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A CONSTRUCTION OF PSEUDO-REDUCTIVE GROUPS WITH

NON-REDUCED ROOT SYSTEMS

MICHAEL BATE, GERHARD RÖHRLE, DAMIAN SERCOMBE, AND DAVID I. STEWART

Abstract. We describe a straightforward construction of the pseudo-split absolutely pseudo-
simple groups of minimal type with irreducible root systems of type BCn; these exist only in
characteristic 2. We also give a formula for the dimensions of their irreducible modules.

1. Introduction

Let k be an arbitrary field, and G a smooth connected affine k-group which is pseudo-reductive;
that is, the largest connected smooth normal unipotent k-subgroup Ru,k(G) of G is trivial. The
classification of G up to isomorphism in [CGP15] and [CP17] becomes exceedingly intricate when
k has characteristic 2—which to a large extent can be traced back to degeneracies in commutator
relations in split reductive k-groups. The purpose of this note is to simplify one aspect of the
characteristic 2 theory by giving a brief construction of the pseudo-split absolutely pseudo-simple
groups of minimal type with root system of type BCn. We generate these groups inside the Weil
restrictions of rather special semidirect products with a property which only exists in characteristic
2. The upshot is that we are able to establish the existence part of the classification theorem of
such groups [CGP15, Thm. 9.8.6] without recourse to Weil’s birational group laws.

The structure of this paper is as follows.

In Section 2, we give a complete description of semidirect products V ⋊H of a split simple k-group
H and an irreducible H-module V such that V ⋊H has a split simple subgroupM withMV = HV
but the projection M → H is not an isomorphism. This situation arises only in characteristic 2.

In Section 3 we expand on a method in [CGP15, §9.1] that exhibits interesting pseudo-reductive
subgroups of the Weil restrictions of SL2 and PGL2 across non-trivial purely inseparable extensions.
We generate certain maximal rank subgroups of the Weil restrictions of the special semidirect
products as described in Section 2, whose root systems are of type BCn. In more detail: we
first generate an abstract subgroup of k-points from some specified root groups, together with the
k-points of the normaliser of a Cartan subgroup. We observe that this subgroup admits a (B,N)-
pair, in the terminology of Tits. We then compare the ‘big cells’ of the abstract group and its
closure, which turns out to be enough to determine the root groups of its closure and conclude the
abstract group is the set of k-points of its closure. Then we deviate a little from [CGP15] and
use some standard results about groups with (B,N)-pairs to infer pseudo-reductivity or absolute
pseudo-simplicity of these groups. (The n = 2 case requires extra work.)

Finally in Section 4, we give a formula for the dimensions of the irreducible modules of the groups
of interest; this is explicit if n = 1 or 2, and otherwise reduces the problem to calculating the
dimensions of the irreducible modules of Sp2n in characteristic 2. We also highlight Theorem 4.2,
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which gives a formula for the dimensions of an irreducible module of a pseudo-reductive group that
is a product of commutative pseudo-split groups of rank 1, in terms of the weight and the minimal
fields of definition of the geometric unipotent radicals of the factors.

Acknowledgements. We thank the referees for alerting us to some errors in the first version and
suggesting improvements to the exposition. The fourth author is supported by a Leverhulme Trust
Research Project Grant RPG-2021-080.

2. Set-up

Let k be a field and G a smooth affine k-group (scheme); so G is a functor from k-algebras to
groups, represented by a finitely presented k-algebra k[G]. We say G acts on an affine k-scheme S
if there is a natural transformation of functors α : G×S → S such that α(A) : G(A)×S(A) → S(A)
is a group action for any k-algebra A. All actions will be left actions. From a finite-dimensional
k-vector space V one gets a k-vector group V with V (A) = A ⊗k V . By a module for G, we
mean a k-vector space V and an action of G on V such that for each k-algebra A, the group of A-
points G(A) acts A-linearly on V (A). If V is a finite-dimensional G-module then one can form the
semidirect product V ⋊G—another k-group; we abuse notation and write V ⋊G. If G is generated
by the smooth closed subgroups N and H, with N normal in G and N ∩H = 1 (scheme-theoretic
intersection), then G ∼= N ⋊ H where H acts on N by conjugation. We write hn = hnh−1 for
h ∈ H(A), n ∈ N(A).

2.1. Abstract complements in semidirect products. In this subsection and the next we es-
tablish the following:

Proposition 2.1. Let V = k2n be the natural Sp2n-module and let ρ : V ⋊ Sp2n → Sp2n be the
natural projection. If char(k) = 2 then there exists a k-subgroup SO2n+1 →֒ V ⋊ Sp2n that maps
onto Sp2n via ρ. This construction is unique in the following sense.

Let L be a split simple k-group, let U be an irreducible L-module and let M be a split simple k-
subgroup of U ⋊ L such that the natural projection π : U ⋊ L → L sends M onto L. Then either
M ∼= L via π, or char(k) = 2 and there exists an isomorphism ψ : U ⋊ L → V ⋊ Sp2n for some
n ∈ N such that the following diagram commutes:

M U ⋊ L L

SO2n+1 V ⋊ Sp2n Sp2n

∼ ψ|M

π

∼ ψ ∼ ψ|L

ρ

The inclusion of SO2n+1 is the one specified above.

We will show later in Corollary 2.4 that M is unique in Q := U ⋊ L up to Q(k)-conjugacy.

We start by establishing the existence part of Proposition 2.1.

Let k be a field of characteristic 2 and consider the split simple k-group M = SO2n+1 in its
action on its natural (2n + 1)-dimensional module X, stabilising the standard quadratic form
q = x20 + x1x2 + · · · + x2n−1x2n, with associated bilinear form (v, w) = q(v + w) − q(v) − q(w).
Since p = 2, we have (v, v) = 4q(v) − 2q(v) = 0 so this form is alternating and so cannot be
non-degenerate on an odd-dimensional space. Moreover, M centralises the 1-dimensional radical
k · x of the form (·, ·), which gives an embedding M ⊂ P ⊂ SL(X), where P := StabSL(X)(k · x)
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is a maximal parabolic subgroup of SL(X). Choosing a basis of X, one gets a Levi decomposition
P ∼= Ru(P ) ⋊ GL(U), where U := X/(k · x). The induced action of M on U preserves a non-
degenerate alternating form, so for dimension reasons, the image of M in GL(U) is isomorphic to
L := Sp2n. It is easy to see that Ru(P ) is a vector group and the conjugation action of GL(U)
on Ru(P ) furnishes it with the structure of (det−1) ⊗ U∗ as a GL(U)-module, where det is the
determinant representation and U is the 2n-dimensional natural module. Since L preserves a
non-degenerate bilinear form on U , the restriction of U to L is self-dual. Also, the determinant
representation of L is trivial, so Ru(P ) is L-equivariantly isomorphic to U ; abusing notation slightly,
we write M ⊆ U ⋊ L. Since M surjects onto L, we must have UM = U ⋊ L. This establishes the
existence part of Proposition 2.1. Note also that under the identifications made in this paragraph,
L and M share a common “diagonal” maximal torus.

Now consider a triple of k-groups (L,M,U) that satisfies the hypotheses of Proposition 2.1 and
assume M → L is not an isomorphism. Since the quotient map π : U ⋊ L → L does not restrict
to an isomorphism on M , we conclude that the scheme-theoretic intersection M ∩U ̸= 1 and so M
has a non-trivial unipotent normal subgroup (the scheme-theoretic kernel of π|M ). It was proved
independently in [PY06, Lem. 2.2] and [Vas05, Thm. 2.2] that SO2n+1 over k of characteristic 2 is
the only split simple group with this property, and that the non-trivial normal unipotent subgroup
in question is unique. Precisely:

Lemma 2.2. The unique non-trivial normal unipotent subgroup of SO2n+1 is the height 1 subgroup
scheme isomorphic to α2n

2 , which corresponds to the ideal of short root spaces in the Lie algebra,
and can be characterised as the direct product of the kernels of the Frobenius map on the short root
groups of SO2n+1.

Let D be a split maximal torus of L, and denote Q := U ⋊ L. Since U is unipotent, D remains
a split maximal torus of Q. Being of the same rank, any split maximal torus of M is also one
of Q. Since split maximal tori of Q are conjugate, we may replace M by a Q(k)-conjugate to
assume D ⊂M ∩ L. Now by the irreducibility of U as an L-module (and hence as an M -module),
Lie(kerπ|M ) = Lie(U) and so, by the uniqueness in Lemma 2.2, the set of weights of D on U is
the set of short roots in M without multiplicity and L = Sp2n as a quotient of M = SO2n+1. It
follows that there is only one possibility for U up to isomorphism as an M -module, and hence U
must be the natural module for M and L. This gives rise to the map ψ in Proposition 2.1. In
order to complete the proof of the Proposition, we just need to establish that the restriction of ψ
to M gives the isomorphism claimed. This part is delayed to the next section, where we show the
stronger result Corollary 2.4.

Remarks 2.3. (i). The basic thrust of these observations probably goes back to [LS96, Prop. 1.5],
where M is described as a complement to U in U ⋊ L on the basis that M(k)U(k) = L(k)U(k)
and M(k) ∩ U(k) = 1. The more expedient (scheme-theoretic) notion of a complement is given
in [Ste14, §4] which recovers the natural correspondence between the space H1(L,U) and the set of
U(k)-conjugacy classes of complements to U in U ⋊ L.

(ii). Unsurprisingly, one finds a closely related cohomological phenomenon: if G is a split simple

k-group and V is an irreducible G-module with V [1], then one gets a natural map H1(G, V ) →
H1(G, V [1]) which is an isomorphism unless p = 2, G ∼= Sp2n and V = L(ϖ1) is the natural module

for G [CPS83]. In the latter case H1(G, V ) = 0 and H1(G, V [1]) ∼= k. This is essentially the same
fact that for the first Frobenius kernel G1 of a split simple k-group G, one has H1(G1, k) = 0 unless
p = 2 and G is of type Cn, in which case H1(G1, k) is isomorphic as a G-module to a Frobenius

twist of the natural module V [1]; see [Jan03, II.12.2].
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(iii). An important phenomenon in the analysis of the subgroup structure of reductive groups
over algebraically closed fields k of characteristic 2 is the occurrence of subquotients of a parabolic
subgroup P isomorphic to V ⋊ Sp2n. Such subquotients are often the source of subgroups M ∼=
SO2n+1 of G which are not contained in any Levi subgroup L of P . Thus such a subgroupM is non-
G-completely reducible in the terminology of Serre [Ser05]. It is the presence of non-G-completely
reducible subgroups which obstructs a recursive classification of the lattice of all reductive subgroups
of reductive groups from the list of maximal subgroups.

2.2. Pinning. Recall that a pinning of a split reductive k-group G is a choice of a split maximal
torus T , a system of positive roots Φ+ ⊆ Φ, and for each simple root a ∈ Φ+ an isomorphism
xa : Ga → Ga; t 7→ xa(t) for each root group Ga of G. Because of the T -equivariant isomorphism
Ga ∼= Lie(Ga) this is equivalent to choosing a nonzero element ea ∈ Lie(Ga) for each simple root a.
The following well-known statements hold:

(C1) The Chevalley commutator formula: for linearly independent a, b ∈ Φ we have

[xa(t), xb(u)] =
∏

i,j>0

ia+jb∈Φ

xia+jb(cijt
iuj),

where cij ∈ Z depend only on the Chevalley basis and an ordering of positive roots.
(C2) For t ∈ Gm and a ∈ Φ let sa(t) := xa(t)x−a(−t−1)xa(t), and ha(t) := sa(t)sa(−1). Then ha

defines a (coroot) homomorphism ha : Gm → T . The images of the ha as a varies over all
simple roots a generate the maximal torus T of G.

(C3) The k-subgroup NG(T ) is generated by the sa(t) over t ∈ Gm and simple roots a. The
element sa(1) maps into the Weyl group W := NG(T )(k)/T (k) to a reflection wa in the
hyperplane perpendicular to a∨ = ha; hence W is generated by the images of the sa(1) over
the simple roots a.

(C4) We have sa(1)xb(t)sa(1)
−1 = xwa·b(ct) for c ∈ {±1} depending only on the Chevalley basis.

(C5) We have ha(t)xb(u)ha(t)
−1 = xb(t

⟨b,a∨⟩u).
(C6) We have sa(1)ha(t)sa(1)

−1 = ha(t
−1), ha(t)sa(u) = sa(tu), and sa(t)sa(v) = ha(−t/v).

See [Ste16, p23 and Lems. 19, 20, 22, 28]; the very last relation in (C6) is a consequence of the
other relations which we record here for later use. Note that as the Weyl group is transitive on
roots of the same length, we can use (C4) to recover a pinning of G from one function xa for each
root length in Φ, together with the simple reflections si := sai(1) where {a1, . . . , an} is a set of
simple roots.

With this in mind, consider L ∼= Sp2n as a Chevalley group. As per [Bou82], we label the simple
roots {a1, . . . , an−1, 2an} according to the Dynkin diagram

a1 a2 an−2 an−1 2an
,

so that ai is short for i < n and 2an is long. Then L = ⟨xa1(t), x2an(t), si⟩, where si := sai(1) for
1 ≤ i ≤ n− 1 and sn := s2an(1). As in the previous subsection, let Q be the semidirect product of
L = Sp2n with its natural module U and π : Q→ L the projection. We have seen that Q contains
a subgroup M = SO2n+1 sharing a maximal torus D with L. The (implicit) choice of positive roots
of L relative to D now implies a presentation of M as a Chevalley group compatible with that of
L, in a manner that we now spell out.
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Thanks to Proposition 2.1, π sends M onto L and has infinitesimal unipotent kernel. So it sends
the maximal torus D of M isomorphically onto its image. Hence π sends NM (D) onto NL(D)
(cf. [CGP15, Lem. 3.2.1]).

Finally, since the centre Z of GL(U) acts on Q by centralising L and scaling U linearly, any non-zero
scalar multiple of ea could arise in this way. And since π(NM (D)) = NL(D) acts transitively on the
non-zero weight vectors in U , by (C4) a choice of ean determines each ea, and in turn determines
M completely as a subgroup of Q. In particular, we get a pinning of M , based on the Dynkin
diagram

a1 a2 an−2 an−1 an
.

Now the next result follows and incidentally completes the proof of Proposition 2.1.

Corollary 2.4. The subgroup M is unique in Q up to Q(k)-conjugacy.

Note that Φ(Q) contains three root lengths: from now on we call the 2n shorter roots in Φ(M)
very short roots; we call the 2n2 − 2n longer roots in Φ(M) and shorter roots in Φ(L) short roots ;
we call the 2n longer roots in Φ(L) long roots. [In [CGP15] roots of these lengths are referred to
as multipliable, non-divisible and non-multipliable, and divisible, respectively.]

For explicit calculations, we can work in M to calculate commutators of very short and short root
elements of Q. We can use L to calculate commutators of short and long root elements. Applying
the bijection π and noting that long root elements from non-opposite root groups commute in Sp2n
we get:

(C7) Let b be a very short root and 2a a long root. Then provided 2b ̸= −2a, we have for any
t, u ∈ k, [xb(t), x2a(u)] = 1; indeed, in that case [Mb, L2a] = 1, since 2a+ b is not a weight
of U .

3. Definition of G

We start by recalling some concepts from [CGP15]. Let k be a field and G be a pseudo-reductive k-
group. Let K/k be the minimal field of definition for the geometric unipotent radical Ru(Gk̄). Let
Gred
K := GK/Ru(GK) be the maximal reductive quotient of GK . The adjunction of Weil restriction

and extension of scalars implies that for any finite field extension k′/k the identity map Gk′ → Gk′
corresponds to a k-homomorphism

(3.1) jG,k′ : G→ Rk′/k(Gk′)

that is a closed immersion. The composition of jG,K with the Weil restriction of the canonical

K-quotient map GK → Gred
K gives rise to a map

(3.2) iG : G→ RK/k(G
red
K ).

Importantly, the map iG is not always a closed immersion. The scheme-theoretic intersection of
ker iG with any Cartan subgroup C of G is central in G and independent of C by [CGP15, Prop.
9.4.2(i)], and one says G is of minimal type if this intersection is trivial.

We recall further that G is called pseudo-simple if it is non-commutative and has no non-trivial
proper smooth connected normal k-subgroups; note that a pseudo-simple k-group G is equal to its
derived group D(G) [CGP15, Def. 3.1.1, Lem. 3.1.2]. We say that G is absolutely pseudo-simple if
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Gks is pseudo-simple for ks the separable closure of k in k̄. Say G is pseudo-split if it contains a
split maximal torus.

If G is a pseudo-split absolutely pseudo-simple k-group of minimal type (so Φ is irreducible by
[CGP15, Lem. 3.1.4]), then by [CGP15, Thm. 9.4.7] ker iG itelf is non-trivial if and only if k is
imperfect, char(k) = 2 and the irreducible root system of Gks is non-reduced, i.e. a root system of
type BCn. Furthermore, [CGP15, Thm. 2.3.10] gives us Gred

K
∼= Sp2n and from [CGP15, Thm. 3.4.6]

we see that for any chosen split maximal torus in G, there is a Levi subgroup of G isomorphic to
Sp2n containing that torus.

Using the k-groups L,M , U , Q = U⋊L and D from the previous section, we construct pseudo-split
pseudo-simple groups of minimal type with non-reduced root systems. The basic idea is first to
take a Weil restriction Q := RE/k(QE) across a suitable purely inseparable field extension E/k.
This has the effect of enlarging each of the 2n2 +2n root groups of Q to become isomorphic to the
additive group of the field E—recall that Φ(Q) contains 2n very short roots, 2n2 − 2n short roots,
and 2n long roots. We then generate the desired subgroups from certain vector subgroups of these
root groups. More precisely, given any root a in the root system Φ := Φ(Q,D) and root group
Qa = RE/k(Qa) of Q, we may take any k-vector subspace S of Qa(k) = Qa(E) = E and find a
uniquely corresponding vector subgroup S of Qa whose k-points coincide with S. To decide which
parts of which root groups will be required, we need the following data.

Definition 3.1 (cf. [CGP15, 9.6.8]). Let k be an imperfect field of characteristic 2 and let K/k

be a non-trivial purely inseparable finite field extension. Fix a pair of non-zero K2-subspaces V (2),
V ′ ⊆ K, such that the following conditions hold:

(i) V ′ is a kK2-subspace of K;

(ii) V (2) ∩ V ′ = 0; and

(iii) dimK2 V (2) <∞.

Let K0 := k⟨V (2) ⊕ V ′⟩ be the subfield of K generated over k by ratios of nonzero elements of

V (2) ⊕ V ′. Note that since K0 is a field extension of k, by definition, and each of V (2) and V ′ is a
non-zero K2-space, K0 contains the subfield kK2 of K.

Remarks 3.2. (i). It turns out that the groups we construct will have K/k as the minimal field of
definition over k for the geometric unipotent radicals. In the rank 1 case we will even have K = K0.

(ii). The notation V (2) is chosen because V (2) is a K2-vector space arising as the image under the

Frobenius morphism q of aK-vector space V ⊂ K1/2; the map q being the squaring map. Explicitly,
to define V in terms of V (2) one defines the abstract K-vector space V := K⊗ι,K2 V (2) ⊆ K⊗ι,K2K

where ι : K2 → K is the square root isomorphism. Since K ⊗ι,K2 K is a field, we have an inclusion
of K-vector spaces V →֒ K1/2 given by a⊗ b 7→ a

√
b.

We now define the objects of interest. Fix an integer n ≥ 1 (which will end up being the rank of
our group).

If n ≥ 2, then let (K/k, V ′, V (2)) be a triple as in Definition 3.1. If n = 1, then choose such a triple
with one additional requirement: in this case, we insist on a choice of V ′ so that K0 = K.

Let V be the (finite-dimensional) K-vector space described in Remark 3.2(ii). Let L, M , U and
Q = U ⋊ L be k-groups as described in Proposition 2.1.

6



Let E be the minimal extension of K in K1/2 containing V , noting that this is a non-zero finite
purely inseparable extension (it is generated as an extension by a K-basis of V , each element
of which squares to an element of K). Now, let Q := RE/k(QE), and let M := RE/k(ME), L :=
RE/k(LE) and U := RE/k(UE) be the corresponding subgroups, where Q = U⋊L implies Q = U⋊L.
Abusing notation, we write π for the quotient map RE/k(π) : Q → L. Using (3.1) we may identify
copies of L andM inside L andM and the common split maximal torusD of L andM identifies with
a common split maximal torus of L and M, which is also a split maximal torus of Q. The set of roots
∆ := {a1, . . . , an, 2an} is such that {a1, . . . , an} forms a base of Φ(M, D) and {a1, . . . , an−1, 2an}
forms a base of Φ(L, D). For a root a, the Weil restrictions of the maps xa : (Ga)E → (La)E ⊂ LE
or xa : (Ga)E → (Ma)E ⊂ ME determine parametrisations of the corresponding root groups Ma

or La, giving isomorphisms with RE/k(Ga), whose k-points are isomorphic to E. Now, define the
following subgroups:

• Let Gan be the k-vector subgroup V of Man , with V (k) = V .
• Let G2an be the k-vector subgroup V ′ of L2an , with V

′(k) = V ′ (this makes sense, since V ′

is chosen to be a kK2-subspace of K, and hence is a k-subspace in particular).
• If n ≥ 2, let Ga1 be the k-vector subgroup K of La1 such that K(k) = K.
• Finally, let C := RK/k(DK), canonically a subgroup of RE/k(DE) ⊂ M ∩ L.

(For a visual representation when n = 2, see Figure 3.1 below, taking V ′′ = K.)

Definition 3.3. With notation as above, let

G := ⟨Ga1 , Gan , G2an , C, si | 1 ≤ i ≤ n⟩ ⊂ Q,

where si := sai(1) ∈ NL(D)(k) = NM (D)(k) are as defined in §2.2.

Lemma 3.4. (i) The image of G under π is a subgroup of the canonical subgroup RK/k(LK) of L.

(ii) We have CG(D) = C. In particular, C is a Cartan subgroup of G.

(iii) The group G is connected and smooth.

Proof. Part (i) follows by noting that π takes each generating subgroup into RK/k(LK). (For t ∈ E,

an element xan(t) maps to x2an(t
2), which is in L(K), since E2 ⊆ K; and as RE/k(Ma) ∼= RE/k(Ga)

is a vector group, its k-points Ma(E) are dense.)

For part (ii), it follows from [CGP15, Prop. A.5.15(3)] that CQ(D) = RE/k(CQE
(DE)). Since zero is

not a weight of D on U , we see that CQE
(DE) = CLE

(DE) = DE , and hence CQ(D) = RE/k(DE).
Therefore, we have CG(D) = RE/k(DE) ∩ G. But as π is an isomorphism on RE/k(DE), and by
(i), we have π(G) ⊆ RK/k(LK), and so also CG(D) ⊆ RK/k(LK), hence the assertion.

Part (iii) will follow if we can show that G is generated by smooth connected subgroups. As such,
we aim to show that each si is contained in a smooth connected subgroup of G. We appeal to (C2)
and (C4) mainly. First note that if n ≥ 2 and i < n, the simple short root ai is conjugate to a1
under an element w ∈ W represented by s, which is a product of the si. Therefore conjugating
xa1(1) ∈ G(k) by s, we may find xai(1) ∈ G(k). Conjugating once more by si, we also find
x−ai(1) ∈ G(k). Thus si is in the set of k-points of the product of three smooth connected groups,
namely sGa1

sisGai
sGa1 , as required. Finally, take any x2an(t) such that 0 ̸= t ∈ V ′. Since V ′ is

a K2-subspace of K, we have t−1 ∈ V ′. Thus x−2an(t
−1) = snx2an(t) ∈ G(k). We now see san(t)

in the k-points of sG2an
sisG2an

sG2an , and right multiplying the latter by C using (C6), we can in
fact see sn in the product of four smooth connected groups. □
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Since the si generate W modulo D and and W is transitive on roots of the same length, we can
choose a set of pairs (w, a) with w ∈ W and a ∈ {a1, an, 2an} so that the collection w · a contains
each positive root of Q exactly once. In fact, as p = 2, the choices in (C4) vanish and so

(3.3) xw·a(t) :=
swxa(t)

is well-defined, where sw ∈ NG(D)(k) is some product of the si representing w. Let Gw·a be the
closed subgroup generated by the elements xw·a(t), where t ∈ V , V ′, or K, depending on a = an,
2an, or a1 respectively (the last only when n ≥ 2).

For convenience of exposition, order the positive roots as {b1, . . . , b2n, . . . , bm}, where m := n2 + n
so that the roots b1, b3, . . . , b2n−1 are very short and in height order, and for 1 ≤ i ≤ n, we have
b2i = 2b2i−1 is a long root. Thus bi is short for i > 2n. Now consider the multiplication map

(3.4) µ :

m
∏

i=1

Gbi → G.

Lemma 3.5. The map µ as just defined is injective on k-points. Let U be the image of the k-points
of the domain. Then U is a subgroup of Q(k).

Proof. The claim about injectivity will obviously follow if the post-composition with π : Q → L is
injective. Since for a very short root a, π(xa(t)) = x2a(t

2), we have on k-points,

π ◦ µ : (xb1(c1), . . . , xbm(cm)) 7→
n
∏

i=1

xb2i
(

c22i−1 + c2i
)

m
∏

i=2n+1

xbi(ci) ∈ Sp2n(K).

As the elements in the image of π◦µ are entirely supported on positive roots, the image lies in B(K)
for B a Borel subgroup of (Sp2n)K ; and so does the subgroup they generate. Since the unipotent

radical Ru,K(B) of B is isomorphic as a K-scheme to A
n2

via a direct product of its root groups,
two elements (xb1(c1), . . . , xbm(cm)) and (xb1(d1), . . . , xbm(dm)) have the same image in Sp2n(K) if
and only if c22i−1 + c2i = d22i−1 + d2i for 1 ≤ i ≤ n and ci = di for i > 2n. Moreover, for each very
short root a2i−1 we have c2i−1 and d2i−1 naturally identified as elements of V ⊆ E; and for each
long root, we have similarly c2i, d2i ∈ V ′ ⊆ K ⊆ E, for 1 ≤ i ≤ n. But c22i−1, d

2
2i−1 ∈ V (2) and

V (2) ∩ V ′ = 0, so we deduce that c22i−1 + c2i = d22i−1 + d2i if and only if c2i−1 = d2i−1 and c2i = d2i,
and this completes the proof of injectivity.

We now show U is a subgroup of Q(k).

Let x, y ∈ U . Consider xy as a word in root elements of Q(k). We wish to use the commutator
formula (C1) to reorder these root elements in this expression so that the element xy is visibly equal
to a member of U by virtue of the definition of U . To wit, let b be a very short root. By (C7), if
a ̸= b is another positive root then xa(t) commutes with xb(u) unless a is short and a+ b is another
very short root. In the latter case, calculating in M(k) with (C1) we have

xa(t)xb(u) = xb(u)xa+b(tu)xa(t)x2b+a(tu
2).

(One needs to check in this case that the relevant cij = 1 in (C1), see for example [Car89, Prop.
12.3.3 proof].) As t ∈ K and u ∈ V , we have tu ∈ V , so the right-hand side above is indeed an
element of U . Using (C1) in L(k) = L(E) we may similarly reorder other pairs of root elements.
After a finite number of commutations, one has xy re-written as a product of root groups in the
order specified just before (3.4). The above calculations show that the coefficients of each root
element in that expression are already in the image of the map π ◦ µ and so U is a subgroup. □
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Let G be the (abstract) subgroup of Q(k) generated by the k-points of the generators ofG; explicitly,

G := ⟨Ga1(k), Gan(k), G2an(k), C(k), si⟩.
Our aim is to prove G = G(k); in particular, that a root group of G is isomorphic to one of Ga1 ,
Gan or G2an depending on the length of the root. To that end we construct a (B,N)-pair (or Tits
system) for G in the sense of [AB08, Sec. 6.2.6], [Car93, Sec. 2.1]. Standard results imply that G has
an abstract Bruhat decomposition, which we then compare to the algebraic Bruhat decomposition
of G.

Recall that a pair of subgroups (B,N ) of an abstract group G form a (B,N)-pair if the following
axioms are satisfied

(BN1) G is generated by B and N ;
(BN2) B ∩ N is a normal subgroup of N ;
(BN3) the group W = N/B ∩ N is generated by a set of elements wi, i ∈ I such that w2

i = 1;
(BN4) if si ∈ N maps to wi under the quotient map N → W, and if s is any element of N , then

BsiB.BsB ⊆ BsisB ∪ BsB,
i.e. siBs ⊆ BsisB ∪ BsB;

(BN5) if si is as above, then siBsi ̸= B.
Lemma 3.6. Let B be the subgroup of G(k) generated by C := C(k) and U , and let N :=
NG(D)(k).

(i) B is the semidirect product of C and U .
(ii) The subgroups B and N of G form a (B,N)-pair for G with Weyl groupW := N /(B∩N )

that is generated by the images of the si in W with 1 ≤ i ≤ n.
(iii) The (B,N)-pair in (ii) is saturated; that is,

⋂

w∈W

swBs−1
w = C = B ∩ N .

(iv) Let

Z :=
⋂

g∈G

gBg−1.

Then Z = 1.
(v) G is the disjoint union of the double cosets BswB with w ∈W .
(vi) Every element x ∈ G has a unique expression uwswhu, where uw is a product of positive

root elements sent negative by w, h ∈ C , u ∈ U .
(vii) kerπ|G = 1.

Proof. (i). We recall C = D(K). As U is unipotent, and D is multiplicative, C ∩ U = 1. Since
C is generated by the elements ha(u), with a ∈ ∆ and u ∈ K×, we see that C normalises all the
(closed) root groups of Q. Then the assertion about B follows from the relations xb(c)ha(u) =

ha(u)xb(u
⟨b,a∨⟩c). (The interesting case is where b is long and c ∈ V ′; then ⟨b, a∨⟩ is always a

multiple of 2, so that u⟨b,a
∨⟩ ∈ K2 and its product with c remains in V ′.)

(ii). We first need to verify that N ⊆ G . To see this, note that since G contains all the elements
si and C , π(N ) is contained in π(G ). But since the weights of D on Lie(kerπ) are non-zero,
kerπ ∩ N = 0 and so π is an isomorphism on restriction to NG(D); thus N ⊆ G . We now
establish each of the conditions BN1–BN5 holds.
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(BN1) Note that the elements of C and the si are members of N , and the subgroups Ga1(k),
Gan(k), G2an(k), are all contained in B; therefore, this follows by definition of G .

(BN2) We have seen that π is an isomorphism on C , U and N . Since π(C ) lies inside the
maximal torus and π(U ) lies inside the product of the positive root groups in Sp2n(K), we
have π(C ) ∩ π(U ) = 1. Therefore, π is an isomorphism on B and B ∩ N , using part (i).
From the Bruhat decomposition in Sp2n(K), we have π(B)∩ π(N ) = π(C ) = C so we are
done.

(BN3) As CG(D) = C, by Lemma 3.4, and N contains all the elements si, we have that N /C ∼=
NL(D)/D ∼=W , hence is generated by the images of the si, which are involutions in W .

(BN4) For i ≤ n−1, let Φi = Φ+\{ai} and Φn = Φ+\{an, a2n}. Then define Ui to be the subgroup
of U generated by Gb(k) for b ∈ Φi. It is easy to see from the commutator formulas that
Ui is the image of the subgroup

∏

b∈Φi
Gb(k) under the multiplication map µ from (3.4).

Further, by (3.3) we see that Ui is normalised by si. Now let Xi := Gai(k) for 1 ≤ i ≤ n−1
and Xn := Gan(k)Ga2n(k). Then U factorises as XiUi for all i, using the same argument
as in the proof of Lemma 3.5.

If b is short or long, a standard calculation in a subgroup SL2(E) of the Levi subgroup
of L with roots ±b, gives

x−b(t) = xb(t
−1)sbhb(t)xb(t

−1),

where
hb(t) = xb(t)x−b(t

−1)xb(t)xb(1)x−b(1)xb(1).

So every non-identity element of G−b(k) lies in BsbB. If b is very short then G±b lies in
M±b := ⟨Mb,M−b⟩ ∼= RE/k(PGL2), which is a subgroup of M. We have π : M±b → L±2b

∼=
RE/k(SL2) is injective on k-points, so the same calculation shows that every non-identity
element of G−b(k) is contained in BsbB as required. Now as B = XiUiC , we get

(3.5) siB ⊆ B ∪ BsiB.

To establish (BN4) we now reproduce the proof one uses to investigate the Chevalley
groups, as in [Car89, Prop. 8.1.5]. Suppose a product s of the si represents w in the Weyl
group W . One takes the cases w(ai) ∈ Φ+ and w(ai) ∈ Φ− separately. In the first case, we
calculate

sBsi = sXiUiC si

= s
XissiUiC

⊆ BssiB,

since sXi is contained in a positive root group or a product of two positive root groups if
i = n. If w(ai) ∈ Φ−, then the image w′ of ssi has w

′(ai) ∈ Φ+. Then

sBsi ⊆ ssi(B ∪ BsiB) (by (3.5))

⊆ BssiB ∪ B(ssiBsi)B (by the previous case)

⊆ BssiB ∪ B(BssisiB)B (by the previous case)

⊆ BssiB ∪ BsB.

Finally one gets (BN4) by observing that if g ∈ siBs then g−1 ∈ s−1Bsi. So we deduce
g−1 ∈ Bs−1siB ∪ BsiB and g ∈ BsisB ∪ BsiB.

(BN5) For any element sw ∈ N mapping to w ∈ W , if w ̸= 1 then there is a positive root a of
Q sent negative by the action of w. Therefore conjugation by sw sends xa(t) with t ̸= 0
outside B.
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(iii). The containment ⊇ is clear as N normalises D (and C = CG(D)). For the other containment,
since π is injective on B it is injective on any conjugate. The result then follows from the analogous
result for L(K) [Car93, Sec. 1.10].

(iv). Part (iii) implies that Z ⊆ C , and hence Z normalises U . Since U clearly normalizes Z, and
C ∩U = 1, we see that Z in fact centralizes U . Now using formula (C5), we see that every positive
root vanishes on Z. Indeed, taking a look at the root system of Q, one discovers that for each root
a there is some root b such that hb(t)xa(u) = xa(tu), and hence Z is contained in the centre of Q,
which is trivial.

(v). This now follows from [Car89, Prop. 8.2.2, Prop. 8.2.3].

(vi). The proof of this follows as in [Car89, Thm. 8.4.3, Cor. 8.4.4].

(vii). For x ∈ kerπ|G write x = b1swb2. Since π(b1)π(sw)π(b2) = 1, we may use the Bruhat
decomposition in Sp2n(K) to see w = 1; but then x ∈ B and 1 is the only preimage of 1 under π. □

Let λ : Gm → D be a cocharacter which is positive on positive roots; i.e. for which ⟨λ, α⟩ > 0 for
all α ∈ Φ+ ⊂ Φ = Φ(Q).

As in [CGP15, §2.1], define subgroup schemes of Q on A-points via

PQ(λ)(A) = {g ∈ Q(A) | lim
t→0

λ(t)g(t)λ(t)−1 exists}

UQ(λ)(A) = {g ∈ Q(A) | lim
t→0

λ(t)g(t)λ(t)−1 = 1}.

We have PQ(λ) = ZQ(λ)UQ(λ) by [CGP15, Prop. 2.1.8(2)]. The first factor is the Cartan subgroup
RE/k(DE) and the second is the unipotent radical, Ru(PQ(λ)) =

∏

a∈Φ+ Qa. On the other hand,
UQ(−λ) =

∏

a∈Φ− Qa. Now [CGP15, Prop. 2.1.2] tells us that the multiplication map µ : UQ(−λ)×
PQ(λ) → G is an open immersion. Let sw0 be a word in the si representing the longest word w0 in
the Weyl group. Then as w0 induces the inversion map on D, we see that the map

UQ(−λ)× PQ(λ) → G; (u, p) 7→ sw0up = sw0us
−1
w0
sw0p,

also induces an open immersion

µ′ : UQ(λ)× PQ(λ) → Ω := UQ(λ)sw0PQ(λ).

Now, the positive root groups of Q can be picked out as in [CGP15, Lem. 2.3.3]. Take Da =
(ker a)0red, some λa : Gm → D with ⟨a, λa⟩ > 0 and then Q(a) = UZQ(Da)(λa), where if a is short,
Q(a) = Qa and if a is very short, Q(a) = Qa × Q2a—the k-points of the two factors commute and
are dense in each. With the above in place, we are now ready to prove:

Lemma 3.7. For each root a, if we let Ua denote the a-root group of G, then we have Ua = Ga. In
particular, Ua is isomorphic to Ga1

∼= K, Gan
∼= V or Ga2n

∼= V ′ according to whether a is short,
very short or long, respectively.

Moreover, G(k) = G .

Proof. Observe the closure G is a subgroup of G containing all the generating groups for G, and
therefore is equal to it.

Since Ω meets G non-trivially, it meets G non-trivially, and hence ΩG := G ∩ Ω is non-empty and
open in G. Now, the set of points of G contained inside ΩG(k) is, by Lemma 3.6(v), precisely
ΩG := Bsw0B: for if, a fortiori, Ω(k) hits another (B,B)-double coset in G , then applying π and
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using the Bruhat decomposition in L(E) we see that such a double coset must be determined by
the same element of the Weyl group, namely w0, hence is equal to Bsw0B.

The complement G \ ΩG is closed and since it contains the k-points G \ ΩG , the closure of G \ ΩG

does not meet ΩG. Thus ΩG is dense in ΩG. Therefore the preimage (µ′)−1(Bsw0B) is dense in
(µ′)−1(ΩG) = (UQ(λ)∩G)×(PQ(λ)∩G). But UQ(λ)∩G = UG(λ) is isomorphic as a k-scheme to the
product

∏

a∈Φ+ Ua of the root groups Ua of G, and PQ(λ) ∩G = ZG(λ)UG(λ) for ZG(λ) a Cartan

subgroup of G, which according to Lemma 3.4 is C. The preimage (µ′)−1(ΩG ) is
∏

a∈Φ+ Ga(k)×B

because this set surjects onto ΩG and µ′ is injective. Since ΩG is dense in ΩG, the projection of
this preimage to UQ(λ) =

∏

a∈Φ+ Qa can be used to determine the root groups of G. For a short,
(a) = a and we have Ua = U(a) = Qa ∩G. Now Ga(k) = K closes up to Ga ∼= K; thus a short root
group of G is isomorphic to Ga1 . On the other hand, we hit the factor Q(an) = Qan(k)×Q2an(k) in

the set {(xan(t), x2an(t2)x2an(u)) | t ∈ V, u ∈ V ′}. Under the isomorphism Qan ×Q2an
∼= (A2)E , we

may write the latter as {(t, t2 + u) | t ∈ V, u ∈ V ′} ∼= V × V ′. The closure of this set is evidently
the closed subgroup V × V ′ embedded via (t, u) 7→ (t, t2 + u). In Qan × Q2an this corresponds to
the closed subgroup GanG2an . Thus a very short root group of G is isomorphic to Gan and a long
root group of G is isomorphic to G2an , as required.

Now we see that G = G(k) by using the Bruhat decomposition for G with respect to B = PG(λ)
[CGP15, Theorem C.2.8]: since the root groups of G are as expected, we see that B(k) = B and
so the result follows. □

The above results furnish us with a method to see that G is also pseudo-reductive. (In [CGP15, §9]
the most common tool used is [CGP15, Lem. 7.2.4] which says that a subgroup of a pseudo-reductive
group containing a Levi is also pseudo-reductive.)

Proposition 3.8. The group G is pseudo-reductive of minimal type; D(G) is absolutely pseudo-
simple of minimal type.

Proof. For the first part, since G is pseudo-reductive if and only if Gks is, it suffices to show that
the ks-points of Ru,ks(Gks) are trivial since they are dense. Now by [Mil17, Prop. 2.47], Gks is
generated by the base change to ks of each of Ga1 , Gan , G2an and C together with s1, . . . sn. Let
K ′ := K⊗k ks and E

′ := E⊗k ks, which are both fields, since E/k and K/k are purely inseparable.
It is easy to see that Gks is a ks-group satisfying Definition 3.3; we therefore assume k = ks and
proceed.

Since R := Ru,k(G)(k) is a normal subgroup of G = G(k), we conclude from [AB08, Lem. 6.61]
that either R ⊆ Z =

⋂

g∈G
g−1Bg or RB = G . The latter is impossible since G is not solvable; so

by Lemma 3.6(v), we deduce R = 1 as required.

This proves the first part. Since G is pseudo-reductive, D(G) is perfect by [CGP15, Prop. 1.2.6],
and hence [CGP15, Lem. 3.1.2] implies that D(G) is absolutely pseudo-simple. For the final point,
that D(G) has minimal type, recall that the quotient map π : Q → L restricts to a closed immersion
on C; in particular, the intersection of kerπ with C is trivial. Hence G is of minimal type by Lemma
3.4(ii). It is then immediate from [CGP15, Prop. 9.4.5] that D(G) is of minimal type. □

Given an arbitrary absolutely pseudo-simple pseudo-split k-group G of minimal type, one wishes
to characterise it up to isomorphism by the data of the form given in Definition 3.1. In particular,
one wants to calculate the minimal field of definition of its unipotent radical. Owing to the maps
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(3.1) and (3.2), this is tantamount to finding a Levi subgroup. For the groups we have constructed
in Definition 3.3, this process is rather easier if one assumes 1 ∈ V ′.

To that end, we give our version of [CGP15, Prop. 9.7.10] which discusses a natural automorphism
iλ of Sp2n scaling the long root groups by λ and centralising C and the simple short root groups;
loc. cit. extends iλ to an isomorphism G → iλ(G) by passing through the group law construction.
We are able to take a more undemanding approach by viewing iλ as conjugation inside Q.

Consider Sp2n(E) as elements of GL2n(E) preserving the standard symplectic form J =

(

0 I
−I 0

)

,

i.e. gTJg = J . We identify D with a diagonal torus. For λ ∈ E× one checks h(λ) :=

(

λI 0
0 λ−1I

)

∈
Sp2n(E), defining a cocharacter h : Gm → L. Conjugation by h(λ) gives

h(λ)

(

a b
c d

)

h(λ)−1 =

(

a λ2b
λ−2c d

)

,

where a, b, c and d are n × n block matrices. The centraliser L0 of the image D0 of h is the
stabiliser of the two totally isotropic subspaces ⟨e1, . . . , en⟩ and ⟨en+1, . . . , e2n⟩. As such L0 is a
Levi subgroup of Sp2n of type An−1, with central torus D0; and indeed D0 centralises the short
simple root groups of L and their negatives. On the other hand, since a long root group is contained
in an RE/k(Sp2)

∼= RE/k(SL2)-subgroup of L stabilising a non-degenerate 2-dimensional subspace

of X, we can take a = b = d = 1, c = 0 in the matrix above with n = 1, and observe that h(λ)
scales a positive long root group by λ2; similarly, h(λ) scales a negative long root group by λ−2.
As the set of weights of D on the normal subgroup U of Q is the set of very short roots, and every
very short root is half a long root, we see that conjugation by h(λ) scales a positive very short root
group by λ and its negative by λ−1.

Lemma 3.9. Suppose G is constructed from data (K/k, V (2), V ′) as in Definition 3.1; and λ ∈ E×.
Then conjugation by h(λ) induces an automorphism of Q in which G is sent to the isomorphic

subgroup G′ of Q constructed via the data (K/k, λ2V (2), λ2V ′).

Thus G is k-isomorphic to a group constructed from data in which 1 ∈ V ′.

Proof. We consider the action of conjugation by h(λ) on the generators in Definition 3.1. We
have already checked the action of h(λ) on the simple root groups and C. Thus for i < n, we
have si := xai(1)x−ai(1)xai(1) is centralised by h(λ). If i = n, then conjugation by h(λ) sends
si = x2an(1)x−2an(1)x2an(1) to x2an(λ

2)x−2an(λ
−2)x2an(λ

2) = h2an(λ
2) · si. Since h2an(λ2) ∈ C(k),

h(λ)si ∈ G′ for all i, whence the first claim.

Now let 0 ̸= v ∈ V ′ ⊆ K. It does no harm in our constructions to enlarge E to a bigger finite
intermediate extension in K1/2/K, so we may assume

√
v ∈ E. Conjugating by h(

√
v) takes G

to a group G′ defined by the data (K/k, vV (2), vV ′). Since V ′ is a K2-subspace it follows that
1 ∈ vV ′. □

Lemma 3.10. If 1 ∈ V ′, then the derived group D(G) contains the canonical k-subgroup L ⊆
RK/k(LK). Indeed L is a Levi subgroup of both G and D(G).

In any case, the minimal field of definition of Ru(Gk̄) is K and the restriction π|G of the quotient
map π : Q → L identifies with the map iG : G→ RK/k(Sp2n).
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Proof. Since [ha(c), xb(t)] = xb(c
⟨b,a⟩t + t), we can reproduce any root element as a commutator;

thus D(G) contains all the root groups of G. As 1 ∈ V ′, we have k ⊆ V ′ and so x2b(t) ∈ G(k) for
t ∈ k for any long root 2b. Besides, xa(t) ∈ G(k) for all short roots a and t ∈ k. As these elements
are a set of generators of L, we have L ⊂ D(G).

For the second part, by Lemma 3.9, we may assume 1 ∈ V ′. Now, we argue as in Step 3 of the
proof of [CGP15, Thm. 9.8.1]. Let

qLK
: RK/k(LK)K → LK

be the K-morphism associated to the identity map RK/k(LK) → RK/k(LK) under the adjunction
property of Weil restriction and extension of scalars. Since the composition

LK −→ GK
(π|G)K−→ RK/k(LK)K

qLK−→ LK

is an isomorphism, we have GK ∼= kerψ ⋊ LK where ψ = qLK
◦ (π|G)K . Then as GK is smooth

and connected, so is kerψ. Lastly, as ψ is a surjective map between two groups of rank n, kerψ
contains no K-tori. Hence kerψ is unipotent and so the minimal field of definition of Ru(Gk̄) is
contained in K. Since G contains the subgroup C ∼= RK/k(G

n
m), and CK ∩ kerψ is the geometric

unipotent radical of CK , the minimal field of definition of Ru(Gk̄) must contain K.

Moreover, the map ψ must be the quotient of GK by its unipotent radical and by naturality of
Weil restriction, we see iG : G→ RK/k(LK) identifies with the restriction of π to G. □

Remark 3.11. In fact, Step 5 of the proof of [CGP15, Thm. 9.8.1] shows that K is also the minimal
field of definition of Ru(D(G)k̄). Evidently it is a subfield of K. To show the other inclusion,
one deals with the case n = 1 separately and assuming n ≥ 2, one shows that for a short root
b, the subgroup with k-points ⟨xb(t), x−b(t) | t ∈ K⟩ is isomorphic to RK/k(SL2) and contains a
Cartan subgroup isomorphic to RK/k(Gm), for which the minimal field of definition of the geometric
unipotent radical is K.

In case the rank n of G is 2, there are more possibilities for the isomorphism class of G, which we
describe now. For a visual representation, see Figure 3.1 below. We need to fix some additional
notation: Given (K/k, V (2), V ′) as in Definition 3.1, take V ′′ a proper K0-subspace of K such that
k⟨V ′′⟩ = K where k⟨V ′′⟩ denotes the subfield ofK generated by k and the ratios of nonzero elements
of V ′′. For the simple roots a1, a2, 2a2, let Ga2(k) = V and G2a2(k) = V ′ as before, but set Ga1 = V ′′

the vector subgroup of the a1-root subgroup of L whose k-points are V ′′ ⊆ K ⊆ E = La1(k). Finally,
take s1 = sa1(v1) and s2 = s2a2(v2), for some 0 ̸= v1 ∈ V ′′ and 0 ̸= v2 ∈ V ′.

Proposition 3.12. The subgroup

G := GK/k,V (2),V ′,V ′′ := ⟨Ga1 , Ga2 , G2a2 , s1, s2⟩ ⊂ Q,

is pseudo-split and absolutely pseudo-simple of minimal type. If H is a pseudo-split absolutely
pseudo-simple group of minimal type with root system BCn, but H is not isomorphic to the derived
subgroup of a group as in Definition 3.3, then H has rank 2 and there is a tuple (K/k, V (2), V ′, V ′′)
such that H ∼= GK/k,V (2),V ′,V ′′.

Proof. Our construction adapts reasonably easily to this case.

A calculation in Ga1
s1Ga1Ga1 shows s1 is generated by connected subgroups. Similarly for s2. Thus

G is connected and smooth.
14



Set Ga1+2a2 := s2(Ga1), Ga1+a2 := s1(Ga2) and G2a1+2a2 := s1(G2a2). Then define U to be the
image of the k-points of the multiplication map

Ga1 ×Ga2 ×G2a2 ×Ga1+2a2 ×G2a1+a2 ×G2a1+2a2 → G.

To see U is a subgroup, we should recheck the commutator calculations of Lemma 3.5. Note
that, as before, all commutators between roots can be calculated inside a B2 or a C2 subgroup; in
particular, then, we see that the only two short positive root groups commute, as they are the two
positive longer roots in the B2 subsystem (or, alternatively, use the fact that shorter roots at right
angles for C2 in characteristic 2 commute; it amounts to the same thing). Similar considerations
allow us to move other roots past each other in a product with less difficulty than in the general
case. Note finally that the requirement that V ′′ be a K0-vector space legitimises the use of the
calculation [x2a2(t), xa1(u)] = x2a2+a1(tu) · x2a2+2a1(tu

2) to reorder the x•(•) in a product of two
elements of U .

With (C6) in mind, we let C be the subgroup of RK/k(D)(k) generated by the elements ha1(c/v1) =
sa1(c)s1, for all c ∈ V ′′ \ {0}, and h2a2(c/v2) = sa2(c)s2 for all c ∈ V0 \ {0}. Then using (C5), we
check that B := ⟨C ,U ⟩ is a semidirect product of C and U . Let also N = ⟨C , s1, s2⟩. Then the
proof that (B,N ) is a (B,N)-pair goes through as before, and the proof of Lemma 3.7 similarly
shows G(k) = G . We claim G (hence also G) is perfect.

For a a root of L, the formula ha(c) = sa(c)sa(1) implies ha(c) ∈ G for a = a1 or 2a2 with c ∈ V ′′

or c ∈ V ′ ⊕ V (2) respectively. (For the latter, we use the fact that π is an isomorphism on C .) As

ha is multiplicative we have ha(c) ∈ G for c ∈ k⟨V ′′⟩ = K× or c ∈ k⟨V ′ ⊕ V (2)⟩ = K×
0 , respectively.

(V ′′)∗K/k × (V0)
∗
K0/k

VV ′′ V V ′′

a2

V

V

2a2

V ′′

V ′′

V ′

V ′

a1

V ′

V ′

BC2

(V ′′)∗K/k × (V (2))∗K0/k

V V

a2

V

V

V ′

V ′

a1

V ′

V ′ B2

(V (2))∗K0/k

V

Ta1+a2T

V

a2

V

V

(A1)
2

Figure 3.1. Illustration of the structure of
the group GK′/k,V (2),V ′,V ′′ with root system

BC2 and Dynkin diagram
a2 a1 2a2

. Each

layer indicates a subgroup generated by root
groups of certain lengths. Above each root ap-
pears the vector space given by the k-points
of the corresponding root group. Cartan sub-
groups are also indicated.
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We have c/v2 ∈ K0 for any fixed c ∈ V0. As also V
′′ is a K0-subspace, the calculation

[h2a2(c/v2), xa1(t)] = xa1((v2/c+ 1)t)

implies we can choose t to reproduce any element xa(u) with u ∈ V ′′ as a commutator, so
Ga1(k) ⊆ D(G ). Similarly, [ha1(c/v1), x2a2(t)] = x2a2((c

2/v21 + 1)t), and V ′ is a K2-subspace of K,
so G2a2(k) ⊂ D(G ). For the last simple root group, observe [ha1(c/v1), xa2(t)] = xa2((c/v1 + 1)t),
and V is a K-subspace of E, so Ga2(a) ⊂ D(G ). Finally,

[s1, xa1(t)] = x−a1
(

(v−2
1 )t

)

xa1(t), and

[s2, x2a2(t)] = x−2a2

(

(v−2
2 )t

)

x2a2(t).

Substituting t = v1 and v2, respectively, we see x−a1(v
−1
1 ), x−a2(v

−1
2 ) ∈ D(G ). Thus s1 and s2 are

in D(G ). This proves the claim.

To see D(G) has a Levi subgroup, we may argue as in Lemma 3.9. Let h̃(µ) := h2a1+2a2(µ) ∈ D(E)
for µ ∈ E× and let it act on Q by conjugation. Since the root group Q2a1+2a2 commutes with Q2a2

and Qa2 , h̃(µ) centralises Q2a2 , Qa2 and the element s2. On the other hand (−a1−2a2)+(2a1+2a2) =

a1 as a sum of roots and so h̃(µ) scales the Qa1 root group by µ and takes s1 to h̃a2(µ)s1. If

0 ̸= c ∈ V ′′ then setting µ = c−1, we have ha2(µ) ∈ h̃(µ)G , so s2 ∈ h̃(µ)G . Furthermore the element

h(λ) of Lemma 3.9 lies in D(E) and so commutes with h̃(µ). Replacing G by its conjugate by

h(λ)h̃(µ) we may assume that the tuple (K/k, V (2), V ′, V ′′) has 1 ∈ V ′ and 1 ∈ V ′′. In particular
G contains the elements xa1(t), x2a2(t) for t ∈ k, s1 and s2, which together generate a copy of Sp4.
This is sent isomorphically to itself under π. As per the proof of Lemma 3.10, this must be a Levi
subgroup, and the field of definition of its unipotent radical is K.

To verify that G is isomorphic to the group constructed in [CGP15, §9.8.3], just observe that the

data (K/k, V (2), V ′, V ′′) can be recovered from the field of definition of Ru(Gk̄) and the root groups
of G. Then the classification of [CGP15, Thm. 9.8.6] yields the second sentence. □

Remarks 3.13. (i). We have shown that each pseudo-split absolutely pseudo-simple group of mini-
mal type with non-reduced root system contains a split simple subgroup of type Cn, specifically a
(Levi) subgroup isomorphic to Sp2n. Gopal Prasad has asked us if it also contains a split simple sub-

group of type Bn. Indeed, if G is constructed from the data (K/k, V (2), V ′) or (K/k, V (2), V ′, V ′′),
then suppose 0 ̸= v ∈ V ⊆ E. Then conjugation by h(v−1) sendsG ⊆ Q to a group constructed from
analogous data with 1 ∈ V . Similarly, if 0 ̸= w ∈ V ′′, then conjugation by the commuting element
h̃(w−1) permits us to assume 1 ∈ V ′′. It is easy to see that this modification is enough to guarantee
that G contains the canonical copy M = ⟨xa1(t), . . . , xan(t), s1, . . . , sn, D | t ∈ k⟩ ∼= SO2n+1 ⊆ M .

(ii). In each case, the quotient π(D(G)) of G by U∩G is also absolutely pseudo-simple of minimal

type and it has root system Cn: conjugating by h(λ) or h(λ)h̃(λ) we may assume it contains
the canonical k-Levi subgroup L of RK/k(LK). Thus it is pseudo-reductive and its root groups
are known. One can in fact identify it with one of the groups of type C described in [CP17,
Thm. 3.4.1(iii)]. Essentially, one gets π(D(G)) by replacing the long root groups of Sp2n(K) with

the subspace V (2) ⊕ V ′.

4. Irreducible representations of D(GK/k,V (2),V ′) and GK/k,V (2),V ′,V ′′

We start with some generalities. Temporarily, let k be an arbitrary field of characteristic p and G a
pseudo-split pseudo-reductive k-group. Then G has a Levi subgroup M containing a split maximal
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torus T [CGP15, Thm 3.4.6]. A choice of a system of positive roots of M determines a subset
X(T )+ ⊆ X(T ) of dominant weights of T . The following is [BS22, Thm. 1.2]:

Theorem 4.1. The isomorphism classes of irreducible representations of G are in 1–1 correspon-
dence with the dominant weights of T . If λ ∈ X(T )+ we denote by LG(λ) a corresponding irreducible
representation.

On restriction, LG(λ) is M -isotypic and semisimple. Furthermore,

dimLG(λ) = dimLM (λ) · dimLC(λ).

A general formula for dimLM (λ) is an exceedingly difficult problem except for low rank, even if we
were to assume p = 2 and M simple of type C. However, for the pseudo-simple groups G under
consideration in this paper, we give a reduction to this problem by describing dimLC(λ).

Given a split torus T and a choice of isomorphism T ∼= G
n
m, a dominant weight λ ∈ X(T )+ identifies

with a homomorphism (Gm)
n → Gm; via (x1, . . . , xn) 7→ ∏

xλii for certain non-negative integers
λi, and we so identify λ with the sequence (λ1, . . . , λn). If (k1, . . . , kn) is a sequence of finite purely

inseparable field extensions of k, then denote by ki(λi) the subfield k(kλii ) = k(kp
ei

i ) of ki, where
ei = vp(λi) is the exponent of the highest power of p dividing λi. If C ∼=

∏n
i=1Rki/k(Gm) with T

identified as a subgroup in the obvious way, then [BS22, Thm. 5.8] gives the dimension of LC(λ)
as [κ : k] where κ is the compositum of the ki(λi) in k̄. We need a slight upgrade of this result.

Theorem 4.2. Let k be any field and C a k-group with C ∼= C1 × · · · × Cn where each Ci is a
commutative pseudo-split pseudo-reductive k-group of rank 1. Let T ∼= T1×· · ·×Tn be the maximal
split torus of C, with each Ti the maximal split torus of Ci, and suppose the minimal field of
definition of the geometric unipotent radical of Ci is ki. Then for λ ∈ X(T ), LC(λ) identifies with
the compositum K of the subfields ki(λi) of k̄. In particular, dimLC(λ) = [K : k].

Proof. As usual let iCi : Ci → Rki/k(Gm) denote the map corresponding under adjunction to
the quotient of (Ci)ki by its unipotent radical. As each Ti is a Levi subgroup for Ci, the map
∏

iCi : C → Y :=
∏

Rki/k(Gm) is an inclusion on restriction to T . Consider LY (λ) as a C-module
via the map

∏

iCi . Now, LY (λ) is a λ-weight module for T—see [BS22, §5.1]—hence as a C-
module it is isotypic with composition factors isomorphic to LC(λ). Also, LY (λ) identifies with the
compositum of the ki(λi) in k̄ by [BS22, Thm. 5.8, proof]; more specifically, 1 ∈ LY (λ) generates the
subfield ki(λi) of K under the action of the subgroup Rki/k(Gm). By [BS22, Prop. 5.11], 1 ∈ LY (λ)
also generates the subfield ki(λi) under Ci. If W ∼= LC(λ) is an irreducible C-stable submodule
of LY (λ) containing w ̸= 0, then because multiplication in the field LY (λ) commutes with the
Y -action, multiplying by w−1 gives another C-stable submodule of LY (λ), so we may assume W
contains 1. Therefore W also contains the compositum of the ki(λi). But this is the whole of
LC(λ). □

Keep the assumptions as above but return to the case where p = 2 and G is pseudo-simple and of
minimal type with root system BCn andK the minimal field of definition of the geometric unipotent
radical. We treat the following cases in parallel: (i) G = GV (2),V ′,n; (ii) G = D(GV (2),V ′,n); or if

n = 2, (iii) G = GV (2),V ′,V ′′ . In each case there is a Levi subgroup M ∼= Sp2n containing the split

maximal torus D. Respectively, we have C = CG(D) isomorphic to:

(i)
∏n
i=1RK/k(Gm);

(ii)
∏n−1
i=1 RK/k(Gm)× (V ∗

0 )K0/k— [CGP15, (9.7.6)]; or
17



(iii) (V ′′)∗K/k × (V0)
∗
K0/k

— [CGP15, (9.8.2), Prop. 9.8.4(1)].

Here V0 = V (2) ⊕ V ′, K0 = k⟨V0⟩ is the extension of k inside K generated by ratios of nonzero
elements from V0, and (V0)

∗
K0/k

is the Zariski closure in RK0/k(Gm) of the subgroup generated

by ratios of nonzero elements from V0—see [CGP15, Defn. 9.1.1, §9.7.8] for more discussion. We
assume that 1 ∈ V ′, which is no loss by Lemma 3.9 or the proof of Proposition 3.12; this also
ensures that V0 ⊆ K0 in case (iii). We always take the rank 1 factors of C in order corresponding
to simple roots {a1, . . . , an−1, an} of G.

If (k1, . . . , kn) is a sequence of finite purely inseparable field extensions of k, then denote by ki(λi)

the subfield k(kλii ) = k(k
vp(λi)
i ) of ki, where vp(λi) is the highest power of p = 2 dividing λi.

Then [BS22, Thm. 5.8] gives the dimension of LC(λ) as [κ : k] where κ is the compositum of the
ki(λi) in k̄. That establishes the first case of the following:

Theorem 4.3. If λ = 0 then LG(λ) is trivial and dimLG(λ) = 1. Otherwise:

in case (i), dimLC(λ) = max{[K(λi) : k] | 1 ≤ i ≤ n};
in case (ii), dimLC(λ) = max({[K(λi) : k] | 1 ≤ i ≤ n− 1} ∪ [K0(λn) : k]);

in case (iii), dimLC(λ) = max([K(λ1) : k], [K0(λ2) : k]).

Proof. We first observe that the rank 1 subgroups (V0)
∗
K0/k

and (V ′′)∗K/k have minimal fields of

definition of their unipotent radicals equal to K0 ⊆ K and K respectively. To see this for (V0)
∗
K0/k

note that, by definition, (V0)
∗
K0/k

⊆ RK0/k(Gm), so the field of definition of its unipotent radical is

contained in K0. On the other hand, (V0)
∗
K0/k

(k) contains generators for K0 as a k-algebra, and

hence acts irreducibly on K0 through the inclusion (V0)
∗
K0/k

⊆ RK0/k(Gm); this forces the field of

definition of its unipotent radical to be at least K0 because that is the field of definition of the
unipotent radical of RK0/k(Gm). A similar argument works for (V ′′)∗K/k. Therefore, by Theorem

4.2, LC(λ) identifies with the compositum of the K(λi) for i ≤ n − 1 with either K(λn) in case
(i), or K0(λn) in cases (ii) and (iii). Now K0 is sandwiched between K and kK2; thus either some
K(λi) or K0(λn) contains all others. The theorem follows. □

Remark 4.4. In case n = 1 or 2 we can be completely explicit about dimLG(λ) since dimLM (λ) is
so easy to describe.

If n = 1, thenK = K0 and we identify dominant weights with non-negative integers. By Steinberg’s
Tensor Product Theorem [Jan03, II.3.17], a simple module with high weight λ is a tensor product
of Frobenius twists. If λ = r0 + 2r1 + . . . with ri ∈ {0, 1} is its 2-adic expansion, then

(4.1) LM (λ) ∼= LM (r0)⊗ LM (r1)
[1] ⊗ LM (r2)

[2] ⊗ . . . .

Each L(ri) is either trivial or the 2-dimensional natural module according as ri = 0 or 1. Therefore
we obtain that either λ = 0 and LG(λ) is the 1-dimensional trivial module, or

dimLG(λ) = 2
∑
ri · [(K)2

j
: k],

where j is the minimum integer such that rj is non-zero.

In case n = 2, we have M ∼= Sp4 and we can appeal to the exceptional isogeny τ : M → M
which is a square root of the Frobenius map. Given an M -module V , one gets another V [τ ] by
acting through τ . For V = LM (λ) irreducible, say of high weight λ ∈ X(D)+ = X(Gm × Gm)+,

then if λ is viewed as a pair of non-negative integers (a, b), we have V [τ ] is another irreducible
18



module, of high weight τ∗(λ) = (2b, a). It is now clear we may write λ as a τ -adic expansion
r0ϖ+ τ∗(r1ϖ) + (τ∗)2(r2ϖ) + . . . , where each ri ∈ {0, 1} and ϖ := (1, 0). A version of Steinberg’s
theorem [Ste63, §11] states that (4.1) still holds, with ϖ appropriately inserted. Since ϖ is the

high weight of the natural 4-dimensional M -module, we have dimLM (λ) = 4
∑
ri .

Let G := GV (2),V ′,V ′′ , where we allow V ′′ = K. A Cartan subgroup of G is C = (V ′′)∗K/k× (V0)
∗
K0/k

.

Note that K2 ⊆ K0 ⊆ K.

Let r =
∑

ri. If r = 0 then λ = 0 and LG(λ) ∼= k has dimension 1. Otherwise let j be minimal
such that rj ̸= 0. Then

dimLG(λ) =

{

[(K)2
j/2

: k] · 4r if j is even;

[(K0)
2
j−1
2 : k] · 4r if j is odd.

Appendix A. An alternative construction

Following a suggestion of one of the referees, in this short appendix we outline an alternative
construction of the groups from Section 3. The idea is to employ [CGP15, Thm. C.2.29], which
acts as a “black box” producing pseudo-reductive groups from root group data.

We first give a statement of the theorem. Let X be a smooth connected affine group over an
arbitrary field k, and let S be a nontrivial k-split torus in X. Let ∆ be a non-empty linearly
independent subset of the character group X(S) of S, and let C be a smooth connected k-subgroup
of ZX(S) containing S as a maximal split k-torus. For each a ∈ ∆ suppose there is given a smooth
connected k-subgroup Fa ofX containing C such that ZFa(S) = C and assume that the set Φ(Fa, S)
of non-zero S-weights on Lie(Fa) contains ±a and is contained in Z · a. Since ZFa(S) = C, the
maximal k-split torus S of C is also a maximal k-split torus of Fa for all a ∈ ∆. For a ∈ ∆, let
E±a be the root groups of Fa corresponding to ±a.
Theorem A.1. Assume that for every a, b ∈ ∆ with a ̸= b, Ea commutes with E−b. For the smooth
connected k-subgroup F of X generated by the k-subgroups {Fa}a∈∆, the following hold:

(i) The centraliser ZF (S) is equal to C. So S is a maximal k-split torus of F and, if S is a
maximal torus of C, then it is a maximal torus of F .

(ii) Any nonzero weight of S on Lie(F ) is either a nonnegative or a nonpositive integral linear
combination of elements in ∆.

(iii) For each a ∈ ∆, the ±a-root groups in F are E±a.
(iv) If for every a ∈ ∆, Fa is quasi-reductive (resp. pseudo-reductive) then F is quasi-reductive

(resp. pseudo-reductive), and in such cases ∆ is a basis of the root system of F with respect
to S.

(v) If the k-groups Fa are reductive for every a ∈ ∆ then so is F .
(vi) If Fa is quasi-reductive for all a ∈ ∆ then F is functorial with respect to isomorphisms

in (S,∆, {Fa}a∈∆) in the following sense: if (X ′, S′, C ′,∆′, {F ′
a′}a′∈∆) is a second 5-tuple

such that E′
a′ commutes with E′

−b′ for all a′ ̸= b′ ∈ ∆ and there are a given k-isomorphism
fC : C ∼= C ′ restricting to fS : S → S′ satisfying X(fS)(∆

′) = ∆ and k-isomorphisms
fa′ : Fa′◦fS

∼= F ′
a′ extending fC for all a′ ∈ ∆′—so that Fa′ and hence F is also quasi-

reductive—then there is a unique k-isomorphism f : F ∼= F ′ extending fa′ for all a′ ∈ ∆′.

We can now apply the theorem to the set-up described in the main body of the paper. In order to
do this, we let Q play the role of X, D play the role of S, C = RK/k(DK) and ∆ = {a1, . . . , an, 2an},
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a base of the full root system Φ = Φ(Q, D). Recall that all elements of the Weyl group W of Φ can
be represented by k-points of NQ(D); in particular, we have the reflections si for each root ai. Let
us set Fa1 = ⟨Ga1 , G−a1 , C⟩, where G−a1 = Gs1a1 , and for 2 ≤ i ≤ n − 1, Fai = Fwa1 where w ∈ W
is such that w · a1 = ai. Additionally, put Fan = ⟨Gan , G2an , G−an , G−2an⟩ where G−an = Gsnan and
G−2an = Gsn2an .

We then wish to show that the smooth and connected Fa have ZFa(S) = C and that their root
systems with respect to S consist of ±a or ±a,±2a if a = an. Once this is achieved, the remarks of
Section 2.2 then imply that the root groups Ea and E−b commute for distinct a, b ∈ ∆. Furthermore
we need to show that each Fa is pseudo-reductive, implying the same is true for F , by part (iv) of
the theorem.

Since the si normalise C and S, it clearly suffices to show the properties in the previous paragraph
for the two cases a = a1 and a = an. In the first case a = a1, we may identify Fa with the Weil
restriction RK/k(H), where H is a short Levi subgroup of the K-group LK ∼= Sp2m with maximal
torus DK , and the required properties follow quickly.

In the second case a = an, we can proceed as follows: let Fa = ⟨C,Ga, G2a, G−a, G−2a⟩. Let

b ∈ {a, 2a} and c another root. Then the relations xb(v)hc(u) = hc(u)xb(u
⟨b,a∨⟩v) imply that C(k)

and hence also C normalises Gb. (The interesting case is where b = 2a, so that c ∈ V ′; then

⟨b, a∨⟩ is always a multiple of 2, so that u⟨b,a
∨⟩ ∈ K2 and its product with c remains in V ′.) In

particular, the root system of Fa is {±a,±2a}. We also need to show that the root groups of Fa
are the Gb and that C is a Cartan subgroup of Fa. It will suffice to do so instead for the subgroup
H := ⟨Ga, G2a, G−a, G−2a, C

′⟩ ⊂ Qa where Qa is the group generated by the root groups M±a and
L±a; more specifically, to show that the root groups of H are the Gb and that C ′ := H ∩ C is a
Cartan subgroup of H.

Let {ei, fi | 1 ≤ i ≤ n} be a symplectic basis for U according to the form stabilised by L. The
centraliser of the subspace ⟨e2, f2, . . . , en, fn⟩ is a Levi subgroup of L whose derived subgroup A
is isomorphic to Sp2

∼= SL2 and for which U ′ = ⟨e1, f1⟩ ⊆ U affords the structure of a natural
module for A. Now Qa = RE/k(U

′
⋊ A). Since A ⊆ Qa we have reduced the problem to treating

the case n = 1; that is, it suffices to do our calculations in the special case Q = Qa. The most
straightforward way to proceed is by considering 3 × 3 matrices arising from the embedding of Q
in a parabolic of SL3—see the discussion immediately after Proposition 2.1.

Explicitly, from the definition of M ⊆ Q = U ⋊ L, the k-points of the root groups in Q are easily
seen to be

x+(t) =





1 t 0
0 1 0
0 0 1



 , x−(t) =





1 0 0
t 1 0
0 0 1





y+(t) =





1 t2 0
0 1 0
0 t 1



 , y−(t) =





1 0 0
t2 1 0
t 0 1





where L = ⟨x+(t), x−(t) | t ∈ E⟩ and M = ⟨y+(t), y−(t) | t ∈ E⟩.
Here, the k-points of U identify with the set of matrices











1 0 0
0 1 0
t u 1





∣

∣

∣

∣

∣

∣

t, u ∈ E







.
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We are therefore led to consider the subgroup

H = ⟨x+(t), y+(u), x−(t), y−(u) | t ∈ V ′, u ∈ V ⟩ ⊂ H.

Note also that the map π induces the map on k-points

π(k) :





a b 0
c d 0
t u e



 →
[

a b
c d

]

.

It is also straightforward to write down the elements of C(k) as diagonal matrices, and to realise
the nontrivial element of the Weyl group: it is represented by the element

s =





0 1 0
1 0 0
0 0 1



 ∈ NQ(C)(k).

Now the proofs in the main paper can be carried out with explicit matrix representatives, as follows.
Set N = ⟨s, C⟩, B = ⟨C, x+(t), y+(u)⟩, and a general element of B(k) is

b =





a 0 0
0 1/a 0
0 0 1









1 t+ u2 0
0 1 0
0 u 1



 =





a a(t+ u2) 0
0 1/a 0
0 u 1



 .

Now the only calculation remaining is that to show (B(k)sB(k))·(B(k)sB(k)) ⊆ B(k)⊔B(k)sB(k)
which is easily reduced to showing sB(k)s ⊆ B(k)sB(k). Now by matrices:

sbs =





0 1 0
1 0 0
0 0 1









a a(t+ u2) 0
0 1/a 0
0 u 1









0 1 0
1 0 0
0 0 1



 =





1/a 0 0
a(t+ u2) a 0

u 0 1





If t = u = 0 then b ∈ C(k) and hence so is sbs = sb ∈ C(k). Otherwise the following check can be
made to exhibit sbs ∈ B(k)sB(k):

sbs =





1/(a(t+ u2)) 1 0
0 a(t+ u2) 0
0 u 1









0 1 0
1 0 0
0 0 1









1 1/(t+ u2) 0
0 1 0
0 u/(t+ u2) 1



 .

With this established, the argument of Lemma 3.7 goes through.

We finally note that, in the case n = 2, the additional cases described in Proposition 3.12 can also
be constructed inside Q using Theorem A.1. The key observation is that when n = 2 we have
simple roots a1 (short), a2 (very short), and 2a2 (long), and the new groups arise by modifying
the subgroups corresponding to the root a1. In the notation established above, the subgroup
Fa1

∼= RK/k(H) has semisimple part isomorphic to SL2. Inside a group of the form RK/k(SL2) we
can find a k-subgroup by generating with the vector subgroup of each root group whose k-points
are the space V ′′ (these are the subgroups of type A1 denoted by HV ′′ in [CGP15]); this process is
described in detail in [CGP15, pp. 384–386]. The upshot is that we can replace Fa1 with a different
group F ′′

a1 corresponding to the space V ′′, and then Fa2 can be dealt with using 3× 3 matrices as
above, allowing us to apply Theorem A.1 to generate these extra cases.
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