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A B S T R A C T   

Na3Zr2Si2P2O12 (NZSP) has potential use as a solid electrolyte in Na-ion solid-state batteries due to its high ionic 
conductivity (10−3–10−4 Scm−1) at room temperature. It is established that all previous preparations involving 
the solid-state method for NZSP compositions contain m-ZrO2 as a secondary phase. Here, the solid-state method 
is used to prepare single-phase NZSP by modifying the mole fractions of the ZrO2 reactant. Reducing ZrO2 
concentration may also create Zr and O vacancies and potentially increase the hopping sites for Na-ion con-
duction. X-ray diffraction, scanning electron microscopy, Raman and Fourier Transform Infrared spectroscopy, 
dilatometry and impedance spectroscopy were used to characterise the structure, morphology and electrical 
properties of single-phase NZSP, and the results were compared with samples that have m-ZrO2 secondary phase 
(Na3Zr2Si2PO12). The role of m-ZrO2 impurities on the conductivity of NZSP is investigated and compared with 
available literature.   

1. Introduction 

The current global energy production and distribution crisis has 
demonstrated that our reliance on fossil fuels damages the environment 
and is also subjected to geopolitical uncertainty [1,2]. Therefore, the 
current energy crisis has made world leaders focus even more acutely on 
developing a secure and sustainable strategy for generating power and 
reducing dependence on fossil fuels. Since Sony Corporation commer-
cialised Li-ion batteries (LIBs) in 1991 [3,4], there has been a surge in 
demand. However, conventional LIBs face challenges of low retention 
[5], dendrite formation [6], leakage [7], combustion [8], low battery 
life cycle and increased manufacturing costs due to the limited avail-
ability of Li-ion precursors [5–9]. 

Na-ion batteries (NIBs) are considered viable alternatives to LIBs due 
to the abundance of Na-ion precursors [10] and their similarity in 
function. However, NIBs face similar challenges to LIBs. Sodium-ion 
solid-state batteries (SSSBs) hold great potential as an alternative to 
traditional LIBs or NIBs. Solid-state batteries (SSBs) utilise a solid elec-
trolyte instead of a liquid or gel-like electrolyte found in Li-ion and 
Na-ion batteries [11]. One of the advantages of exploring SSSBs is the 

abundance and affordability of sodium precursors [12]. Lithium re-
sources are limited and concentrated in a few regions, making LIBs 
expensive, but sodium precursors are widely available, and their pro-
duction costs are cheaper [3,13]. Therefore, SSSBs may offer a 
cost-effective, safer and more sustainable energy storage solution, 
especially for large-scale applications [14]. Solid electrolytes (SEs) 
eliminate the risk of leakage, degradation and thermal runaway asso-
ciated with liquid electrolytes [15–17]. The enhanced safety makes SSBs 
highly desirable for various applications, including consumer elec-
tronics, electric vehicles and grid energy storage [18–25]. 

Various solid electrolytes (SEs), such as ceramics, glasses, and 
polymeric materials, have been explored to improve battery perfor-
mance and reduce the interfacial resistance between electrodes and 
electrolytes [26–30]. Oxide-based solid electrolytes have been exten-
sively studied for their ease of preparation, stability, fast-ion conduc-
tion, non-flammability, ion mobility and potential applications in 
batteries and advanced energy storage devices [31–37]. NASICON is an 
acronym for Sodium Super Ionic Conductors, an oxide-based inorganic 
SE with the general formula AxM2(PO4)3 [38]. The “A-site” is usually 
occupied by mobile monovalent ions such as Na+ or Li+. “x” is the 
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number of monovalent ions present in the system, and the “M-site” can 
be occupied by trivalent (Sc3+ and La3+), tetravalent (Zr4+, Ge4+) 
and/or pentavalent (Ta5+, V5+) elements. The P-site is usually co-shared 
by Si and/or P. NZSP with the formula Na1+xZr2SixP3−xO12 (0.0 ≤ x ≤
3.0) has been extensively studied as a solid electrolyte for all SSSBs and 
solid ionic devices [38–41]. The ionic conductivity of NZSP depends on 
factors such as the Na+ concentration, Na+ mobility/diffusion and 
crystal symmetry [38]. In NZSP, Na+ ions move through channels in the 
ZrO6 octahedra and SiO4/PO4 tetrahedra structure. Two distinct crystal 
symmetries, monoclinic (C12/c) and rhombohedral (R-3c), are known 
for Na1+xZr2SixP3−xO12 (0.0 ≤ x ≤ 3.0), Fig. 1. The monoclinic phase 
occurred between 1.8 ≤ x ≤ 2.2 and was studied to be thermally stable at 
room temperature (RT) with conductivity between 10−3 - 10−4 S/cm 
[39]. However, crystal symmetry and DFT studies [38–40] demon-
strated that the rhombohedral phase, which occurred at x ≥ 2.2, is more 
symmetrically stable with a lower activation energy (Ea) for Na+ ions 
diffusion [41–43]. Also, studies on the crystal symmetry of ZrO2 re-
actants suggest that c-ZrO2 (c = cubic) promotes the conductivity of 
NZSP and suppresses the formation of m-ZrO2 (m = monoclinic) [48]. 
Table 1 presents various preparation methods (solid-state, sol-gel, sol-
ution-assisted solid-state reaction, tape casting, co-precipitation, spark 
plasma and cold-sintering), conditions (the sintering temperature and 
time, crystal structure and the RT ionic conductivity) doping techniques 
and reactants modification adopted to suppress the formation of m-ZrO2 
and Na3PO4 as secondary phases and enhance ionic conductivity of 
NZSP. 

Our study adjusts the mole fractions of the ZrO2 reactant, thereby 
creating vacancies in both the Zr and O sites of NZSP with a view to 
suppressing the m-ZrO2 impurity phase and simultaneously increasing 
the ionic conductivity due to an increase in hopping vacancies. Scanning 
Electron Microscopy, Raman and FTIR spectroscopy were used to obtain 
microstructural and structural information, which was then used to 
interpret the ionic conductivity in comparison with scientific literature. 

2. Experimental methods 

2.1. Materials preparation 

The solid-state reaction method was used to prepare different NZSP 
compositions according to the formula in Eq. 2.1. m-ZrO2 (purity 99%, 
Sigma Aldrich) and Na3PO4 (purity 98%, Sigma Aldrich) were pre- 
heated at 1000 ℃ and 180 ℃, respectively, to remove gases and hy-
drates. and were reacted with SiO2 (purity 99.5%, Sigma Aldrich).  
(2-x)ZrO2 + Na3PO4 + 2SiO2 → Na3Zr2−xSi2PO12–2x                        (2.1) 
x represents the mole fractions of the compositional series (0.10, 0.20, 
0.30, 0.40, 0.50 and 0.60) prepared. The mixtures were ball milled at 
300 rpm for 12 h using zirconia milling media in isopropanol, then dried 
at 120 ℃ for 12 h. The dried mixtures were ground to form a fine 
powder and heated at 400 ◦C for 5 h to remove residue. The powders 
were pelletised and calcined for 12 h at 900 ℃, forming an amorphous 
NZSP mixture. The amorphous NZSP mixture was further ball-milled at 

Fig. 1. Unit cells of Na1+xZr2SixP3−xO12 solid electrolyte: (a) rhombohedral structure with two Na+ sites (M1 and M2) and (b) monoclinic structure with three Na+
sites, the M2 sites split into M2α and M2β [44]. 

Table 1 
Preparation methods, sintering temperature, time, crystal structure and room temperature conductivity of NZSP.  

NASICON Preparation methods Sintering Temp. (◦C) Time (Hours) Crystal structure Ionic conductivity (S/cm) Ref. 
Na3.05Zr2Si2.05P0.95O12 Sol-gel  1000  3 Rhombohedral 2.01 × 10−4 [45] 
Na2.8Zr2Si1.8P1.2O12 Co-precipitation method  1175  5 Rhombohedral - [46] 
Na3Zr2Si2PO12 Solid-state  1230  40 Monoclinic 1.16 × 10−3 [47] 
Na3Zr2Si2PO13 Solid-state  1250  5 Monoclinic 6.1 × 10−4 [48] 
Na3Zr2Si2PO12 Spark Plasma  1250  5 Monoclinic 1.8 × 10−3 [49] 
Na3Zr2Si2PO12 Tape casting  1100  4 Monoclinic 4.4 × 10−4 [50] 
Na3Zr2(SiO4)2(PO4) SA-SSR  1250  5 Monoclinic 1.03 × 10−3 [51] 
Na3.256Mg0.128Zr1.872Si2PO12 Cold sintering (780 MPa)  140  2 Rhombohedral 5.0 × 10−4 [52] 
Na3.256Mg0.128Zr1.872Si2PO12 Solid-state  1300  24 Monoclinic & Rhombohedral 2.7 × 10−3 [53]  
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300 rpm for 12 h and dried, and the powders were pelletised. The NZSP 
pellets were buried in green NZSP powder before being sintered at 
temperatures between 1100 - 1250 ℃ for 6 – 12 h. 

2.2. Materials characterisations 

The volume change of the green NZSP pellets as a function of tem-
perature was studied using a Netzsch LFA hyper flash high-temperature 

dilatometer. The density of the sintered NZSP pellets was measured 
using Archimedes’ method. A PANalytical Aeris X-ray diffractometer 
with Cu-Kα radiation (λ = 0.154 nm) in the 2θ range 10 – 45◦ and a step 
size of 0.02 was used to study the diffraction data of the sintered NZSP 
pellets. Phase refinement was performed on the diffraction data of NZSP 
(x = 0.0 and 0.60) using Topas 5 software. Vibrational spectra of the m- 
ZrO2 and sintered NZSP (x = 0.0 and 0.60) were obtained using a 
Renishaw in-Via Raman microscope and a Perkin Elmer Frontier Fourier 
Transform Infrared spectroscopy. Microstructural studies were per-
formed on the sintered pellets of NZSP (x = 0.0 and 0.60) using an FEI 
Inspect F Scanning electron microscopy. 

Impedance spectroscopy was performed on the lightly polished sur-
face of the sintered NZSP pellets (x = 0.0 and 0.60) with Au paste 
electrodes applied and fired at 850 ◦C for 2 h. Impedance spectroscopy 
(EIS) was performed using an Agilent 4294 A from RT to 800 ◦C at in-
tervals of 50 ◦C and an Oxford Instrument CCC1104 closed cycle cooler 
Cryostat from 140 to 295 K at an interval of 20 K. Impedance data were 
normalised by a geometric factor (thickness/electrode area), and the 
estimated resistivity was obtained using ZView software. 

3. Results and discussion 

3.1. X-ray diffraction 

XRD patterns acquired from Na3Zr2−xSi2PO12–2x (0.0 ≤ x ≤ 0.6) 
sintered at 1250 ◦C for 6 h are shown in Fig. 2a. Prior to choosing these 
densification conditions, various sintering temperatures (1100, 1200 
and 1250 ◦C) were investigated, with the results shown in Fig. S1. The 
diffraction plots in Fig. 2a revealed the effect of decreasing the mole 
fractions of ZrO2. Na3Zr2−xSi2PO12–2x (x = 0.0, 0.10, 0.20, 0.30 and 
0.40) exhibited a m-ZrO2 impurity phase (* symbol) at 2θ degree value 
24.27 and 28.30, similar to reported data [48–53] but for x = 0.50 and 
0.60, m-ZrO2 was either suppressed (x = 0.50) or absent (x = 0.60), 
Fig. 2a. NZSP (x = 0.60) was therefore further investigated and 
compared with NZSP (x = 0.0) and literature data. 

In Fig. 2b, XRD peaks from NZSP (x = 0.0 and 0.60) are matched 
against data files from the International Centre for Diffraction Data 
(ICDD): m-ZrO2 (PDF N◦ 00–065-0728) and monoclinic and rhombo-
hedral NZSP (PDF N◦ 00–035-0412 and 01–076-1449, respectively). 
Most peaks for x = 0.0 matched monoclinic NZSP (PDF N◦ 00–035- 
0412) except those at 24.23 and 28.30 ◦2θ, which corresponded to m- 
ZrO2 [46–53]. In contrast, most peaks in NZSP (x = 0.60) could be 
indexed according to rhombohedral NZSP symmetry with associated 
changes in peak height and shape at 19.87, 23.11 ◦2θ but with the peak 
at 27.96 ◦2θ matching monoclinic symmetry, Fig. 2b. Therefore, it was 
concluded that Na3Zr2−xSi2PO12–2x (x = 0.60) was dominantly 
single-phase, rhombohedral NZSP within the detection limits of our 
in-house diffractometer. 

Diffraction data of NZSP (x = 0.0 and 0.60) were analysed using a 
full-pattern Rietveld refinement method to gain further insight into the 
crystal structure and phase formation of NZSP compositions. Table 2 
shows the lattice parameters, theoretical density, goodness of fit (GoF), 

(a)

(b)

Fig. 2. (a) XRD patterns of Na3Zr2−xSi2PO12–2x compositional series (0.0 ≤

x ≤ 0.60) with (*) depicting the ZrO2 secondary phase. (b) XRD patterns 
matching the composition of Na3Zr2−xSi2PO12–2x (x = 0.0 and 0.60) against the 
PDF card N◦ of monoclinic and rhombohedral NZSP and monoclinic ZrO2. 

Table 2 
Refined parameters, phase fractions, the goodness of fit (GoF), cell volume, theoretical and relative density of NZSP composition series. R-rhombohedral and M- 
monoclinic.  

NZSP Phase fraction (%) Lattice parameters (Å) β (◦) GoF Unit cell 
volume 

Theoretical 
density 

Relative 
density (%)  

C12/c R-3c m- 
ZrO2 

a b c      

x = 0.0 92.00 0.00 8.00 15.634 
± 0.0063 

9.043 
± 0.0050 

9.230 ± 0.0025 123.63 2.50 1086.6 3.244 95.06 

x = 0.60 C12/c 
47.00 

R-3c 
53.00 

0.00 9.072 (R) 
15.651 (M) 

9.055 23.138 (R) 
9.219 (M) 

123.77 2.12 1086.1 3.204 94.30  
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unit cell volume and the percentage composition of the different phases. 
Fig. 3a reveals a 92% m-NZSP and an 8% m-ZrO2 for NZSP (x = 0.0), 
consistent with the literature [48] with a, b and c values and GoF similar 
to those reported by refs. [48,53]. The refinement for NZSP (x = 0.60) 
confirms it is composed of two phases, 53% rhombohedral (R-3c) and 
47% monoclinic (C12/c), with no evidence of m-ZrO2 impurity phase, 
Fig. 3b, c and d. Tables S1–S3 show the full sets of refined parameters for 
NZSP (x = 0.0 and 0.60). The parameters for NZSP (x = 0.0) agree with 
those reported in the literature [48–53], but NZSP (x = 0.60) has not, to 
our knowledge, been previously prepared. 

3.2. Relative density measurement 

The densities of Na3Zr2−xSi2PO12–2x (x = 0.0 and 0.60) sintered 
pellets were measured using Archimedes’ method, and the results were 
compared with their theoretical density obtained from refinements. 
From our refinements, the theoretical density of NZSP (x = 0.0) is 3.24 
gcm−3, Table 2, which agrees with literature values [46–50]. The 
theoretical density of NZSP (x = 0.60) obtained from the XRD re-
finements is 3.20 gcm−3, Table 2. The relative densities (ρr) of both 
NZSP (x = 0.0 and 0.60) were greater than 94%. The ρr and the sintering 

Fig. 3. (a-d). Full pattern Rietveld refinement of Na3Zr2−xSi2PO12–2x (a) x = 0.0, (b) x = 0.60, (c) enlargement plot of x = 0.60 without impurity peaks, and (d) peaks 
representing the composition of rhombohedral and monoclinic phase in x = 0.60. 

Fig. 4. Volume changes (shrinkage plots) of Na3Zr2−xSi2PO12–2x (x = 0.0 & 
0.60) against temperature. 
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parameters are shown in Table S4 of the Supporting Information. 

3.3. Dilatometry 

The change in the volume of the green pellets as a function of the 
temperature of Na3Zr2−xSi2PO12–2x (x = 0.0 and 0.60) is shown in the 
dilatometer plots in Fig. 4. The two compositions of the NZSP (x = 0.0 
and 0.60) show similar volume contraction over a wide temperature 
range. The volume changes were measured between 0 and 1200 ◦C to 
investigate the ‘melt pool phase’ temperature in NZSP as observed by 
[53]. The ‘melt pool phase’ for the NZSP (x = 0.0 and 0.60) was 
observed to occur between 905 - 1086 ◦C, Fig. 4. This melt pool phase 
should not be confused with the sintering temperature of NZSP, which is 
≥ 1200 ◦C. Regardless of the compositional changes in the mole frac-
tions of the ZrO2 reactant, the volume of the green pellets contracted 

similarly, consistent with their densities. 

3.4. Scanning electron microscopy 

SEM images of the fractured surface of the sintered pellets of 
Na3Zr2−xSi2PO12–2x (x = 0.0 and x = 0.60) are shown in Fig. 5. The 
micrographs for both NZSP (x = 0.0 and 0.6) reveal micron-sized, 
cuboid and homogeneous grain structures that are well-sintered and 
tightly compacted, supporting Archimedes’ density measurements and 
comparable to the literature [48,53]. The average grain size of the NZSP 
(x = 0.0) is ≤ 2 µm with few voids, consistent with a material of ρr ~ 
95%. The average grain size of NZSP (x = 0.60) is > 3 µm with few voids 
consistent with a ceramic of ρr ~ 94%. Overall, the grain size of the 
NZSP (x = 0.60) is approximately 35% larger than that of NZSP 
(x = 0.0). m-ZrO2 secondary phase was not visible in the micrograph for 
NZSP (x = 0.0) even though XRD and Raman spectroscopy (see later) 

Fig. 5. The SEM fractured surface images of Na3Zr2−xSi2PO12–2x (x = 0.0 and x = 0.60).  

Fig. 6. FTIR spectra for Na3Zr2−xSi2PO12–2x (x = 0.0 & 0.60).  
Fig. 7. Raman spectra of Na3Zr2−xSi2PO12–2x (x = 0.0 & 0.60) and ZrO2.  
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unambiguously demonstrate its presence. However, polished sections 
coupled with backscattered imaging may reveal the distribution of the 
m-ZrO2 secondary phase. Additional SEM micrographs for NZSP 
(x = 0.0 & x = 0.60) are shown in Fig. S2. 

3.5. Fourier transform infra-red (FTIR) spectroscopy 

FTIR spectra of Na3Zr2−xSi2PO12–2x (x = 0.0 and 0.60) are shown in 
Fig. 6. There were no observable differences in the vibrational and 
stretching frequencies between the two compositions of NZSP (x = 0.0 
and 0.60). Transition metal-oxygen bonds have a unique fingerprint at 
< 1000 cm−1 with Zr-O stretching/vibration bands dominant in this 
region [54,55]. The Zr–O bond vibrational frequency occurs in the 400 – 

600 cm−1 range. Thus, the peaks at 534 and 600 cm−1 in Fig. 6 can be 
attributed to the Zr–O bond. Similarly, the P–O bond vibrational fre-
quency lies between 1100 – 1300 cm−1; hence, the peak at 1130 cm−1 is 
assigned to the P–O bond. The Si–O bond has a unique signature be-
tween 900 – 1100 cm−1 and therefore, the modes at 928 and 1028 cm−1 

are assigned to the Si–O bond. However, it is crucial to note that the 
vibrational frequency of M–O can vary based on the atoms involved, 
coordination environment, surrounding functional groups, and molec-
ular structure. Hence, determining the vibrational frequency requires 
careful consideration of these factors. 

3.6. Raman spectroscopy 

Raman data of NZSP (x = 0.0 and 0.60) and m-ZrO2 are shown in 
Fig. 7. The NZSP spectra are similar to those obtained for NASICON 
reported by Barj et al., [55]. Based on the refinement of the X-ray 
diffraction data, it is reasonable to assume that all the peaks for NZSP 
(x = 0.60) in Fig. 7 arise only from the matrix phase with none matching 
m-ZrO2, which supports our premise that this composition is a single 
phase. The peak at 960 cm−1 in NZSP (x = 0.60) does not match m-ZrO2 
and is absent in the monoclinic crystal symmetry of NZSP (x = 0.0) and 
likely relates to either rhombohedral symmetry or Zr-O site occupancy 
changes. Nonetheless, it requires further study. For NZSP (x = 0.0), all 
modes match either m-ZrO2 or NZSP (x = 0.60), supporting the XRD 
data from NZSP (x = 0.0) in which peaks associated with m-ZrO2 were 
observed. 

3.7. Impedance spectroscopy 

Complex impedance plane, Z * plots at various temperatures for 
Na3Zr2−xSi2PO12–2x ceramics (x = 0.0 and 0.60) sintered at 1250 ◦C are 
shown in Fig. 8(a & b). A low-frequency spike and a partial arc with a 
non-zero intercept at high frequencies are observed at room temperature 
in Fig. 8(a & b) insert. However, the arc rapidly disappears at higher 
temperatures, and only a non-zero intercept on the Z′ axis of the spike 
was observed. The low-frequency spike is consistent with ionic con-
duction, with the charge carriers being Na+ ions. Therefore, only the 
total resistivity of the ceramics could be obtained based on the intercept 
of the spike with the Z′ axis. However, the total resistivity of 
Na3Zr2−xSi2PO12–2x (x = 0.0) is slightly lower than that of 
Na3Zr2−xSi2PO12–2x (x = 0.60) at room and higher temperatures, and its 
order of magnitude agrees with reported literature [46–53]. An Arrhe-
nius plot of the total conductivity of the ceramics (where σT =1/RT) is 
shown in Fig. 9(a), where the activation energy (Ea) is ~ 0.30 eV for 
both materials. 

Sub-ambient measurements were performed to probe the electro-
active contributions to the total conductivity. Z * plots for 160 K 
revealed both to display two arcs, Fig. 8. An equivalent circuit based on 
two parallel Resistor-Capacitor elements connected in series was used to 
interpret and quantify the sub-ambient impedance data. The high and 
low-frequency arcs had associated capacitance values in the range pF/ 
cm and nF/cm, respectively and are therefore consistent with bulk 
(RbCb) and grain boundary (RgbCgb) responses, respectively. The con-
tributions of the bulk, grain boundary and total resistivity at 160 and 
295 K are shown in Table 3. Arrhenius plots of the bulk (σb =1/Rb) and 
grain boundary (σgb = 1/Rgb) are shown in Fig. 9(b) and (c), respec-
tively. Ea associated with σb is ~ 0.25 eV for both ceramics, and this 
indicates a similar conduction mechanism in both materials, with the 
difference in σb being attributed to a lower carrier concentration in 
x = 0.60. Ea associated with σgb is higher in both cases and is in the 
range ~ 0.30 – 0.35 eV, Fig. 9(c). These results are in good agreement 
with reported literature [48,53,56]. Figs. S3 and S4 show the relaxation 
frequency of the impedance plots. 

Fig. 8. The complex impedance plots of Na3Zr2−xSi2PO12–2x (x = 0.0 and 0.60) at 160 and 295 K (insert) show the bulk and grain boundary conductions. [Rb: Bulk 
resistance, Rgb: Grain boundary resistance and RT: Total resistance]. 
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4. Conclusions 

The NASICON, Nax+1Zr2SixP3−xO12 (0.0 ≤ x ≤ 3.0) has been widely 
studied, but researchers have not to date been able to prepare single- 
phase with compositions containing ZrO2 secondary phase. Several 
compositions of NZSP with varying mole fractions of ZrO2 reactant were 
prepared. Na3Zr2−xSi2PO12–2x (x = 0.60) resulted in mixed rhombohe-
dral and monoclinic crystal phases but with the absence of m-ZrO2 im-
purities. Refinement of XRD data confirmed the presence of mixed 
monoclinic (C12/c) and rhombohedral (R-3c) phases for x = 0.60. 
Raman spectroscopy and XRD confirmed a single-phase 
Na3Zr2−xSi2PO12–2x (x = 0.60) and the presence of m-ZrO2 in all other 
compositions. SEM images revealed a dense, cuboid grain morphology 
for both compositions (x = 0.0 and 0.60) typical of NASICONs. The bulk, 
grain boundary and total ionic conductivity of the NZSP (x = 0.0 and 
0.60) were investigated at 293 K and 160 K using impedance spectros-
copy. With a monoclinic crystal structure, NZSP (x = 0.0) has a higher 
RT bulk conductivity of ~1.3 * 10−3 Scm−1. In contrast, NZSP 
(x = 0.60) with mixed rhombohedral and monoclinic crystal structures 
gave a slightly lower RT bulk conductivity of ~ 6.5 * 10−4 Scm−1, but 
both were comparable with literature values. 
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Fig. 9. a. Arrhenius plots of the total conductivity for NZSP (x = 0.0 and 0.60) 
ceramics. (b). Temperature-dependent bulk conductivity (σb) plots of NZSP 
(x = 0.0 and 0.60). (c). Temperature-dependent grain boundary conductivity 
(σgb) plots of NZSP (x = 0.0 and 0.60). 
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