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A Physics-Informed Low-Shot Adversarial
Learning For sEMG-Based Estimation of Muscle

Force and Joint Kinematics
Yue Shi, Shuhao Ma, Yihui Zhao, Chaoyang Shi, and Zhiqiang Zhang

Abstract— Muscle force and joint kinematics estimation1

from surface electromyography (sEMG) are essential for2

real-time biomechanical analysis of the dynamic interplay3

among neural muscle stimulation, muscle dynamics, and4

kinetics. Recent advances in deep neural networks (DNNs)5

have shown the potential to improve biomechanical anal-6

ysis in a fully automated and reproducible manner. How-7

ever, the small sample nature and physical interpretability8

of biomechanical analysis limit the applications of DNNs.9

This paper presents a novel physics-informed low-shot10

adversarial learning method for sEMG-based estimation of11

muscle force and joint kinematics. This method seamlessly12

integrates Lagrange’s equation of motion and inverse dy-13

namic muscle model into the generative adversarial net-14

work (GAN) framework for structured feature decoding and15

extrapolated estimation from the small sample data. Specif-16

ically, Lagrange’s equation of motion is introduced into17

the generative model to restrain the structured decoding18

of the high-level features following the laws of physics. A19

physics-informed policy gradient is designed to improve20

the adversarial learning efficiency by rewarding the consis-21

tent physical representation of the extrapolated estimations22

and the physical references. Experimental validations are23

conducted on two scenarios (i.e. the walking trials and24

wrist motion trials). Results indicate that the estimations25

of the muscle forces and joint kinematics are unbiased26

compared to the physics-based inverse dynamics, which27

outperforms the selected benchmark methods, including28

physics-informed convolution neural network (PI-CNN), val-29

lina generative adversarial network (GAN), and multi-layer30

extreme learning machine (ML-ELM).31

Index Terms— muscle force and joint kinematics, surface32

Electromyographic, low-shot learning, generative adversar-33

ial network, physics-informed optimization, mode collapse34

35

I. INTRODUCTION36

HUMAN movements involve complex interactions within37

the neuromuscular system. The estimation of muscle38

force and joint kinematics dynamics provides detailed biome-39

chanical analysis to understand the human neuromuscular40

system [1], [2], which benefits high-level exoskeleton control41
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in human–robot interaction (HRI) applications, such as sports 42

rehabilitation [3], [4] and human augmentation [5], [6]. In 43

biomechanical engineering, the joint kinetics and kinematics 44

generated by muscle contraction affect the flexibility and 45

efficiency of human locomotion [7]. How to estimate muscle 46

force and joint kinematics accurately and reproducibly has 47

become an important research target in biomechanics. 48

However, the high flexibility of human locomotion deter- 49

mines that it is difficult to establish the model accurately, 50

especially involving interactive joint kinetics and kinematics 51

dynamics [8]. This challenge directly affects the efficiency 52

and feasibility of biomechanical engineerings, such as human- 53

exoskeleton cooperative control, in real-world scenarios [9]. 54

As one of the myoelectric signals, surface electromyography 55

(sEMG), which can be captured easily from human skin, have 56

been proven effective to high-precision estimation of joint 57

kinetics and kinematics [10]. It augments the cognitive synergy 58

between human and robotic entities [11]. Therefore, the corre- 59

lation between sEMG signals and the exerted force/locomotion 60

deserves to be comprehensively investigated. 61

There are many existing physics-based models developed 62

to establish the forward and inverse relationship between 63

the sEMG signals and the joint kinetics and kinematics to 64

interpret transformation among neural excitations and muscle 65

dynamics [12], [13]. These forward-inverse dynamics-based 66

approaches estimate the continuous muscle force and joint 67

kinematics through the sEMG-driven muscle activation dy- 68

namics, muscle contraction dynamics, and musculoskeletal 69

geometry. For example, Pau et al [14] introduced a combined 70

approach using a simplified geometric and musculoskeletal 71

model to predict continuous elbow joint movement. Hashemi 72

et al [15] achieved precision muscle force estimations through 73

the integration of angle-based sEMG amplitude calibration 74

with parallel cascade identification, experimental outcomes 75

indicate that their method yields a reduced estimation error 76

rate during dynamic muscle contractions. Huang et al [16] 77

gathered sEMG signals utilizing a high-density electrode grid 78

and employed the non-negative matrix factorization algorithm 79

for the joint kinetics estimation. Although such physics-based 80

models explicitly explain and map sEMG signals to joint 81

kinematics, the high cost of their static optimization has always 82

limited the practical applications of these models [17], [18]. 83

Recently, deep neural networks (DNNs) have provided an 84

alternative solution to map the sEMG signals to the joint 85

kinetics and kinematics [19], [20]. In this kind of model, 86
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the multi-layer convolution architecture has been explored87

to establish relationships between movement variables and88

neuromuscular status [21], [22]. For example, Nasr et al [23]89

mapped the sEMG signals to the regression of joint angle,90

joint velocity, joint acceleration, joint torque, and activation91

torque, illustrating that the multi-layer convolution operators92

are capable of extracting underlying motor control informa-93

tion. Zhang et al [22] developed an active deep convolutional94

neural network to enhance the dynamic tracking capability of95

the musculoskeletal model on unseen data.96

Despite the advantages, traditional DNNs are data-hungry97

and their performance is highly dependent on the quantity98

and quality of data [24]. Meanwhile, biomechanics analysis99

is typically a physics-based extrapolation process with small100

sample nature [25], [26]. Therefore, it is a challenge to train101

DNNs with small sample data so that the DNNs perform102

consistently with the physics-based model. To fill this research103

gap, the low-shot learning (LSL) technique has attracted many104

researchers’ attention [27]–[29]. For example, Rahimian et al105

[30] introduced a Few-Shot Learning Hand Gesture Recogni-106

tion (FS-HGR) model to enhance the generalization capability107

of DNNs from a limited number of instances. Lehmler et al108

[31] explored a low-shot learning methodology that adjusts109

DNNs to new users with only a small size of training data.110

In addition, the generative adversarial network (GAN)111

framework has shown great potential in handling physical112

extrapolating and predictive problems [21], [32], [33]. The113

GAN-based model is capable of discovering the structured114

patterns of the references and extrapolating the underlying115

data distribution characteristics during the adversarial learning116

process [34]. For example, Chen et al [35] tested and evaluated117

the performance of the deep convolutional generative adver-118

sarial network (DCGAN) on sEMG-based data enhancement,119

and their results indicated that the extrapolated data is able120

to augment the diversity of the original data. Fahimi et al121

[36] proposed a generative adversarial learning framework122

for generating artificial electroencephalogram (EEG) data to123

extrapolate the brain-computer interface, and their findings124

suggest that generated EEG augmentation can significantly125

improve brain-computer interface performance.126

In this study, we propose a physics-informed low-shot127

adversarial learning method for muscle force and joint kine-128

matics estimation from multi-channel sEMG signals. This129

method seamlessly integrates physics knowledge with the130

GAN framework for structured feature decoding and extrap-131

olated estimation from the small sample data. Specifically,132

Lagrange’s equation of motion is introduced into the gener-133

ative model to restrain the structured decoding of the high-134

level features following the laws of physics. And a physics-135

informed policy gradient is designed to improve the low-shot136

adversarial learning efficiency by rewarding the consistent137

physical representation of the extrapolated estimations and138

the physical references. Results show the muscle forces and139

joint kinematics prediction from the proposed method are140

environment-adaptive and unbiased compared to the ground141

truth measurement.142

The remainder of this paper is organized as follows: Section143

II detailed describes the algorithm of the proposed physics-144
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Fig. 1. The main architecture of the proposed physics-informed low-
shot generative adversarial learning for muscle force and joint kinemat-
ics prediction from multi-channel sEMG time-series

informed policy gradient for reinforcement generative adver- 145

sarial learning, including the mathematics framework of the 146

algorithm and network architectures. Section III presents the 147

material and experimental methods. Section IV discusses the 148

experimental results and model evaluations. and Section V 149

presents the conclusions. 150

II. PHYSICS-INFORMED LOW-SHOT ADVERSARIAL 151

LEARNING METHOD 152

The continuous estimation of muscle forces (F ) and joint 153

kinematics(θ) from multi-channel sEMG can be denoted as 154

the time-series generation problem. Thus, given a real multi- 155

channel sEMG time series, we train a σ parameterized gener- 156

ative network Gσ to estimate the muscle force (F̂ ) and joint 157

kinematics (θ̂). In this section, we propose a GAN framework, 158

as shown in Fig.1, to train the Gσ on the small sample data. 159

Specifically, we denote the Gσ estimated F̂ and θ̂ as the 160

negative samples (see details in Section II-B), the ground 161

truth θ and the inverse dynamics-based F [37] as positive 162

samples (i.e. references). The φ-parameterized discriminative 163

model Dφ is introduced to distinguish the positive samples 164

and negative samples (see details in Section II-C). During 165

adversarial learning, the task of Dφ is to determine if an 166

input sample is positive or negative, and the task of Gσ 167

is to generate the unbiased negative samples to fool the 168

discriminator Dφ. The model optimization process is driven 169

by the newly proposed physics-informed policy gradient (see 170

details in Section II-A) which rewards the homogeneity of 171

physics representation and structural characteristics between 172

the positive and negative samples. 173

A. GAN optimization via physics-informed policy gradient 174

The physics-informed policy gradient method, inspired by 175

reinforcement learning [38], aims to optimize the learning 176

process of the GAN-based model yielding physical extrap- 177

olations from the small sample data (i.e. low-shot learning). 178

Mathematically, the physics-informed policy gradient method 179

maximizes its expected reward J(σ) based on the physics law 180

and structured characteristics from the small sample data. The 181

J(σ) consists of two parts, the structural reward RGσ
and 182
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physics representation action Q
G(σ)
D(φ). The J(σ) is defined as183

follows.184

J(σ) = E[RGσ
(Gσ(sEMG0:T ))]

·QGσ
Dφ((Gσ(sEMG0:T ), [F, θ]0:T )

= E[RGσ
([F̂ , θ̂]0:T )]

·QGσ
Dφ([F̂ , θ̂]0:T , [F, θ]0:T )

(1)

where sEMG0:T is the input multi-channel sEMG time series185

for T time steps. The J(σ) is beginning with the expected186

reward from a predetermined state from the positive samples.187

And then, the RGσ
and Q

G(σ)
D(φ) will jointly optimize the188

generative network Gσ to generate the unbiased ([F̂ , θ̂]0:T )189

following the physics laws.190

Specifically, the structural reward RGσ
is computed by the191

Gσ and defined as follows.192

RG(([F̂ , θ̂]0:T ) = expPL2([F̂ ,θ̂]0:T ) (2)

where PL([F̂ , θ̂]0:T ) is the physics law used to restrict the193

hierarchical structure of the generated data, which provides the194

additional information to the regularize the learning process195

from the small sample data. In this case, we use the Lagrange196

equation of motion [37] as the physics law, which is defined197

as follows.198

PL([F̂ , θ̂]0:T ) =
1

T

T∑

t=1

(m(θ̂t)
¨̂
θt + c(θ̂t,

˙̂
θt)

+ g(θ̂t)−

N∑

n=1

rn · F̂
n
t )

2

(3)

where T is the number of time-steps, N is the channels of199

the F̂ , m(θ̂t), c(θ̂t,
˙̂
θt), and g(θ̂t) denote mass matrix, the200

Centrifugal and Coriolis force, and the gravity, respectively201

[17] and rn is the moment arm of the muscle F̂n, which is202

exported from OpenSim. In this manner, the Gσ will generate203

the structured outputs of (F̂ , θ̂).204

The Q
G(σ)
D(φ) is computed by the D(φ) and interprets the205

physics constraint action values as the estimated probability of206

being physics real by D(φ). These physics constraint action207

values lead to the improvement of GAN model in physical208

extrapolation from the small training data. The Q
G(σ)
D(φ) can be209

formulated as:210

QGσ
Dφ((Gσ(sEMG0:T ), [F, θ]0:T ) =

E[F̂ ,θ̂]0:T∼[F,θ]0:T
[logDφ([F̂ , θ̂]0:T )]+

E[F̂ ,θ̂]0:T∼Gσ(sEMG0:T ))[log(1−Dφ([F̂ , θ̂]0:T ))]

(4)

For each epoch, once the new RG and Q
G(σ)
D(φ) has been211

obtained, the policy model G(σ) will be updated following212

the gradient of the reward function as follows.213

∇σJ(σ) =E[F̂ ,θ̂]0:T∼Gσ(sEMG0:T )∑
∇σRGσ

([F̂ , θ̂]0:T |[F, θ]0:T )

·QGσ

Dφ
([F̂ , θ̂]0:T , [F, θ]0:T )

(5)

Using likelihood ratios, the unbiased estimation for Eq. 5 214

on one epoch can be described as follows. 215

∇σJ(σ) ≃
1

T

T∑

t=1

∑

yt∈[F̂ ,θ̂]t

∇σRGσ
(yt|[F, θ]t)

·QGσ

Dφ
(yt, [F, θ]t)

=
1

T

T∑

t=1

∑

yt∈[F̂ ,θ̂]t

Gσ(yt|[F, θ]t)∇σ logGσ(yt|[F, θ]t)

·QGσ

Dφ
(yt, [F, θ]t)

(6)

The parameters of the policy model Gσ can be updated as 216

follows. 217

σ ← σ + α∇σJ(σ) (7)

where α ∈ R is the learning rate. 218

Algorithm 1 Generative adversarial learning via physics-

informed policy gradient

Require: generator network Gσ; discriminator Dφ; input

multi-channel sEMG dataset sEMG = {X1:T }; Inverse

dynamics positive samples Pos
1: Initialize Gσ , Dφ with random weights σ, φ.

2: Pre-train Gσ using MLE on sEMG
3: Pos← Gσ

4: Generate negative samples using Gσ for training Dφ

5: Pre-train Dφ via minimizing the cross entropy

6: repeat

7: for Gσ training-steps do

8: Generate [F̂ , θ̂] time series via Gσ

9: for t in 0:T do

10: Compute QGσ
Dφ by Eq. 4

11: end for

12: Update generator parameters via physics-informed

reward Eq. 7

13: end for

14: for d-steps do

15: Use current Gσ to generate negative examples and

combine them with given positive examples Pos
16: Train discriminator Dφ for k epochs.

17: end for

18: β ← σ
19: until GAN converges

To summarize, Algorithm 1 provides an in-depth look 219

at our proposed GAN optimization via a physics-informed 220

policy gradient. Initially, Gσ is pre-trained on the training set 221

sEMG = {X1:T } using the maximum likelihood estimation 222

(MLE). And then, the Gσ and Dφ undergo adversarial learn- 223

ing. As the Gσ improves, the Dφ is routinely retrained to stay 224

synchronized with the Gσ improvement. We ensure balance 225

by generating an equal number of negative samples for each 226

training step as the positive samples. 227
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B. The generative network228

The proposed physics-informed low-shot learning method229

does not depend on the specific generative network archi-230

tecture. In this study, considering the long-term temporal231

dependencies of the F and θ sequences to the input multi-232

channel sEMG sequence, we employ the Long Short-Term233

Memory (LSTM) cells to our generative model [39]. The234

architecture of the generator network G is shown in Fig.2. It235

serves three functions: multi-channel sEMG feature extraction,236

residual learning with LSTM, and musculoskeletal tokens237

sequence generation.238

Firstly, for the multi-channel sEMG feature extraction, a 1-239

dimensional (1D) convolution filter with a 2/times1 kernel is240

introduced to capture the multiple sEMG features at time step241

t. The extracted convolution features represent the hierarchical242

structures of the multi-channel sEMG. In this study, the243

convolution kernel is set to 1 × b for a b-channel sEMG244

input. Considering the batch normalization (BN) layer would245

normalize the features and get rid of the range flexibility for246

upscaling features [40], no BN layer is used here to avoid247

blurring the sEMG responses hidden in the extracted features.248

The max-pooling layer is used to combine the extracted sEMG249

features into a single neuron by using the maximum value from250

each convolution window. The max-pooling operation reduces251

the number of parameters and network computation costs and252

has the effect of adjusting over-fitting.253

Secondly, the LSTM blocks are employed for residual254

learning of the time-series characteristics of the target mus-255

culoskeletal tokens. The LSTM layer is well suited for time-256

series sequence generation by addressing the explosive and257

vanishing gradient issues [38]. An LSTM block consists of258

a memory cell, an input gate, an output gate, and a forget259

gate, the detailed definitions of the components are described260

in [40]’s study. Specifically, in this study, in time step t, the261

memory cell remembers structured feature values over the262

previous t − 1 intervals and the three gates regulate the flow263

of information into and out of the memory cell, which has264

a great preference for preserving long-term temporal structure265

characteristics by consolidating previous temporal correlations266

as memory units. Meanwhile, the high-level sEMG features267

extracted from the convolution layer represent the current268

multi-channel sEMG responses to muscle force and joint269

kinematics. The skip-connect of the memory cell and the high-270

level sEMG features not only represent extracted local kinetic271

invariances but also represent the temporal dynamics of the272

motions.273

It is noteworthy that the traditional LSTM layer only pro-274

duces fitness between the current time step and the previous275

time steps. However, we expect the model also can pay insight276

into the resulting future outputs. In order to compute the action277

value for future physical fitness, a Monte Carlo (MC) search278

with a roll-out strategy is used to sample the unknown last279

T − t time steps. and the N -time Monte Carlo search can be280

formulated as:281

{(F0:T , θ0:T )
1, ..., (F0:T , θ0:T )

N = MC(F0:t, θ0:t)} (8)

Finally, the output of the LSTM unit is flattened to a feature282
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…
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Fig. 2. The network architecture of the generator network in the pro-
posed physics-informed reinforcement generative adversarial learning.

vector and the fully connected layers are used to decode 283

the high-level features into the muscle force F and joint 284

kinematics θ sequence over a motion period. 285

C. The discriminative model 286

In this study, a φ parameterized discriminator network Dφ 287

is built to guide the iterations of Gσ from the small sample 288

data. Dφ outputs a probability indicating the heterogeneity 289

between [F̂ , θ̂] and [F, θ]. For this purpose, we employ a 290

convolution neural network (CNN) [41] as the discriminative 291

model because of its successful applications in sequence clas- 292

sification. In this study, we concentrate on the situation where 293

the discriminator estimates the likelihood of a completed [F̂ , θ̂] 294

time-series from the physical-law model (i.e. ID). 295

We first represent an input muscle force and joint kinematics 296

time series x1, ..., xT as 297

E0:T = [F̂ , θ̂]0 ⊕ [F̂ , θ̂]2 ⊕ ...⊕ [F̂ , θ̂]T (9)

where, xt ∈ R
b is the muscle force and joint kinematics in 298

time-step t and ⊕ is the concatenation operator to build the 299

matrix E1:T ∈ R
T . Then the convolution operator is used to 300

produce a new feature map: 301

ci = ρ(w ⊙ Ei:i+l−1 + b) (10)

where ⊙ is the element-wise production, b is a bias term and 302

ρ is a non-linear function. In this study, the discriminator, 303

as shown in Fig.3, employs various numbers of kernels with 304

different window sizes to extract different features from the 305

input musculoskeletal sequence. And the max-pooling opera- 306

tion over the feature maps to reduce the number of parameters 307

and network computation costs. In order to enhance the 308

discrimination performance, a highway operator [42] based on 309

the pooled feature maps is also employed in our discriminative 310

model. Finally, a fully connected layer with softmax activation 311

is used to output the estimation of the likelihood that the input 312

sequence conforms to physical laws. 313

III. MATERIAL AND EXPERIMENTAL METHODS 314

In this study, we test our proposed method on two joint 315

motion scenarios. The first one is the knee joint modeling 316
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Fig. 3. The network architecture of the discriminative model in the pro-
posed physics-informed reinforcement generative adversarial learning.

from an open-access dataset of walking trials, and the second317

one is the wrist joint modeling from the self-collected dataset318

of wrist motions.319

A. Open-access dataset of walking trials320

The open-access dataset of walking trails is obtained from a321

real-world experiment reported in [43]. This dataset involves322

six healthy participants with an average age of 12.9 ± 3.2323

years and an average weight of 51.8 ± 19.1 Kg. Participants324

are instructed to walk at four distinct speeds, which include325

very slow (0.53 ± 0.1 m/s), slow (0.75 ± 0.1 m/s), free (1.15326

± 0.08 m/s), and fast (1.56± 0.21 m/s) speeds. The sEMG sig-327

nals are captured from the bicepsfemorisshorthead (BFS)328

and the rectusfemoris (RF) as they are the primary flexor329

and extensor of the knee joint. In this study, we normalize330

each gait cycle into 100 frames for model training and testing,331

and the original data for model extrapolation evaluation. In332

the model training and testing session, each walking trial333

sample is formatted into a source matrix that includes the334

time step, gait motion data (i.e. ground truth θ and the inverse335

dynamics-based F ), and enveloped sEMG signals. All of the336

samples from different participants are combined to create a337

comprehensive dataset for model training and testing.338

B. Self-collected dataset of wrist motions339

Our wrist motions experiment, approved by the MaPS and340

Engineering Joint Faculty Research Ethics Committee of the341

University of Leeds (MEEC 18-002), involved six participants342

with signed consent. Participants were instructed to keep343

their torso straight with their shoulder abducted at 90 degrees344

and their elbow joint flexed at 90 degrees. The VICON345

motion capture system is used to record continuous wrist346

flexion/extension motion. Joint motions are calculated using347

an upper limb model with 16 reflective markers with 250348

Hz sampling rate. Concurrently, sEMG signals are captured349

from the primary wrist muscles (n = 1, 2,..., 5), including the350

flexorcarpiradialis (FCR), the flexorcarpiulnaris351

(FCU), the extensorcarpiradialislongus (ECRL),352

the extensorcarpiradialisbrevis (ECRB), and the353

extensorcarpiulnaris (ECU) using Avanti Sensors354

(sampling rate is 2000 Hz). Electrodes are placed by355

palpation and their placement is validated by observing the356

signal during contraction before the experiment. The sEMG357

signals and motion data (i.e. ground truth θ and the inverse358

dynamics-based F ) were synchronized and resampled at 1000359

Fig. 4. Experimental picture for sEMG collection: electrodes are placed
on five primary muscles of wrist joint, including FCR, FCU, ECU, ECRL
and ECRB. More experimental details can be found in [44]

Hz. Each participant performed five repetitive trials with a 360

three-minute break between trials to prevent muscle fatigue. 361

The recorded sEMG signals are pre-processed by a 20 362

Hz and 450 Hz band-pass filter, full rectification, and a 6 363

Hz low-pass filter. These signals are then normalized based 364

on the maximum voluntary contraction recorded prior to the 365

experiment, yielding the enveloped sEMG signals. The reason 366

for using the envelopes sEMG is that, compared with the raw 367

sEMG signals, the enveloped sEMG, being smoother, might 368

lead to more stable generator training as they reduce high- 369

frequency noise and fluctuations present in the raw signals, and 370

further alleviate the problems during the learning process, such 371

as training stability, convergence speed, feature representation, 372

and overfitting. We normalize each motion cycle into 156 373

frames for model training and testing, and the original data for 374

model extrapolation evaluation. A total of 360 motion data are 375

then combined to create a comprehensive dataset for model 376

training and testing, and 6 motion data are used for model 377

evaluation. 378

C. Benchmark models and parameter settings 379

To evaluate the performance and effectiveness of the pro- 380

posed physics-informed policy gradient for low-shot genera- 381

tive adversarial learning, the benchmark models employ three 382

representative methods, including physics-Informed convolu- 383

tional neural network (PI-CNN) [17] which represents the 384

state-of-the-art deep learning based musculoskeletal modeling 385

method, ML-ELM [45] which represents the general mus- 386

culoskeletal modeling method, and the vanilla GAN which 387

represents the traditional GAN family without physical-law 388

[32]. 389

D. Evaluation metrics 390

The evaluation metrics include 1) the metrics for evaluating 391

the quality of the generated samples including the information 392

entropy associated peak signal-to-noise ratio (PSNR) [46], 393

coefficient of Determination (R2) [47], root mean square 394

error (RMSE) [18], Spearman’s Rank Correlation Coefficient 395
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(SRCC) [48], and 2) the metrics for evaluating the mode396

collapse of GANs, including 1) inception score (IS) [34], and397

2) Frechet inception distance (FID) [49].398

The IS measures both the quality of generated time-series399

data and their diversity, reflecting the probability of mode400

collapse in the model training process. In this study, we401

refer thereferenced [F̂ , θ̂] as ref and the generated data402

Gσ(sEMG0:T ) as g. It is desirable for the conditional proba-403

bility, p(ref |g)0:T to be highly predictable (low entropy), that404

is, the probability density function is less uniform. The diver-405

sity of the generated data can be measured with the marginal406

probability, p(ref0:T ) =
∫
p(ref |g). The less uniform (low407

entropy) the marginal probability is, the less the diversity of408

the generated data is. Through computing the KL-divergence409

between these two probability distributions, the IS is computed410

with the equation below:411

IS = exp[EsEMG∼p(sEMG)[DKL(p(ref |g)||ref)]] (11)

The Frechet Inception Distance (FID) score is a metric412

calculating the distance between the feature vectors extracted413

from the reference and generated data. The FID is sensitive414

to mode collapse. Through modelling the distribution of the415

features extracted from an intermediate layer with a multivari-416

ate Gaussian distribution, the FID between the reference and417

generated data is calculated using the following equation.418

FID = ||Mref −Mg||
2
2 + Tr(Cref +Cg − 2(Crf ×Cg)

1/2)
(12)

where Mrf and Mg refer to the feature-wise means of the419

referenced [F̂ , θ̂] and the generated data Gσ(sEMG0:T ) in420

discriminator model, respectively, and Cref and Cg are the421

covariance matrix for the referenced and generated feature422

vectors, respectively.423

IV. RESULTS AND DISCUSSION424

In this section, we evaluate the performance of the proposed425

physics-informed low-shot learning in the knee joint and wrist426

joint scenarios. We first carry out overall comparisons of the427

results from the proposed and benchmark methods. We also428

evaluate the model performance on small training data and429

handling mode collapse. Lastly, we investigate the robustness430

and generalization performance of the proposed method in431

intersession scenarios. The training of the proposed framework432

and benchmark methods was conducted using PyTorch on a433

workstation equipped with NVIDIA Quadro K4200 graphics434

cards and 256G RAM.435

A. Overall evaluation of the muscle force dynamics436

modeling437

In this section, we first carry out overall comparisons438

between the proposed and benchmark methods on the test439

dataset. Fig. 5 demonstrates the overall results of the joint440

kinematics generation in one motion circle from the proposed441

and benchmark methods for both the knee joint (the first row of442

Fig. 5) and wrist joint cases (the second row of Fig. 5). The443

average joint kinematics and standard deviation distribution444

from the proposed method align well with the ground truth445
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Fig. 5. Comparison of the average knee joint kinematics (the first row)
and wrist joint kinematics (the second row) within one motion cycle
between the ground truth and the generated data from the proposed
and benchmark models. The shaded areas represent the mean ± one
standard deviation of the kinematics.

R
F

B
F

S

Proposed PI-CNN GAN ML-ELM

Time/ms Time/ms Time/ms Time/ms

Inverse dynamics references Generated data

Time/ms Time/ms Time/ms Time/ms

Fig. 6. Comparison of the average knee muscle force dynamics within
one gait cycle between the real-target and the generated muscle force
data from the proposed and benchmark models. The shaded areas
represent the mean ± one standard deviation of the muscle force for
BFS and RF.

in both the knee joint and wrist joint cases. These findings 446

indicate the proposed model achieves the best performance 447

among the benchmark models on the unbiased estimation of 448

the joint kinematics. 449

Similarly, Fig. 6 and Fig.7 demonstrates the overall results 450

of the muscle force estimations in one motion circle for 451

both the knee joint (i.e. RF and BFS) and wrist joint (i.e. 452

FCR, FCU, ECRL, ECRB, and ECU) cases, respectively. The 453

average muscle forces estimated by the proposed method align 454

well with the inverse dynamics, demonstrating the excellent 455

multiple muscle tracking capability of the proposed model. In 456

addition, the standard deviation distribution of the proposed 457

model-generated muscle forces is perfectly consistent with the 458

standard deviation distribution of the inverse dynamics-based 459

references. More importantly, the muscle force estimated by 460

the proposed method is more sensitive to the biophysical 461

fluctuations of the referenced muscle force. These results 462

indicate that the proposed model achieves the best performance 463

among the benchmark models on the unbiased estimation of 464

the muscle force from the multi-channel sEMG signals. 465

To further assess the extrapolation performance quantita- 466
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Fig. 7. Comparison of the average wrist muscle force dynamics within
one motion cycle between the real-target and the generated muscle
force data from 5-channel sEMG signal. The shaded areas represent
the mean ± one standard deviation of the muscle force for FCR, FCU,
ECRL, ECRB, and ECU.

tively, we present detailed comparisons of the proposed and467

benchmark models on both the test data and evaluation data.468

Table I and Table II respectively show the results for the knee469

joint case and the wrist joint case. The results indicate that the470

proposed model performs best on both of the testing and eval-471

uation data. Specifically, for model testing, the PSNR, R2,472

RMSE, SRCC of the proposed model are 15.57%, 6.22%,473

28.08%, 7.2% higher than that of the second best model (i.e.474

PI-CNN). For model evaluation, the PSNR, R2, RMSE,475

SRCC of the proposed model are 24.72%, 16.29%, 38.99%,476

17.66% higher than that of the second best model (i.e. GAN).477

In addition, because the evaluation data involve the original478

sEMG recordings, the comparison of the testing results and479

evaluation results indicates the model extrapolation from the480

experimental scenarios to real scenarios. The proposed model481

shows the best-extrapolated estimation of muscle force and482

joint kinematics among the benchmark models, the results483

from the testing data and evaluation data are consistent. In484

contrast, the performance of the benchmark models shows a485

serious decline in evaluation data.486

B. Evaluation of real-time performance487

The real-time performance metrics, including the long-488

term accuracy, inference latency, and model throughput, are489

important to evaluate the model performance in real-world490

scenarios with varied locomotion amplitudes and periods. In491

this section, we use joint kinematics estimation as a study case492

to evaluate the real-time performance of our proposed models.493

Firstly, to evaluate the long-term accuracy, the proposed model494

and the benchmark models are performed on the original joint495

kinematics (ground truth) data. The comparisons, as shown496

in Fig. 8, illustrate that the proposed model performs best497

TABLE I

THE EVALUATION OF THE PROPOSED AND BENCHMARK MODELS ON

KNEE JOINT CASE WITH TWO-CHANNELS SEMG.

Model test

Methods PSNR R2 RMSE SRCC

RF

Proposed 91.91 0.88 11.32 0.92
PI-CNN 77.45 0.84 19.64 0.85

GAN 75.54 0.82 18.25 0.81
ML-ELM 59.94 0.76 25.62 0.72

BFS

Proposed 93.45 0.93 11.93 0.93
PI-CNN 76.93 0.87 19.21 0.83

GAN 76.17 0.85 18.35 0.79
ML-ELM 62.66 0.78 26.43 0.73

θ

Proposed 34.79 0.91 5.73 0.92
PI-CNN 30.16 0.84 5.97 0.89

GAN 30.89 0.88 6.57 0.85
ML-ELM 21.33 0.75 11.25 0.73

Model evaluation

RF

Proposed 88.89 0.82 11.21 0.83
PI-CNN 58.91 0.59 24.17 0.6

GAN 68.72 0.7 26.51 0.69
ML-ELM 46.79 0.53 28.75 0.5

BFS

Proposed 91.84 0.91 11.91 0.84
PI-CNN 58.19 0.61 23.58 0.58

GAN 69.26 0.72 25.79 0.67
ML-ELM 49.21 0.55 38.98 0.51

θ

Proposed 34.89 0.92 5.45 0.91
PI-CNN 23.43 0.59 8.3 0.62

GAN 28.27 0.75 7.89 0.72
ML-ELM 17.19 0.53 18.44 0.51
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Fig. 8. Comparison of the real-time performance of the proposed model
and the benchmark models on long-term joint kinematics estimation for
wrist joint case (a-d) and knee joint case (e-f).

accuracy for the long-time joint kinematics estimation on both 498

the wrist joint and knee joint cases. In contrast, the benchmark 499

models (e.g. see Fig. 8f-h) do not fit well with the varied 500

amplitudes of the real-time joint kinematics dynamics. Such 501

findings are consistent with the results investigated in section 502

IV-A, suggesting that the proposed model achieves the most 503

robust results on real-time joint kinematics estimations. 504

Secondly, to evaluate the balance of the models between 505

the inference latency and model throughput, we conduct the 506

comparison of the inference latency and model throughput of 507

the proposed model and the benchmark models for the real- 508

time long-term joint kinematics estimation, as shown in Fig. 509

9. Our results show that, while PI-CNN has the lowest latency 510
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TABLE II

THE EVALUATION OF THE PROPOSED AND BENCHMARK MODELS ON WRIST JOINT CASE WITH FIVE-CHANNELS SEMG

Model test

Methods PSNR R2 RMSE SRCC Methods PSNR R2 RMSE SRCC

FCR

Proposed 31.91 0.92 5.32 0.94

FCU

Proposed 33.61 0.93 4.37 0.96
PI-CNN 27.45 0.84 9.64 0.83 PI-CNN 29.01 0.86 10.43 0.83

GAN 25.54 0.86 8.25 0.81 GAN 25.27 0.88 8.6 0.79
ML-ELM 19.94 0.74 15.62 0.72 ML-ELM 18.42 0.76 14.95 0.73

ECRL

Proposed 84.21 0.95 14.68 0.94

ECRB

Proposed 82.93 0.95 14.78 0.97
PI-CNN 79.4 0.84 25.08 0.83 PI-CNN 79.75 0.88 24.32 0.81

GAN 61.54 0.9 24.55 0.82 GAN 59.71 0.91 24.62 0.79
ML-ELM 57.76 0.77 42.41 0.76 ML-ELM 57.4 0.78 41.82 0.77

ECU

Proposed 30.81 0.92 5.14 0.92

θ

Proposed 34.32 0.97 3.75 0.96
PI-CNN 30.31 0.84 10.06 0.82 PI-CNN 29.94 0.84 4.63 0.88

GAN 28.06 0.87 7.92 0.8 GAN 30.34 0.86 4.51 0.85
ML-ELM 19.85 0.75 14.72 0.71 ML-ELM 21.15 0.76 9.62 0.74

Model evaluation

FCR

Proposed 29.96 0.87 5.05 0.89

FCU

Proposed 31.35 0.88 4.15 0.91
PI-CNN 20.49 0.63 10.23 0.62 PI-CNN 21.75 0.65 9.82 0.62

GAN 22.43 0.77 11.43 0.73 GAN 21.8 0.79 12.74 0.71
ML-ELM 14.09 0.56 19.72 0.54 ML-ELM 13.57 0.57 21.21 0.55

ECRL

Proposed 79.76 0.9 13.95 0.89

ECRB

Proposed 78.33 0.9 14.04 0.92
PI-CNN 58.65 0.63 28.81 0.62 PI-CNN 59.81 0.66 28.24 0.61

GAN 54.52 0.81 32.1 0.74 GAN 53.7 0.82 24.11 0.71
ML-ELM 42.45 0.58 39.81 0.57 ML-ELM 42.3 0.59 51.37 0.58

ECU

Proposed 28.64 0.87 4.88 0.87

θ

Proposed 31.75 0.92 3.56 0.91
PI-CNN 22.29 0.63 10.55 0.62 PI-CNN 21.73 0.63 6.47 0.66

GAN 24.41 0.78 11.13 0.72 GAN 25.58 0.77 8.06 0.77
ML-ELM 14.28 0.56 16.04 0.53 ML-ELM 15.43 0.57 11.22 0.56
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Fig. 9. The inference latency and model throughput of the proposed
model and the benchmark models for the real-time evaluations .

time and GAN has the highest throughput, the proposed511

model achieves a great balance between inference latency512

and model throughput (i.e. it achieves the second-best real-513

time performance on both the latency time and throughput514

evaluation). These resultant findings suggest that the proposed515

model achieves the best real-time performance on the long-516

term estimation of the joint kinematics estimations.517

C. Evaluation of low-shot learning518

The proposed physics-informed policy gradient incorpo-519

rates the temporal relationship of the muscle force and joint520

kinematics dynamics from the Lagrange motion equation,521

resulting in an improved kinetics estimation from the low-shot522

samples. Initially, the physical information is used to constrain523

the model reward accumulated following the periodic multi-524

channel sEMG signals. And then, the accumulative reward is525

used to guide the Monte Carlo search to generate the unbiased526

estimation of muscle force and joint kinematics dynamics.527

To quantitatively assess the effectiveness of the proposed 528

method on low-shot learning, we firstly regard the modeling 529

results shown in Table I and Table II as the baselines that 530

represent the optimal performance of the proposed and bench- 531

mark models, and then we train the models with different 532

training sample sizes for 1500 epochs as low-shot learning 533

learning. The percentages of the low-shot learning learning 534

results and the baseline joint kinematics modeling results, 535

denote as P−PSNR, P−R2, P−RMSE, and P−SRCC, 536

are used as the evaluation metrics to describe what percentage 537

of the performance of the baseline models can be achieved 538

with the new models. 539

The evaluation of the low-shot learning of the proposed and 540

benchmark models on the knee joint and wrist joint kinematics 541

modeling is shown in Table III. It is obvious that the proposed 542

model with a physics-informed policy gradient outperforms all 543

of the benchmark models in low-shot learning. The 10-shot 544

learning is able to achieve over 80% baseline performance in 545

terms of PSNR, R2, RMSE, and SRCC. In comparison, 546

the PI-CNN and GAN models require at least 80-shot learning 547

to reach the similar modeling performance. Therefore, it can 548

be inferred that the proposed physics-informed policy gradient 549

relies heavily on the physical representations and temporal 550

structural characteristics of the training data, rather than the 551

quantity of the data. This is encouraging as it suggests that the 552

proposed method facilitates the applications of deep learning 553

in biomechanical engineering from the general issue of limited 554

sample size. 555

D. Mode collapse evaluation 556

Mathematically, the generative model is easy to find a 557

biased estimation caused by mode collapse, which leads to 558

the generated samples only being located in the partial real 559
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TABLE III

EVALUATION OF THE LOW-SHOT LEARNING PERFORMANCE OF THE PROPOSED AND BENCHMARK MODELS ON JOINT KINEMATICS MODELING. THE

P − PSNR, P − R2 , P − RMSE, AND P − SRCC RESPECTIVELY REPRESENT THE SNR, R2 , RMSE, AND SRCC OF THE n-SHOT

LEARNING AS A PERCENTAGE OF THE VALIDATION METRICS OF THE BEST JOINT KINEMATICS RESULTS REPORT IN TABLE.I AND TABLE II.

Knee joint case Wrist joint case

P-PNSR P-R2 P-RMSE P-SRCC P-PNSR P-R2 P-RMSE P-SRCC

Proposed

1-shot 75% 74% 76% 75% 76% 73% 77% 75%
10-shot 83% 82% 84% 87% 82% 81% 84% 88%
20-shot 86% 84% 86% 86% 87% 86% 88% 84%
40-shot 92% 91% 92% 91% 93% 91% 93% 94%
60-shot 94% 94% 92% 94% 96% 97% 93% 93%
80-shot 93% 94% 95% 94% 92% 93% 97% 94%
100-shot 95% 94% 93% 93% 96% 94% 93% 96%

P-PNSR P-R2 P-RMSE P-SRCC P-PNSR P-R2 P-RMSE P-SRCC

PINN

1-shot 41% 41% 41% 39% 42% 42% 44% 39%
10-shot 44% 42% 44% 44% 46% 42% 45% 47%
20-shot 68% 69% 72% 73% 69% 70% 72% 76%
40-shot 76% 76% 77% 79% 77% 78% 8% 78%
60-shot 79% 77% 76% 75% 78% 77% 76% 76%
80-shot 82% 83% 84% 85% 81% 86% 83% 84%
100-shot 84% 87% 85% 87% 85% 88% 85% 86%

P-PNSR P-R2 P-RMSE P-SRCC P-PNSR P-R2 P-RMSE P-SRCC

GAN

1-shot 46% 44% 47% 49% 45% 45% 48% 51%
10-shot 45% 45% 45% 47% 48% 46% 44% 48%
20-shot 66% 69% 7% 73% 67% 71% 70% 73%
40-shot 72% 73% 74% 74% 74% 72% 72% 76%
60-shot 79% 78% 81% 81% 78% 78% 80% 8%
80-shot 81% 83% 85% 85% 79% 83% 86% 84%
100-shot 84% 86% 87% 89% 86% 87% 86% 91%

P-PNSR P-R2 P-RMSE P-SRCC P-PNSR P-R2 P-RMSE P-SRCC

ML-ELM

1-shot 36% 35% 37% 38% 34% 37% 36% 37%
10-shot 38% 44% 45% 39% 39% 39% 42% 38%
20-shot 57% 56% 55% 54% 59% 56% 57% 55%
40-shot 62% 62% 65% 59% 65% 61% 68% 58%
60-shot 66% 65% 67% 66% 65% 64% 66% 67%
80-shot 75% 73% 72% 74% 77% 74% 71% 74%
100-shot 78% 79% 78% 81% 78% 82% 81% 82%

distribution where it can fool the discriminative model and560

ignore other modes of real distribution during the adversarial561

learning. To handle this issue, the proposed physics-informed562

policy gradient alleviates the random noises and makes the563

generated feature sequence governed by the physics law, which564

facilitates the estimation of compound kinematics patterns and565

achieves the unbiased estimation of kinematics generation.566

In order to evaluate the performance of the proposed method567

on alleviating the mode collapse, we test and compare the568

proposed model with the benchmark model from two aspects:569

1) a quantitative evaluation of the diversity of the generated570

motions, based on the distance-derived IS and FID metrics;571

and 2) a monotonicity assessment on the generator iterations572

during the network training process.573

Firstly, the quantitative evaluation for the diversity of the574

generated motions is conducted on the testing dataset. The575

higher IS and lower FID indicate the better diversity of the576

generated motion samples, which further indicates the allevi-577

ation of mode collapse. The results demonstrated in Table IV578

show the proposed model outperforms the competitors in terms579

of the IS and FID measurements for both the knee joint and580

wrist joint motion generation. In addition, the benchmark GAN581

model, with the network architecture as same as the proposed582

TABLE IV

THE COMPARISON OF INCEPTION SCORES (IS) AND FRECHET

INCEPTION DISTANCES (FID) OF THE JOINT KINEMATICS GENERATED

FROM THE PROPOSED AND BENCHMARK MODELS ON THE MODEL TEST

DATASETS.

Knee joint case Wrist joint case
IS FID IS FID

Proposed 15.39 64.22 12.5 41.95
PINN 12.68 71.13 8.03 48.8
GAN 13.11 78.54 8.43 46.13

ML-ELM 10.59 79.83 6.79 57.05

model, is 32.83% lower in IS, and 14.1% higher in FID than 583

the proposed model. These findings suggest that the proposed 584

physics-informed policy gradient optimization approach has 585

great performance in alleviating the mode collapse during 586

adversarial learning. 587

Secondly, in order to further explore the performance of 588

the proposed physics-informed policy gradient on the mode 589

collapse issue, we compare the generator iterations of the same 590

GAN architectures with and without the physics-informed 591

policy gradient (Fig. 10). Because we trained our model on 592
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a b
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GAN without Physics-informed 

policy gradient
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policy gradient
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Fig. 10. Changes of IS and FID scores of the generated joint kinematics
during the first 500 iterations of the GAN model using the proposed
physics-informed policy gradient and the typical GAN without using the
physics-informed policy gradient. The test is conducted on knee joint
cases (a) and (b) and wrist joint cases (c) and (d), respectively.

a few-shot dataset, the training data only covered limited593

variations and modes. Therefore, in the initial stage of training,594

the generator will generate data with more discrete diversities595

(similar to random noise) than the reference. As training596

progressed and the model’s accuracy improved, the variation in597

the data created by the generator began to mirror the reference598

data’s distribution more closely. In the late stage of training,599

for the traditional GAN-based model, the diversity of the600

generated data may plateau or decrease due to the limitations601

of few-shot training and the occurrence of mode collapse.602

In contrast, our model, by introducing the proposed physics-603

informed policy gradient, is able to generate data following the604

physics law, which greatly enriches the diversity of generated605

samples for the few-shot reference samples. In addition, the606

IS and FID curves from the GAN with the proposed physics-607

informed policy gradient are more monotonous than the GAN608

without the physics-informed policy gradient, along with the609

increase of iteration number. Thus, the curves of IS from the610

proposed physics-informed policy gradient steadily increase611

and the curves of FID steadily decrease for both knee joint612

(10a and b) and wrist joint (10c and d) cases.613

E. Model application on intra-session scenario614

In musculoskeletal modeling, the intra-session scenario is615

regarded as the multiple sets of motions that occur within616

the same session. To test the robustness of the proposed617

model in the intra-session scenario, we use the knee joint618

data with different walking speeds for one subject as the619

intra-session evaluation dataset. The muscle force and joint620

kinematics modeling results, as shown in Fig. 11, indicate621

that the proposed framework performs best among the baseline622

methods. Importantly, the median and interquartile values of623

the proposed model with physics-informed policy gradient624

remain consistent with the real data across different walking625

speeds. In comparison, the median and quartiles of the baseline626

Real

Generated

PR  =  Proposed

PI   =  PI-CNN

ML = ML-ELMMedian

Interquartile

Fig. 11. Robustness evaluation of the proposed model (PR), PI-CNN
(PI), GAN, and ML-ELM (ML) on the intra-session scenario.

methods, such as the GAN model without using the physics- 627

informed policy gradient, show significant inconsistencies with 628

the real data, indicating a declined performance in the intra- 629

session scenario due to the variability in walking speeds. These 630

findings suggest that the model optimized by the proposed 631

physics-informed policy gradient has great robustness in intra- 632

session scenarios. 633

F. Model application on inter-session scenario 634

The inter-session scenario generally refers to a situation 635

where motion data are collected across multiple sessions. To 636

test the robustness of the proposed model in the inter-session 637

scenario, we use the wrist joint data with different subjects as 638

the evaluation dataset. The muscle force and joint kinematics 639

modeling results, as shown in Fig. 12, indicate that the pro- 640

posed framework performs best on the musculoskeletal mod- 641

eling among the baseline methods. Specifically, the median 642

and interquartile values of the proposed model with physics- 643

informed policy gradient remain consistent with the real data 644

across different subjects. In comparison, the baseline methods, 645

such as the GAN model without using the physics-informed 646

policy gradient, show a declined performance in the inter- 647

session scenario due to the variability in walking speeds. These 648

findings suggest that the model optimized by the proposed 649

physics-informed policy gradient has great robustness in inter- 650

session scenarios. 651

V. CONCLUSION 652

This paper develops a physics-informed low-shot adversarial 653

learning method, which seamlessly integrates the Lagrange 654

equation of motion and inverse dynamic muscle model into the 655

GAN framework, for the unbiased estimation of the muscle 656

force and joint kinematics from the small size sEMG time 657

series. Specifically, the Lagrange equation of motion is intro- 658

duced as physical constraint, which facilitates the generator 659

to estimate the muscle force and joint kinematics with more 660

temporal structural representations. Meanwhile, the physics- 661

informed policy gradient rewards the physical consistency of 662

the generated muscle force and joint kinematics and the inverse 663
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Fig. 12. Robustness evaluation of the a) proposed model, b) PI-CNN,
c) GAN, and d) ML-ELM (ML) on the inter-session scenario.

dynamics-based references, which improve the extrapolation664

performance of the generative network. Comprehensive experi-665

ments on the knee joints and wrist joints indicate the feasibility666

of the proposed method. The resultant findings suggest that the667

proposed method performs well in handling the mode collapse668

issue of GAN on the small sample data, and the estimations of669

the muscle forces and joint kinematics are unbiased compared670

to the physics-based inverse dynamics. These findings suggest671

that the proposed method may reduce the gaps between labora-672

tory prototypes and clinical applications. However, it is worth673

noting that the physics reference (i.e. the inverse dynamics for674

this study) plays an important role in constraining the physics675

representation of the generated samples. Therefore, the choice676

of physics module may vary when the proposed approach is677

extended to other application cases.678

Going forward, we plan to delve deeper into the proper-679

ties of the physics-informed deep learning framework in the680

context of sEMG-based musculoskeletal modeling. We aim to681

investigate the potential of the low-shot learning-based model682

on the continuous and simultaneous estimation of multiple683

joint kinematic chains from sEMG signals. For coupled joint684

movement, each joint can be represented as a generalized685

coordinate, and its interactions with other joints would result686

in coupled differential equations that describe the system’s687

motion. And then we can use the coupled motion equations to688

replace the physics law we used in Eq.3 to guide the model689

training for coupled joint movement. We also plan to adjust690

the compositions of the proposed method to cater to different691

application scenarios. Furthermore, we intend to evaluate the692

reliability and accuracy of the proposed framework through693

coupled joint movement.694
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