
1. Introduction
Seismic anisotropy is the characteristic that seismic wave velocity varies with propagation direction, providing 
essential structural constraints on geodynamic evolution of the Earth. For example, crustal and upper mantle 
deformation often leads to seismic anisotropy, either due to lattice preferred orientation of anisotropic constitu-
ent minerals, or caused by shaped preferred orientation of isotropic materials with distinct shapes (Crampin & 
Booth, 1985; Long & Becker, 2010; Montagner & Guillot, 2002; Nicolas & Christensen, 1987; Silver, 1996). 
Different measurements have been proposed to reveal anisotropic structure such as shear wave splitting (Li 
et al., 2011; Savage, 1999), surface wave tomography (Russell et al., 2019; Yao et al., 2010), body wave tomog-
raphy (Creasy et al., 2019; Zhao et al., 2016) and receiver functions (Schulte-Pelkum & Mahan, 2014; Zheng 
et al., 2021). Recovering seismic anisotropy using seismic tomography has key implications for understanding 
the dynamic processes of tectonic units.

In contrast to other methods, surface wave tomography has better vertical resolution of seismic anisotropy, making 
it a critical tool for measuring anisotropy in the crust and upper mantle (Becker et al., 2012; Ekström, 2011; 
Simons et al., 2002). In case of sufficient azimuthal path coverage, phase velocity and azimuthal anisotropy 
can be derived either from earthquake data (Montagner, 1986; Romanowicz, 2002; Yao et al., 2010) or ambi-
ent noise cross-correlations (Ritzwoller et al., 2011; Wapenaar et al., 2010). Compared with earthquake-based 
surface wave tomography, ambient noise tomography enables substantial additional coverage at short periods 

Abstract We develop a novel approach for multi-frequency, elliptical-anisotropic eikonal tomography 
based on physics-informed neural networks (pinnEAET). This approach simultaneously estimates the medium 
properties controlling anisotropic Rayleigh waves and reconstructs the traveltimes. The physics constraints 
built into pinnEAET's neural network enable high-resolution results with limited inputs by inferring physically 
plausible models between data points. Even with a single source, pinnEAET can achieve stable convergence 
on key features where traditional methods lack resolution. We apply pinnEAET to ambient noise data from a 
dense seismic array (ChinArray-Himalaya II) in the northeastern Tibetan Plateau with only 20 quasi-randomly 
distributed stations as sources. Anisotropic phase velocity maps for Rayleigh waves in the period range from 
10–40 s are obtained by training on observed traveltimes. Despite using only about 3% of the total stations as 
sources, our results show low uncertainties, good resolution and are consistent with results from conventional 
tomography.

Plain Language Summary Anisotropy refers to the directional dependence of seismic wave 
velocities, which can arise from a variety of factors such as crystal alignment, stress fields, or fluid-filled 
cracks. Elliptical-anisotropic eikonal tomography is a variant of eikonal tomography that can be used 
to estimate medium properties and reconstructed traveltimes from ambient noise data. In this study, we 
propose a new algorithm to implement multi-frequency, elliptical-anisotropic eikonal tomography based on 
physics-informed neural networks (pinnEAET), which combine data-driven models with theory-based models 
that include physics constraints on the system. We apply this architecture to data from a dense seismic array 
deployed on the northeastern Tibetan Plateau. Our results can achieve at least the same resolution as traditional 
methods while requiring less traveltime data. This strategy can provide new insights into the seismic imaging in 
case of limited or noisy data.

CHEN ET AL.

© 2023. The Authors.
This is an open access article under 
the terms of the Creative Commons 
Attribution-NonCommercial-NoDerivs 
License, which permits use and 
distribution in any medium, provided the 
original work is properly cited, the use is 
non-commercial and no modifications or 
adaptations are made.

Physics-Informed Neural Networks for Elliptical-Anisotropy 
Eikonal Tomography: Application to Data From the 
Northeastern Tibetan Plateau
Yunpeng Chen1,2  , Sjoerd A. L. de Ridder2  , Sebastian Rost2  , Zhen Guo1  , Xiaoyang Wu1  , 
Shilin Li1  , and Yongshun Chen1 

1Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China, 2School 
of Earth and Environment, University of Leeds, Leeds, UK

Key Points:
•  We present a physics-informed deep 

learning eikonal tomography method 
for anisotropic velocity modeling

•  The algorithm incorporates wave 
physics to simultaneously process 
multi-frequency data, ensuring 
reliable tomographic models

•  We successfully recover the 
anisotropic velocity structure of the 
northeastern Tibet using less data than 
in traditional models

Supporting Information:
Supporting Information may be found in 
the online version of this article.

Correspondence to:
S. A. L. de Ridder and Y. Chen,
s.deridder@leeds.ac.uk;
johnyc@sustech.edu.cn

Citation:
Chen, Y., de Ridder, S. A. L., Rost, 
S., Guo, Z., Wu, X., Li, S., & Chen, 
Y. (2023). Physics-informed neural 
networks for elliptical-anisotropy 
eikonal tomography: Application to data 
from the northeastern Tibetan Plateau. 
Journal of Geophysical Research: Solid 
Earth, 128, e2023JB027378. https://doi.
org/10.1029/2023JB027378

Received 7 JUL 2023
Accepted 1 DEC 2023

Author Contributions:
Conceptualization: Yunpeng Chen, 
Sjoerd A. L. de Ridder, Sebastian Rost
Data curation: Xiaoyang Wu, Shilin Li
Formal analysis: Yunpeng Chen, Zhen 
Guo, Shilin Li, Yongshun Chen
Funding acquisition: Zhen Guo, 
Yongshun Chen
Investigation: Yunpeng Chen, Sjoerd A. 
L. de Ridder, Sebastian Rost
Methodology: Yunpeng Chen, Sjoerd A. 
L. de Ridder, Sebastian Rost

10.1029/2023JB027378
RESEARCH ARTICLE

1 of 16

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://orcid.org/0000-0003-3122-1829
https://orcid.org/0000-0002-0797-7442
https://orcid.org/0000-0003-0218-247X
https://orcid.org/0000-0001-6918-8900
https://orcid.org/0000-0002-3407-1961
https://orcid.org/0000-0003-1698-1096
https://orcid.org/0000-0002-6966-3449
https://doi.org/10.1029/2023JB027378
https://doi.org/10.1029/2023JB027378
https://doi.org/10.1029/2023JB027378
https://doi.org/10.1029/2023JB027378
https://doi.org/10.1029/2023JB027378
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2023JB027378&domain=pdf&date_stamp=2023-12-27


Journal of Geophysical Research: Solid Earth

CHEN ET AL.

10.1029/2023JB027378

2 of 16

(Shapiro et al., 2005). Numerous array-based tomographic methods have been developed to derive anisotropy 
from ambient noise, such as eikonal and Helmholtz tomography (Lin et  al., 2009; Lin & Ritzwoller, 2011), 
wave gradiometry (Cao et al., 2020; De Ridder & Curtis, 2017) and beamforming (Soergel et al., 2023; Wu 
et al., 2023).

Eikonal tomography is a surface wave tomography method that relates phase front tracking to local propagation 
direction dependent wave speed (Lin et al., 2009). Conventional eikonal tomography estimates azimuthal aniso-
tropy by fitting a parametric function to phase velocities from different azimuths, obtained using an isotropic 
eikonal equation. De Ridder et al. (2015) proposed an elliptical-anisotropic eikonal tomography which employs 
ellipse parameters to characterize anisotropic velocity structures with an anisotropic eikonal equation. This 
method enables explicit regularization of the medium parameters and retrieves azimuthal anisotropic velocity 
robustly (De Ridder et  al.,  2015). However, the interpolation schemes in these eikonal tomography methods 
reduce the resolution since it smooths the phase traveltime surfaces beyond the level of the inter-station spacing.

In recent years, deep learning has been applied to diverse aspects of geoscience, such as geology (Ho et al., 2023; 
Kim & Yun, 2021), geomorphology (Li et  al.,  2020), geochemistry (Luo et  al.,  2020) and geophysics (Yang 
& Ma, 2019). Particularly, a broad range of methods using deep neural networks (DNNs) in seismology are 
proposed to leverage the increasing amount of observed data for modeling, prediction, detection and classifica-
tion (Yu & Ma, 2021). These applications of utilizing deep learning to solve seismic problems include but are not 
limited to arrival time picking (Ross et al., 2018), seismic data processing (Zhu et al., 2019), earthquake location 
(Mousavi et al., 2020) and seismic imaging (Araya-Polo et al., 2018). As a data-driven method, classical DNNs 
have been proven to overcome some limitations in traditional seismic methods. But in these applications, the 
training data often imply some prior knowledge that is ignored in classical deep learning methods. This purely 
data-driven training is more susceptible to observation errors and leads to poor generalization of predicting seis-
mic wave propagation outside of the span of the training data. Combining data-driven and physics-based models 
is a promising way for seismic machine learning.

Physics-informed neural networks (PINNs), a new kind of deep learning framework, were proposed by Raissi 
et al. (2019) to solve forward and inverse problems of partial differential equations (PDEs). PINNs utilize the 
capability of automatic differentiation which is widely used in training DNN and it also allows adding underlying 
physical laws to the loss function to combine the data-based model and theory-based model during the training 
process (Baydin et al., 2018; Karpatne et al., 2017). PINNs have gradually become a research highlight of scien-
tific machine learning within various fields, such as fluid mechanics (Raissi et al., 2020), material science (Fang 
& Zhan, 2019), biomedicine (Kissas et al., 2020) and power systems (Misyris et al., 2020). During these appli-
cations, PINNs can train accurate and generalized models even with limited data by automatically incorporating 
physics constraints of the system.

Significantly, PINNs have already shown great potential in seismological applications. For forward prob-
lems, PINNs have been applied to the eikonal equation for traveltime calculation in isotropic and anisotropic 
media (Smith et al., 2020; Taufik et al., 2022; Waheed, Alkhalifah, et al., 2021; Waheed et al., 2020; Waheed, 
Haghighat, et al., 2021) and directly simulate wave equation solutions for acoustic and elastic wave propagation 
(Alkhalifah et al., 2020; Karimpouli & Tahmasebi, 2020; Moseley, Markham, & Nissen-Meyer, 2020; Moseley, 
Nissen-Meyer, & Markham, 2020; Song & Wang, 2023; Song et al., 2021, 2022). For inverse problems, PINNs 
have been proposed for exploration-scale seismic tomography with the factored eikonal equation (Gou et al., 2022; 
Waheed, Alkhalifah, et al., 2021; Waheed, Haghighat, et al., 2021) and wavefield reconstruction inversion (Song 
& Alkhalifah, 2021). A PINN algorithm has also been developed for full waveform inversion, as demonstrated 
through various synthetic case studies (Rasht-Behesht et al., 2022). Recently, Chen et al. (2022) presented the 
first application of PINNs to field seismic data for eikonal tomography, demonstrating their feasibility on real 
data sets and at scale. However, PINN-based tomography methods, especially for anisotropic models of field data, 
remains an open area for continued progress.

Here we propose a PINN based elliptical-anisotropy eikonal tomography (pinnEAET) to retrieve Rayleigh wave 
phase velocity and azimuthal anisotropy for multiple frequencies simultaneously. Two kinds of neural networks 
(NNs) are used to represent azimuthal dependence of phase velocities related matrices and phase traveltime 
surfaces (Figure 1). We apply our algorithm to field data gained from a dense network of stations on the north-
eastern Tibetan Plateau and discuss the advantages and challenges of the proposed approach.
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2. Methods
In this section, we will introduce the fundamental aspects of elliptical-anisotropic eikonal equation, then describe 
incorporating this PDE into a PINN framework, and finally share the idea of estimating the Rayleigh wave aniso-
tropic phase velocity from the trained networks.

2.1. Elliptical-Anisotropic Eikonal Equation

In the wave number domain, the phase velocity c = c(ϕ, x, ω) at location x = (x, y) and frequency ω, where ϕ is 
the direction of wave propagation, exhibiting elliptical-anisotropic azimuthal anisotropy can be defined as (De 
Ridder et al., 2015):

�2(�) = �2� ���
2 (� − �) + �2� ���2 (� − �), (1)

where cf = cf(x, ω) and cs = cs(x, ω) are the fast and slow velocities, respectively. α = α(x, ω) is the azimuth of the 
fast direction. Equation 1 describes an ellipse with the major and minor radii corresponding to cf and cs.

To derive an eikonal equation for elliptical anisotropy, the scalar wavefield is transformed from the wave 
number domain to the spatial domain and the phase traveltime τ = τ(x, xs, ω) for a given source location 
xs = (xs, ys) at a specific frequency ω (also known as the linear phase) is introduced (Aki & Richards, 2002). 

Figure 1. Schematic of PINN framework for elliptical-anisotropic eikonal tomography, where Nτ and NM are the traveltime 
and medium property NNs, x, y and sx, sy are spatial location coordinates of receivers and sources respectively, p contains 
discrete distinct periods for the multi-period solutions, 𝐴𝐴 𝐴𝐴𝐴  and 𝐴𝐴 �̂�𝑴 are the outputs of trained traveltime and medium properties, 
Ld(Nτ) represents the observed Rayleigh wave traveltime data constraint, Le(Nτ, NM) represents the elliptical-anisotropic 
eikonal equation constraint. The neural network part on the left is used to approximate the solution, while the data and physics 
constraints part on the right is used to optimize the network parameters. The training process ends when the loss function 𝐴𝐴  is 
less than a given tolerance.
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In the high-frequency approximation, we can find the elliptical-anisotropic eikonal equation (De Ridder 
et al., 2015):

1 =
[

��� ���
]
⎡

⎢

⎢

⎣

�11 �12

�21 �22

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

���

���

⎤

⎥

⎥

⎦

. (2)

The matrix elements are respectively expressed as:

𝑀𝑀11 = 𝑀𝑀11(𝒙𝒙, 𝜔𝜔) =
(

𝑐𝑐
2
𝑓𝑓
− 𝑐𝑐

2
𝑠𝑠

)

sin
2
(𝛼𝛼) + 𝑐𝑐

2
𝑠𝑠 , (3)

𝑀𝑀12 = 𝑀𝑀21 = 𝑀𝑀12(𝒙𝒙, 𝜔𝜔) =
(

𝑐𝑐
2
𝑓𝑓
− 𝑐𝑐

2
𝑠𝑠

)

sin(𝛼𝛼) cos(𝛼𝛼), (4)

𝑀𝑀22 = 𝑀𝑀22(𝒙𝒙, 𝜔𝜔) =
(

𝑐𝑐
2
𝑓𝑓
− 𝑐𝑐

2
𝑠𝑠

)

cos2(𝛼𝛼) + 𝑐𝑐
2
𝑠𝑠 . (5)

Then the problem of solving the phase velocities and azimuthal anisotropy converts to computing the eigenvalues 
(𝐴𝐴 𝐴𝐴

2

𝑓𝑓
 and 𝐴𝐴 𝐴𝐴

2
𝑠𝑠 , representing the fast and slow velocities) and eigenvectors (indicating the fast and slow directions) of 

the matrix 𝐴𝐴 𝑴𝑴 =

⎡

⎢

⎢

⎣
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⎤

⎥

⎥

⎦

 . For the 2 × 2 matrices M, there is an explicit algebraic solution of the eigenvalues 

and eigenvectors. In this way, the fast and slow velocity can be computed as:
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√
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√
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√
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 (6)

𝑐𝑐𝑠𝑠 = 𝑐𝑐𝑠𝑠(𝒙𝒙, 𝜔𝜔) =

√
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2
,

 (7)

and if M12 is not zero, the fast direction of anisotropy can be defined as:

𝛼𝛼(𝒙𝒙, 𝜔𝜔) = arctan

(

𝑐𝑐𝑓𝑓 −𝑀𝑀22

𝑀𝑀12

)

. (8)

Note that this is just one specific way to represent the fast and slow velocity and the azimuthal angle. Conse-
quently, the isotropic component, which is the radius of a circle with an area equal to the velocity ellipse 
(Weisstein, 2014), can be calculated as:

𝑐𝑐0 = 𝑐𝑐0(𝒙𝒙, 𝜔𝜔) =
√

𝑐𝑐𝑓𝑓 𝑐𝑐𝑠𝑠. (9)

Alternatively, we could have used the average between the fast and slow velocity c0 = (cf + cs)/2. The aniso-

tropic component can be characterized as either eccentricity, 𝐴𝐴 𝐴𝐴 = 𝐴𝐴(𝒙𝒙, 𝜔𝜔) =

√

1 −
𝑐𝑐
2
𝑠𝑠

𝑐𝑐
2
𝑓𝑓

 , flattening factor, 

𝐴𝐴 𝐴𝐴 = 𝐴𝐴 (𝒙𝒙, 𝜔𝜔) = 1 −
𝑐𝑐𝑠𝑠

𝑐𝑐𝐴𝐴

 (Weisstein, 2014), or equivalent amplitude (Smith & Dahlen, 1973):

𝐴𝐴 = 𝐴𝐴(𝒙𝒙, 𝜔𝜔) =
𝑐𝑐𝑓𝑓 − 𝑐𝑐𝑠𝑠

2
 (10)

Here we use equivalent amplitude A to represent the strength of anisotropy commonly used in other studies (Hao 
et al., 2021; Kästle et al., 2022; Lin et al., 2009).

2.2. Elliptical-Anisotropic Eikonal Tomography Using PINNs

In order to approach this problem, we first consider a feed-forward NN (see Figure 1), which consists of L layers 
with network parameters W and b:

𝒛𝒛
𝑙𝑙 = 𝜎𝜎

(

𝑾𝑾
𝑙𝑙
⋅ 𝒛𝒛

𝑙𝑙−1 + 𝒃𝒃
𝑙𝑙
)

, 𝑙𝑙 = 1, . . . , 𝐿𝐿, (11)
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where L is the maximum number of layers with l being the layer. z refers to the affine transformations between the 
layers of NN, when l = 1, z 0 represents inputs of the model; when l = L, z L = N(W 1, …, W L, b 1, …, b L; z 0), where 
N is the NN, represents the outputs of the model and other z l, l = 2, …, L − 1 represent the neurons in hidden 
layers. σ is the activation function that is usually nonlinear. W l and b l are the weights and the biases of each layer 
l, respectively. Training a feed-forward NN involves passing data through interconnected layers that learn to map 
features in a hierarchical fashion, with backward-propagated weight adjustments.

We take the traveltime τ = τ(xr, xs, ω), where xr, xs are receiver and source locations, as the field value of the NN 
architecture. Whereas the trainable parameters (W and b) are represented with θ, the chosen parameters such as 
number of layers, neurons and type of activation functions are unique for each NN and denoted with the subscript 
to N. Then a transformation of Equation 11 can be used to represent an approximate solution for phase traveltime 
surfaces τ = τ(x, xs, ω) in the eikonal equation:

𝜏𝜏(𝒙𝒙,𝒙𝒙𝑠𝑠, 𝜔𝜔) = 𝑁𝑁𝜏𝜏 (𝜃𝜃𝜏𝜏 ;𝒙𝒙,𝒙𝒙𝑠𝑠, 𝜔𝜔) = 𝑁𝑁𝜏𝜏

(

𝑾𝑾
1
, . . . ,𝑾𝑾

𝐿𝐿
, 𝒃𝒃

1
, . . . , 𝒃𝒃

𝐿𝐿
; 𝒛𝒛0

)

 (12)

where θτ indicates the trainable parameters of the traveltime NN, Nτ. In this case, the inputs in Equation 11 are 
z 0 = (xr, xs, ω) for specific coordinates and the outputs are z L = (x, xs, ω) for generic coordinates. The main idea 
of training the NN is to find the appropriate weights and biases to minimize the errors between the observations 
and predictions, where the sum of errors defines the loss function. For a specific frequency ω, we use the mean 
squared error (MSE) with an L2 norm to define the loss function only including a difference between predictions 
and observations:

�(�� ) =
����
∑

�

����
∑

�

|

|

|

|

�� (�� ;��;�,��;� , �) − ��,�
|

|

|

|

2

, (13)

where 𝐴𝐴 𝑑𝑑 is the loss function of the data constraint, i and j are the index of receivers and sources, respectively, Nsrc 
is the number of sources, Nrcv is the number of receivers, 𝐴𝐴 𝒙𝒙𝑟𝑟;𝑖𝑖 = (𝑥𝑥𝑟𝑟, 𝑦𝑦𝑟𝑟)𝑖𝑖 and 𝐴𝐴 𝒙𝒙𝑠𝑠;𝑗𝑗 = (𝑥𝑥𝑠𝑠, 𝑦𝑦𝑠𝑠)𝑗𝑗 are the receiver and 
source locations, τi,j represents the observed traveltime data.

In classical NN architecture, the phase traveltime surfaces of seismic waves are denoted as in Equation  13. 
This data-constrained loss can learn features based on observed data but has no knowledge of the underlying 
physical principles. Unlike this purely data dependent training, PINNs enable NNs to naturally meet the phys-
ical laws by modifying the loss function and modulating the training phase. In this study, the PINN frame-
work is realized in SciAnn, a Keras and Tensorflow wrapper designed with physics-informed deep learning 
(Haghighat & Juanes, 2021). Our model incorporates Equation 2 to govern the Rayleigh wave propagation, and 
the physics-constrained loss function at a single frequency can be written as:

𝐿𝐿𝑒𝑒(𝑁𝑁𝜏𝜏,𝑁𝑁𝑴𝑴 ) = 𝑁𝑁𝑀𝑀11𝜕𝜕
2
𝑥𝑥𝑁𝑁𝜏𝜏 + 2𝑁𝑁𝑀𝑀12𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦𝑁𝑁𝜏𝜏 +𝑁𝑁𝑀𝑀22𝜕𝜕

2
𝑦𝑦𝑁𝑁𝜏𝜏 − 1, (14)

where Le is the loss function of the elliptical-anisotropic eikonal constraint, NM = NM(θM; xr, ω) = [NM11(θM11; 
xr, ω), NM12(θM12; xr, ω), NM22(θM22; xr, ω)] specify the NNs of medium property matrices M in Equation 2, 
Nτ = Nτ(θτ; xr, xs, ω) is the traveltime at xr from the source location xs. θτ and θM indicate parameters of traveltime 
NN, Nτ and medium property NNs, NM, respectively. Please note that here we use three NNs to represent the 
medium property matrices described by Equations 3–5, but they share the same NN parameters. To enhance  the 
robustness and efficiency of our methodology, we also explore the use of a single medium property NN for 
representing the three medium property matrices (M11, M12, M22). Our findings reveal that although a single large 
network led to a reduction in training time, it also introduced unexpected artifacts, particularly noticeable at the 
corners of velocity maps (Figure S3 in Supporting Information S1). These artifacts are likely due to the lower 
sampling at the edge of our study areas. Detailed results and further discussion can be found in the Supporting 
Information S1.

Equations 13 and 14 demonstrate single frequency loss functions. In practice, surface waves at different frequen-
cies have depth-dependent sensitivity expressed as sensitivity kernels. So multi-frequency solutions are required 
for Rayleigh wave tomography to fully resolve the medium. Here we extend the NNs of the traveltime and 
medium property matrix to contain a period term as input so that the results of different periods can be obtained 
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by training the network only once. For the case of simultaneous optimization of anisotropic velocities at k 
frequencies, the multi-frequency total loss function that consists of data and physics constraints is expressed  as:

(�� , �� ) =
�����
∑

�

����
∑

�

����
∑

�

[

|

|

|

�� (�� ;��;�,��;� , ��) − ��,�,�||
|

2

+ ��||
|

��(�� (�� ;��;�,��;� , ��), �� (�� ;��;�, ��))||
|

2
]

,
 (15)

where k and Nfreq are the frequency index and maximum number of frequencies, ωk represents the selected frequency 
k, τi,j,k is the phase traveltime surface at frequency k. ϵe is a weight factor set to normalize the different terms of data 
and physics constraints. The value of ϵe has been determined through synthetic tests and can be chosen within a 
narrow range: large enough to allow velocity model updates but small enough to enforce the physics constraints. 
The collocation points to evaluate the physics constraints coincide with the available data locations, although 
other choices are possible. In this network, the inputs are the spatial coordinates of observed source and receiver 
locations and given period values. For displaying purposes, the trained NNs are evaluated on a chosen set of points 
forming a grid over a chosen extent. The network must be designed to have sufficient capability to represent the 
diversity and complexity in a set of phase traveltime surfaces over anisotropic velocity structures. By including 
physics constraints as loss terms, pinnEAET is fundamentally a joint state and parameter space approach.

The objective of the elliptical-anisotropy eikonal tomography is to estimate velocity structure and azimuthal 
anisotropy. The fast and slow velocity and the azimuth information can be directly evaluated from the trained 
networks NM. Meanwhile, the reconstructed phase traveltime surfaces 𝐴𝐴 𝐴𝐴𝐴  can be obtained by training the networks 
Nτ. With the loss term of elliptical-anisotropic eikonal equation, these trained phase traveltime surfaces can 
capture the constrained velocity information by calculating their gradients. The updated network parameters are 
generated by minimizing the MSE loss function:

argmin
�� ,��

{(�� , �� )} → �̂� , �̂� . (16)

where 𝐴𝐴 �̂�𝜃𝜏𝜏 specifies the parameters of the trained network Nτ while 𝐴𝐴 �̂�𝜃𝑴𝑴 specifies the parameters of the trained 
network NM.

Once the networks are trained based on the observed data points, we can directly evaluate the phase traveltime 
surfaces and three medium property matrices (Equations 3–5) at regular sampling grid points. The final Rayleigh 
wave phase velocity solution can be extracted in two ways based on the trained networks. One way is to solve 
the eigenvalue and eigenvector problem of the inverted medium properties. The inverted Rayleigh wave phase 
velocity is shown in Equation 9. The orientation of the anisotropic fast axes and the magnitude of anisotropy can 
be computed as Equations 8 and 10. Employing this method we can directly obtain the isotropic phase velocity 
and anisotropic amplitude and directions. An alternative way to extract the velocity information from the trained 
networks is to calculate the gradient of the trained phase traveltime surfaces:

�̄(�, �) = 1
����

����
∑

�

1
|

|

|

∇��
(

�̂� ;�,��;� , ��
)

|

|

|

, (17)

where 𝐴𝐴 𝐴𝐴𝐴  is the average velocity surface from all predicted phase traveltime surfaces, Nτ indicates the trained phase 
traveltime surfaces 𝐴𝐴 𝐴𝐴𝐴  . In order to reduce or even eliminate the influence of singular values near the sources, we take a 
trimmed geometric mean to exclude the 10 percentile outliers of the traveltime gradient data sets (Chen et al., 2022). 
We also calculate the associated standard deviation between the phase velocities from individual virtual sources and 
the average phase velocity 𝐴𝐴 𝐴𝐴𝐴  at each frequency and spatial location. This process results in phase velocity standard 
deviations at each location, providing estimates of standard uncertainties in our model. Both Equations 9 and 17 can 
illustrate the isotropic phase velocity of Rayleigh waves and their results are quite similar. Given that gradient calcu-
lations may introduce errors, here we choose Equations 8–10 as isotropic and anisotropic components. The trained 
phase traveltime surfaces 𝐴𝐴 𝐴𝐴𝐴  and average phase velocities in Equation 17 are used to measure the uncertainties.
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3. Results
3.1. Training Data

In this section, we apply our algorithm to ambient noise cross-correlation multi-frequency Rayleigh wave phase 
traveltime data recorded by the dense seismic array ChinArray-Himalaya II (Figure 2). Since 50 Ma, the continu-
ous collision of India and Eurasia continents has led to high topography and crustal thickening within the Tibetan 
Plateau interior that primarily affects the tectonics in Asia (Molnar & Tapponnier, 1975; Yin & Harrison, 2000). 
The northeastern Tibetan Plateau plays a key role in studying the geodynamic mechanism of the crustal thicken-
ing and deformation of the Tibetan Plateau. Several hypotheses for the topographic elevation have been proposed 
(e.g., crustal flow (Clark & Royden, 2000; Royden et al., 1997); oblique subduction of lithospheric mantle and 
strike-slip extrusion (Tapponnier et al., 2001); thin viscous sheet model (England & Houseman, 1986)) to explain 
the mechanism of continental deformation, but the precise source of deformation remains enigmatic and subject 
to debate.

For the ChinArray-Himalaya II array, a total of 676 stations were deployed between 2013 and 2016 for about 2.5 years 
of continuous recordings with a station spacing of 40–70 km. Due to the good coverage of the northeastern Tibetan 
Plateau, these data enable us to test the capability of the proposed approach. In addition, the ChinArray-Himalaya 
II data set has also been used to study the Rayleigh wave phase velocity and anisotropy using various methods, for 
example, two-station Rayleigh wave tomography (Li et al., 2017), joint receiver functions and Rayleigh wave tomog-
raphy (Wang et al., 2017), beamforming Rayleigh wave tomography (Wang et al., 2020) and Rayleigh wave eikonal 
tomography (Hao et al., 2021). These results enable comparison of the performance of the pinnEAET approach.

Figure 2. Dense seismic array geometry deployed on the northeastern Tibetan Plateau. Black lines indicate the main faults, 
blue triangles indicate stations from ChinArray-Himalaya II and stars indicate the selected source stations used in this study. 
The main faults and tectonic blocks are labeled as: ATF = Altyn-Tagh Fault; HYF = Haiyuan Fault; LMSF = Longmenshan 
Fault; WQF = West-Qinling Fault; AB = Alxa Block; CAOB = Central Asian Orogenic Belt; HTB = Hetao Graben; 
OB = Ordos Block; QOB = Qilian Orogenic Belt; SB = Sichuan Basin; SGT = Songpan-Ganzi Terrane; WQO = Western 
Qinling Orogen; YCG = Yinchuan Graben.
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The training phase traveltime data are generated following the seismic ambient noise data processing steps as in 
Bensen et al. (2007) and Lin et al. (2008): the Z component of raw data are processed by resampling, removing the 
instrument response, filtering and applying temporal and spectral normalization. Traveltime calculation  involves 
cross-correlating signals across station pairs and measuring the phase delay (or traveltime) of the resulting 
waveform. Figure 3a shows an example of Z-Z component cross-correlations for station pairs associated with 
station WT045, filtered in the period range 10–40 s. Under ideal conditions, ambient noise cross-correlations 
should yield empirical Green's functions in both causal and anti-causal time windows (Lobkis & Weaver, 2001; 
Wapenaar, 2004). In Figure 3a, the energy of the fundamental Rayleigh wave can be clearly captured for both 
causal and anti-causal time windows. Figure 3b shows the measured Rayleigh wave phase traveltime data centered 
on station WT045 at 25 s period. After picking phase traveltimes, 20 source stations are quasi-randomly selected 
among all 676 stations to achieve good coverage of the geographic area (Figure S1 in Supporting Information S1). 
The training targets are determined by the selected 20 phase traveltime surfaces. Figure 3c shows an example of the 
25 s Rayleigh wave phase traveltime surface evaluated from the trained Nτ at the effective source station WT045. 
It is worth emphasizing that receivers located within two wavelengths radius of each source are removed, because 
traveltime measurements collected at distances shorter than 1–2 wavelengths are unreliable (Lin et al., 2009).

3.2. Resolution Tests

Before applying our approach to field data, we perform checkerboard tests to assess the performance of the pinnE-
AET and tune the NN design. As shown in Figures 4a–4d, the isotropic synthetic checkerboard model assumes 
a constant background velocity defined by subtracting the observed frequency-dependent traveltime from the 
inter-station distances. Then ±2% of alternating velocity perturbations are added to the initial model to build the 
synthetic phase velocity model for checkerboard tests. There are 8 × 8 anomalies at each period with a maximum 
radius of 75 km for each anomaly. These alternating low and high velocity patterns are distributed at 150 km 
intervals in latitude and longitude direction, respectively. The network parameters used in the checkerboard tests 
are consistent with the parameters of the subsequent field data training. The synthetic traveltimes of the checker-
board model are calculated using the fast marching method based on the eikonal equation (Sethian, 1999; Treister 
& Haber, 2016), and 0.1 s Gaussian random noise with a standard deviation of 0.01 is added to the synthetic 
traveltime data to simulate the noise level in observed data.

Figures 4e–4h shows the cross-section view of the retrieved Rayleigh wave phase velocity maps at 10, 20, 30, and 
40 s for the resolution tests. It can be seen that the inversion recovers the pattern of velocity variation well. The 
resolution of less sampled structures at the periphery of the station network is still satisfactory. The northern part 

Figure 3. (a) The stacked waveform of Z-Z component cross-correlations for station pairs at station WT045 (red star in Figure 2) for a period range of 10–40 s, the 
V-shaped arrivals indicate the signals of Rayleigh wave; (b) The 25 s Rayleigh wave phase traveltime measured from cross-correlation centered on station WT045 
shown as a star; (c) The 25 s Rayleigh wave phase traveltime surfaces predicted at station WT045 using pinnEAET.
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of the network exhibits lateral blurring in the SW-NE direction and the edges of the velocity anomalies appear 
indistinct. These may be linked to the selection of the source distribution.

3.3. Phase Velocities and Azimuth Anisotropy Beneath Northeastern Tibetan Plateau

As discussed in the Methods section, the pinnEAET algorithm consists of two different structures of networks 
(see Figure 1) with a total of four fully connected feed-forward NNs: one traveltime NN Nτ and three medium 
property NNs NM. In addition to a parameter of target period k, Nτ training requires spatial locations and 
corresponding observed traveltimes, whereas NM needs only spatial coordinates. Both networks are set to 
have 20 hidden layers. There are 80 neurons in each layer for Nτ while we use 60 neurons for all NM. The 

number of neurons and hidden layers in the NNs were chosen based on 
the checkerboard tests and adjusted to accurately represent all phase trav-
eltime surfaces, without compromising the uncertainty in the final aniso-
tropic velocity and azimuthal anisotropy. The network was trained using an 
Adam optimizer over 5000 epochs (Kingma & Ba, 2014), with a learning 
rate of 0.001. These training parameters were chosen based on systematic 
synthetic tests for accurately and efficiently extracting maximum details 
from field data. Figure  5 shows the convergence processes of three loss 
functions: data constraints, physics constraints as well as total loss. These 
terms converge quickly and uniformly to below 10 −3, indicating that the 
model has a fast learning speed and the training process exhibits strong 
stability.

The results of analyzing Rayleigh wave phase velocity and azimuthal aniso-
tropy over periods of 10, 20, 30, and 40 s in northeastern Tibet are shown in 
Figure 6. Figure 7 shows the corresponding uncertainties estimated from the 
traveltime NNs (Equation  17). The uncertainties for all periods are below 
50 m/s and below 20 m/s in most areas. Compared to the central study area, 
the uncertainties tend to be higher along the boundaries. The higher uncer-
tainty in the Hetao Graben at 10 s is likely due to the lower signal-to-noise 

Figure 4. (a–d) Input synthetic Rayleigh wave phase velocity model of checkerboard resolution tests at periods of 10, 20, 30, and 40 s; (e–h) Corresponding retrieved 
velocity slices using pinnEAET.

Figure 5. History of convergence of the total loss function (Total), the data 
constraint (Tau) and physics constraint (PDE) in Equation 15 for pinnEAET in 
the northeastern Tibet.

 21699356, 2023, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JB

027378 by U
niversity O

f L
eeds T

he B
rotherton L

ibrary, W
iley O

nline L
ibrary on [09/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Solid Earth

CHEN ET AL.

10.1029/2023JB027378

10 of 16

ratio at shorter periods in that region. Although the uncertainties increase slightly with period, the overall relia-
bility remains high.

For azimuthally dependent phase velocity, as a whole the distribution of low or high velocity zones and aniso-
tropic fast directions seem significantly controlled by the fault strikes and block boundaries. Prominent low veloc-
ity zones (LVZs) exist at almost all periods along the southwestern boundary of the study area, corresponding 
to the Qilian Orogenic Belt and the Songpan-Ganzi Terrane, and relatively high velocities appear in the north-
ern and southeastern regions, corresponding to the Central Asian Orogenic Belt, Western Qinling Orogen and 
Sichuan Basin. The fast directions of azimuthal anisotropy changes slowly at each period.

The 10 s azimuthal anisotropic phase velocity is sensitive to the structure of the shallow sedimentary layer and 
the upper crust. Unlike other periods, it is primarily distinguished by the presence of LVZs in the northeast and 
relatively high velocity zone (HVZ) in the southeast of the study area. These LVZs are closely associated with the 

Figure 6. (a–d) Azimuthal anisotropic phase velocity at periods of 10, 20, 30, and 40 s beneath northeastern Tibetan Plateau using pinnEAET. Black bold vectors 
indicate the strength and fast propagation direction of anisotropy, black thin lines indicate main faults.
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sedimentary basins in Hetao Graben, Yinchuan Graben, Alxa Block and Ordos Block, while the relatively HVZ 
may be linked to the exposure of metamorphic rocks and granites in the east of the Western Qinling orogen and 
the northern Sichuan Basin (Wang et al., 2020). The anisotropic fast direction is related to fault strikes and block 
boundaries in most study areas. The fast direction in the southwest regions of Qilian Orogenic Belt, Western 
Qinling Orogen and Songpan-Ganzi Terrane is mainly in NE-SW direction. The fast directions at 10 s beneath 
the Songpan-Ganzi Terrane are not consistent with longer periods, supporting the idea that crustal flows are 
predominantly found in the middle and lower crust (Gao et al., 2020; Li et al., 2022).

The 20  s azimuthal anisotropic phase velocity mainly represents structures of the mid-crust. Relative to the 
velocity distribution at 10 s, the low velocity anomalies in Yinchuan Graben, Alxa block and Ordos Block disap-
pear, but there is still a smaller LVZ in the Hetao Graben. The northwestern (Central Asian Orogenic Belt) and 
southeastern parts (Sichuan Basin) are characterized by relatively high velocity anomalies without clear bound-
aries. In the southwest corner of the study area the fast directions resolved by periods of 10 and 20 s are similar. 

Figure 7. (a–d) Uncertainty map of the Rayleigh wave phase velocity at periods of 10, 20, 30, and 40 s beneath northeastern Tibetan Plateau using pinnEAET.
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It shows a tendency of near clockwise rotation along the margin of the northeastern Tibetan Plateau. The aniso-
tropic strength is relatively weak in the Ordos Block.

The 30–40 s azimuthal anisotropic phase velocity illustrates the lower crustal and part of upper mantle structures. 
The main features in these periods are significant LVZs in the southwest and high velocity in the northeast. As 
the period increases, the velocity difference between the Tibetan Plateau and the surrounding areas progressively 
becomes more pronounced. The anisotropic strength increases noticeably in areas such as the Central Asian 
Orogenic Belt and Qilian Orogenic belt, which is possibly related to the inhomogeneity of the Moho (Zhang 
et al., 2020).

4. Discussion
Figure  8 shows a comparison of the azimuthal anisotropic velocities obtained by pinnEAET and traditional 
anisotropic eikonal tomography. We find very good agreement in the Rayleigh wave phase velocity structures in 
most regions with differences of under 50 m/s. Two major differences between the results exist in the northwest 
corner of the study area as well as part of the Qilian Orogenic Belt along the margin of the northeastern Tibetan 
Plateau where the result of conventional eikonal tomography shows significant high velocity zones that are not 
visible in other results. These could be spurious anomalies caused by less path coverage at the boundary. A 
similar discrepancy can be found in a small region in the center (105°E, 37°N) of the study area. To facilitate the 
analysis, we also compare the results of azimuthal double beamforming tomography (Wu et al., 2023) (Figure S2 
in Supporting Information S1) and no differences of more than 50 m/s were found in these areas except for a very 
small area at the edge of the northeast corner, which also confirms the reliability of our method.

In the case of anisotropy, the pinnEAET directly calculates an equivalent amplitude of anisotropy using Equa-
tion 10 whereas traditional eikonal tomography fits a function of phase velocity variations over azimuth. Due 
to the different strategies, we only compare the azimuth of the fast propagation direction of those results. Both 
of them exhibit a trend of clockwise rotation in the fast direction along the margin of northeastern Tibetan 
Plateau. They show similar distribution of azimuthal anisotropy inside the study area, except that our aniso-
tropic results illustrate the NWW-SEE-dominated fast direction in the Western Qinling Orogen rather than the 
NNW-SSE-dominated fast direction obtained by the conventional eikonal tomography. It is worth pointing out 
that our fast direction results have a better correspondence with the strikes of the West-Qinling Fault. In the 
center of the study area, south of the Alxa block, the fast directions of anisotropy of the two are not consistent, 
but our results are in good agreement with those of azimuthal double beamforming tomography (Figure S2c in 
Supporting Information S1). The anisotropy results for both differ considerably at the boundaries of the study 
area, especially in the northeast corner (Hetao Graben). Combined with Figure S2c in Supporting Information S1, 

Figure 8. (a) The 25 s azimuthal anisotropic phase velocity beneath northeastern Tibetan Plateau using pinnEAET; (b) The 25 s azimuthal anisotropic phase velocity 
generated by conventional eikonal tomography; (c) The difference between 25 s azimuthal anisotropic phase velocity (background) from pinnEAET (black lines) and 
eikonal tomography (red lines).
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the anisotropy results of all three methods differ in this region, which may be due to the fact that the path distri-
bution on the boundary is relatively poor from some directions.

We also compare our anisotropic phase velocities with past studies in the region to assess the validity of the 
pinnEAET to the alternative approaches employed, such as teleseismic data based surface wave tomography 
(Hao et al., 2021; Li et al., 2017) and ambient noise beamforming tomography (Wang et al., 2020). These 
phase velocity results corroborate the velocity distribution of the southwest low velocities and northeast 
high velocities in the study area. The anisotropy results are also overall similar compared to those of Hao 
et al. (2021), only differing in small regions at certain periods. For example, for the 25 s period, our result 
shows a NW-SE fast direction in the northeast of Songpan-Ganzi Terrane (104°E, 33°N), while their result 
shows a near N-S direction. This is probably caused by the difference in the generation mechanism and 
information content between ambient noise data and teleseismic surface wave data. Combining the above 
comparisons, our results are consistent with those of other methods, confirming the viability of our pinnE-
AET approach.

To verify the accuracy and reliability of the pinnEAET for small data sets, we choose only one station as the 
virtual source to invert for the Rayleigh wave phase velocity at 25 s. The NN hyperparameters are kept the same 
as those used in the field data training with multiple sources. Traditional ambient noise eikonal tomography is 
applied to the same data, utilizing the same source for direct comparison of phase velocity models and evaluation 
of methodology resolution. The velocity results in the vicinity of the source are unreliable due to the ambiguity 
between overlapping causal and anti-causal empirical Green's functions close to the source. Thus the data points 
with a region of 1.6° around the source location are removed from both results.

Figure 9a illustrates the phase velocity result for a single source recovered by pinnEAET while Figure 9b demon-
strates that retrieved by conventional eikonal tomography. Both results show the main low velocity zones along 
the Qilian Orogenic Belt, Western Qinling Orogen and Songpan-Ganzi Terrane. The result from pinnEAET is 
closer to that of others utilizing all stations. It well recovers the majority of velocity structures except for some 
areas where path coverage is extremely limited. The result using conventional eikonal tomography displays many 
spurious velocity anomaly patterns and obvious smearing phenomena. It is clear that the results of pinnEAET 
show a more accurate solution compared to these earlier studies. The performance test gives support to the ability 
of our approach especially when the available data are limited.

Figure 9. (a) The 25 s Rayleigh wave phase velocity beneath northeastern Tibetan Plateau using pinnEAET with only one source station (purple triangle in Figure 2); 
(b) The 25 s phase velocity generated by conventional eikonal tomography with same data sets.

 21699356, 2023, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JB

027378 by U
niversity O

f L
eeds T

he B
rotherton L

ibrary, W
iley O

nline L
ibrary on [09/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Solid Earth

CHEN ET AL.

10.1029/2023JB027378

14 of 16

5. Conclusion
We have developed a deep learning method for anisotropic ambient noise tomography based on physics-informed 
neural networks. By integrating physics constraints into the architecture, these models can effectively capture 
the underlying physics of the elliptical-anisotropic eikonal tomography problem. This method is designed to 
achieve high accuracy and robust results even with limited data and noisy input. We apply this approach to 
the Rayleigh wave correlation traveltime data recorded by a dense seismic array deployed on the northeastern 
Tibetan Plateau. The algorithm enables the simultaneous training of multiple periods of traveltime by setting 
the period as training data. The results can be achieved with comparable resolution as conventional methods 
using only 20 source stations, minimizing necessary data and memory requirements. We also show that our 
method still performs well when using extremely limited data and is able to resolve structure better than tradi-
tional eikonal topography. Anisotropy fast directions can be well resolved and are in agreement with existing 
fault zone structure. Overall, we show that elliptical-anisotropy eikonal tomography based on physics-informed 
neural networks is a competitive alternative to traditional methods to extract anisotropic velocity information 
from Rayleigh wave data.

Data Availability Statement
The traveltime data sets from ambient noise cross-correlations used in this study and the Rayleigh wave 
azimuthal anisotropic phase velocity models can be downloaded at Chen  (2023): https://doi.org/10.5281/
zenodo.8088610.
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