource abundance and size composition, we use an MSSS modelling

framework [13] and its implementation in the R packagemizer [41] (sizespectrum.org/mizer).

The framework has been used in several recent studies [34,42–44], and its theoretical basis is

described in detail on sizespectrum.org,mizer vignette, and [13]. Here, we only briefly men-

tion the key assumptions, with more details provided in S1 Text section 1.1 and Tables A and

B in S1 Text.

Themizer application of the MSSS model simulates a dynamic size-structured background

resource and user-defined size structured groups (fish and invertebrates), which feed on the

background and on each other. The groups can either represent a single species or groups of

species and are referred to here as model groups. The dynamics of size structured groups is

summarised by the McKendrik–von Foerster equation, where change in abundance at size

through time depends on emergent somatic growth gi(w) [g year
−1] and mortality μi(w) [year

−-

1] of that size class. In this way, size-specific growth and mortality determine how many indi-

viduals enter and leave each size class:

@NiðwÞ

@t
þ
@giðwÞNiðwÞ

@w
¼ �mi wð ÞNi wð Þ: ð1Þ

Growth depends on the availability of food, Holling type II feeding response, assimilation effi-

ciency, maintenance costs, allocation to reproduction, and growth efficiency (applied here but

typically not used in othermizer applications). Feeding and food availability are strongly deter-

mined by size so that each size group feeds on the food sizes available to it (determined by the

predator prey mass ratio kernel of each species, as well as species and resource interaction

matrix). Allocation to reproduction is also size specific, determined by the weight at 25% and

50% maturation (at the population level). Size classes at 50% maturation allocate 50% of their

net energy to reproduction and the rest to growth. This allocation to reproduction increases in

larger size classes, reaching 100% in the largest size class. Mortality includes constant back-

ground mortality, predation, starvation, senescence, and fishing mortality. Predation, senes-

cence, and fishing mortalities are size dependent, as described in S1 Text section 1.1. The

minimum, maximum, and maturation sizes for each size-structured group are set by the user

(Table 1 and Tables B and C in S1 Text). The numbers in the first size class are determined by

the continuous density-dependent recruitment (see below). The numbers of individuals in

each size class are an emergent property of the model. These numbers depend on the growth

and mortality in each size class, which, in turn, depends on the food availability and growth,

predation, fishing mortality, and other mortality sources. Therefore, biomasses, yields, and

average sizes are also an emergent model property, determined by size specific growth and

mortality. For example, higher resource abundance means that individuals grow faster, but it

could also lead to increased predation rates. Depending on the relative change in growth and

mortality on each size class, increased resource abundance could lead to either increasing or

decreasing average sizes of the fish species. Similarly, while the background mortality rate is

constant across size classes, different growth rates across the size classes mean that, in some

PLOS BIOLOGY Climate change in coastal marine ecosystems
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size classes, individuals stay longer than in others, which, in turn, affects the final number of

individuals affected by background mortality in a specific size class.

The temporal dynamics of the background resource spectrum (NR) is modelled through

semi-chemostat dynamics [14] and depends on the emergent predation mortality (μ), resource

regeneration rate (ro), and resource carrying capacity (κ) scaled by the size spectrum slope of

the resource (λ):

@NRðw; tÞ

@t
¼ row

n�1 kw�lðwÞ � NRðw; tÞ
� �

� m wð ÞNR w; tð Þ ð2Þ

where n is the maximum food intake body scaling exponent of size structured groups (see [45]

for further derivations of background spectra dynamics). Further details about resource

parameters are provided in the S1 Text sections 1.7 and 1.8.

Modification of the modelling framework for coastal ecosystems: Benthic
and pelagic production pathways

In this study, we modified the standard MSSS model framework to suit coastal ecosystems by

introducing 3 size-structured background spectra to represent pelagic, benthic (turf and inver-

tebrates), and macroalgal (kelp, seaweed) resources. This distinction is important for shallow

water communities, because (1) a number of fish species are specialised to feed on either

pelagic, benthic, or macroalgal food and feeding on both benthic and pelagic food resources is

size based [46]; (2) in contrast to pelagic ecosystems, benthic primary and secondary produc-

tion are likely to provide substantial energy inputs, independent from pelagic production

[30,47]; (3) size spectrum slopes of pelagic and benthic producers, and their responses to cli-

matic warming, are likely to differ; and (4) many fish species have ontogenetic diet shifts, start-

ing with pelagic (planktonic) prey and switching to benthic prey as they grow [42]. If pelagic

and benthic resources respond differently to warming seas, the consequences for fishes and

communities are likely to differ from those based on the assumption of a fixed resource for

each species.

Ontogenetic diet shifts should ideally emerge dynamically in the model from assumptions

about size preferences, habitat preference, and relative food abundances, yet their reproduc-

tion in physiologically structured models can be challenging [42,48]. In this study, we aimed to

reproduce emergent diet shifts by assuming different size ranges and size abundance slopes for

the 3 resource spectra, and by specifying availability of each spectrum to each model species,

implicitly representing habitat and food preference (pelagic, benthic, and macroalgal). In this

way, each background resource has specific parameters for carrying capacity (κ), size spectrum
slope (λ), and regeneration rate (ro), as well as minimum and maximum size of the spectrum

(Table 2), whereas each species has resource-specific vectors indicating maximum availability

of each resource (see below and S1 Text section 1.4, Table D and Fig B in S1 Text). This means

that emergent ontogenetic shifts could be reproduced by just 3 species-specific parameters,

identifying preference for each of the 3 background resources. This modification of themizer

package, allowing multiple size-structured background spectra and species-specific prefer-

ences for different resources, is now available as amizerMR extension to the mainmizer pack-

age (https://github.com/sizespectrum/mizerMR).

Climate change scenarios: Changes in plankton and benthos abundance
and size

To assess species and ecosystem responses to climate change scenarios, we explored 9 alterna-

tive benthic and pelagic resource change scenarios (see below and Table 2) fully crossed with
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physiological temperature responses (i.e., temperature impacts on vital physiological rates) in

an ANOVA-style design. For all scenarios, low fishing mortality was assumed (Table 1). This

gave a total of 18 scenarios, each run with 29 alternative parameter combinations to assess

model output uncertainty (see below), resulting in 522 simulation outputs. Each scenario was

initiated from baseline equilibrium conditions (no resource or temperature change, main

parameter set), then new conditions imposed instantaneously and applied for 150 years of the

model run. In nearly all cases, simulations settled into a new stable or oscillating equilibrium

within 20 to 40 years. For the analyses here, we did not focus on the transient dynamics but

compared final equilibrium conditions to the initial equilibrium state. To assess the impact of

parameter uncertainty on predicted ecosystem responses in each of the 18 climate change

impact scenarios, we compared the differences between baseline and specific scenarios for

each of the 29 parameter combinations, respectively. This means that we were not focused on

the total amount of uncertainty that combines both parameter and scenario uncertainty, but

on whether a similar change in the modelled community occurred between the baseline and a

specific model scenario, regardless of parameter combination.

Resource parameters in baseline and climate change scenarios

For many marine ecosystems, the slope of the plankton normalised abundance spectrum varies

between −2 and −2.2 [13,49]. For low productivity waters, such as SE Australia, slopes are

often steeper, and, therefore, for the baseline scenario, we use the value of −2.15 (see S1 Text

sections 1.7 and 1.8 for further details on background parameter values). Slopes and abun-

dances of the benthos spectrum for the baseline scenario were estimated from empirical data

along SE Australian coast (Figs D and E in S1 Text). The macroalgal spectrum was modelled

here as size structured background resource for simplicity, even though herbivore feeding on

macroalgae is unlikely to be primarily size based. To ensure high abundance of the macroalgal

resource across various size groups, we assumed relatively flat slopes (−1.6) and high abun-

dance (16 g/m2). These values do not account for the large kelp stands in many rocky reef

communities, but entire kelp is not typically consumed by the local herbivores. The selection

of macroalgal resource parameters mostly aimed to ensure high feeding levels in herbivorous

species (i.e., no food limitation).

Table 2. Scenarios of plankton and benthos resource changes. Each of these scenarios was combined with warm-
ing and fishing scenarios in a fully crossed ANOVA-style design.

Resource change scenario name Plankton spectrum Benthos spectrum

λP κ P λB κ B

1. Baseline −2.15 2 −1.9 6

Plankton abundance change

2. More plankton −2.15 2.6 −1.9 6

3. Less plankton −2.15 1.5 −1.9 6

Plankton size structure change

4. Small plankton −2.18 2 −1.9 6

5. Large plankton −2.12 2 −1.9 6

Benthos abundance change

6. More benthos −2.15 2 −1.9 9

7. Less benthos −2.15 2 −1.9 4

Benthos size structure change

8. Small benthos −2.15 2 −2.0 6

9. Large benthos −2.15 2 −1.8 6

https://doi.org/10.1371/journal.pbio.3002392.t002
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The goal of our study was to explore the multispecies coastal community responses to

warming driven changes in pelagic and benthic resource abundance and size structure inde-

pendent of, and interacting with, changes in temperature. Although the model is parame-

terised for a specific ecosystem, it has a broader goal of investigating the relative importance of

physiological temperature-driven changes versus food availability in a temperate coastal fish

community with multiple primary production pathways. We were not aiming to replicate spe-

cific climate change scenarios because of large uncertainties in forecast changes for SE Austra-

lia and coastal ecosystems in general [17,21]. For example, it is generally expected that

increasing temperature favours smaller body size and that higher temperatures will lead to

steeper background resource size spectra [21,50–52] (Fig C in S1 Text). Yet, empirical evidence

shows that changes in temperature also affect nutrient availability and grazing pressure

[53,54], that benthic resource size spectra may be insensitive to temperature [53,55], and that

field data from the last 10 years show increasing zooplankton abundance off Maria Island (S1

Text section 1.7). We therefore explored a range of resource change scenarios, with plankton

or benthos abundance (κ) and slopes (λ) increasing or decreasing independently (Table 2). We

assumed that plankton or benthos κ values increase or decrease by approximately 30%, and

slopes for plankton can change by 0.03 and for benthos by 0.1 (see S1 Text sections 1.7 and

1.8). Note that changes in the resource slope (λ parameter) also affect the overall resource

abundance below and above the size of the pivot point. By default, the pivot point inmizer is

set at 1 g, so steeper slopes will increase plankton abundance, but mostly so at smaller sizes

(since maximum plankton size is 1 g). Steeper slopes for the benthic resource will increase the

abundance of small benthos organisms (<1 g) and decrease the abundance of organisms>1 g.

Scenarios with resource slope changes produced generally similar results to those with

resource abundance changes, and their results are presented in Fig G in S1 Text.

Physiological response in climate change scenarios

To model temperature effects on physiology in a manner consistent with other similar physio-

logically structured models, we followed the metabolic theory of ecology approach [56] and

assumed that temperature affects the rate of metabolism, search rate, maximum food intake

rate, and background and senescence mortality [57–59]. All rates were assumed to increase

exponentially with temperature based on Arrhenius temperature correction factor

r Tð Þ ¼ e
Ar ðT�Tref Þ

kTTref ð3Þ

where Ar is the activation energy [eV] for individual rate r here assumed to be 0.63 (see Lind-

mark and colleagues [60] for a review of activation energies in different fish species), T is tem-

perature [K], Tref is the reference temperature where temperature scaling equals 1 (here

assumed to be 12˚C or here 285.27 K), and k is Boltzmann’s constant in eV K−1 (8.617×10−5

eV K−1). This representation of temperature is a simplification (see Discussion) and ignores

potential differences across rates, species, and time. Moreover, we do not explore temporal

evolution of the model but just equilibrium conditions under alternative physiological and

food availability states. This assumption of identical responses across species allowed us to

assess how species interactions might modify species biomass and mean size changes due to

the physiological response alone and enabled a more consistent comparison with other models

exploring climate change effects [8,16,22]. The simple physiological response assumption also

gave us a tractable number of simulations that could be analysed in a 3-way ANOVA frame-

work (resource: physiology: trophic group identity; see the Comparing alternative scenario

outputs section below). As with productivity, changes in temperature-driven physiological

rates were applied instantaneously to the baseline equilibrium conditions and the model run
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to a new equilibrium to assess species responses. We follow predictions of RCP8.5 scenario,

forecasting temperature increase of ca. 2.5˚C by 2100 for SE Australia (S1 Text sections 1.7–

1.8); hence, temperature increase scenarios were run at 14.5˚C temperature, compared to 12˚C

reference temperature. The selected parameter values lead to ca. 20% increase in physiological

rates.

Species parameters and model parameterisation

Species parameters were eitherAU : Pleasecheckandconfirmthattheeditsto}Speciesparameterswereeitherselectedbasedongeneralsizespectrum:::}didnotaltertheintendedmeaningofthesentence:selected based on general size spectrum model assumptions

[13,45] or estimated for this model (S1 Text section 1.3). For many rocky reef species, matura-

tion sizes and growth curve parameters are not known; hence, we could not use standard

growth-based approaches to estimate intake and metabolism parameters [13,34] but instead

estimated them from general interspecific relationships [13,61] or derived them from broad-

scale species correlations and estimates used in the Dynamic Energy Budget database (see S1

Text section 1.3, Table D, Fig A in S1 Text, and https://github.com/astaaudzi/SEAmodel code

for full details). To our knowledge, this is the first study providing alternative multispecies

parameter derivations for MSSS models and, thus, a novel test example for new model devel-

opments in data-poor regions. Parameters defining intake rates were further explored in the

uncertainty evaluation framework (below).

In addition to species-specific life-history and physiological parameters, food web models

are also highly sensitive to parameters defining species interactions. In MSSS models, the

emergent consumption of a species or a background resource depends on its relative abun-

dance at size, the consumer predation kernel (Table A in S1 Text, Eq3) that sets limits on the

size ranges that each species can eat, and the species interaction matrix (Table A in S1 Text,

Eq14) that defines the maximum proportion of a prey species or resource biomass available for

consumption at each time step. Predation kernel parameters were selected to reflect general

expert knowledge and evidence from earlier studies [34,62] (Table D in S1 Text). For resource

consumption, the availability of each background resource for each species was set through

species- and resource-specific scalars (Table D in S1 Text), selected on the basis of general

knowledge about functional groups (e.g., planktivores, herbivores, invertivores, and predators

[33]), and aimed to achieve realistic emergent species diets (Fig B in S1 Text). For species inter-

actions, we aimed to reduce the interaction matrix to key parameters. Briefly, for the 17 spe-

cies, the interaction matrix can have up to 17 × 17 parameters, defining specific predation

preferences for each species pair (Table E in S1 Text). In spatially implicit models, such as the

one assumed here, the interaction matrix can be complex and used to model species physical

overlap [34] or detailed diet preferences [42]. In this study, where species have full spatial over-

lap, the interaction matrix was reduced to just 5 parameters aimed to reflect general diet pref-

erences and vulnerability to predation (Table E in S1 Text). Two parameters (0 and 0.7)

indicate absence or presence of predation, and the remaining 3 parameters were used to adjust

vulnerability to predation through antipredatory behaviour, e.g., schooling in small bodied

species, or morphological defences in urchins (S1 Text section 1.4). The interaction matrix

parameters were further explored in uncertainty analyses (see Methods below).

One of the key parts of model parametrisation and calibration is finding parameters for

reproduction and recruitment that enable species coexistence, reasonable biomass values, and

expected resilience to exploitation [63]. To this end, we iteratively tuned 2 species-specific

reproduction parameters—the maximum recruitment parameter Rmax and the reproductive

efficiency parameter ε (Eq10 and Eq11 in Table A in S1 Text). The Rmax sets the upper recruit-

ment limit and represents density-dependent processes that are not dependent on the biomass,

such as habitat availability or disease. The parameter ε determines the proportion of total
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reproduction energy converted into egg biomass and is used to account for reproduction inef-

ficiencies, costs, and early egg mortality [13]. In this way, ε allows a linear relationship between

stock biomass and recruitment, whereas Rmax adds the nonlinear density dependence on

recruitment. The 2 parameters were tuned to satisfy 2 following conditions. First, Rmax was

adjusted to ensure that relative model biomasses for each species at equilibrium conditions

were within 20% of the observed relative biomasses in visual surveys from the 1990s (across

sites and years; Table C in S1 Text); this also ensured species coexistence. Second, ε was

adjusted so that individual species’ vulnerability to fishing and fishing mortality at maximum

yield (Fmsy) was within the expected range given species body size and life-history traits [13]

(S1 Text section 1.5 and https://github.com/astaaudzi/SEAmodel, code archival release at

https://zenodo.org/badge/latestdoi/220103456).

Parameter uncertainty evaluation

The parameter selection procedure briefly introduced above and described extensively in the S1

Text section 1.6 leads to 1 set of parameters that generates realistic model behaviour. Most mul-

tispecies food web and complex models with large numbers of parameter apply a similar proce-

dure [63–66], with more rigorous parameter uncertainty evaluation limited to specific cases

[43,67] and mostly focusing on species recruitment parameters (Rmax) evaluated against time

series of catches. In this study, we conducted uncertainty evaluation of 37 parameters, focusing

on recruitment and species interaction parameters that were found to be influential and highly

uncertain during the model exploration: species-specific Rmax,i and search rates (γi) and 3 spe-
cies interaction matrix parameter defining vulnerability to predation (S1 Text section 1.6).

To apply a novel but relatively straightforward uncertainty evaluation procedure that could

be replicated in other MSSS models, we used a rejection algorithm, similar to the Approximate

Bayesian Computation approach [68]. For this, we ran baseline scenario simulations with

many parameter combinations and rejected simulations that did not satisfy specific criteria on

emergent community properties, given the ecological and biological knowledge about the sys-

tem [69]. To do this, for the 37 explored parameters, we generated 1.8 × 106 possible parameter

combinations by sampling these 37 parameters from 2 times larger space for each parameter.

Specifically, for each of these runs, the vector of the 37 parameters was multiplied by a random

uniform vector ranging from 0.5 to 2 so that each parameter could take any random value that

was up to 2 times smaller or larger of its original value. A vast majority of these parameter

combinations produced unrealistic model outcomes in terms of species relative abundances

(species went extinct). Therefore, to explore the smaller space around the original parameter

values, we additionally sampled 0.4 × 106 parameter combinations, but this time multiplying

the original parameter vector by a random uniform vector ranging from 0.8 to 1.2 (i.e., param-

eter values were allowed to vary by 20%). Both of these parameter resampling procedures

results in a total of potential 2.2 × 106 parameter combinations (somewhat similar to MCMC

sampling in a Bayesian analysis). We then used parallel computing to run the baseline simula-

tion with each of these combinations. The model was run for 150 years to ensure that equilib-

rium conditions were achieved, but we used a time step of 0.5 years (instead of 0.2 years) to

speed up the calculations and started each run using equilibrium model state from the initial

“tuned” set of parameters. Each run was rejected if, at the end of the 150-year simulation, bio-

masses of at least 1 species were 4 times smaller or larger than the average biomasses observed

in underwater surveys. We allowed average biomasses to range 4 times because across year var-

iation in underwater surveys also showed similar levels of variability (Fig A in S1 Text). Allow-

ing biomass to vary extensively also better reflects the fact that natural ecosystems are never

truly in an equilibrium state and species biomasses naturally fluctuate. Our alternative
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parameter combinations therefore reflect a range of possible ecosystem states. This criterion

alone reduced the parameter space from 2.2 × 106 to 287 × 103 combinations. The remaining

parameter values were used in the second step, where for each parameter combination, we ran

the simulation 5 times, saving additional model outputs to explore emergent ecosystem

responses and imposing additional mortality on key model species (set as fishing mortality).

These “extra mortality” runs included (1) no extra mortality; (2) extra mortality on urchins;

(3) extra mortality on “predator”; (4) extra mortality on lobsters; and (5) extra mortality on the

planktivore Trachinops caudimaculatus. These runs were assessed using 7 additional criteria,

describing general characteristics of an unfished system (feeding level, diets) or the expected

ecosystem’s response to imposing extra mortality on key species (S1 Text section 1.6). Once all

the criteria were applied, we were left with a set of 28 parameter combinations, which, together

with the initial set of parameters, gave the final set of 29 parameter combinations. These were

used to explore uncertainty around alternative scenarios. We emphasise that our protocol does

not adequately explore full parameter space and cannot be treated as probabilistic statistical

uncertainty evaluation; hence, we do not use confidence intervals or posterior probability

terms. However, it provides some understanding of variation in model outputs and system

responses to perturbations under different plausible parameter values.

Comparing alternative scenario outputs

Baseline model dynamics and emergent properties were compared to available data and

knowledge on species biomasses, growth, and emergent diets (S1 Text sections 1.4, 2.1, Figs A

and B in S1 Text). For each scenario, we calculated 4 characteristics for all model groups—bio-

masses, yields under constant fishing mortality (Table 1), and mean body weight for all indi-

viduals above 2 cm in length. All response variables were assessed at equilibrium conditions

(100 years after applying new resource and temperature parameters). Because some scenarios

settled into oscillating equilibrium with ca. 10-year periodicity, statistics were calculated as

averages of the last 30 years.

As individual species within each of the 4 trophic groups showed similar responses to pro-

jected resource changes, we assessed more general trophic group-level responses using mixed-

effect ANOVA analyses. Separate analyses were conducted for plankton and benthos slope (λ)
and abundance (κ) scenarios, making 4 sets of analyses in total. For each analysis, variation

between species was treated as a random effect, whereas resource change (Re) (-1, 0, 1), warm-

ing (W) (0, 1), and trophic group (T) were fixed effects. We explored different levels of interac-

tions, starting from the full model with a 3-way interaction, then reducing the complexity to

include all 2-way interactions response ~ Re*W +W*T + Re*T + (1|species). The 2-way model

was typically selected as the best model using Akaike information criterion (AIC) (Table G in

S1 Text), although the AIC score was used for indication only, because simulation data are not

strictly suitable for formal statistical tests. The ANOVA analyses conducted in this study are

used to explore and summarise the direction and magnitude of effects and interactions, and

we do not focus on p-values or strict hypothesis testing [70]. Statistical analyses were con-

ducted using R version 4.0.0 [71], the “effects” (v4.1–4; [72]), and the “emmeans” (v1.4.7;

[73]). To illustrate changes in species biomasses and mean body size that occurred in the mod-

elled ecosystem over the last 2 decades, we plotted empirically observed change in mean bio-

mass per survey (from 1992 to 2018) and estimated changes in mean body size from Bayesian

mixed-effect modelling analyses [74]. These empirically observed changes are only provided

for illustrative purposes (Fig G in S1 Text), because our modelled scenarios aim to explore

interactions between different climate change processes rather than reflect realistic changes in

the ecosystem.
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Results

Model parameterisation in the baseline scenario

Before applying climate change scenarios, we explored emergent model properties in the base-

line scenario with fixed resource and temperature conditions, to check that model parameters

reproduced reasonable system behaviour. Across the 29 accepted parameter combinations, we

observed a wide range of equilibrium biomasses, indicating that these parameters capture a

range of alternative system states (Fig E in S1 Text); the modelled equilibrium biomasses were

close to the observed interannual variability in species biomasses for the 1990s and 2000s. The

emergent resilience to fishing, assessed as fishing mortality at maximum yield in equilibrium

conditions, was within the expected range, based on species life-history characteristics

(Table F in S1 Text). Emergent diets in model groups reproduced expected ontogenetic shifts,

where all species were initially feeding on plankton, with benthivores and herbivores switching

to their respective resources, and predators moving from plankton to some benthos and to fish

(Fig B in S1 Text). Some benthivore species had small fish in their adult diets, which was con-

sistent with empirical observations [62] and references therein. Emergent relative abundance

of benthic resource was close to the available data on average abundance and biomass of ben-

thic invertebrates across the east coast of Tasmania (Fig E in S1 Text).

Climate change–driven changes in biomasses and yields are strongly
determined by food resources

When new resource levels or physiological temperature impacts were applied to the equilib-

rium biomasses of the baseline scenario, most species settled into new stable or oscillating

equilibrium within 20 to 50 years. This suggested that species parameters (mostly the combina-

tion of Rmax and ε) used in the simulations could replicate dynamic species responses and den-

sity dependence adjustments to the community. Only 3 model groups were highly sensitive to

the explored changes in resource with predicted biomass declining to extremely low levels

(extinction) under some parameter combinations. These were the planktivorous serranid Cae-

sioperca rasor and urchins, for scenarios where plankton resource carrying capacity (κ)
decreased or slope (λ) increased, and the wrasse Pictilabrus laticlavius, for scenarios with ben-
thic resource changes (Fig 3 and Fig G in S1 Text). Therefore, for these species, uncertainty

ranges in biomass and yield responses were very broad. The impact of increasing resource car-

rying capacity or steeper resource slopes had similar effects on the model group biomasses.

This is because steepening resource slopes decreased resource abundances at largest sizes (>1

g), but this was offset by complementary increases at smaller sizes (<1 g). Below, we only dis-

cuss results from changes in resource abundance, whereas impacts of changing resource slope

are discussed and shown in Fig G in S1 Text.

In general, physiological responses to warming resulted in predicted changes in species’

biomass or yields that were smaller than those from changes in resource abundance (Fig 3).

Physiological changes either decreased or did not affect biomasses much, and, more impor-

tantly, the biomass response varied across species and trophic groups, despite assuming identi-

cal temperature sensitivity parameters for all of them (i.e., increased search, maximum intake

and metabolism rates, higher background and senescence mortality at higher temperatures).

This indicates that changes in biomasses and yields caused by physiological response to warm-

ing were also strongly affected by species interactions, which modified warming-driven intake,

metabolism, and mortality impacts.

Changes in plankton resource abundance had similar qualitative effects on biomasses and

yields of most species, where biomasses of most species increased by 5% to10% when plankton
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Fig 3. Relative changes (in %) in biomasses, yields, and mean body sizes (individuals above 2 cm length) in model groups across the
alternative model scenarios with increasing or decreasing resource (plankton or benthos) abundance. Variation across scenarios in all
29 parameter combinations is shown with horizontal bars, depicting 5th and 95th percentiles. Yields of Pictilabrus in scenarios with
increased benthos abundance where ca. 1.3 (with warming) and 1.8 (no warming) times higher and are not shown here due to scale. Same
applies for yields of Caesioperca in scenarios with more plankton.

https://doi.org/10.1371/journal.pbio.3002392.g003
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κ increased by 30% and decreased by 10% to 20% when κ decreased by 30% (with high varia-

tion in some species; see light and dark blue symbols in Fig 3). In contrast, changes in benthic

resource abundance had opposing effects—biomass and yield of all benthivores changed in the

same direction as benthos abundance, whereas the opposite was true for planktivores and her-

bivores. For predatory species, higher abundance of benthos increased biomass and yields of

Dinolestes lewini and Pseudophycis palmata by ca. 20% but had no effects on lobsters or the

general predator.

These contrasting responses across trophic groups were confirmed by the mixed effect

ANOVAs (Fig 4 and Table H in S1 Text), where species within a trophic group were treated as

random effects, and separate ANOVAs were performed for biomass, yield, and size responses

to plankton or benthos changes interacting with physiological change. The strongest response

Fig 4. Predicted effects on biomass, mean size (for individuals larger than 2 cm), and yield of 4 coastal reef fish trophic groups to changes in pelagic and
benthic resource abundance and interaction with temperature, under low fishing scenarios, with results of mixed-effect ANOVA. Error bars show 95%
confidence intervals from ANOVA analyses. Black arrows emphasise the predicted effects of increased plankton or benthos abundance on biomass and mean
size responses across trophic groups (same as light blue circles) and highlight their contrasting responses to changes in plankton versus benthos. Planktivore
yield decreases in reduced plankton scenarios was very strong (ca. 0.25, below Y axis minimum limit shown) and is not shown for clarity. For each parameter
combination, all responses are scaled to values in baseline simulations (no resource change, no warming). Note that, for planktivores, biomass and size change
reflects effects in 2 species, whereas yield change only shows responses in Caesioperca (as Trachinops is not fished).

https://doi.org/10.1371/journal.pbio.3002392.g004
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to changes in plankton was, as expected, seen for planktivore biomass and yields, whereas

benthivores showed the strongest response to changes in benthic resource. An overall negative

response of physiological change was observed in biomass and yields of all 4 trophic groups,

but the impact was strongest in predators (red symbols in Fig 4). When physiological

responses to temperature were applied together with changes in resource levels, physiology

usually had a slightly negative impact on species’ biomass, especially for scenarios where

resource levels increased (light orange symbols in Figs 3 and 4). This impact varied quantita-

tively across species and was consistent with their physiological responses to temperature

alone; i.e., species that had strongest biomass changes due to change in physiology alone (e.g.,

D. lewini, P. palmata) were also more negatively affected by temperature, when physiological

responses were combined with the resource change. At a trophic group level, any biomass and

yield increase in predators due to higher benthos abundance were completely negated when

increasing benthos levels were combined with temperature-driven increases in physiological

rates (bottom right, Fig 4). When the general predator species was removed from the model

(to explore model sensitivity to the assumptions about its abundance), the overall results about

the changes in biomasses, yields, and mean sizes across the simulated scenarios remained very

similar (S1 Text section 2.4).

Faster physiological rates increased mean body sizes of most species, but
resource change had larger quantitative effect

As with biomass, the mean intraspecific body size change was considerably more influenced

by resource changes than physiological response to warming, and the relative magnitude of

mean size change across species (about 10% to 30% across all species) was similar to that of

biomass changes (Fig 3). The largest changes in mean size (20% to 60% increase) were seen for

benthivorous species under scenarios with increased benthos abundance. Unlike for biomass

and yields, however, temperature-driven increases in physiological rates had a positive impact

on mean size of most species, regardless of whether physiological rates increased indepen-

dently of, or in combination with, the resource change. The increase in mean body size caused

by physiological responses alone size was strongest in herbivores and benthivores (ca. 10%; red

and orange symbols in Fig 4). Strong positive effects of warming on mean body size were likely

caused by higher food intake rates at higher temperatures, allowing for faster growth in early

life.

Across trophic groups, plankton and benthos changes had similar qualitative effects on spe-

cies mean sizes as it had for biomass and yields. Namely, when plankton abundance increased,

species’ mean sizes also increased (or remained similar). In contrast, when benthos abundance

increased, only benthivorous and predatory species became on average larger, whereas species

in the planktivore and herbivore groups became slightly smaller (Figs 3 and 4).

Discussion

Changes in benthic resource abundance have major and contrasting
impacts on different trophic groups of coastal fishes

By introducing independent size-structured plankton and benthic production pathways, and

exploring how relative changes in their abundance affect coastal fish communities, our study

showed that biomasses and mean sizes of different trophic groups can respond to benthic

resource changes in qualitatively different ways. Increased abundance of benthic organisms

led to higher biomasses, yields, and mean sizes of benthivorous and predatory fishes (and lob-

sters), but the reverse was true for herbivores and planktivores. In contrast, changes in
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plankton abundance induced similar responses across all trophic groups, such that decreasing

plankton abundance affected all species negatively.

To date, marine ecosystem climate change studies and regional and global ocean models

have been strongly focused on understanding changes in plankton primary production, which

drives fish production in pelagic and shelf ecosystems and supports huge fisheries [75]. Our

findings are generally consistent with these studies showing that decreasing plankton primary

productivity leads to an overall decrease in fish biomass, although the magnitude of the change

depends on the system [8,16,17]. Such overarching and consistent influence of plankton abun-

dance on all fish is not surprising, given that most fish species (as larvae or juveniles) initially

feed on plankton.

A key novel finding of our study is the critical importance of the benthic production path-

way in shallow coastal rocky reef ecosystems, with implications for all shallow marine and

freshwater ecosystems that can support a diversity of benthic primary producers (algae) and

invertebrates that depend on them. Abundance and size structure of benthic organisms in

shallow water ecosystems are key determinants of ecosystem dynamics and fish community

structure [76] yet remain largely unmonitored and vastly underrepresented in ecosystem and

community models. For example, the benthic production pathway in lake ecosystems is

believed to provide at least 50% of whole lake productivity, yet 91% of 193 lake food web stud-

ies reviewed by [77] considered only plankton productivity. Remote observation data can now

provide high resolution and quality estimates of plankton abundance at local and global scales,

yet spatial and temporal variation in benthic energy pathways remains poorly understood in

shallow marine systems, and even less is known about how these pathways are responding to

the changing climate.

Monitoring and assessing benthic production changes and their impacts on shallow water

ecosystems is particularly important for climate change predictions, because changes in ben-

thic community structure could be even larger than in plankton production. In addition to

changing sea temperatures and nutrient profiles that affect open ocean habitats, the coastal

seas, lagoons, and freshwater lakes will also experience productivity changes resulting from cli-

mate-driven precipitation changes on land, altered land-use, and urbanisation. Serious wide-

spread warming-driven declines in temperate benthic communities have recently been

highlighted by a comprehensive study of changes in reef species abundances around Australia

over the last decade [78]. Temperate benthic invertebrates were among the most severely

affected components of reef communities, with more than 30% of species experiencing rapid

population declines and an average of 18% decline in abundance among all cool temperate

invertebrate species studied.

Our model suggests that declining benthic productivity can lead to increased herbivore and

planktivore biomasses and yields, trends that have been observed along Tasmanian coasts in

the reef monitoring data (see Fig G in S1 Text showing observed changes overlaid over the

model predictions of resource slope changes, noting that the simulations used in this study did

not represent real plankton and benthos changes that have likely occurred in the Tasmanian

rocky reefs). Although herbivore increases were almost certainly driven by other processes,

such as water temperatures exceeding physiological thresholds and associated species redistri-

butions, the opposing responses of different trophic groups to changes in benthos resource

identified in our study emphasise the importance of species interactions and possible feedback

loops [79]. Our results thus imply that changes in benthos could lead to a rapid reorganisation

of fish communities and food webs. It is therefore imperative that more effort is placed on col-

lecting monitoring data on the benthic production pathway and that we develop general and

consistent methods to integrate this pathway into regional and global ecosystem models.
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The importance of integrating benthic organisms into community size spectra and ecosys-

tem models that aim to explore climate change effects is well recognised [80,81], although we

still lack a consistent approach to represent this benthic community diversity in necessarily

simplified models. Benthic organisms are often included in biogeochemical models that

explore nutrient flows and eutrophication effects [82], but these models do not explore impacts

and interactions with fish communities. Applications of mass balance (e.g., Ecosim/Ecopath)

or end-to-end ecosystem models (e.g., Atlantis, OSMOSE) sometimes also include key benthos

groups such as worms, bivalves, shrimps, and similar [48,64,83]. However, in such studies,

benthic organisms eitherAU : Pleasecheckandconfirmthattheeditsto}However; insuchstudies; benthicorganismseitheraremodelledas:::}didnotaltertheintendedmeaningofthesentence:are modelled as unstructured biomass pools or require detailed para-

meterisation to represent age-based growth dynamics and still do not represent the entire ben-

thic production pathway from primary producers to invertebrates. Modelling the diversity of

benthic functional groups is a daunting and possibly unnecessary task, because despite the

large variation in taxonomic groups and the overall abundance, the size structure of the ben-

thic organisms can remain similar across large temporal and spatial scales [53,55,84]. This

means that representing the benthic production pathway as a size-structured resource, as is

introduced in this study, might provide an effective and general approach for both coastal and

freshwater ecosystems.

Preserving size structure of the benthic community is important both because it allows a

simplified representation of diverse groups and because benthic organisms of different body

size can respond to climate change in opposing ways [84]. In our study, steepening of benthic

resource size slopes and a resultant shift of resource abundance towards smaller organisms

had an overall positive impact on benthivore fish biomass (Fig G in S1 Text). This is because

most food limitation occurred at small fish body sizes, and large predator–prey mass ratios of

benthivorous and planktivorous fishes [85] means that most fishes were feeding on smallest

benthic size groups. Of course, the sensitivity of fish community to changes in resource size

spectrum slope, and, therefore, relative abundances at size, will depend on the parameters

defining size-based feeding, and the sensitivity of these parameter should be explored in fur-

ther studies. Future work could also explore whether multiple size-structured resources, as

modelled here, could be used to represent habitat complexity, which could interact with fish

recruitment or fish predation vulnerability. In coral reef ecosystems, adding size-based preda-

tion refuges improved the fit of modelled fish size spectra to empirical observations [32]. For

temperate rocky reefs, habitat complexity is also provided by large kelp stands, which we

approximated with the macroalgal size-structured resource. We did not model interactions

between different size spectra (e.g., macroalgal spectrum affecting regeneration rate of benthic

spectrum) or impacts of size-structured resource on fish recruitment or predation vulnerabil-

ity, and this would be an important future exploration.

Of course, conclusions from our study are highly dependent on model assumptions and

simplifications of a complex system. While we show that resource changes have greater

impacts than temperature changes, clearly, this will depend on the relative magnitude of

change assumed in the model. In our simulations, the impacts of both productivity and tem-

perature changes were large (30% change in abundance) but generally consistent with recent

findings on benthic invertebrate declines in Tasmania [78,86] and within a realistic range for

plankton (see S1 Text section 1.7). More specific scenarios were not possible due to high

uncertainty in the expected global warming–driven productivity and size structure changes,

especially for the benthos [84,87]. Further, we only explored changes in pelagic or benthos

resource separately, when in reality, abundance and size structure of both plankton and ben-

thic resources have most certainly changed simultaneously. It was not feasible to address all

possible resource and temperature change scenarios here, but we provide an online ShinyR
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tool (https://fishsize.shinyapps.io/BenthicSizeSpectrum) that allows simulation of a wide range

of alternative scenarios to hopefully encourage further studies.

Physiological responses to temperature lead to lower biomass and larger
mean sizes in individual species, but community-level impacts are
relatively small

Compared to changes in plankton or benthos abundance and size structure, the predicted

physiological consequences of warming seas on biomass and mean size of fishes and large

invertebrates were relatively small. Notably, even though our model assumed the same temper-

ature response parameters in all modelled species, the relative magnitude of physiology-driven

impacts varied across species and trophic groups. These results show that in natural communi-

ties, observed body size and biomass changes due to warming are likely strongly shaped by

species interactions and therefore hard to predict a priori. In our study, physiological changes,

both when analysed separately and in combination with resource change, had large impacts on

predator biomass and yields but very little on herbivore and benthivore biomass (Fig 4). For

predators, such as Dinolestes lewini or the commercially valuable and ecologically important

rock lobster, the negative physiological effect of increasing temperature negated any positive

impacts on their biomass from increasing benthos abundance. This appears to be a food limi-

tation response, in which these predators were unable to compensate increased metabolic

needs with higher food intake. Our finding is in line with other recent modelling studies [88]

and empirical observations demonstrating that fish responses to warming are mediated by

food availability.

To keep the number of scenarios tractable and to explore the role of species interactions in

modifying physiological or resource-driven changes, we assumed that all species and all vital

rates (search rate, maximum food intake, metabolism, background, and senescence mortality)

scaled with temperature in the same way. This is consistent with the metabolic theory of ecol-

ogy [89] and still remains one of the most common approaches used in a understanding eco-

system responses to warming (e.g., see the summary of the diverse models used in Fisheries

and Marine EcosystemModel Intercomparison Project FishMIP [22]). In reality, temperature

responses will certainly differ across rates, species, ontogeny, populations, and through time

due to acclimation and adaptation [90,91]. Yet, much uncertainty remains about the magni-

tude and even direction of these differences, let alone the most robust way to model them.

Some models have assumed that metabolism scales with temperature exponentially, but intake

has a domed shaped and species-specific response [92]. Others have assumed that metabolism

costs become relatively more expensive in larger animals and have faster scaling with tempera-

ture compared to intake [93]. Alternatively, the uncertainty of metabolism and intake response

to temperature could be treated as part of model parameter uncertainty, such as found by [88],

who sampled a range of activation energies for these 2 rates (still assuming that both rates scale

exponentially). Such temperature response uncertainty evaluation was not possible in our

study, given that we already included extensive uncertainty evaluation for reproduction,

intake, and interaction parameters among 37 species. Finally, there remains a big uncertainty

about adequately representing acclimation and adaptation to temperature changes. On one

hand, there is good evidence that given sufficient intergenerational acclimation time, fish or

plankton in experimental conditions can maintain similar metabolic rates across a range of

temperatures [94,95]. On the other hand, physiological rates do vary across temperatures [89],

which suggests that they might be driven by the overall community reorganisation to a faster

pace of life (see discussion in [95]). Given that such reorganisation is expected in natural sys-

tems, it might be more appropriate to simulate climate change impacts without the acclimation
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observed in laboratory conditions. More field-based temporal studies of metabolic rates in

warming hotspots are needed to resolve this question.

Nevertheless, even with our simple physiological response assumption, we found that the

model-predictedAU : Pleasecheckandconfirmthattheeditsto}Nevertheless; evenwithoursimplephysiologicalresponseassumption;wefound:::}didnotaltertheintendedmeaningofthesentence:magnitude of mean body size changes due to physiology alone (red symbols

in Fig 3) varied substantially across species (0% to 15% change). Moreover, when model uncer-

tainty was taken into account, no species showed a consistent decrease in mean body size. This

may seem to contradict many experimental and modelling studies, which predict that warm-

ing waters will lead to smaller fish [96–98] and that this “shrinking” is due to temperature-

driven physiological change [89,99,100]. Yet, our model findings of an overall increase in

mean size due to physiological response do not necessarily contradict the “shrinking” fish par-

adigm because this paradigm refers to temperature impacts on maturation and maximum

body size rather than population means [101].

Warming impacts on mean species sizes will be complex because they will depend on both

physiology and growth and also changes in mortality. In fact, even changes in benthos abun-

dance produced qualitatively different mean body responses in different species and trophic

groups, where some species became, on average, larger and others smaller. Such differential

response is consistent with findings from a large-scale empirical study of 335 fish species

around the Australian continent, which showed that warming across space or time led to

mean species body sizes decreasing in 55% of fish species and increasing in 45% [74]. If we

plot the mean body size changes of Tasmanian coastal species reported in [74] against the

mean size changes predicted in our model simulations (black dots in Fig G in S1 Text), we find

that empirically observed mean body size changes were most consistent with predictions from

scenarios with 30% decreases in plankton or benthos abundance (dark orange and blue sym-

bols in Fig 3C). However, we emphasise that real changes in Tasmanian reefs have certainly

been more complex than our scenarios, and empirical changes are only shown to illustrate the

magnitude of fish community changes occurring in this coastal ecosystem. Regardless, our

study shows that complex and diverse changes in fish communities can emerge even under

simple assumptions and that species interactions must be considered when aiming to predict

how marine ecosystem are likely to change over the next decades.

While simple physiological response assumptions were a useful first step to explore interac-

tions across resource, physiology, and fish community processes, future studies should explore

more complex scenarios of species response to warming. The first important improvement

would be to assess the interaction of temperature-driven changes in vital rates and life-history

trade-offs such as relative energy allocation to growth and reproduction [66,102,103]. For

example, Audzijonyte and colleagues [104] used an individual growth model with life-history

optimisation and showed that accounting for life-history changes leads to more realistic emer-

gent growth and maturation responses. To our knowledge, however, none of the commonly

applied multispecies models (e.g., the diversity of models in the FishMIP) incorporate poten-

tial temperature-driven changes in maturation or reproduction, although such changes are

expected and well documented [101,105]. Some degree of growth-reproduction trade-off does

occur in size-based models andmizer, because growth and maturation age are emergent

model properties rather than being set [106]. Yet, the current trade-offs appear to be insuffi-

cient to fully account for possible reproduction costs and life-history optimisation processes

[107]. The second important improvement would be to consider different temperature

responses across species and physiological rates and, especially, size dependency of these

responses [60]. Some of this exploration will hopefully be facilitated by themizer add-on pack-

age therMizer (https://github.com/sizespectrum/ therMizer) that enables simulating domed

shaped intake responses, as used in [10]. Size dependency of vital rate acceleration can also be
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relatively straightforward to incorporate using the size dependency exponent added to the

Arrhenius equation [104].

Parameter uncertainty evaluation and ecological realism

Parameter uncertainty evaluation in complex models remains one of the major challenges in

ecological modelling, and the uncertainty evaluation approach used in this study presents 2

important improvements. The first one is to add more ecological realism to complex models

assessing their performance and skill against a broad range of ecological criteria. Traditionally,

calibration of size-based multispecies models focuses on species recruitment and resource

abundance parameters, evaluated against observations of species biomasses or time series of

fisheries catches when fishing mortality in the model is the same as mortalities from stock

assessments [34,43,63]. Such calibrations can be done using model optimisation procedures

where observational error between observed and simulated catches is minimised using least

square or other mathematical criteria. While this is an important step, the parameter optimisa-

tion approach only delivers one set of “optimal” parameters, but given the complexity of the

parameter space, it is almost certain that multiple parameter combinations could match the

limited observations against which the optimisation was conducted. This means that we

should be exploring model performance against a much larger range of observations, even if

these “observations” may not be formally quantified.

Multispecies models have many emergent ecological and biological properties, such as fish

growth rates, diets, and interactions, and we often have reasonable ecological knowledge about

the possible ranges of these properties. This ecological knowledge is hard to fit into an optimi-

sation function, which is why it is often ignored or used only informally in the model explora-

tion stages. Incorporating a broad range of ecological knowledge in parameter selection would

increase the ecological realism of models. For example, species biomasses or catches may fit

the observations perfectly, yet species diets, growth, and interactions may be unrealistic. This

is why an increasing number of modellers call for more ecological realism of models to ensure

that “correct outcomes are predicted for correct reasons” [69]. We have attempted to add such

realism, by assessing model performance with over 2 million parameter combinations against

a list of ecological criteria, derived from expert and general ecological knowledge. Many of

these parameter combinations fitted expectations about species biomasses but completely

failed other ecological criteria (e.g., diets), suggesting that model realism would have been con-

siderably worse if additional ecological criteria were not incorporated.

By adding parameter uncertainty into our study, we are explicitly addressing uncertainty in

community responses to alternative climate change impacts, which could be formalised in an

ANOVA-type analysis design. The parameter uncertainty evaluation in this study is different

from model sensitivity analyses where parameters are drawn randomly from a specified distri-

bution around the initial optimised parameter value and are all considered equally possible,

e.g., as in [108] or [34]. Our analyses are more similar to the Bayesian uncertainty evaluation

of stock recruitment and plankton abundance parameters in the North Sea size-based model

[43], except that we applied a simpler parameter evaluation framework that did not require

specifying a likelihood function, allowing us to incorporate multiple ecological criteria (not

used in [43]AU : Pleasenotethatreference46hasbeenlinkedtocitation}Spenceandcolleagues}inthesentence}OuranalysesaremoresimilartotheBayesianuncertaintyevaluation:::}Pleaseconfirmthatthisiscorrect:). Naturally, many aspects of parameter uncertainty evaluation could be improved.

While the current study presents one of the most exhaustive parameter uncertainty evaluations

across a range of different traits (recruitment, food intake rates, and species interactions), we

did not explore the uncertainty in species-specific physiological parameters and how these

might affect emergent species body sizes and abundance. We evaluated model outcomes

against a set of ecological criteria, effectively assuming a knife-edge likelihood function (e.g.,
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proportion of one species in a diet of another species cannot be smaller than a certain fixed

value). This method could be improved by using a smoother function. Finally, machine learn-

ing tools should also be used to find parameter patterns frommultiple model runs against mul-

tiple ecological criteria and, hopefully, to incorporate other aspects of model uncertainty in

addition to parameter values.

Future directions

Adequate prediction of coastal community responses to warming requires an understanding

of interactive resource and physiological changes in multispecies contexts. Yet, marine ecosys-

tem responses to climate change also involve other factors with potentially large impacts. The

main one relates to the possible impacts of species redistributions [109], where newly arriving

species (e.g., sea urchins in kelp forest ecosystems) might cause major ecosystem shifts. Redis-

tribution of herbivorous fish species into temperate reefs is already driving large changes in

macroalgal abundance and community composition [110]. The second major one is human

impacts, through either increased fishing or increased protection. An increasing number of

studies shows that protecting large fishes, and especially predators, can help mitigate popula-

tion and ecosystem impacts of warming [111,112]. Our study did not explore how different

fishing scenarios might interact with global warming, but such analysis would be very impor-

tant. Finally, the current framework also allows assessment of climate change impacts on

broader community attributes and indicators used in ecosystem management and ecology.

These include such characteristics as resilience and community connectedness, and ecological

and fisheries indicators based on body size distributions in fish communities, overall commu-

nity level size structure and maximum sustainable yield, or ecosystem-level energy transfer

efficiency. Our study provides a pathway that will hopefully encourage and facilitate further

investigation.
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