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Abstract
Surface quality is one of the critical factors that affect the performance of a laser powder bed fusion part. Optimising process
parameters in process design is an important way to improve surface quality. So far, a number of optimisation methods have
been presented within academia. Each of these methods can work well in its specific context. But they were established on a
few special surfaces and may not be capable to produce satisfying results for an arbitrary part. Besides, they do not consider
the simultaneous improvement of the quality of multiple critical surfaces of a part. In this paper, an approach for optimising
process parameters to improve the surface quality of laser powder bed fusion parts is proposed. Firstly, Taguchi optimisation
is performed to generate a small number of alternative combinations of the process parameters to be optimised. Then, actual
build andmeasurement experiments are conducted to obtain the quality indicator values of a certain number of critical surfaces
under each alternative combination. After that, a flexible three-way technique for order of preference by similarity to ideal
solution is used to determine the optimal combination of process parameters from the generated alternatives. Finally, a case
study is presented to demonstrate the proposed approach. The demonstration results show that the proposed approach only
needs a small amount of experimental data and takes into account the simultaneous improvement of the quality of multiple
critical surfaces of an arbitrary part.

Keywords Process parameter optimisation · Surface roughness · Laser powder bed fusion · Additive manufacturing ·
Design of experiments · Multi-attribute decision-making

1 Introduction

Laser powder bed fusion (LPBF), also known as selective
laser melting or direct metal laser melting, is an additive
manufacturing (AM) technology utilising a high power-
density laser beam to selectively melt and fuse metallic
powders together to build near-net-shape parts [1]. This tech-
nology has characteristics in providing a high degree of
freedom for design and achieving complex geometries with-
out additional cost, which are the common advantages of AM
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technologies over conventional manufacturing technologies.
More importantly, the LPBF technology enables the fabri-
cation of metallic components with near full density and
high strength and stiffness. This makes it a very promising
metal AM technology for producing functional components
in industry [2–6].

Using the LPBF technology to produce a part involves a
set of activities, where design is an important one [7]. In this
activity, the variables related to material, structure, and pro-
cess are optimised to improve part quality and to satisfy other
lifecycle requirements [8, 9]. Among all optimised variables,
process parameters are crucial factors that have an important
effect on the quality of produced part [10]. In practice, LPBF
part builds generally use certain sets of optimised process
parameters empirically developed by the original equipment
manufacturers of LPBF systems. Because there are infinite
possibilities for part design, functional requirements, and
lifecycle considerations, it is not possible to have complete
sets of optimised process parameters. This means that using
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the recommended process parameters could produce parts
that cannot meet quality requirements [11].

To provide practical process parameter optimisationmeth-
ods, a lot of studies have been conducted within academia
[12, 13]. Many of these studies focus on improving mechan-
ical performance and a few of them consider surface
quality. While mechanical properties are critical to part
quality, surface quality can also be important in some
applications, since it can influence the part accuracy, post-
processing, and part functionality. As one example, in
aerospace application, a certain surface roughness is required
to avoid premature failure from surface-initiated cracking.
As another example, in biomedical application, the sur-
face topography with certain roughness can enhance bone-
to-implant contact and provide strong bonding capability
[14].

Optimisation of process parameters for improving surface
quality requires an accurate and efficient prediction model
and a robust optimisation method. So far, there have been
a number of models for predicting the surface quality of an
LPBF part. One of the most common models is an analytical
model based on theoretical calculation [15]. In this model,
surface roughness is estimated via layer thickness and surface
inclination angle. A limitation of the model is that it only
considers the staircase effect. Another representative model
is an empiricalmodel based on actualmeasurement [16]. This
model was established using the measured roughness data
of a set of inclined surfaces, based on which the roughness
of a surface with a specific inclination angle is calculated
via numerical interpolation. To take advantage of both the
analytical and empirical strategies, a few hybridmodels were
presented in the literature [17–19]. Themodel in [17] predicts
the surface roughness of 316L parts through layer thickness,
surface inclination angle, and particle presence. This model
is calibrated by the measured roughness data. It not only
considers the staircase effect, but also the effect of partially
bonded particles on a surface. Themodel in [18] estimates the
surface roughness of Ti6Al4V parts using a linear function,
which was established according to an experimental study of
the average surface roughness of samples in different build
orientations and with a constant layer thickness. The model
in [19] predicts the surface roughness of AlSi10Mg parts via
staircase effect and defects of the powder used. According
to the experimental studies in [20–24], apart from staircase
effect, the process parameters to build an LPBF part also
have an important influence on the surface quality of the as-
built part. However, the existing analytical, empirical, and
hybrid models do not consider them in the analysis of surface
inclination angle.

In addition to the models above, a category of recently
popular models is those based on machine learning [25–

31]. Akhil et al. [25] built five mappings from laser power,
scanning speed, and hatch spacing to three roughness param-
eters (Sa , Sq , and St ), respectively using linear regression,
polynomial regression, support vector regression, Gaussian
process regression, and artificial neural network. The five
models were trained and tested using the surface images of
59 printed Ti6Al4V specimens and the measured roughness
parameters of the specimens. The testing and comparison
results suggest that the Gaussian process regression model
provides the best prediction for all the three roughness param-
eters. Hertlein et al. [26] related four process parameters and
five part quality indicators via a hybrid Bayesian network.
The four parameters are layer thickness, laser power, scan-
ning speed, and hatch spacing. The five indicators include
density, hardness, top surface roughness, ultimate tensile
strength in the build orientation, and ultimate tensile strength
perpendicular to the build orientation. The network was
trained, validated, and tested using the data collected or con-
verted from 13 publications including physical 316L builds.
The testing results show that the model has satisfying accu-
racy on predicting the hardness and ultimate tensile strength
in the build orientation. The accuracy on predicting other
indicators is unknown because of limited available data.
Fotovvati and Chou [27] established a relationship between
four process parameters, including layer thickness, laser
power, scanning speed, and hatch spacing, and two roughness
parameters (Sa and Sv) through an artificial neural network.
The network was trained and tested using the data sets con-
structed from25Ti6Al4Vsamples,whichwere built under 25
combinations of the four process parameters, and was com-
pared to a linear regression model in terms of mean square
error and correlation coefficient. The comparison results sug-
gest that the network outperforms the linear regressionmodel
at both aspects. Soler et al. [28] related two manufacturing
parameters and seven blasting and electropolishing parame-
ters and the surface roughness offinishedparts via an artificial
neural network. The network was trained, validated, and
tested using 429 historical Ti6Al4V specimens. The model
was used to determine the optimal parameters to improve
the surface roughness during blasting and electropolishing.
Zhang et al. [29] established a relationship between three
process parameters, including laser power, scanning speed,
and hatch spacing, and top surface roughness through a back
propagation neural network. The network was trained and
tested using the data obtained from 48 316L samples, which
were built under 48 combinations of the three process param-
eters. La Fé-Perdomo et al. [30] predicted the roughness of
the top surfaces of 316L parts using a multilayer percep-
tron and an adaptive neuro-fuzzy inference system. The input
variables of each model include laser power, scanning speed,
and hatch spacing. The two models were trained, tested,
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and compared using the data collected from three publica-
tions including physical 316L builds. The comparison results
show that the latter model has better accuracy than the for-
mer. Maitra et al. [31] built six mappings from seven process
parameters to surface roughness, respectively usingGaussian
process regression, support vector regression, regression tree,
ensemble of trees, neural network, andmultiple linear regres-
sion. The seven parameters include layer thickness, laser
power, scanning speed, hatch spacing, energy density, aver-
age particle size, and variance. The six models were trained,
tested, and compared using the data collected from 27 publi-
cations including physical Ti6Al4V builds. The comparison
results show that the Gaussian process regression and neu-
ral network models underperform other four models at the
aspect of root mean square error. Compared to the analytical,
empirical, and hybrid models, machine learning-based mod-
els take into account some key process parameters. However,
the existingmodels are trained and tested using the roughness
data of the surfaces with specific inclination angles (e.g., top
surface, front surface, side surface). They may not be capa-
ble to provide accurate prediction results for a surface of an
arbitrary part, because the inclination angle of the surface
may be different from the inclination angles of the surfaces
used for training.

To optimise the process parameters with an objective of
improving surface quality, a variety of methods have been
developed in the literature [32]. In [33], the influence of re-
melting parameters for post-processing the surface quality
of LPBF parts was investigated. A set of 316L samples with
varying inclination angles were printed. Laser re-melting
was performed on the samples to investigate surface rough-
ness via optimisation of laser power, scanning speed, and
hatch spacing based on statistical analysis within a design
of experiments framework. In [34], a set of Ti6Al4V print-
ing experiments were designed to investigate the variance of
surface roughness with respect to powder size distribution,
powder packing fraction, and process by-product generation.
A rational design of experiments was adopted to optimise
laser power, scanning speed, and contour offset to improve
the quality of inclined surfaces. In [35], the effect of laser
power, scanning speed, and hatch spacing on the porosity
level, surface roughness, elastic modulus, and compressive
strength of Ti6Al4V sampleswas investigated using response
surface methodology. Analysis of variance was applied to
optimise the three process parameters. In [36], the rela-
tionship between laser power, scanning speed, and hatch
spacing and the surface roughness of Ti6Al4V parts was
experimentally studied. Response surface methodology was
adopted to obtain the optimal process parameters for min-
imising the roughness of top and vertical side surfaces. In
[37], the effect of laser power, scanning speed, overlap rate,

and hatch spacing on the front surface roughness and side
surface roughness of AlSi10Mg parts was investigated. The
influence of laser power was explored empirically. Analy-
sis of variance was adopted to determine the best level of
laser power. Regression analysis was carried out to establish
a prediction model for optimising scanning speed, overlap
rate, and hatch spacing to obtain minimum surface rough-
ness. In [38], response surface methodology was applied to
investigate the effect of laser power, scanning speed, and
hatch spacing on the relative density and top surface rough-
ness of 316Lparts. The quadratic response surfacemodels for
relative density and top surface roughness were established
based on analysis of variance. A multi-objective collabora-
tive optimisation was performed to optimise the investigated
process parameters with respect to relative density and top
surface roughness. In [39], a data-driven frameworkwas built
to optimise layer thickness, laser power, and scanning speed
for improving the surface quality and dimensional accuracy
of 316L parts. A Gaussian process regression model was
trained to predict top surface roughness and dimensional
accuracy. Based on this model, a whale optimisation algo-
rithm was applied to search the optimal combination of the
three process parameters. In [40], the effect of laser power and
scanning speed on the surface hardness, top surface rough-
ness, and side surface roughness of Ti6Al4V specimens was
experimentally studied. Response surface methodology was
applied to optimise the two process parameters for improv-
ing surface quality. In [41], central composite design was
applied to systematically investigate the influence of layer
thickness, laser power, scanning speed, and hatch spacing
on the relative density and surface roughness of Inconel 718
components. The prediction models for relative density and
side surface roughness were built based on response sur-
face methodology and analysis of variance. Based on these
models, three multi-objective optimisation methods were
developed to simultaneously optimise relative density and
surface roughness. In [42], an optimisation framework based
on machine learning was established to relate layer thick-
ness, laser power, scanning speed, and hatch spacing and
the density ratio and surface roughness of Ti6Al4V com-
ponents. A deep neural network was trained and applied to
recommend the optimal process parameters formaximisation
of density ratio and minimisation of top surface roughness.
Based on these descriptions, a qualitative comparison of the
existing methods is shown in Table 1. As can be seen from
the table, the existing methods differ in a number of aspects,
which mainly include the applied techniques, experiment
material, number of data points, optimised process param-
eters, and considered responses. There is no doubt that each
of these methods can work well in its specific context. It is
difficult to conclude that one method is better than others.
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Table 1 A comparison of existing methods to optimise process parameters for improving surface quality

Method Techniques Material Data points LT LP SS HS CO OR Responses

[33] DOEs 316L 27 � � � Ra

[34] DOEs Ti6Al4V 45 � � � Ra , Rsk , R�q

[35] RSM, AOV Ti6Al4V 17 � � � Ra

[36] RSM Ti6Al4V 20 � � � Ra

[37] AOV, PR AlSi10Mg 81 � � � � Ra

[38] RSM, AOV, MOO 316L 20 � � � Ra

[39] DOEs, GPR, MOO 316L 21 � � � Ra

[40] RSM Ti6Al4V 16 � � Ra

[41] RSM, AOV, MOO Inconel 718 30 � � � � Ra

[42] DNN Ti6Al4V 2,048 � � � � Sa

Notes: LT layer thickness, LP laser power, SS scanning speed, HS hatch spacing, CO contour offset, OR overlap rate,DOEs design of experiments,
RSM response surface methodology, AOV analysis of variance, PR polynomial regression, MOO multi-objective optimisation, GPR Gaussian
process regression, DNN deep neural network

However, the methods may not be capable to generate satis-
fying optimisation results for an arbitrary component, since
a component may contain a number of surfaces that have
different inclination angles, while the methods were built on
a few special surfaces (e.g., top surface, front surface, side
surface). In addition, some applications may require simulta-
neous improvement of the quality ofmultiple critical surfaces
of a part, but the methods do not take this requirement into
account.

In this paper, an approach for optimising process parame-
ters to simultaneously improve the quality ofmultiple critical
surfaces of an arbitrary LPBF part is proposed. This method
is based on an idea of transforming an infinite solution
space into a finite one and selecting the optimal solution
from the finite solution space. The transformation and selec-
tion are carried out using Taguchi optimisation [43] and a
three-way technique for order of preference by similarity to
ideal solution (TOPSIS) [44]. Taguchi method is a statistical
methodology for finding the minimum number of experi-
ments to be conducted within the permissible limit of factors
and levels. In this method, a modified or standard design
of experiments is adopted to identify a certain number of
parametric combinations of the control factors for improving
the quality of manufactured products. The results generated
by the Taguchi method may not be optimal, but there is no
doubt that product quality can be improvedwhen these results
are implemented. The three-way TOPSIS was developed on
the basis of TOPSIS [45] and the three-way decision model
[46]. TOPSIS is a multi-attribute decision-making (MADM)
method that ranks the alternatives according to their geomet-
ric distances from the best and worst solutions. It has been
widely used in the field of AM because of its simplicity and
efficiency [47]. The three-way decision model is a granu-
lar computing technique for MADM. It is more flexible and

advantageous than traditional MADM methods because it
can effectively avoid premature classification of the alterna-
tives at the edge of acceptance and rejection. This feature
makes the model very suitable for the MADM problems in
metal AM where replacement of inappropriate decisions is
costly [48].

The remainder of the paper is organised as follows: Sect. 2
describes the details of the proposed approach. A case study
is presented to demonstrate the approach in Sect. 3. Section 4
ends the paper with a conclusion.

2 The proposed approach

In this section, the proposed approach for optimising pro-
cess parameters to improve the surface quality of an LPBF
part is described in detail. A general flow of this approach is
depicted in Fig. 1. The main process of the approach consists
of two stages: optimisation, build, and measurement (OBM)
and MADM. In the first stage, a small number of alternative
combinations of the process parameters to be optimised for
the part and the quality indicator values of a certain number
of critical surfaces under each alternative combination are
obtained via Taguchi optimisation and actual build and mea-
surement. In the second stage, the optimal combination of
process parameters is selected from the obtained alternatives
via MADM based on three-way TOPSIS. The details of the
two stages are explained below.

2.1 Optimisation, build, andmeasurement

There are three steps in this stage. The first step is to gen-
erate a small number of alternative combinations of the
process parameters to be optimised for an arbitrary LPBF
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part. According to the existing experimental studies [20–
24], a number of process parameters, mainly including
layer thickness, laser power, scanning speed, hatch spacing,
point distance, and exposure time, have influence on sur-
face quality. The process parameters to be optimised can be

Fig. 1 A general flow of the proposed approach

determined based on this. In general, each adjustable pro-
cess parameter for an LPBF system has a specific range
recommended by the original equipment manufacturers of
the system. Even so, it is still difficult to find a combina-
tion of process parameters that will achieve the best surface
quality, as there are still infinite possible combinations of pro-
cess parameters in this case. To deal with this difficulty, the
Taguchi method was introduced to generate a small number
of alternative combinations of process parameters [43].

According to the Taguchi method, the level values of each
process parameter to be optimised are listed based on the
recommended range of this parameter and practical experi-
ence. Then, a surface quality indicator is selected from a set
of parameters (e.g., Ra , Sa , Sq , and St ) defined in the interna-
tional standards ISO 21920-2:2021 and ISO 25178-2:2021.
Design of experiments analysis based on the selected surface
quality indicator and a specific orthogonal array is carried
out to generate a small number of (let m denote the number)
alternative combinations of process parameters. The reason
for adopting design of experiments is that it can produce a
reduced variance for the experiment process to obtain the
best surface quality under the optimal settings of process
parameters.

The second step is to conduct an actual build experiment
using an LPBF system and an LPBF material. In this experi-
ment, the three-dimensional model of the LPBF part is input
to the LPBF system to build m parts under the generated m
alternative combinations of process parameters. It is worth
noting that apart from the process parameters to be optimised,
all other conditions to build the m parts are the same. After
the experiment, m as-built parts are obtained.

The third step is to measure the selected quality indicator
of specific critical surfaces of each as-built part. The critical
surfaces (let n denote their number) are generally identified
on the basis of actual functional requirements. Surface qual-
ity inspectionmainly includes themeasurement of profile and
areal topographies. Profile topography measurement is gen-
erally conducted using a contact stylus. Instruments for areal
topography measurement are more diverse, which mainly
include focus variation microscopy, conoscopic hologra-
phy, atomic force microscopy, elastomeric sensor, confocal
microscopy, and coherence scanning interferometry [49].

2.2 Multi-attribute decision-making

An m × n data table consisting of m rows and n columns of
the measurement data of the selected surface quality indica-
tor is obtained after the first stage. The purpose is to select a
combination of process parameters from the m alternatives
that can simultaneously optimise the quality of the n critical
surfaces. It is obvious that the infinite process parameter opti-
misation problem is transformed into a finite multi-objective
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optimisation problem, i.e., an MADM problem. So far, there
have been many methods available for solving an MADM
problem in the AM domain [47]. This stage adopts a three-
way TOPSIS method [44].

Let C1,C2, ...,Cm be the m alternative combinations of
process parameters, S1, S2, ..., Sn be the n critical surfaces,
ai, j (i = 1, 2, ...,m; j = 1, 2, ..., n) be the value of the
quality indicator of S j under Ci , A = [ai, j ]m×n be a deci-
sion matrix for the process parameter optimisation problem,
and w j be the weight of S j such that 0 ≤ w j ≤ 1 and
�n

j=1w j = 1. Using the three-wayTOPSISmethod, the opti-
mal combination of process parameters can be determined
via the following steps:

(1) Normalise the decision matrix. Normalisation of the val-
ues of ai, j is required since they are of incongruous
dimensions. This can be carried out using the following
ratio model:

bi, j = ai, j√∑m
i=1 a

2
i, j

(1)

Through the normalisation, a normalised decisionmatrix
is obtained as B = [bi, j ]m×n .

(2) Calculate a weighted normalised decision matrix. Based
on the normalised decisionmatrix and theweights of crit-
ical surfaces, a weighted normalised decision matrix is
established as X = [Xi, j ]m×n , where Xi, j is calculated
using the following equation:

Xi, j = w j bi, j (2)

(3) Determine the best, mean, and worst combinations.
Based on the weighted normalised decision matrix, the
best, mean, and worst combinations are respectively
determined as follows:

B = (YB,1, YB,2, ...,YB,n)

= (〈
maxmi=1

{
Xi, j | j ∈ J+

}〉
,〈

minmi=1

{
Xi, j | j ∈ J−

}〉)
(3)

M = (YM,1, YM,2, ...,YM,n) (4)

= (
avgmi=1

{
Xi,1

}
, avgmi=1

{
Xi,2

}
, ..., avgmi=1

{
Xi,n

})

W = (YW,1, YW,2, ...,YW,n)

= (〈
minmi=1

{
Xi, j | j ∈ J+

}〉
,〈

maxmi=1

{
Xi, j | j ∈ J−

}〉)
(5)

where J+ is a set of the subscripts of positive attributes
(attributes that have a positive impact on the decision-
making result, i.e., the larger their values, the more
favourable the decision-making result), J− is a set of
the subscripts of negative attributes (attributes that have

a negative impact on the decision-making result, i.e., the
smaller their values, the more favourable the decision-
making result), and avg is the averaging function.

(4) Calculate the distances from each alternative combina-
tion to the best, mean, and worst combinations. Accord-
ing to the Euclidean distance formula, the Euclidean
distances between Ci and B, between Ci and M, and
between Ci and W are respectively calculated using the
following equations:

d(Ci ,B) =
√∑n

j=1
(Xi, j − YB, j )2 (6)

d(Ci ,M) =
√∑n

j=1
(Xi, j − YM, j )2 (7)

d(Ci ,W) =
√∑n

j=1
(Xi, j − YW, j )2 (8)

(5) Divide the alternative combinations into two segments.
For each alternative combination Ci , if the number of
Xi, j such that Xi, j ≥ YM, j (when the quality indicator
of S j is a positive attribute) and Xi, j ≤ YM, j (when the
quality indicator of S j is a negative attribute) is greater
than n/2, thenCi is classified to a segmentB−M; other-
wise, Ci is classified to a segmentM − W. It is obvious
that the alternative combinations in B − M are superior
to the alternative combinations inM − W.

(6) Calculate the similarity to the worst condition for each
alternative combination. If Ci is in B−M, then the sim-
ilarity to the worst condition for it is calculated via

si = d(Ci ,M)

d(Ci ,M) + d(Ci ,B)
(9)

If Ci is in M − W, then the similarity to the worst con-
dition for it is calculated via

si = d(Ci ,W)

d(Ci ,W) + d(Ci ,M)
(10)

(7) Rank the alternative combinations in each segment. The
alternative combinations in B−M are ranked according
to their similarities to the worst condition: The larger
the similarity of an alternative combination, the higher
its ranking. The alternative combinations inM − W are
ranked by the same rule.

(8) Obtain a ranking of all alternative combinations. Accord-
ing to the rule that the alternative combinations inB−M

are superior to the alternative combinations in M − W,
a ranking of all alternative combinations is obtained via
combining the ranking results for the two segments.

(9) Determine the optimal combination. According to the
obtained ranking, the optimal combination of process
parameters is determined.

123

2838 The International Journal of Advanced Manufacturing Technology (2024) 130:2833–2845



Fig. 2 A sketch of an LPBF part

3 Case study

In this section, a case study extended from [43] is presented
to demonstrate the proposed approach. This case study aims
to optimise five contour process parameters, including layer
thickness, laser power, hatch spacing, point distance, and
exposure time, to improve the surface quality of an LPBF
part. A sketch of this part is given in Fig. 2. The part will
be built using Renishaw AM400 and 316L. According to
the proposed approach, the optimisation can be performed
below.

According to the ranges of the five process parameters to
be optimised recommended by the Renishaw AM400 sys-
tem and practical experience, the level values of the five
process parameters were listed and are shown in Table 2.
Then, the roughness parameter Sa was selected to quantify
the quality of surfaces and design of experiments analysis
based on this parameter, and the orthogonal array of L25
was performed using Minitab 19. The results of this analysis
are listed in Table 3, where LT stands for layer thickness,
LP stands for laser power, HS stands for hatch spacing, PD

Table 2 Level (L) values of the process parameters to be optimised

Process parameters L1 L2 L3 L4 L5

Layer thickness (μm) 25 50 75 100 125

Laser power (W) 90 120 150 180 210

Hatch spacing (μm) 30 60 90 120 150

Point distance (μm) 25 50 75 100 125

Exposure time (μs) 30 60 90 120 150

stands for point distance, and ET stands for exposure time.
Using Renishaw AM400 and 316L stainless steel powder
supplied by Renishaw, 25 hexagon parts were built under
the generated 25 alternative combinations of process param-
eters in Table 3. A picture of the 25 as-built parts is given in
Fig. 3. The critical surfaces of each part were identified as the
top, side, upfacing, and downfacing surfaces. To capture the
areal topography of the critical surfaces of each part, Alicona
G5 infinite focus variation measurement systemwas applied.
The configurations were a magnification lens of 10×, an illu-
mination type of ring light, a lateral resolution of 2 μm, a
vertical resolution of 1 μm, a sampling distance of 0.8780
μm (x and y directions), and a measurement size of 8mm
× 8mm (stitched). For example, the areal topography of the
four critical surfaces of the first as-built part is shown in
Figs. 4, 5, 6, and 7, respectively. DigitalSurf MountainMaps
was adopted to analyse the surface topographical data. Only
levelling was applied, and no other filtration operations were
performed to avoid losing surface information. The analysed
data was used to generate the Sa values of the four critical
surfaces of the 25 as-built parts. The results are also listed in
Table 3, where TS stands for top surface, SS stands for side
surface, US stands for upfacing surface, and DS stands for
downfacing surface.

Now, the infinite process parameter optimisation problem
is transformed into anMADMproblem, which aims to select
a combination of process parameters that can simultaneously
minimise the Sa values of the four critical surfaces from the
25 alternatives. LetC1,C2, ...,C25 be the 25 alternative com-
binations of process parameters, S1, S2, S3, and S4 be the
four critical surfaces, ai, j (i = 1, 2, ..., 25; j = 1, 2, 3, 4)
be the Sa value of S j under Ci , A = [ai, j ]25×4 be a deci-
sion matrix for the process parameter optimisation problem
whose elements are listed in Table 3, and w j be the weight
of S j such that 0 ≤ w j ≤ 1 and �n

j=1w j = 1. Assume
[w1, w2, w3, w4] = [0.2, 0.2, 0.3, 0.3]. Then, the optimal
combination of process parameters is determined through
the following steps:

(1) Normalise the decision matrix. According to the ratio
model in Eq. (1), the decision matrix A is normalised
and a normalised decision matrix is obtained as B =
[bi, j ]25×4, where the values of bi, j are listed in Table 4.

(2) Calculate aweightednormaliseddecisionmatrix.Accord-
ing to the normalised decisionmatrix, the given weights,
and Eq. (2), a weighted normalised decision matrix is
established as X = [Xi, j ]25×4, where the values of Xi, j

are also listed in Table 4.
(3) Determine the best, mean, and worst combinations.

Based on the weighted normalised decision matrix, the
best, mean, and worst combinations are respectively
determined as B = (0.0087, 0.0190, 0.0111, 0.0339),
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Table 3 Results of design of
experiments analysis and actual
measurements

No LT LP HS PD ET TS Sa SS Sa US Sa DS Sa
Ci (μm) (W) (μm) (μm) (μs) (μm) (μm) (μm) (μm)

1 30 100 25 20 40 191.7 20.9 94.1 68.3

2 60 100 50 40 80 45.7 12.0 37.1 43.7

3 90 100 75 60 120 24.3 15.0 25.8 34.5

4 120 100 100 80 160 36.0 19.6 32.2 34.8

5 150 100 125 100 200 47.4 26.4 41.4 48.2

6 120 125 25 40 120 165.2 19.3 78.1 131.0

7 150 125 50 60 160 73.5 23.0 43.5 49.2

8 30 125 75 80 200 81.3 8.8 14.2 40.0

9 60 125 100 100 40 20.1 15.6 27.1 34.3

10 90 125 125 20 80 39.5 10.1 17.9 34.7

11 60 150 25 60 200 239.5 9.0 97.4 108.9

12 90 150 50 80 40 37.7 14.6 51.0 55.9

13 120 150 75 100 80 65.9 21.1 31.7 41.6

14 150 150 100 20 120 38.7 13.2 26.3 47.8

15 30 150 125 40 160 46.9 8.0 10.4 34.4

16 150 175 25 80 80 124.6 20.1 65.4 92.6

17 30 175 50 100 120 46.6 12.7 11.9 35.1

18 60 175 75 20 160 27.9 10.3 13.2 35.9

19 90 175 100 40 200 27.6 9.7 14.7 34.5

20 120 175 125 60 40 62.1 26.9 34.7 42.5

21 90 200 25 100 160 168.8 13.7 106.1 127.6

22 120 200 50 20 200 62.3 14.0 21.5 45.7

23 150 200 75 40 40 68.7 29.7 37.9 43.9

24 30 200 100 60 80 46.8 9.6 8.8 34.4

25 60 200 125 80 120 29.4 8.2 15.0 36.5

M = (0.0314, 0.0372, 0.0484, 0.0529), and W =
(0.1035, 0.0705, 0.1342, 0.1296).

(4) Calculate the distances from each alternative com-
bination to the best, mean, and worst combinations.
According to Eqs. (6), (7), and (8), the Euclidean dis-
tances between Ci and B, between Ci and M, and
between Ci andW are respectively calculated and listed
in Table 5.

(5) Divide the alternative combinations into two segments.
According to the classification rules, the 25 alternative
combinations are divided into two segments B − M =
{C2,C3,C4,C8,C9,C10,C13,C14,C15,C17,C18,C19,

C20,C22,C23,C24,C25} andM−W ={C1,C5,C6,C7,

C11,C12,C16,C21}.
(6) Calculate the similarity to the worst condition for each

alternative combination. According to Eqs. (9) or (10),

Fig. 3 A picture of the 25
as-built LPBF parts
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Fig. 4 Areal topography of the top surface of the first as-built part

the similarity to the worst condition for each alternative
combination is respectively calculated and also listed in
Table 5.

(7) Rank the alternative combinations in each segment.
According to the ranking rule, the alternative combi-
nations in B − M and M − W are ranked as C18 �
C19 � C25 � C15 � C24 � C10 � C17 � C8 � C3 �
C9 � C22 � C14 � C4 � C23 � C20 � C2 � C13

and C7 � C12 � C5 � C16 � C1 � C6 � C11 � C21,
respectively.

(8) Obtain a ranking of all alternative combinations. Through
combining the two rankings, a ranking of all alternative
combinations is obtained asC18 � C19 � C25 � C15 �
C24 � C10 � C17 � C8 � C3 � C9 � C22 � C14 �

Fig. 5 Areal topography of the side surface of the first as-built part

Fig. 6 Areal topography of the upfacing surface of the first as-built part

C4 � C23 � C20 � C2 � C13 � C7 � C12 � C5 �
C16 � C1 � C6 � C11 � C21.

(9) Determine the optimal combination. According to the
obtained ranking, the optimal combination of process
parameters is determined as C18, which corresponds to
a layer thickness of 60 μm, a laser power of 175 W, a
hatch spacing of 75 μm, a point distance of 20 μm, and
an exposure time of 160 μs.

4 Conclusion

In this paper, an approach for optimising process parameters
to improve the surface quality of an LPBF part is presented.
The main process of this approach consists of an OBM

Fig. 7 Areal topography of the downfacing surface of the first as-built
part
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Table 4 Elements of the
normalised decision matrix and
weighted normalised decision
matrix

Ci bi,1 bi,2 bi,3 bi,4 Xi,1 Xi,2 Xi,3 Xi,4

1 0.4141 0.2480 0.3967 0.2252 0.0828 0.0496 0.1190 0.0676

2 0.0987 0.1424 0.1564 0.1441 0.0197 0.0285 0.0469 0.0432

3 0.0525 0.1780 0.1088 0.1138 0.0105 0.0356 0.0326 0.0341

4 0.0778 0.2326 0.1358 0.1148 0.0156 0.0465 0.0407 0.0344

5 0.1024 0.3132 0.1745 0.1590 0.0205 0.0626 0.0524 0.0477

6 0.3569 0.2290 0.3293 0.4320 0.0714 0.0458 0.0988 0.1296

7 0.1588 0.2729 0.1834 0.1623 0.0318 0.0546 0.0550 0.0487

8 0.1756 0.1044 0.0599 0.1319 0.0351 0.0209 0.0180 0.0396

9 0.0434 0.1851 0.1143 0.1131 0.0087 0.0370 0.0343 0.0339

10 0.0853 0.1198 0.0755 0.1144 0.0171 0.0240 0.0226 0.0343

11 0.5174 0.1068 0.4106 0.3591 0.1035 0.0214 0.1232 0.1077

12 0.0814 0.1732 0.2150 0.1843 0.0163 0.0346 0.0645 0.0553

13 0.1424 0.2504 0.1336 0.1372 0.0285 0.0501 0.0401 0.0412

14 0.0836 0.1566 0.1109 0.1576 0.0167 0.0313 0.0333 0.0473

15 0.1013 0.0949 0.0438 0.1134 0.0203 0.0190 0.0132 0.0340

16 0.2692 0.2385 0.2757 0.3054 0.0538 0.0477 0.0827 0.0916

17 0.1007 0.1507 0.0502 0.1158 0.0201 0.0301 0.0151 0.0347

18 0.0603 0.1222 0.0557 0.1184 0.0121 0.0244 0.0167 0.0355

19 0.0596 0.1151 0.0620 0.1138 0.0119 0.0230 0.0186 0.0341

20 0.1341 0.3192 0.1463 0.1402 0.0268 0.0638 0.0439 0.0420

21 0.3646 0.1626 0.4473 0.4208 0.0729 0.0325 0.1342 0.1262

22 0.1346 0.1661 0.0906 0.1507 0.0269 0.0332 0.0272 0.0452

23 0.1484 0.3524 0.1598 0.1448 0.0297 0.0705 0.0479 0.0434

24 0.1011 0.1139 0.0371 0.1134 0.0202 0.0228 0.0111 0.0340

25 0.0635 0.0973 0.0632 0.1204 0.0127 0.0195 0.0190 0.0361

Table 5 Distances, segments,
and similarities

Ci d(Ci ,B) d(Ci ,M) d(Ci ,W) Segment si

2 0.0398 0.0175 0.1544 B − M 0.3059

3 0.0272 0.0323 0.1711 B − M 0.5423

4 0.0410 0.0272 0.1616 B − M 0.3986

8 0.0279 0.0372 0.1696 B − M 0.5710

9 0.0293 0.0328 0.1710 B − M 0.5278

10 0.0151 0.0373 0.1765 B − M 0.7118

13 0.0474 0.0195 0.1507 B − M 0.2919

14 0.0298 0.0226 0.1613 B − M 0.4319

15 0.0118 0.0453 0.1826 B − M 0.7941

17 0.0165 0.0403 0.1782 B − M 0.7096

18 0.0086 0.0430 0.1820 B − M 0.8326

19 0.0091 0.0427 0.1820 B − M 0.8245

20 0.0590 0.0295 0.1474 B − M 0.3334

22 0.0303 0.0234 0.1607 B − M 0.4350

23 0.0674 0.0347 0.1425 B − M 0.3398

24 0.0121 0.0456 0.1830 B − M 0.7897

25 0.0091 0.0426 0.1813 B − M 0.8241

1 0.1386 0.0894 0.0703 M − W 0.4401
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Table 5 continued Ci d(Ci ,B) d(Ci ,M) d(Ci ,W) Segment si

5 0.0627 0.0285 0.1427 M − W 0.8336

6 0.1466 0.1005 0.0538 M − W 0.3487

7 0.0628 0.0191 0.1350 M − W 0.8761

11 0.1643 0.1185 0.0549 M − W 0.3166

12 0.0601 0.0223 0.1388 M − W 0.8613

16 0.1064 0.0574 0.0841 M − W 0.5946

21 0.1673 0.1203 0.0488 M − W 0.2887

stage and an MADM stage. In the OBM stage, design of
experiments analysis, build experiments, and measurement
experiments are successively conducted to obtain a certain
number of alternative combinations of the process parame-
ters to be optimised for an LPBF part and quality indicator
values of critical surfaces of the part under each alternative
combination. In the MADM stage, a three-way TOPSIS is
adopted to select the optimal combination of process parame-
ters from the obtained alternatives. The paper also introduces
a case study to demonstrate the presented approach.

Amain feature of the presented approach is that it requires
a small amount of experimental data and considers the
simultaneous improvement of the quality of multiple critical
surfaces of an arbitrary part. As described in the introduction,
many existing approaches are based on machine learning.
They generally need a large amount of experimental data
to achieve satisfying results. Compared to these approaches,
the presented approach only requires the experimental data
under a small number of alternative combinations of pro-
cess parameters. In addition, the existing approaches may
not be capable to generate satisfying results for an arbitrary
part and do not consider the simultaneous improvement of
the quality of multiple critical surfaces, while the presented
approach is free of such limitations. Of course, the shortcom-
ing of the presented approach is easy to imagine. That is, the
quality of its optimal solution may be worse than that of the
existing approaches based on machine learning. To this end,
an approach based on machine learning is preferred when
the experimental data is sufficient. Otherwise, the presented
approach can be a candidate.

Future work will be devoted to extending the presented
approach by adding optimisation of build orientation. The
authors have conducted studies on characterising the surface
topography of an LPBF part [50], analysing the status of
build orientation optimisation [51], investigating the impact
of build orientations on the resultant surface textures of an
LPBFpart [52], andoptimisingbuild orientation to reduce the
surface roughness of an LPBF part [53, 54]. In the next step,
a combination of these studies and the presented approach
to simultaneously optimise build orientation and process
parameters to improve the surface quality of an LPBF part

will be considered. Further, itwould be of necessity to include
improvement of themechanical properties of an LPBF part to
the presented approach, as both surface quality and mechan-
ical properties are critical to part performance.
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