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A B S T R A C T

The phase-field model treats discrete cracks in a smeared sense by a regularisation technique. It holds attractive
properties: there is no need to consider cracks as geometric discontinuities, and it avoids remeshing around
crack tips. The method has been employed in the analysis of brittle and cohesive fracture problems. In
the brittle fracture model, a Griffith-like energy functional is used in the simulation, while in the cohesive
fracture model, the fracturing problem exploits a displacement jump governed energy functional. Obviously,
the displacement jump is crucial in the cohesive fracture model and in certain other applications, e.g. for
hydraulic fracturing. In the current study, the approximated form of the crack opening displacement is derived
for the brittle and cohesive fracture models. In both models, the crack opening displacement is associated with
a line integral normal to the crack, but different factors in front of the integral apply. The derived integrals
are verified analytically in a one-dimensional setting and numerically in multi-dimensional set-ups, featuring
straight and curved cracks.

1. Introduction

Phase field models have become popular for fracturing analysis
since its initial work by Francfort and Marigo (1998) and Bourdin
et al. (2000). It describes the crack by a scalar phase field variable.
Different from discrete crack models, e.g., Chen et al. (2017), cracks
are descried in a smeared sense in phase-field models, so that there
is no need to treat cracks as geometric discontinuities and remeshing
around crack tips is avoided. In the phase-field approach to brittle
fracture, crack initiation and quasi-static propagation are considered
as an energy functional minimisation problem. To be suitable for large-
scale computations, a regularisation strategy was developed by Bourdin
et al. (2008), which transforms the sharp discontinuity into a smeared
crack, governed by a phase-field variable 𝑑. The width of the smeared
crack is set by an internal length scale 𝓁 (Bourdin et al., 2000).

The vast majority of phase-field models have been applied in the
analysis of brittle fracture, e.g. Heider (2021). Its application spans
from ductile fractures (Miehe et al., 2015) to fatigue analysis (Alessi
et al., 2018), hydraulic fracturing (Chukwudozie et al., 2019), and
dynamic fracture (Li et al., 2016). Different from the external load
induced fracture, hydraulic fracturing is a physical process caused by
the fluid pressure in the crack (Yoshioka et al., 2020). To consider
the effect of the fluid flow in the crack, the Reynolds flow model is
typically employed in the analysis (Miehe and Mauthe, 2016). Gener-
ally, the Reynolds flow model strongly depends on the crack opening
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displacement, e.g., the cubic law for the fluid velocity. The extension

of the phase-field approach to cohesive fracture has been addressed by

Verhoosel and de Borst (2013) and by Nguyen et al. (2016), employing

a displacement jump dependent energy functional in the analysis,

see also Vignollet et al. (2014), May et al. (2015), Ghaffari Motlagh

and de Borst (2020) and Chen and de Borst (2022). Obviously, the

displacement jump, including the crack opening displacement in the

crack normal direction and the displacement jump in the crack shear

direction, is a crucial variable in the cohesive fracture model and also

in certain other applications such as hydraulic fracturing.

So far, the computation of the displacement jump in the shear

direction is underdeveloped, while for the computation of the crack

opening several approaches are available (Heider, 2021). In the early

work on the analysis of hydraulic fracturing by brittle phase-field

models, a line integral was used to compute the crack opening in the di-

rection normal to the crack (Bourdin et al., 2012). Later, Chukwudozie

et al. (2019) and Yoshioka et al. (2020) have theoretically proven the

integral formula in the framework of the brittle fracture model, and

have detailed the implementation of the integral form.

Verhoosel and de Borst (2013) proposed a cohesive phase field

model which exploits an auxiliary field to model the displacement

jump which is required as an input in a cohesive-zone model. More

recently, Chen and de Borst (2022) have systematically studied the
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Fig. 1. (a) a solid body 𝛀 with an internal crack 𝛤𝑐 . 𝛤𝑐 is an interface boundary with positive and negative sides, 𝛤
+
𝑐
and 𝛤 −

𝑐
, respectively. Tractions 𝒑 are prescribed along 𝛤𝑐 .

Boundary 𝛤𝑢 is prescribed with a displacement 𝐮̄; 𝛤𝑡 with a prescribed traction 𝐭̂; (b) a solid body 𝛀 with a smeared crack 𝛤𝜉 (blue area).

cohesive phase field model and proposed different forms of phase-
field models. From their analysis, it appears that the auxiliary field
should be prescribed in the whole domain, reducing the computational
efficiency. Nguyen et al. (2016) avoided an auxiliary field by computing
the displacement jump at two points near the interface. However, the
choice of the location of these points seems arbitrary and problem-
dependent. Lee et al. (2017) and Yoshioka et al. (2020) employed a
level-set approach to compute the normal vector of the crack, which is
used in the computation of the displacement jump at each quadrature
point. Obviously, the accuracy of this approach relies on the choices of
the level set function.

This study will address the general case of the computation of the
crack opening displacement in the framework of phase-field modelling.
The line integral form of crack opening displacement will be derived
separately for the brittle and the cohesive fracture models. We will
validate the proposed formula theoretically in a one-dimensional set-
ting and numerically in multi-dimensional set-ups. We will start this
contribution with a concise description of phase field modelling of
fractures. Subsequently, the crack opening displacement is derived for
the brittle and cohesive fracture model, respectively. The theoretical
validation of the proposed formula is given in Section 4. Finally, two
numerical examples are presented to numerically validate the approach
and conclusions are drawn.

2. Phase field model for fracture

In this section, we will briefly elaborate on the phase-field modelling
of brittle and cohesive fracture, see Fig. 1. The internal discontinuity
𝛤𝑐 can either refer to a brittle or to a cohesive fracture. Tractions 𝒑 on
𝛤𝑐 can either by a fluid pressure applied on the brittle fracture surface,
or cohesive tractions. In this contribution, infinitesimal strains, linear
elastic material behaviour and the absence of body force have been
assumed.

2.1. Phase field regularised brittle fracture model

The variational approach to brittle fracture was proposed by Franc-
fort and Marigo (1998). The crack initiation and quasi-static evolution
are governed by a minimisation of a Griffith-like energy functional.
Here, we consider a cracked body 𝛺 ⊆ 𝑛 with a prescribed tractions
𝒑 on 𝛤𝑐 , prescribed displacements 𝐮̄ on 𝜕𝛺𝑢, and a prescribed traction
𝐭̂ on 𝜕𝛺𝑡. Then, the total energy functional for the cracked body
read (Yoshioka et al., 2020)

 (𝐮, 𝛤 ;𝒑) =  (𝐮, 𝛤 ;𝒑) + 𝑠 (𝛤 ) =  (𝐮, 𝛤 ;𝒑) + 𝑐 ∫𝛤 d𝑛−1, (1)

where  (𝐮, 𝛤 ;𝒑) is the potential for the cracked body, including the
strain energy, the work done by the externally applied loads and
the work from the tractions 𝒑. 𝑠 (𝛤 ) represents the fracture surface

energy in the sense of Griffith’s theory of brittle fracture, 𝑛−1 denotes
the (𝑛 − 1)-dimensional Hausdorff surface measure and 𝛤 is the set
of cracks where the displacement fields 𝐮 ∈ 𝐻1 (𝛺 ⧵ 𝛤 ) can jump,
𝐻1 (𝛺 ⧵ 𝛤 ) being the Sobolev space of functions with square integrable
first derivative. 𝑐 denotes a scaling factor, with the dimension of
energy per unit surface.

In brittle fracture models tractions 𝒑 can be considered as the
pressure 𝑝𝑓 exerted on the crack 𝛤𝑐 , such as in the hydraulic fractur-
ing (Chukwudozie et al., 2019; Yoshioka et al., 2020). The pressure 𝑝𝑓
will induce work in the crack opening direction (Chen et al., 2022b).
To elaborate the approach on how to compute the crack opening we
will assume the traction 𝒑 to be a pressure 𝑝𝑓 exerted on the crack 𝛤𝑐 .
Correspondingly, the potential  (𝐮, 𝛤 ;𝒑) for the cracked body is given
as (Yoshioka et al., 2020)

 (𝐮, 𝛤 ;𝒑) =  (
𝐮, 𝛤 ; 𝑝𝑓

)
= ∫𝛺⧵𝛤

(𝐮) d𝛺−∫𝛤𝑡 𝐮 ⋅ 𝐭̂d𝛤−∫𝛤𝑐 𝑝𝑓 [[𝐮 ⋅ 𝒏]] d𝛤 ,

(2)

in which (𝐮) is the energy density function and 𝐭̂ is the prescribed
traction on the boundary 𝛤𝑡. In this contribution, we consider isotropic
linear elasticity, such that (𝐮) = 𝜇𝜀𝜀𝜀(𝐮) ⋅ 𝜀𝜀𝜀(𝐮) + 𝜆∕2tr(𝜀𝜀𝜀(𝐮))2 with
𝜀𝜀𝜀(𝐮) = 1∕2

(
∇𝐮 + ∇𝐮T

)
, 𝜆 and 𝜇 being Lamé constants, and ⋅ denotes the

inner product. [[𝐮 ⋅ 𝒏]] denotes the crack opening displacement,
[[
𝑣𝑛
]]
=

[[𝐮 ⋅ 𝒏]].

The direct numerical implementation of Griffith’s energy functional
(1) is challenging because of the unknown displacement jump location.
We therefore resort to the regularisation strategy proposed by Bourdin
et al. (2000), originally developed for image segmentation problems.
In a regularised framework, cracks are represented by a scalar phase
field variable 𝑑, ranging from 0 (away from the crack) to 1 (completely
broken state). 𝑑 varies smoothly in a band of finite width, resulting in
a smeared vision of crack model. Then, the energy functional Eq. (1) is
substituted by the functional:

 (𝐮, 𝛤 ;𝒑) = ∫𝛺 𝑎(𝑑)(𝐮) d𝛺 − ∫𝛤𝑡 𝐮 ⋅ 𝐭̂d𝛤 − ∫𝛤𝑐 𝑝𝑓 [[𝐮 ⋅ 𝒏]] d𝛤

+ 𝑐 ∫𝛺 𝛾𝑑 (𝑑) d𝛺 (3)

where 𝑎(𝑑) = (1 − 𝑑)2 denotes a degradation function and 𝛾𝑑 (𝑑) repre-
sents the crack density function per unit volume. The derivation and
explicit form of 𝛾𝑑 (𝑑) will be presented in Section 3.1. In Eq. (3),
the integration term ∫

𝛤𝑐
𝑝𝑓 [[𝐮 ⋅ 𝒏]] d𝛤 is still given in a discrete form

(not regularised). It is difficult to carry out the integration due to
unknown location of the crack opening. We will alleviate this by the
phase field method in Section 3.2, where the smeared representation
of ∫

𝛤𝑐
𝑝𝑓 [[𝐮 ⋅ 𝒏]] d𝛤 will be illustrated.
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2.2. Phase field regularised cohesive fracture model

Introduced in Dugdale (1960) and Barenblatt (1962) the cohesive
zone model is now widely employed to model interface fracture (Xu
and Needleman, 1993). The model relates tractions on a crack interface
to the displacement jump along the interface. The interface 𝛤𝑐 is placed
in the physical domain 𝛺 with positive and negative sides, 𝛤+

𝑐 and 𝛤−
𝑐

respectively, as illustrated in Fig. 1. Tractions 𝒑 are cohesive tractions
𝐭 acting on 𝛤𝑐 . In the early work, the cohesive zone model is cast in
the discrete fracture model, treating the crack interface as geometric
discontinuities and applying cohesive tractions on the discrete interface
directly (Chen and de Borst, 2019). In the discrete model, the total
energy is given as:

 (𝐮, 𝛤 ;𝒑) = ∫𝛺 (𝐮) d𝛺 − ∫𝛤𝑡 𝐮 ⋅ 𝐭̂d𝛤 + ∫𝛤  ([[𝐮]] , 𝜅𝜅𝜅)d𝐴 (4)

with 𝜅𝜅𝜅 being a history parameter, obeying Kuhn–Tucker conditions to
distinguish between loading and unloading.  ([[𝐮]] , 𝜅𝜅𝜅) is the fracture
energy function, representing the energy dissipation upon the creation
of a unit crack surface. This energy is released gradually in cohesive
zone models, depending on the displacement jump function [[𝐮]] and the
history parameter 𝜅𝜅𝜅. The displacement jump [[𝐮]] across the interface 𝛤𝑐

is expressed as

[[𝐮]] = 𝐮
+ − 𝐮

− on 𝛤𝑐 (5)

with 𝐮+ and 𝐮− being the displacement on the positive and negative
sides, 𝛤+

𝑐 and 𝛤−
𝑐 in Fig. 1 respectively.

The cohesive tractions are obtained by differentiating the fracture
energy with respect to the displacement jump:

𝒑 = 𝐭 ([[𝐮]] , 𝜅𝜅𝜅) =
𝜕 ([[𝐮]] , 𝜅𝜅𝜅)

𝜕 [[𝐮]]
(6)

where 𝐭 ([[𝐮]] , 𝜅𝜅𝜅) and [[𝐮]] are given in the global coordinate system(
𝑥1, 𝑥2

)
. The traction and displacement jump in the normal and shear

direction, i.e., local coordinate system (𝑠, 𝑛) in Fig. 1, are obtained via
a standard transformation:

𝐭 = 𝐑
T
𝐭𝑑 = 𝐑

T
[
𝑡𝑠 𝑡𝑛

]T
, [[𝒗]] =

[[[
𝑣𝑠
]] [[

𝑣𝑛
]]]T

= 𝐑 [[𝐮]] = 𝐑

[[[
𝑢𝑥1

]] [[
𝑢𝑥2

]]]T
(7)

with 𝐑 being a rotation matrix (Chen et al., 2017; Chen and de Borst,
2019). The displacement jump in the normal direction

[[
𝑣𝑛
]]
is also

considered as the crack opening displacement, as defined in Eq. (2).
The cohesive fracture 𝛤𝑐 can be regularised by the phase field

method (Verhoosel and de Borst, 2013). In Eq. (4), the infinitesimal
surface area d𝐴, at every point 𝒙𝑐 on the interface 𝛤𝑐 , can be rewritten
in an integral form

d𝐴
(
𝒙𝑐
)
= ∫

∞

𝑥𝑛=−∞

𝛿
(
𝑥𝑛
)
d𝑥𝑛

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=1

d𝐴 = ∫
∞

𝑥𝑛=−∞

𝛿
(
𝑥𝑛
)
d𝑉 ≈ ∫

∞

𝑥𝑛=−∞

𝛿𝑐
(
𝑥𝑛
)
d𝑉

(8)

in which 𝑥𝑛 =
(
𝒙 − 𝒙𝑐

)
⋅ 𝒏

(
𝒙𝑐
)
and 𝒏

(
𝒙𝑐
)
the unit vector normal to

the crack 𝛤𝑐 . 𝛿
(
𝑥𝑛
)
represents the Dirac-delta function, being zero ev-

erywhere except at 𝑥𝑛. In the simulation, we cannot directly regularise
the interface by using 𝛿

(
𝑥𝑛
)
. An approximated form, 𝛿𝑐

(
𝑥𝑛
)
, should be

used, i.e., the last term in Eq. (8). In the current study we will employ
the phase-field model to obtain 𝛿𝑐

(
𝑥𝑛
)
. The basic idea of the phase-

field model in the regularised framework is to approximate the discrete
crack 𝛤𝑐 by a smeared crack 𝛤𝜉 , as shown in Fig. 1(b). The explicit
form of 𝛿𝑐

(
𝑥𝑛
)
will be illustrated in Section 3.1. Substituting Eq. (8)

into (4) leads to a phase-field regularised energy function for cohesive
fracture (Verhoosel and de Borst, 2013):

 (𝐮, 𝛤 ;𝒑) = ∫𝛺

(𝐮) d𝛺 − ∫𝛤𝑡

𝐮 ⋅ 𝐭̂d𝛤 + ∫𝛤

 ([[𝐮]] , 𝜅𝜅𝜅)∫
∞

𝑥𝑛=−∞

𝛿
(
𝑥𝑛
)
d𝑉

≈ ∫𝛺

(𝐮) d𝛺 − ∫𝛤𝑡

𝐮 ⋅ 𝐭̂d𝛤 + ∫𝛺

 ([[𝐮]] , 𝜅𝜅𝜅) 𝛿𝑐 (𝑥𝑛)d𝑉
(9)

3. Crack opening computation in the phase field method

In the variational approach to fracture, the crack geometry is not
tracked explicitly (Bourdin et al., 2000). Hence the crack opening
in Eqs. (2) and (7) cannot be computed directly in the regularised
phase field model. Chukwudozie et al. (2019) employed an integration
approach to obtain the crack opening for their analysis of hydraulic
fracturing in porous media. In their analysis only brittle fracture was
considered, the extension to cohesive fracture model still being open.
In this section we will compute the crack opening for brittle as well as
for cohesive fracture.

3.1. Smeared representation of crack

The basic idea of the phase-field model is to approximate the
crack 𝛤𝑐 by a smeared representation 𝛤𝜉 , as shown in Fig. 1(b). 𝛤𝜉 is
associated with a fixed phase field 𝑑 (𝐱) around the interface 𝛤𝑐 . 𝑑 (𝐱)

equals 1 at the centre of the crack 𝛤𝑐 , that is, for 𝑥𝑛 = 0, and vanishes
gradually away from 𝛤𝑐 . The width of the smeared interface is governed
by a regularisation parameter 𝓁. The phase-field distribution can be
determined by solving the variational problem:

𝑑 (𝐱) = Arg

{
inf
𝑑∈𝑑 𝛤𝓁 (𝑑)

}
(10)

in which 𝑑 =
{
𝑑
||| 𝑑 (𝐱) = 1 ∀𝐱 ∈ 𝛤𝑐

}
and

𝛤𝓁 (𝑑) = ∫𝛺 𝛾𝑑 (𝑑)d𝑉 (11)

where 𝛤𝓁 (𝑑) denotes the crack length, i.e. the length of crack inter-
face per unit area. 𝛾𝑑 (𝑑) represents the crack density function per
unit volume. In the current study, following crack density function is
employed (Chen and de Borst, 2021):

𝛾𝑑 (𝑑) =
1

𝜋𝓁

(
2𝑑 (𝐱) − 𝑑 (𝐱)2

)
+

𝓁

𝜋
∇𝑑 (𝐱) ⋅ ∇𝑑 (𝐱) , (12)

The Euler–Lagrange equation associated with the variational equa-
tion (10) reads:

1 − 𝑑
(
𝑥𝑛
)
− 𝓁

2
d2𝑑

(
𝑥𝑛
)

d𝑥2𝑛
= 0 𝑥𝑛 ∈ R

𝑑 = 1 𝑥𝑛 = 0

𝑑 = 0 𝑥𝑛 = (−∞, −𝜋𝓁∕2
]⋃[

𝜋𝓁∕2, +∞)

(13)

with the solution:

𝑑
(
𝑥𝑛
)
=

⎧⎪⎨⎪⎩

1 − sin

(|𝑥𝑛|
𝓁

)
− 𝜋𝓁∕2 ≤ 𝑥𝑛 ≤ 𝜋𝓁∕2

0 otherwise
(14)

with 𝑥𝑛 =
(
𝒙 − 𝒙𝑐

)
⋅𝒏

(
𝒙𝑐
)
, point 𝒙𝑐 on the crack 𝛤𝑐 and 𝒏

(
𝒙𝑐
)
the unit

vector normal to 𝛤𝑐 .
For the brittle fracture model we use Eq. (11) to compute the crack

density function 𝛾𝑑 (𝑑) in Eq. (3). For the cohesive fracture model, the
Dirac-delta function, 𝛿𝑐

(
𝑥𝑛
)
in Eq. (8), can be approximated by the

crack density function in Eq. (11) (Chen and de Borst, 2022). To further
simplify 𝛿𝑐

(
𝑥𝑛
)
, we propose the following form to approximate the

Dirac-delta function:

𝛿𝑐
(
𝑥𝑛
)
=

1

2

|||||
d𝑑

(
𝑥𝑛
)

d𝑥𝑛

|||||
=

1

2

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

−
d𝑑

(
𝑥𝑛
)

d𝑥𝑛
0 < 𝑥𝑛 ≤ 𝜋𝓁∕2

d𝑑
(
𝑥𝑛
)

d𝑥𝑛
− 𝜋𝓁∕2 ≤ 𝑥𝑛 ≤ 0

0 otherwise

=
1

2

⎧⎪⎨⎪⎩

1

𝓁
cos

(𝑥𝑛
𝓁

)
− 𝜋𝓁∕2 ≤ 𝑥𝑛 ≤ 𝜋𝓁∕2

0 otherwise

(15)
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Fig. 2. One-dimensional analytical phase field 𝑑 (𝐱), crack density function 𝛾𝑐 , and Dirac-delta function 𝛿𝑐 for a uniaxial bar (length 1) with a crack 𝛤𝑐 in the middle. The
regularisation length is 𝓁 = 0.1.

in which the fraction
1

2
stems from the constraint on the Dirac-delta

function, ∫ ∞

−∞
𝛿𝑐

(
𝑥𝑛
)
d𝑥𝑛 = 1.

In Fig. 2 we plot the phase field 𝑑
(
𝑥𝑛
)
, the crack density function

𝛾𝑑 (𝑑) and the Dirac-delta function 𝛿𝑐
(
𝑥𝑛
)
. In the figure the distribution

of 𝑑
(
𝑥𝑛
)
, 𝛾𝑑 (𝑑) and 𝛿𝑐

(
𝑥𝑛
)
is localised around the crack 𝛤𝑐 , confining

the influence of smeared crack 𝛤𝜉 . In Ref. Chukwudozie et al. (2019)
and Yoshioka et al. (2020) the line integral of the crack opening
displacement is evaluated for the range [−∞, ∞] due to the use of
the AT2 phase field model. Use of the current phase-field model over
the AT2 phase-field model (Chukwudozie et al., 2019; Yoshioka et al.,
2020) is therefore superior.

3.2. Crack opening approximation for the brittle fracture

The term ∫
𝛤𝑐

𝑝𝑓 [[𝐮 ⋅ 𝒏]] d𝛤 in the brittle fracture model, i.e., in
Eq. (3), has a discrete format, i.e., is not regularised. Chukwudozie et al.
(2019) have proposed the following smeared approximation:

∫𝛤𝑐 𝑝𝑓 [[𝐮 ⋅ 𝒏]] d𝛤 ≈ −∫𝛺 𝑝𝑓𝐮 ⋅ ∇𝑑 d𝛺 (16)

where the minus sign in front of the integration originates from the def-
inition of the phase-field variable 𝑑, being different from that in Chuk-
wudozie et al. (2019).

The profile of phase-field variable 𝑑 in the direction normal to 𝛤𝑐

is given in Eq. (14). Integrating the phase field gradient in the normal
direction 𝒏, we arrive at:

∫
0

−∞

||||∇𝑑
(
𝑥𝑛
) ||||d𝑥𝑛 = ∫

∞

0

||||∇𝑑
(
𝑥𝑛
) ||||d𝑥𝑛 = 1 (17)

The crack opening displacement 𝛤𝑐 then reads:

[[𝐮 ⋅ 𝒏]] = 𝐮
(
𝑥+𝑛

)
⋅ 𝒏 − 𝐮

(
𝑥−𝑛

)
⋅ 𝒏 = 𝐮

(
𝑥+𝑛

)
⋅ 𝒏∫

∞

0

||||∇𝑑
(
𝑥𝑛
) ||||d𝑥𝑛

− 𝐮
(
𝑥−𝑛

)
⋅ 𝒏∫

0

−∞

||||∇𝑑
(
𝑥𝑛
) ||||d𝑥𝑛 (18)

with 𝑥+𝑛 and 𝑥−𝑛 being points on positive and negative sides of the crack
𝛤𝑐 , i.e., 𝛤𝑐+ and 𝛤𝑐− in Fig. 1(a) respectively.

Due to the compact support of the phase-field model, as illustrated
in Fig. 2, the displacements 𝐮

(
𝑥+𝑛

)
and 𝐮

(
𝑥−𝑛

)
can be considered as

constants in the direction normal to the crack, yielding:

𝐮
(
𝑥+𝑛

)
⋅ 𝒏∫

∞

0

||||∇𝑑
(
𝑥𝑛
) ||||d𝑥𝑛 ≈ ∫

∞

0

𝐮
(
𝑥𝑛
)
⋅ 𝒏

||||∇𝑑
(
𝑥𝑛
) ||||d𝑥𝑛

𝐮
(
𝑥−𝑛

)
⋅ 𝒏∫

0

−∞

||||∇𝑑
(
𝑥𝑛
) ||||d𝑥𝑛 ≈ ∫

0

−∞

𝐮
(
𝑥𝑛
)
⋅ 𝒏

||||∇𝑑
(
𝑥𝑛
) ||||d𝑥𝑛

(19)

The normal vector 𝒏 can subsequently be approximated as (Chukwu-
dozie et al., 2019):

𝒏 ≈ −∇𝑑
(
𝑥+𝑛

) / ||||∇𝑑
(
𝑥+𝑛

) |||| ≈ ∇𝑑
(
𝑥−𝑛

) / ||||∇𝑑
(
𝑥−𝑛

) |||| (20)

Substituting Eq. (20) into (18) and employing Eq. (19) we obtain the
crack opening displacement for the brittle fracture model, as follows:

[[𝐮 ⋅ 𝒏]] = 𝐮
(
𝑥+𝑛

)
⋅ 𝒏 − 𝐮

(
𝑥−𝑛

)
⋅ 𝒏 ≈ −∫

∞

−∞

𝐮
(
𝑥𝑛
)
⋅ ∇𝑑

(
𝑥𝑛
)
d𝑥𝑛 (21)

which can be simplified as

[[𝐮 ⋅ 𝒏]] = 𝐮
(
𝑥+𝑛

)
⋅ 𝒏 − 𝐮

(
𝑥−𝑛

)
⋅ 𝒏 ≈ −∫

𝜋𝓁∕2

−𝜋𝓁∕2

𝐮
(
𝑥𝑛
)
⋅ ∇𝑑

(
𝑥𝑛
)
d𝑥𝑛 (22)

where the phase field model in Eqs. (13) and (14) is considered.

3.3. Crack opening approximation for the cohesive fracture

Following the concept of a smeared area in Eq. (8), In the cohesive
fracture model we can regularise the displacement jump function using
the Dirac-delta function:

[[𝐮]]
(
𝒙𝑐
)
= ∫

∞

𝑥𝑛=−∞

𝜐𝜐𝜐 (𝒙) 𝛿
(
𝑥𝑛
)
d𝑥𝑛 ≈ ∫

∞

𝑥𝑛=−∞

𝜐𝜐𝜐 (𝒙) 𝛿𝑐
(
𝑥𝑛
)
d𝑥𝑛 (23)

with 𝑥𝑛 =
(
𝒙 − 𝒙𝑐

)
⋅𝒏

(
𝒙𝑐
)
and 𝒏

(
𝒙𝑐
)
the unit vector normal to the crack

𝛤𝑐 . 𝜐𝜐𝜐 (𝒙) is an auxiliary field employed to approximate the displacement
jump in a smeared sense (Chen and de Borst, 2022). Employing the
variational principle for minimising  (𝐮, 𝛤 ;𝒑) in Eq. (9) with respect to
the displacement 𝐮 and the auxiliary field 𝜐𝜐𝜐, we obtain the weak form
of the cohesive fracture problem (Verhoosel and de Borst, 2013; Chen
and de Borst, 2022). Applying the divergence theorem to the weak form
equation yields the elastic strain 𝜀𝜀𝜀𝑒 (Verhoosel and de Borst, 2013):

𝜀𝑒𝑖𝑗 = 𝑢(𝑖,𝑗) − sym
(
𝜐𝑖𝑛𝑗

)
𝛿𝑐 (24)

with 𝑛𝑗 being the component of the unit vector normal to the interface
𝛤𝑐 . Obviously, the ‘elastic’ strain 𝜀𝜀𝜀𝑒 is composed of the gradient of
the displacement and the term related to the displacement jump. In
deriving Eq. (24), the variational principle has been employed.

Alternatively, the extended finite element method (XFEM) can be
used to arrive at Eq. (24) (Chen and de Borst, 2022). In XFEM the
displacement function is composed of a continuous part, 𝐰 (𝒙), and a
bounded part that modulates the displacement jump over the domain
through the Heaviside function ℋ (Khoei, 2014):

𝐮 (𝒙) = 𝐰 (𝒙) +ℋ (𝒙)𝜐𝜐𝜐 (𝒙) (25)

with 𝜐𝜐𝜐 (𝒙) being the displacement jump. The Heaviside function ℋ is
here defined as:

ℋ (𝒙) =
1

2

{
1 − 𝑑

(
𝑥𝑛
)

if 𝒙 ∈ 𝛺+

𝑑
(
𝑥𝑛
)
− 1 otherwise

(26)

with 𝛺+ being the domain at the positive side of the interface 𝛤+
𝑐 .

𝑑
(
𝑥𝑛
)
denotes the phase field function.
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Fig. 3. (a) uniaxial compression of a bar with a crack 𝛤𝑐 ; (b) smeared crack 𝛤𝜉 (blue area). Here a constant pressure 𝑝 is applied in the crack 𝛤𝑐 , exerted on positive and negative
sides, 𝛤 +

𝑐
and 𝛤 −

𝑐
, respectively.

Employing the phase-field model in Eq. (14), we obtain the follow-
ing form of the Heaviside function ℋ

ℋ (𝒙) =
1

2

⎧⎪⎨⎪⎩

1 𝜋𝓁∕2 ≤ 𝑥𝑛

sin
(𝑥𝑛
𝓁

)
− 𝜋𝓁∕2 ≤ 𝑥𝑛 ≤ 𝜋𝓁∕2

−1 otherwise

(27)

Considering the small strain assumption, the infinitesimal strain field
becomes (Fathi et al., 2021; Chen et al., 2022)

𝜀𝑖𝑗 = 𝑢(𝑖,𝑗) = w(𝑖,𝑗) +ℋ𝜐(𝑖,𝑗) + sym
(
𝜐𝑖𝑛𝑗

)
𝛿𝑐 (28)

with 𝛿𝑐 being the Dirac-delta function. In this way we can arrive at the
‘elastic’ strain Eq. (24) by taking the form:

𝜀𝑒𝑖𝑗 = 𝑢(𝑖,𝑗) − 𝜀
𝜌
𝑖𝑗

⇒ 𝜀𝑒𝑖𝑗 = w(𝑖,𝑗) +ℋ𝜐(𝑖,𝑗) and

sym
(
𝜐𝑖𝑛𝑗

)
𝛿𝑐 = 𝜀

𝜌
𝑖𝑗

(29)

Obviously, the elastic strain as derived in Eq. (24) is identical to that
in the regularised extended finite element method. Accordingly, the
displacement field 𝐮 in the cohesive fracture model, i.e., Eq. (9), can
be written in the form of Eq. (25).

If we multiply Eq. (25) with the normal vector 𝒏, defined in Eq. (20),
and integrate over the normal direction 𝑥𝑛 ∈ [−∞ ∞], we obtain an
approximated form of the crack opening displacement for the cohesive
fracture model:

[[𝐮 ⋅ 𝒏]] = 𝜐𝜐𝜐 (𝒙) ⋅ 𝒏 ≈ −2∫
∞

−∞

𝐮
(
𝑥𝑛
)
⋅ ∇𝑑

(
𝑥𝑛
)
d𝑥𝑛 (30)

where Eq. (17) has been used.
Eq. (30) can be simplified if we consider the phase-field model

in Eq. (14):

[[𝐮 ⋅ 𝒏]] = 𝜐𝜐𝜐 (𝒙) ⋅ 𝒏 ≈ −2∫
𝜋𝓁∕2

−𝜋𝓁∕2

𝐮
(
𝑥𝑛
)
⋅ ∇𝑑

(
𝑥𝑛
)
d𝑥𝑛 (31)

where the factor ‘2’ in front of the integration stems from the fraction
1

2
in Eq. (26). Eq. (30) presents an integral form of the crack opening

displacement along the cohesive crack 𝛤𝑐 . It can directly be used in the
cohesive fracture model, i.e., Eq. (9).

4. Validation of the computation of the crack opening displace-
ment

To validate the proposed formulations for the crack opening dis-
placement computation, we will consider a two-dimensional version of
a uniaxial compression problem, as illustrated in Fig. 3(a). The Young’s
modulus of the plate is 𝐸. A crack is defined at 𝑥1 = 0 and a constant
pressure, 𝑝, is applied in the crack. Due to the set-up of the problem,
only mode-I crack opening is included in the analysis. The crack is
regularised by the phase-field variable over the regularisation zone(
−𝜋𝓁∕2 ≤ 𝑥1 ≤ 𝜋𝓁∕2

)
, as shown in Fig. 3(b). The analytical solution of

the displacement, of the crack opening displacement and of the stress
reads:

𝑢1
(
𝑥1, 𝑥2

)
=

{
𝑝𝑠

(
𝐿 − 𝑥1

)
0 < 𝑥1

−𝑝𝑠
(
𝐿 + 𝑥1

)
𝑥1 < 0

[[𝐮 ⋅ 𝒏]] = 2𝑝𝑠𝐿 𝜎1
(
𝑥1, 𝑥2

)
= −𝑝 (32)

with 𝑝𝑠 = 𝑝∕𝐸. The factor ‘2’ in front of [[𝐮 ⋅ 𝒏]] stems from the
symmetric crack opening about the vertical axis.

Next we will solve the problem in the framework of phase-field
modelling. We will separately consider the pressure 𝑝 as a fluid pres-
sure in the brittle fracture model, and a constant cohesive traction
(independent of the crack opening) in the cohesive fracture model.

4.1. Brittle fracture solution

Substituting Eq. (16) into (3) leads to a smeared form of the energy
functional:

 (𝐮, 𝛤 ;𝒑) = ∫𝛺 𝑎(𝑑)(𝐮) d𝛺 − ∫𝛤𝑡 𝐮 ⋅ 𝐭̂d𝛤 + ∫𝛺 𝑝𝑓𝐮 ⋅ ∇𝑑 d𝛺

+ 𝑐 ∫𝛺 𝛾𝑑 (𝑑) d𝛺 (33)

For the problem given in Fig. 3 we obtain the momentum balance
equation from the variational principle of Eq. (33):

d

d𝑥1

((
1 − 𝑑

(
𝑥1
))2 d𝑢1

d𝑥1

)
− 𝑝𝑠

d

d𝑥1
𝑑
(
𝑥1
)
= 0 − 𝜋𝓁∕2 ≤ 𝑥1 ≤ 𝜋𝓁∕2

d

d𝑥1

(
d𝑢1
d𝑥1

)
= 0 otherwise

(34)

with the phase field 𝑑
(
𝑥1
)
given as

𝑑
(
𝑥1
)
= 1 − sin

(|𝑥1|
𝓁

)
− 𝜋𝓁∕2 ≤ 𝑥1 ≤ 𝜋𝓁∕2 (35)

Considering the boundary condition of 𝑢1 = 0 at 𝑥1 = ±𝐿, and the
continuous displacement at 𝑥1 = ±𝜋𝓁∕2, we obtain the displacement:

𝑢1
(
𝑥1, 𝑥2

)

=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

𝑝𝑠
(
𝐿 − 𝑥1

)
𝜋𝓁∕2 ≤ 𝑥1 ≤ 𝐿

−𝑝𝑠𝓁 ln

(|||| tan
( 𝑥1
2𝓁

) ||||
)
+ 𝑝𝑠

(
𝐿 −

𝜋𝓁

2

)
0 < 𝑥1 ≤ 𝜋𝓁∕2

𝑝𝑠𝓁 ln

(|||| tan
( 𝑥1
2𝓁

) ||||
)
− 𝑝𝑠

(
𝐿 −

𝜋𝓁

2

)
− 𝜋𝓁∕2 ≤ 𝑥1 < 0

−𝑝𝑠
(
𝐿 + 𝑥1

)
− 𝐿 ≤ 𝑥1 ≤ −𝜋𝓁∕2

(36)
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Fig. 4. Displacement 𝑢1 and stress 𝜎1 for the uniaxial bar in Fig. 3(a). The length of the bar is 𝐿 = 1 and the regularisation length is 𝓁 = 0.1.

which yields the stress 𝜎1
(
𝑥1, 𝑥2

)
:

𝜎1
(
𝑥1, 𝑥2

)
=

⎧⎪⎪⎨⎪⎪⎩

−𝑝 csc
(𝑥1
𝓁

)
0 < 𝑥1 ≤ 𝜋𝓁∕2

𝑝 csc
(𝑥1
𝓁

)
− 𝜋𝓁∕2 ≤ 𝑥1 < 0

−𝑝 otherwise

(37)

Fig. 4 gives the comparison between phase-field solutions and the
analytical solution. For the brittle fracture model, the displacement
and the stress lead to infinite values at the crack 𝛤𝑐 due to the term

ln

(|||| tan
( 𝑥1
2𝓁

) ||||
)
in Eq. (36). The displacement shows an obvious jump

at 𝛤𝑐 due to the brittle feature of the crack. The solutions tend to the
analytical solution when 𝑥1 approaches the boundary of the phase-field
profile, i.e. 𝑥1 → ±𝜋𝓁∕2.

The crack opening displacement of the plate is obtained by Eq. (22):

[[𝐮 ⋅ 𝒏]] ≈ −∫
𝜋𝓁∕2

−𝜋𝓁∕2

𝑢
(
𝑥1, 𝑥2

)
⋅
d𝑑

(
𝑥1
)

d𝑥1
d𝑥1

= −∫
0−

−𝜋𝓁∕2

(
𝑝𝑠𝓁 ln

(|||| tan
( 𝑥1
2𝓁

) ||||
)

−𝑝𝑠

(
𝐿 −

𝜋𝓁

2

))
1

𝓁
cos

(𝑥1
𝓁

)
d𝑥1

− ∫
𝜋𝓁∕2

0+

(
𝑝𝑠𝓁 ln

(|||| tan
( 𝑥1
2𝓁

) ||||
)

−𝑝𝑠

(
𝐿 −

𝜋𝓁

2

))
1

𝓁
cos

(𝑥1
𝓁

)
d𝑥1

= −∫
0−

−𝜋𝓁∕2

𝑝𝑠𝓁 ln

(|||| tan
( 𝑥1
2𝓁

) ||||
)

1

𝓁
cos

(𝑥1
𝓁

)
d𝑥1

− ∫
𝜋𝓁∕2

0+
𝑝𝑠𝓁 ln

(|||| tan
( 𝑥1
2𝓁

) ||||
)

1

𝓁
cos

(𝑥1
𝓁

)
d𝑥1

+ ∫
𝜋𝓁∕2

−𝜋𝓁∕2

𝑝𝑠

(
𝐿 −

𝜋𝓁

2

)
1

𝓁
cos

(𝑥1
𝓁

)
d𝑥1

= −2∫
𝜋𝓁∕2

0+
𝑝𝑠𝓁 ln

(|||| tan
( 𝑥1
2𝓁

) ||||
)

1

𝓁
cos

(𝑥1
𝓁

)
d𝑥1

+ ∫
𝜋𝓁∕2

−𝜋𝓁∕2

𝑝𝑠

(
𝐿 −

𝜋𝓁

2

)
1

𝓁
cos

(𝑥1
𝓁

)
d𝑥1

(38)

The integration of the first part in Eq. (38) yields

− 2∫
𝜋𝓁∕2

0+
𝑝𝑠𝓁 ln

(|||| tan
( 𝑥1
2𝓁

) ||||
)

1

𝓁
cos

(𝑥1
𝓁

)
d𝑥1

= −2𝑝𝑠𝓁
[
ln
(
tan

( 𝑥1
2𝓁

))
sin

(𝑥1
𝓁

)
−

1

𝓁
𝑥1

]𝜋𝓁∕2
0+

(39)

Employing L’Hospital’s rule we can solve the integral of Eq. (39):

− 2∫
𝜋𝓁∕2

0+
𝑝𝑠𝓁 ln

(|||| tan
( 𝑥1
2𝓁

) ||||
)

1

𝓁
cos

(𝑥1
𝓁

)
d𝑥1 = 𝜋𝑝𝑠𝓁 (40)

which leads to the crack opening displacement for the brittle fracture
model:

[[𝐮 ⋅ 𝒏]] = −2∫
𝜋𝓁∕2

0+
𝑝𝑠𝓁 ln

(|||| tan
( 𝑥1
2𝓁

) ||||
)

1

𝓁
cos

(𝑥1
𝓁

)
d𝑥1

+ ∫
𝜋𝓁∕2

−𝜋𝓁∕2

𝑝𝑠

(
𝐿 −

𝜋𝓁

2

)
1

𝓁
cos

(𝑥1
𝓁

)
d𝑥1

= 𝜋𝑝𝑠𝓁 + 2𝑝𝑠

(
𝐿 −

𝜋𝓁

2

)
= 2𝑝𝑠𝐿

(41)

being identical to the analytical solution in Eq. (32).

4.2. Cohesive fracture solution

For the phase-field regularised cohesive fracture model we depart
from the strain in Eq. (24). For the problem stated in Fig. 3 we then
get the stress from the Hooke’s law:

𝜎1
(
𝑥1, 𝑥2

)
= 𝐸

(
d
d𝑥1

𝑢1
(
𝑥1, 𝑥2

)
− 𝛿𝑐𝜐

)
(42)

with 𝜐 being the crack opening displacement; 𝛿𝑐 being Dirac-delta
function defined in Eq. (15). The momentum balance equation reads

𝜎1
(
𝑥1, 𝑥2

)
= 𝐸

(
d
d𝑥1

𝑢1
(
𝑥1, 𝑥2

)
− 𝛿𝑐𝜐

)
= −𝑝 (43)

which is equal to the analytical solution of 𝜎1
(
𝑥1, 𝑥2

)
in Eq. (32).

Remark. Eqs. (42) and (43) consider the case of uniaxial deformation
of a bar with a straight crack 𝛤𝑐 . 𝛤𝑐 is regularised as a smeared crack
𝛤𝜉 by the Dirac-delta function 𝛿𝑐 , see Fig. 3(b). Even though Fig. 3
presents a two-dimensional fracture problem, it still represents uniaxial
deformation. The crack 𝛤𝑐 is a straight crack in the domain and is
perpendicular to the axis of the uniaxial bar, here the horizontal axis
𝑥1 in Fig. 3(a). Thus, the analysis in Section 4.2 is restricted to the
phase-field model which induces a straight crack, perpendicular to the
bar axis. Indeed, if the phase-field model with an anisotropic fracture
constitutive law would produce a straight crack, perpendicular to the
bar axis, the method in this section could be used to compute the crack
opening displacement.

Considering the boundary conditions of 𝑢1 = 0 at 𝑥1 = ±𝐿, and
the continuous displacement field at 𝑥1 = ±𝜋𝓁∕2, we can derive the
displacement as:

𝑢1
(
𝑥1, 𝑥2

)
=

⎧⎪⎨⎪⎩

𝑝𝑠
(
𝐿 − 𝑥1

)
𝜋𝓁∕2 ≤ 𝑥1 ≤ 𝐿

𝜐

2
sin

(𝑥1
𝓁

)
− 𝑝𝑠𝑥1 − 𝜋𝓁∕2 < 𝑥1 ≤ 𝜋𝓁∕2

−𝑝𝑠
(
𝐿 + 𝑥1

)
− 𝐿 ≤ 𝑥1 ≤ −𝜋𝓁∕2

(44)
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Fig. 5. (a) 2D inclined line crack (𝑥𝑠 = −𝑎 to 𝑥𝑠 = 𝑎) with 𝑎 the half length under a constant pressure 𝑝. The crack is represented by the red line. The inclination angle of the
crack is 𝜃.

(
𝑥1 , 𝑥2

)
is the global coordinate with the origin 𝑂, while

(
𝑥𝑠 , 𝑥𝑡

)
is the local coordinate along the crack; (b) normalised crack opening displacement for different values

of the inclination angle 𝜃. The normalised crack opening displacement is defined as CODnor = COD∕CODmana, where COD
m
ana is the exact solution of the maximum crack opening

displacement (Eq. (49)), being at the origin 𝑂𝑙 in the current study. For brevity, we only present the results of Verhoosel and de Borst’s approach for 𝜃 = 0◦.

Fig. 4 presents the comparison between phase-field solutions and
the analytical solution. For the cohesive fracture model, the displace-
ment shows some discrepancies in the range of the smeared crack
𝛤𝜉 (as illustrated in Fig. 3(b)), due to the regularised interface. The
displacement is continuous along the bar due to the continuous Dirac-
delta function definition in Eq. (15). In Fig. 4(b), the stress 𝜎1 is
consistent with the analytical solution.

We now can compute the crack opening displacement from the
integration Eq. (31):

[[𝐮 ⋅ 𝒏]] = 𝜐 ≈ −2∫
𝜋𝓁∕2

−𝜋𝓁∕2

𝑢
(
𝑥1, 𝑥2

)
⋅
d𝑑

(
𝑥1
)

d𝑥1
d𝑥1

= −2∫
0

−𝜋𝓁∕2

(
𝜐

2
sin

(𝑥1
𝓁

)
− 𝑝𝑠𝑥1

)
1

𝓁
cos

(𝑥1
𝓁

)
d𝑥1

+ 2∫
𝜋𝓁∕2

0

(
𝜐

2
sin

(𝑥1
𝓁

)
− 𝑝𝑠𝑥1

)
1

𝓁
cos

(𝑥1
𝓁

)
d𝑥1

= 4∫
𝜋𝓁∕2

0

(
𝜐

2
sin

(𝑥1
𝓁

)
− 𝑝𝑠𝑥1

)
1

𝓁
cos

(𝑥1
𝓁

)
d𝑥1

= 𝜐 + 2𝑝𝑠𝓁 (𝜋 − 2)

(45)

obviously, this solution leads to the exact crack opening displacement
when 𝓁 → 0.

Until now, the crack opening displacement 𝜐 is unknown. Herein, we
obtain the crack opening displacement 𝜐 from the continuity condition
at 𝑥1 = ±𝜋𝓁∕2:

𝜐 = 2𝑝𝑠𝐿 (46)

which result is identical to the analytical solution in Eq. (32). Substi-
tuting Eq. (46) into Eq. (45) and considering the limiting case when
𝓁 → 0 we obtain the crack opening displacement in an explicit format:

[[𝐮 ⋅ 𝒏]] = lim
𝓁→0

(
𝜐 + 2𝑝𝑠𝓁 (𝜋 − 2)

)
= 𝜐 = 2𝑝𝑠𝐿 (47)

In sum, for the same problem, the brittle and cohesive fracture
model will lead to different solutions of the displacement and stress.
The displacement of the brittle fracture model shows a jump at the
crack, while that of the cohesive interface model is continuous. For
the stress, the brittle fracture model yields an infinite value, while
the cohesive model is consistent with analytical solution. Also the
displacement and the stress of the brittle fracture model are different
from those of the cohesive fracture model, but both models lead to

an identical crack opening displacement, thus validating the proposed
formulations.

5. Numerical example

We now demonstrate the performance of the methodology to com-
pute the crack opening displacement in a multi-dimensional setting
through two representative examples. First, we will consider an infinite
plate with a pressurised internal crack. Then, a fibre–epoxy debonding
test is considered to explore cohesive interface debonding under mixed-
mode loading conditions, showing the ability of the method to analyse
curved cracks. To well represent the crack in a smeared sense, the
regularisation length is always chosen as 𝑙 ≥ 4ℎ (ℎ: element size around
the crack) (Bourdin et al., 2008).

We employ Eqs. (22) and (31) to compute the crack opening dis-
placement, depending on the fracture model, i.e., brittle or cohesive
fracture. For brittle fracture Eq. (3) has been validated by comparing
numerical results with the closed-form solution of Eq. (21) (Wheeler
et al., 2014; Chukwudozie et al., 2019; Yoshioka et al., 2020) and will
not be discussed here. The cohesive phase-field model, i.e., Eq. (9), in-
cludes the displacement 𝐮 and the displacement jump [[𝐮]] as variables.
In the phase-field model the crack is represented in a smeared format,
𝛤𝜉 , see Fig. 1(b), and the displacement jump cannot be computed
directly due to unknown displacement jump location (Chukwudozie
et al., 2019). To solve this issue Verhoosel and de Borst (2013) have
proposed a cohesive phase-field model, which uses an auxiliary field 𝜐𝜐𝜐

to model the displacement jump [[𝐮]], required as input in a cohesive-
zone model, see also Vignollet et al. (2014), May et al. (2015), Ghaf-
fari Motlagh and de Borst (2020) and Chen and de Borst (2022).
To describe the interface behaviour the cohesive zone law from the
discrete model is used directly (Chen and de Borst, 2022). Obviously, in
Verhoosel and de Borst’s approach, the displacement jump, including
the crack opening displacement and the displacement jump in the shear
direction, can be obtained directly from the finite element solution of
system equations (Chen and de Borst, 2022). Hence, for the first exam-
ple, we will also use this solution of the crack opening displacement
as an additional reference solution, next to the closed form solution.
Herein, we will obtain the displacement 𝐮, and then use Eq. (30)
to compute the crack opening displacement, in order to validate the
proposed approach in Section 3.3.

In the numerical solution we exploit 1-continuous Powell–Sabin
B-splines, which are based on triangles, for the spatial discretisa-
tion (Chen and de Borst, 2019; Chen et al., 2020). A flexible control
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Fig. 6. Plot of the phase field 𝑑 and 𝐮 ⋅∇𝑑 for different values of the inclination angle 𝜃. The figures in the left column represent the phase field 𝑑, while the figures in the right
column denote 𝐮 ⋅ ∇𝑑.

of the geometry is possible, such as remeshing using any standard
package for triangular elements (Geuzaine and Remacle, 2009), while
the 1-continuity assures an improved stress prediction (Chen et al.,
2019). The plate has been discretised by the triangulation presented
in Fig. 5(b). Powell–Sabin B-splines describe the geometry and inter-
polate the displacement field 𝐮 and the displacement jump 𝜐𝜐𝜐 in an
isoparametric sense (Chen and de Borst, 2019):

𝒙 =

𝑁𝑣∑
𝑘=1

3∑
𝑗=1

𝑁
𝑗

𝑘
𝑿

𝑗

𝑘
= 𝑵𝑿 𝐮 =

𝑁𝑣∑
𝑘=1

3∑
𝑗=1

𝑁
𝑗

𝑘
𝑼

𝑗

𝑘
= 𝑵𝑼

𝜐𝜐𝜐 =

𝑁𝑣∑
𝑘=1

3∑
𝑗=1

𝑁
𝑗

𝑘
𝜗𝜗𝜗
𝑗

𝑘
= 𝑵𝜗𝜗𝜗, (48)

where 𝑿
𝑗

𝑘
represent the coordinates of the corners 𝑸𝑗

𝑘
of the Powell–

Sabin triangles, 𝑼 𝑗

𝑘
and 𝜗𝜗𝜗

𝑗

𝑘
denote the degrees of freedom at 𝑸𝑗

𝑘
, and

𝑁𝑣 is the total number of vertices. The indices 𝑗 = 1, 2, 3 imply that
three Powell–Sabin B-splines 𝑁 𝑗

𝑘
are defined on each vertex 𝑘. 𝑵 , 𝑿,

𝑼 and 𝜗𝜗𝜗 are the shape function matrix, the vector of the coordinates,
the displacement, the displacement jump, respectively.

5.1. Infinite plate with a pressurised internal crack

We consider an infinite domain 𝛺 with an inclined internal crack 𝛤

(length 2𝑎), as illustrated in Fig. 5(a). The inclination angle of the crack
is 𝜃. The crack surface is pressurised by a constant pressure 𝑝. For this
problem an exact solution can be obtained under the assumption that
the displacement and stress vanish at infinity (Sneddon and Lowengrub,
1969). The closed-form solution for the crack opening displacement
(COD) is given by:

COD = [[𝐮 ⋅ 𝒏]] =
4𝑝𝑎

𝐸′

√√√√
(
1 −

𝑥2𝑠

𝑎2

)
(49)

with 𝐸′ = 𝐸
/ (

1 − 𝜈2
)
where 𝐸 and 𝜈 are Young’s modulus and

Poisson’s ratio, respectively.
(
𝑥𝑠, 𝑥𝑡

)
is the local coordinate along the
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Fig. 7. (a) geometry and boundary conditions of one quarter of the fibre (Chen and de Borst, 2022), where the blue area indicates the smeared interface 𝛤𝜉 ; (b) domain triangulation
with the smallest element size 𝑒 = 0.10; (c) domain triangulation with the smallest element size 𝑒 = 0.04. In the figure, the blue area represents the smeared interface 𝛤𝜉 . To well
describe 𝛤𝜉 , the mesh around the interface 𝛤𝑐 is refined with the smallest element size 𝑒. A discrete interface model is employed to provide the reference solution.

crack. The origin is set at the centre of the crack 𝑂𝑙. In addition to the
analytical solution, the numerical solution of Verhoosel and de Borst
(2013) has been used for validation of the present method.

In the simulation the size of the domain has been chosen such that
the influence of boundary condition 𝜕𝛺 on the displacement field near
the crack almost vanishes. A square domain 𝛺 = [−1, 1] × [−1, 1] has
been used to this end. The centre of the crack is at

(
𝑥1, 𝑥2

)
= (0, 0).

The half crack length 𝑎 = 0.1. With a suitable re-scaling of the loading
the material properties can be chosen as: Young’s modulus 𝐸 = 1 and
Poisson’s ratio 𝜈 = 0.1. The regularisation length is set 𝓁 = 0.05. The
traction on the crack surface is chosen as 𝑝 = 1.

We consider three values of the inclination angle, 𝜃 = 0◦, 30◦ and
45◦, respectively. The profiles of the phase field and of 𝐮 ⋅∇𝑑 are shown
in Fig. 6. 𝐮 ⋅ ∇𝑑 results from the post-processing of the solution of
cohesive phase-field model. The plots of the phase field and of 𝐮⋅∇𝑑 are
confined to a local area around the crack, due to the narrow distribution
of the phase field, as illustrated in Fig. 2. Both 𝑑 and 𝐮 ⋅∇𝑑 show nearly
identical profiles for the different values of the inclination angle 𝜃.

Next, a line integral of −2𝐮 ⋅ ∇𝑑 is taken in the direction normal
to the crack. The limit of the integration is

[
−𝜋𝓁∕2, 𝜋𝓁∕2

]
, because

of the definition of the phase field in Eq. (14). The line integral is
evaluated numerically by Gaussian quadrature. For this problem, the
crack opening displacement (COD) should be identical no matter the
choice of 𝜃. In Fig. 5(b) the results are compared with the closed form
solution in Eq. (49) and for 𝜃 = 0◦ also with the numerical solution of
Verhoosel and de Borst (2013). Invariably, the results match very well.

5.2. Fibre–epoxy debonding test

To demonstrate the ability of the method to analyse curved cracks,
we considered a problem of fibre-epoxy debonding (Chen and de Borst,
2022). The specimen geometry is shown in Fig. 7(a). Due to symmetry
only one quarter of the specimen has been considered with symmetry-
enforcing boundary conditions. Plane-strain conditions are assumed.
The material properties are given as: for the fibre Young’s modulus
𝐸 = 225 GPa and Poisson’s ratio 𝜈 = 0.2, and for the epoxy Young’s
modulus 𝐸 = 4.3 GPa and a Poisson’s ratio 𝜈 = 0.34. The Xu–Needleman
cohesive zone law is used to describe the tractions at the fibre-epoxy
interface, with 𝑡𝑢 = 50 MPa and 𝑐 = 4 × 10−3 N/mm. The cohesive
phase field method of Verhoosel and de Borst (2013) is employed
to solve the displacement 𝐮. In Fig. 7(a), the discrete interface 𝛤𝑐 is
regularised as a smeared interface 𝛤𝜉 (blue area) by the phase field
model in Section 3.1. The regularisation length is set as 𝓁 = 0.5 μm.
To demonstrate the capability of the proposed method two different

triangular meshes are employed to triangulate the domain, see Fig. 7(b)
and (c). To well describe 𝛤𝜉 , the mesh around the interface 𝛤𝑐 is refined
with the smallest element size 𝑒.

The response curve, in terms of the horizontal stress 𝜎1 at point 𝐴
as a function of the prescribed displacement 𝑢̄, has been presented and
validated in Chen and de Borst (2022), not shown here for brevity. The
profile of the phase field and computed 𝐮 ⋅ ∇𝑑 along the interface 𝛤𝑐

are shown in Fig. 8(a) and (b). The phase-field variable is prescribed
analytically by Eq. (14) (Chen and de Borst, 2022). 𝐮 ⋅ ∇𝑑 is obtained
from the solution of cohesive phase-field model. As expected, due to
the narrow distribution of the phase field 𝑑, 𝐮 ⋅ ∇𝑑 is confined to a
local area around the crack. To obtain the crack opening displacement
(COD), a line integral of −2𝐮 ⋅ ∇𝑑 is taken in the direction normal
to the interface 𝛤𝑐 , evaluated numerically by Gaussian quadrature.
Fig. 9 compares the solutions of the proposed method against those
of discrete interface model (Chen et al., 2017). It shows the results of
two different triangular meshes. Clearly, the results agree well with the
discrete interface solution. The smallest element size 𝑒 shows only a
slight deviation, due to the integral form of the proposed method. The
integration Eq. (30) takes the information not only along the interface
𝛤𝑐 , but also around the smeared area 𝛤𝜉 .

6. Concluding remarks

The phase-field model is widely employed in the analysis of fracture
due to its easy description of the crack and straightforward implemen-
tation. In the model, the crack is regularised and it has been applied
to the analysis of brittle and cohesive fracture. In the brittle fracture
model crack initiation and evolution are governed by a minimisation of
a Griffith-like energy functional, while in the cohesive fracture model,
the fracturing problem is ruled by minimising a crack displacement
jump dependent energy functional. Obviously, the displacement jump,
including the crack opening displacement [[𝐮 ⋅ 𝒏]] and the displacement
jump in the crack shear direction [[𝐮 ⋅ 𝒔]], is essential in the cohe-
sive fracture model and is also crucial in certain other applications,
e.g. hydraulic fracturing. This study has focused on the derivation and
verification of the computation of the crack opening displacement both
for brittle and cohesive fracture models.

For the brittle fracture model the crack opening displacement [[𝐮 ⋅ 𝒏]]

can be approximated as a line integral of 𝐮 ⋅∇𝑑 in the direction normal
to the crack. Chukwudozie et al. (2019) have derived an identical form
of [[𝐮 ⋅ 𝒏]] and have verified its robustness by some benchmark cases.
For the cohesive fracture model, the crack is regularised by using an
approximated form of Dirac-delta function (𝛿𝑐) from the phase-field
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Fig. 8. Plot of the phase field 𝑑 and 𝐮 ⋅ ∇𝑑 (μm) along the interface 𝛤𝑐 at the loading step 𝑢̄ = 0.25 μm.

Fig. 9. Crack opening displacement (COD, μm) along the interface 𝛤𝑐 at different loading steps. In the figure, the results of the domain triangulation in Fig. 7(b) and (c) are
shown. The smallest element size 𝑒 in Fig. 7(b) and (c) is 𝑒 = 0.10 and 𝑒 = 0.04 respectively. The discrete interface model is employed to provide the reference solution (Chen
et al., 2017).

method. Herein, we have employed the gradient of the phase-field
variable to define 𝛿𝑐 . A factor ‘2’ is obtained in the form of 𝛿𝑐 , due
to the identity constraint of the Dirac-delta function. This factor leads
to a change in the form of the crack opening displacement [[𝐮 ⋅ 𝒏]]. It
is given as a line integral of 2𝐮 ⋅ ∇𝑑 in the direction normal to the
crack. We have validated the proposed forms of the crack opening
displacement analytically in a one-dimensional setting and numerically
in two multi-dimensional problems, featuring straight crack and curved
cracks.
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