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Vascular flow modelling can improve our understanding of vascular pathol-
ogies and aid in developing safe and effective medical devices. Vascular
flow models typically involve solving the nonlinear Navier–Stokes equations
in complex anatomies and using physiological boundary conditions, often
presenting a multi-physics and multi-scale computational problem to be
solved. This leads to highly complex and expensive models that require
excessive computational time. This review explores accelerated simulation
methodologies, specifically focusing on computational vascular flow model-
ling. We review reduced order modelling (ROM) techniques like zero-/one-
dimensional and modal decomposition-based ROMs and machine learning
(ML) methods including ML-augmented ROMs, ML-based ROMs and
physics-informed ML models. We discuss the applicability of each method
to vascular flow acceleration and the effectiveness of the method in addres-
sing domain-specific challenges. When available, we provide statistics on
accuracy and speed-up factors for various applications related to vascular
flow simulation acceleration. Our findings indicate that each type of
model has strengths and limitations depending on the context. To accelerate
real-world vascular flow problems, we propose future research on develop-
ing multi-scale acceleration methods capable of handling the significant
geometric variability inherent to such problems.
1. Introduction
1.1. The motivation for accelerating vascular flow simulations
Despite the widespread use of computational models across many scientific
disciplines, their use in real-time and many-query contexts is limited by their
high computational cost. These scenarios frequently arise in vascular blood
flow modelling. Real-time vascular flow simulations could provide guidance
to clinicians prior to performing a treatment procedure or provide near-instant
feedback during the procedure [1,2]. Many-query vascular flow simulations can
be used to iteratively design new vascular implements, establish safety and
performance measures for treatment devices, and simulate interventions on a
population scale through so-called in silico trials [3].
1.2. Challenges in vascular flow modelling
Vascular flow modelling poses various challenges due to the inherent complex-
ities of the problem, which are highlighted in figure 1 [4,5]. Blood flow
dynamics and tissue perfusion are governed by the Navier–Stokes equations,
which are a nonlinear set of time-dependent partial differential equations [6].
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Figure 1. Vascular flow modelling is a multi-physics, multi-scale problem where nonlinearity and geometric complexity frequently arise.
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Coupling the haemodynamics to solid mechanics or bio-
chemical reaction models may also be required in certain
applications. Fluid–structure interaction (FSI) is required
when vessel distensibility is important or when there is a
complex interaction between blood flow and valves or
implanted devices [7–10]. Biochemical reactions are crucial
in modelling thrombosis and endothelialisation depends on
interactions between blood and blood-contacting surfaces of
devices [11,12]. The constitutive nature of blood adds
additional complexity—it is a suspension containing various
biochemically active particles and molecules, meaning that
multi-phase multi-component flow-biochemistry models
may be required when modelling flow-thrombosis in small
vessels [11,13].
As well as being multi-physical in nature, the length and
time scales in vascular flow problems can differ greatly. Vas-
cular flow is inherently pulsatile, which leads to features such
as flow separation, vortex transport, mixing regions
and impingement varying topologically throughout the
cardiac cycle [14]. Variation in length scale and morphology
can also influence these flow features. This leads to varying
flow regimes in different regions of the vasculature and at
different times of the cardiac cycle. Vascular flow modelling
encompasses short-term processes such as systemic haemo-
dynamics, autoregulation and recanalisation in addition to
long-term processes such as remodelling and thrombosis
[15–18]. Physiological changes due to factors such as age
and lifestyle also have an impact on various flow problems.
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Vastly different length scales are also present, with thrombo-
sis and endothelialisation happening on a molecular level at
the micro-scale, whereas systemic blood flow occurs in
arteries with diameters up to a few centimetres.

Nonlinear effects further complicate vascular flow model-
ling. This can result from the convective nonlinearity in the
Navier–Stokes equation, the geometric complexity of blood
vessels, or the interactions across different length and time
scales between blood flow and other physical and physiologi-
cal phenomena. Nonlinear flow features are often found in
the presence of vascular pathologies such as stenosis, athero-
sclerosis, aneurysms or valve defects [19–22]. Flow–device
interactions can be an additional source of nonlinearity [23–25].

The most prominent complexities in vascular flow model-
ling can be summarised as: (i) nonlinearity, (ii) geometrical
complexity, (iii) multi-physics, (iv) multi-scale in time,
(v) multi-scale in space. In practice, assumptions can be
made to simplify or eliminate these complexities for most
problems, allowing for successful computational modelling.
When aiming to accelerate vascular flow simulations,
problem-specific approaches that are suited to handling par-
ticular types of complexity will be required depending upon
the specific target application.

1.3. Reduced order models and machine learning
for acceleration

Simulation acceleration refers to reducing the run time of
computational models and is typically achieved through
modelling assumptions and simplifications. Reduced order
models (ROMs) are low-order representations of high-order
models that preserve essential model input–output behaviour
at the cost of some model accuracy and are a common
approach for accelerating expensive computational models
[26,27]. ROMs can be categorised into two families, a priori
ROMs and a posteriori ROMs. The former seek to reduce the
order of the system prior to solving the high-dimensional
model, using techniques such as spatial dimension reduction
(SDR) or proper generalised decomposition (PGD). A poster-
iori ROMs are data-driven techniques that depend on first
solving the high-dimensional model or acquiring experimen-
tal data to generate snapshot solution fields. Snapshot data
are decomposed into a reduced representation using, for
example, proper orthogonal decomposition (POD) [28–31],
dynamic mode decomposition (DMD) [32,33] or variants
thereof. The reduced representation can then be advanced
in time directly or combined with projection or interpolation
techniques to construct a ROM. There are a multitude of
ROM techniques, some of which have been applied to
vascular flow problems.

Recent advances in machine learning have improved some
ROM methodologies and provided alternative techniques to
accelerate simulations. Machine learning acceleration methods
operate under a similar paradigm to many ROM techniques,
with an expensive offline training phase that primes the
model for fast online inference in new geometries, parameter
values or time points. There are various ways to use machine
learning in simulation acceleration. Machine learning ROMs
typically use machine learning to augment/replace a com-
ponent of a ROM or they use machine learning entirely in
place of existing ROM components [34,35]. Physics-informed
machine learning strategies are another possibility. In this
approach, flowmeasurements are supplemented by additional
constraints based on the underlying governing equations and
boundary conditions [36]. Physics-agnostic techniques ignore
the underlying physics of the problem, but instead use large
amounts of data to identify mappings from images or geome-
tries to flow quantities of interest [37]. Other techniques
include tailor-made networks designed to handle point-cloud
data [38,39] and operator learning strategies [40,41]. Given
the relatively recent emergence of machine learning simulation
techniques, they have not been widely applied to acceleration
of vascular flow simulations yet.

1.4. Overview
This review aims to provide an overview of various methods
for accelerating simulations (figure 2) and to collate, categorise,
and critique each method with respect to the target application
of vascular flowmodelling.Wedecompose vascular flowmod-
elling into a series of complexities (nonlinearity, geometric
complexity, multi-physics and multi-scale in time and space)
and assess various acceleration methods with respect to these
complexities. For ROM approaches, we provide guidance
onwhat type of vascular problems the methodmay be suitable
for, what problems they have already been applied to, and how
successful these studies were in terms of the accuracy and
acceleration offered by the approach compared to traditional
numerical methods. For machine learning approaches, we
review some common methods, discuss their benefits and
limitations, and advise what vascular problems they may be
suitable for. Throughout this review, we measure acceleration
factors by comparing run times for a single evaluation of
the accelerated and full-order models (FOMs), unless other-
wise stated. For complementary reviews on parametric
model reduction, model order reduction in fluid dynamics,
data-driven cardiovascular flow modelling, machine learning
for cardiovascular biomechanics, real-time simulation of
computational surgery, and the challenges of vascular fluid
dynamics, see [5,26,29,42–44]. Finally, we note that although
this review focuses on vascular flow acceleration, the complex-
ities of this application (nonlinearity, geometric complexity,
multi-physics and multi-scale) are encountered across many
other computationalmodelling domains. Therefore, we believe
this reviewwill be useful to computational vascular flowmod-
elling researchers and the broader computational modelling
community.
2. Reduced order modelling of vascular flow
ROMs aim to reduce the dimensionality of a numerical pro-
blem either by applying prior knowledge of the problem
itself or by inferring knowledge based on previously gathered
data from the system of interest. ROM methods can be
described as a priori or a posteriori, depending on whether the
reduction of the system exploits prior knowledge about
the FOM or information (data) collected after solving it,
respectively. A priorimethods are useful when there exist sym-
metries or other known information about the underlying
system, or when the system is too complex to solve with tra-
ditional techniques. A posteriori methods are useful when
readily available data from the FOM can be used to guide the
construction of the ROM. Another categorisation for ROM
methods is whether the approach is intrusive or non-intrusive.
Intrusive methods require the explicit use of the underlying
high-order numerical implementation of the FOM, whereas
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Figure 2. Taxonomy of various simulation acceleration methods reviewed in this paper.
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non-intrusive methods operate entirely separate to the FOM.
Intrusive methods can be more numerically robust due to
their incorporation of the underlying governing equations,
but non-intrusive techniques can be easier to implement and
use in conjunction with commercial solvers, which are
common when studying fluid dynamics problems. Many cat-
egories of ROM have been applied to vascular flow, with
various benefits and limitations to each approach.
This section will describe some of the most common ROM
techniques and their suitability to model various vascular
flow complexities.
2.1. Spatial dimension reduction
The three-dimensional (3D) unsteady incompressible Navier–
Stokes equations in non-dimensional form are: find
ðu, pÞ [ H1ðV; RdÞ � L2ðV; RÞ s.t.

@u
@t

þ u � ru ¼ �rpþ 1
Re

r2u, r � u ¼ 0, ð2:1Þ

where u is the velocity, p is the pressure and Re is the Reynolds
number dependent upon the fluid density ρ and dynamic
viscosity μ. The spatial dimension is d = 3 except for some
cases of plane symmetric or axisymmetric flow, when d = 2,
and the domain V , Rd has a suitably regular boundary to
ensure the existence of solutions. Spatial dimension reduction
(SDR) involves reducing these equations down to a zero-
dimensional (0D)/one-dimensional (1D)/two-dimensional
(2D) model that describes bulk quantities instead of the full
spatio-temporal flow fields. A comprehensive review of
0D and 1D techniques has been provided by Shi et al. [45].
We provide an overview of this approach, quantify the accel-
eration and accuracy offered, and discuss how applicable this
method is to vascular flow simulation acceleration.
2.1.1. Zero-dimensional models
Lumped parameter models (referred from hereon in as 0D
models) exploit the analogy between hydraulic networks and
electrical circuits. Blood pressure and flow rate are represented
by voltage and current, and the frictional, inertial and elastic
effects of blood flow are described by electrical resistance,
inductance and capacitance, respectively [45]. Established
methods for modelling electrical circuits (Kirchhoff’s current
law, Ohm’s Law for voltage–current) with ordinary differen-
tial equations (ODEs) can then be used to describe vascular
flow problems.

The first 0D models were based on the Windkessel model,
which consists of a capacitor that describes the storage
properties of large arteries and a resistor that describes
the dissipative nature of small peripheral vessels [45]. This
simple approach cannot model specific pressure and flow-
rate changes in particular vascular segments and it cannot
fully describe the effects of arterial impedance, venous pressure
fluctuations, or pulsewave transmission. Various extensions to
this model have been used to capture these more complex
physiological phenomena by adding additional resistors,
inductances, and capacitors. For example, in a system with
capacitance/compliance C, voltage/pressure P, charge/flow
rate Q, inductance/inertia L and resistance R, the two ODEs
describing the system are [46]

C
dP1

dt
þQ2 �Q1 ¼ 0 and L

dQ2

dt
þ P2 � P1 ¼ �RQ2:

ð2:2Þ
Multi-compartment models can also be used to describe flow
and pressure characteristics within specific vascular segments.

2.1.2. One-dimensional models
In 1D models, the form of the velocity profile across the vessel
radius is constrained, which simplifies the 3D governing
equations. 1D blood flow is governed by the axisymmetric
forms of the incompressible continuity and Navier–Stokes
equations, which can be written as

@A
@t

þ @ðAUÞ
@x

¼ 0 and
@U
@t

þU
@U
@x

þ 1
r

@p
@x

¼ f
rA

, ð2:3Þ

where x is a local coordinate describing the vessel segment, A
is the cross-sectional area, U and p are the cross-sectionally
averaged velocity and pressure, ρ is the blood density and f
is a viscosity-dependent term describing the frictional force
per unit length [45,47]. These equations can be further
coupled to a pressure–radius relationship that describes the
elasticity of the vessel wall. The reduced equations can be
solved using various numerical techniques, such as the
method of characteristics [48,49] or finite differences [50].

A primary benefit of 1D models over 0D models is that
they can capture pressure and velocity pulse wave propa-
gation [51]. Waves carry information about the medium in
which they travel, so capturing the pressure and velocity
waves in blood vessels can tell us about the function of
the cardiovascular system and provide information about
various vascular pathologies, such as atherosclerosis and
hypertension [52].

2.1.3. Two-dimensional models
For 2D vascular models, the 3D vessel loses its torsion and cur-
vature, becoming a straightened tube governed by the 2D
Navier–Stokes equations. 2D models include the radial vari-
ation of the velocity and pressure fields in an axisymmetric
tube, whereas 1D models only consider the cross-sectionally



Table 1. Various ROM papers using SDR for vascular flow problems. Acceleration is measured by comparing the time taken for one ROM evaluation with one
FOM evaluation. This is the case for all tables presenting acceleration statistics, unless otherwise stated.

reference method application accuracy
acceleration
factor

Grinberg et al. [47] 1D pulsatile intracranial blood flow — 147 000a

Blanco et al. [55] 1D FFR calculation in coronary arteries 98% WCT: 302

NT: 2870

Xiao et al. [56] 1D baseline CCA .99% —

baseline aorta .98% —

aortic bifurcation .98% —

Papadakis & Raspaud [57] 1D (extended for stenosis) wave propagation in stenotic vessels .99% —

Jonášová et al. [58] 1D outlet flow rate in hepatic vein network 88% —

AW: 99% —

Mirramezani & Shadden [59] 1D flow rate and pressure calculations in

various vascular domains

.93% >1000

Gashi et al. [54] 2D steady FFR calculation in coronary arteries 95% 162 000

2D unsteady 98% 195
aCalculated by assuming a linear relationship between number of CPUs and simulation execution time.
Where accuracy is not reported, only qualitative ROM–FOM agreement was presented in the referenced paper.
AW, area-weighted; CCA, common carotid artery; FFR, fractional flow reserve; NT, normalised time (WCT × number of computation tasks); ROM, reduced order
model; SDR, spatial dimension reduction; WCT, wall clock time.
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averaged quantities. These models are used less frequently
now due to improved computer processing power and
widely available commercial solvers that make solving the
3D problem more tractable [53]. However, in certain appli-
cations, such as the calculation of fractional flow reserve
(FFR), 2D models are shown to be significantly faster
than 3D models while retaining a clinically viable level of
accuracy [54].

2.1.4. Summary
Table 1 summarises several vascular flow ROM studies using
SDRmethods.We include the specific application, the reported
accuracy compared to the FOM as a baseline, and the accelera-
tion factor compared to the FOM. The accuracy reported for
most ROMs was .90% and the acceleration factors ranged
from102 to 105.However, theROMsare limited to investigating
simple flow parameters, such as FFR, pressure drop or flow
rates [60]. Gashi et al. [54] demonstrated that adding complex-
ity (steady state to unsteady) reduces the acceleration offered
by three orders of magnitude. Mirramezani & Shadden [59]
presented a comprehensive study applying distributed 1D
lumped parameter models to aortic, aorto-femoral, coronary,
cerebrovascular, pulmonary and paediatric blood flow pro-
blems. Analytical expressions were used to allow the model
to capture energy losses along vascular segments due to
viscous dissipation, unsteadiness, flow separation, vessel
curvature and vessel bifurcations.

2.1.5. Conclusion
Zero-dimensional SDR models are suitable for global
pressure/flow rate analysis of large regions of the cardio-
vascular system [45]. 1D models assume axisymmetric flow
solutions to capture pressure and velocity pulse wave propa-
gation [51]. 2D models can evaluate local flow fields with
radial velocity variation in axisymmetric domains [61].
A prominent use of SDR models is providing boundary
conditions to 3D models that incorporate information
from significantly larger portions of the vasculature than
it would be feasible to model in 3D [62–70]. In this way, SDR
models can facilitate multi-scale spatial models that provide
well-resolved 3D flow information in local regions of interest
while still including the effect of distal or proximal regions.
Zero-dimensional SDR models are unable to describe the non-
linearities that can arise in cardiovascularmechanics due to the
convective acceleration term in the Navier–Stokes equations
and/or the complex velocity–pressure relationship in distensi-
ble vessels [45]. 1D SDR models can approximate the effect of
vessel wall elasticity on blood flow by adding a constitutive
law that relates blood pressure to vessel cross-sectional area
[51]. SDR models are generally only suitable for bulk velocity/
pressure analysis in relatively simple geometries (i.e. axisymme-
try is a valid assumption). They are typically unsuitable for
complex multi-physics or multi-scale temporal problems but
well suited for spatial multi-scale problems.
2.2. Proper orthogonal decomposition
SDRmethods depend upon being able to apply geometrical sim-
plifications (i.e. axisymmetry) or analogies with electrical circuit
analysis to the vascular flow problem at hand to simplify the 3D
Navier–Stokes equation into something easier and faster to solve.
While SDR methods can be useful in capturing bulk quantities
across large spatial scales, the applicability of these methods to
other vascular flow complexities is limited. An alternative
approach is to solve the expensive 3D Navier–Stokes equations
and leverage the wealth of information contained in the data
generated from these simulations to develop a ROM for the
specific problem solved in the first instance. This is often referred
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to as a data-driven (or a posteriori) approach, as prior to ROM
construction the FOM must be solved for some instances.

The method used to extract low-dimensional structures
from high-dimensional data is key to any data-driven
ROM. The most commonly used approach for this in fluid
dynamics is the POD. POD was first introduced in fluid
dynamics to analyse the structure of experimental turbulent
flow and was later adopted for the purpose of efficient simu-
lation and control of fluid flows [71,72]. POD extracts
leading-order information from data in the form of orthogonal
modes ordered by their energetic contribution to the data. In
fluid flows, these modes typically capture spatial information
contained within the data.

Before performing the POD, a snapshot matrix U is con-
structed by stacking columns of spatial data from different
timesteps or input parameter configurations in a large
matrix. A mean state derived by averaging over the timesteps
or parameter configurations will often be subtracted from
the snapshot matrix prior to performing the decomposition.
Typically, the snapshot matrix will have many more rows
than columns. POD is then performed by taking the singular
value decomposition (SVD) of U

U ¼ FSV�, ð2:4Þ
whereΦ is a matrix of the left singular vectors, or PODmodes,
S is a diagonal matrix containing the singular values and V* is
a matrix of right singular vectors. The success of POD inmodel
order reduction stems from the observation that, in most com-
plex physical systems, the meaningful behaviour of a system
is captured by a low-dimensional subspace spanned by
the first few POD modes. The singular values quantify the
relative importance of each POD mode based upon its ener-
getic contribution to the snapshot matrix. This knowledge
makes it possible to truncate the system to a certain energy
level by discarding the low-energy POD modes and retaining
the high-energy modes.

POD-based ROMs have seen widespread application,
including classical fluid dynamics problems [73–75], aerody-
namics [76], FSI [77,78] and blood flow problems [30,78–83].
However, POD alone is not sufficient to build a ROM. POD
provides a low-dimensional representation of the snapshots
of the system, but the low-order representation must be com-
bined with projection or interpolation techniques to build a
ROM that can predict solution fields at new timesteps or
input parameter configurations.

2.2.1. Proper orthogonal decomposition with projection
Projection-based methods use the underlying governing
equations of a system and POD modes to construct a ROM.
The governing equations are projected onto the POD basis
to derive a set of reduced equations embedded in this
low-dimensional space. A common approach is to use the
Galerkin projection (GP) [84,85]. POD-GP ROMs are among
the most common ROMs that have been applied to vascular
flow problems [30,82,83].

A POD-GP ROM can be derived by decomposing the
velocity field u(x, t)

uðx, tÞ �
XN
j¼1

ajðtÞFjðxÞ, ð2:5Þ

where Φj denote the POD modes and aj are the temporal coef-
ficients. The Galerkin projection of the Navier–Stokes
equations is written as

hFi,
@u
@t

þ u � rui ¼ �hFi, rpi þ Fi,
1
Re

r2u
� �

, ð2:6Þ

where 〈 · , · 〉 represents the inner product. Following some
algebraic manipulation using the decomposition from
equation (2.5), the POD-GP ROM can be written as [86]

daiðtÞ
dt

¼ Ai þ
XN
j¼1

BijajðtÞ þ
XN
j¼1

XN
k¼1

CijkajðtÞakðtÞ, i ¼ 1, . . . , N:

ð2:7Þ

Ai, Bij and Cijk are tensors determined by the specific form of
the governing system. The functional forms of the coefficient
tensors are

Ai ¼ � 1
Re

hrFi, r�ui � hFi, ð�u � rÞ�ui

Bij ¼ �hFi, ð�u � rÞFji ¼ hFi, ðFj � rÞ�u� 1
Re

hrFi, rFji

and Cijk ¼ �hFi, ðFj � rÞFki,

9>>>>>=
>>>>>;

ð2:8Þ

where �u ¼ Ð T
0 uðx, tÞ dt is the time-averaged flow [29]. The

double sum in equation (2.7) arises due to the nonlinearity
of the Navier–Stokes equations and is responsible for the
slower ROM speeds and greater storage demands required
in the case of nonlinear systems.

Nonlinearity When applied to problems governed by non-
linear equations, POD-GP does not fully decouple the ROM
equations from the FOM, as the algebraic form of the ROM
equations retains dependence on the FOM [29]. This means
that the algebraic operators for the ROMneed to be recomputed
at every iteration of the system, which limits the acceleration
that this approach can offer for the target application of vascular
flow. It is possible to overcome this issue by using hyper-
reduction techniques, such as the discrete empirical interp-
olation method (DEIM), which approximates the algebraic
operators instead of calculating them exactly [87]. Buoso et al.
[30] employed this technique in a POD-GP-DEIM ROM to
evaluate coronary blood flow, and found an acceleration by a
factor of 25 for this method compared to the FOM.

Geometric complexity Complex geometric variability
can be modelled by POD-Projection methods, as the POD
modes can be made to contain spatial information about the
geometry used to generate the data by mapping them back
to a fixed reference geometry. However, applying any kind of
ROM to a geometry not included in the training data is
typically very challenging. In particular, when looking at vas-
cular flow, the variability in morphology from one person to
the next can be extreme, with entire vascular segments some-
times missing in certain regions [88]. In some cases, such as
when modelling relatively simple features such as stenosis in
reasonably straight vessels, it is possible to parameterise the
geometric variation and include these parameters as input to
the ROM, as in [30]. However, for pathologies such as intracra-
nial aneurysms, where blood flow is highly dependent on
the morphology, the number of parameters needed and the
amount of high-fidelity data required can be prohibitive.
Buoso et al. [30] demonstrated the use of DEIM to accelerate
mesh generation by a factor of 10, which could help improve
the overall efficiency of a simulation pipeline studying blood
flow in multiple geometries.



royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

21:20230565

7

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

26
 F

eb
ru

ar
y 

20
24

 

Multi-physics Provided the governing equations are
known and data can be generated for the system, POD-
Projection techniques are suitable for multi-physics problems.
A common multi-physics application of POD-Projection is to
FSI problems [89–91]. Ballarin & Rozza [92] applied a POD-
GP ROM to three idealised 2D FSI problems, including a
parameterised valve configuration. The ROM showed good
qualitative agreement across all cases and an acceleration
factor of the order of ten.

Multi-scale (time)While POD-Projection ROMs are able to
reduce simulation times significantly, the long-term stability of
the ROM for unsteady flow problems is not guaranteed
[29,93]. This instability can be related to the truncation of the
POD basis, the violation of boundary conditions, or an
inherent lack of numerical stability [86]. Various stabilisation
techniques can overcome these issues, such as balanced trun-
cation and balanced POD [29], pressure stabilisation [74], or
adding corrective terms to the ROM equations to increase
dissipation [94]. Adding these stabilisation techniques to a
ROM may increase its long-time accuracy, but will likely
come at the cost of increased computational demands [90].
Lassila et al. [29] noted that periodically driven inflow pro-
blems have been shown to demonstrate accurate long-term
predictions. Given the quasi-periodic nature of vascular flow,
this may imply that ROM stability is satisfactory in this con-
text. However, care must be taken to train the ROM with
data that are representative of the entire cardiac cycle. Flow
features will exhibit strong time dependence due to the pulsa-
tile nature of vascular flow [14]. As a result, training a ROM
using data from only one part of the cardiac cycle (e.g. flow
acceleration) is unlikely to produce a ROM capable of
accurately predicting the flow at another time (e.g. diastole).

Multi-scale (space) The spatial information is contained
within the POD modes when constructing a POD-projection
ROM. The number of spatial degrees of freedom is the
same as the number of rows in each POD mode, which
means that data and computing requirements for POD
ROMs will increase as the mesh size grows. Furthermore,
as POD requires input data from a FOM, using a refined
mesh that captures fine flow details could lead to prohibitive
run times when solving the FOM. This means that POD-
Projection ROMs are often unsuitable for problems where
large regions of the vasculature need to be modelled. A poss-
ible strategy to mitigate this issue is to couple a POD-
Projection ROM with boundary conditions that are derived
from a SDR ROM. Using this technique allows for the high
spatial resolution of the POD-Projection approach in the
region of interest while still accounting for the effects of the
proximal and/or distal vasculature using the SDR model.
This technique has been used in various haemodynamics
studies to couple high-fidelity 3D models to SDR models,
but POD-Projection ROMs have not been used for the 3D
model [67,81,95].

Other comments While using the underlying governing
equations is thought to improve the robustness of projec-
tion-based ROMs, it is also a weakness regarding the
ease of implementation. Constructing a projection-based
ROM requires explicit use of the underlying numerical
implementation of the FOM, which may not be available or
straightforward to use. In particular, when solving fluid
dynamics problems, researchers often turn to commercial
software for which source code is not readily available.
This can hinder incorporating projection-based ROMs into
simulation pipelines that are not built upon open-source
software. Equation-free or non-intrusive methods offer an
alternative strategy that mitigates these issues.

2.2.2. Proper orthogonal decomposition with interpolation
An alternative to projection-based ROMs is to use interp-
olation-based methods. Given a snapshot matrix U, with
SVD given by U ¼ FSV�, it is possible to reconstruct each
column of U using

unðx, t; mÞ ¼
XN
j¼1

anj ðt; mÞFjðxÞ, ð2:9Þ

where μ are the parameter configurations contained in the
snapshots, anj ðt; mÞ are a set of time and parameter dependent
coefficients, N is the number of truncated POD modes
retained for the ROM and Φj are the POD modes. an are a
set of temporal coefficients that can be considered as a path
through the coordinate system given by Φ [76]. The goal of
POD-Interpolation is to predict the trajectory of the system
under a new set of parameter values by using interpolation
between the trajectories of previously computed parameter
values. To perform the interpolation step, authors have
turned to various techniques, such as linear interpolation
[96], radial basis functions (RBFs) [76,97,98], Taylor series
methods, or Smolyak grids [99]. Once calculated, the new
set of coefficients can be multiplied by the retained POD
modes to efficiently calculate the solution field of interest
for a new parameter configuration or time point.

Nonlinearity POD-Interpolation is a non-intrusive method,
meaning that no modification of the underlying FOM numeri-
cal code is required. This means that the ROM is agnostic to the
system it is being applied to and, therefore, POD-Interpolation
does not suffer the same drawbacks as POD-Projection when
applied to nonlinear systems. This does not guarantee that
results with a POD-interpolation approach will be accurate
for a nonlinear system, but the speed of the model is not dras-
tically reduced in this scenario as can be the case when using
POD-Projection on nonlinear problems.

Geometric complexity Similarly to POD-Projection
methods, POD-Interpolation is suitable for complex-shaped
individual geometries due to the POD modes containing
rich spatial information. However, the success of this
approach is also limited when applied to geometries that
were not included in the training data. Girfoglio et al.
[69] applied POD-Interpolation methods to patient-specific
aortic blood flow in the presence of a left ventricular assist
device, but only constructed their ROM for a single patient
geometry. Geometric parameterisation approaches have
been applied to POD-Interpolation methods, but not in the
context of vascular flow problems [76].

POD-Interpolation approaches can be applied to sub-
domains of the FOM domain used to generate the snapshots.
For example, if high-fidelity data were generated for a vessel
with an aneurysm, it is possible to build a POD-Interpolation
ROM only for the aneurysm rather than the full geometry.
This can further accelerate the ROM, as the number of data
and interpolation operations required is reduced. This feature
of POD-Interpolation ROMs gives them an advantage
when modelling flow in complex geometries where dense
volumetric meshes are required (e.g. when modelling a
flow-diverting stent), as the amount of data is vastly reduced
without affecting the model performance.
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Multi-physics POD-Interpolation techniques have been
applied infrequently to multi-physics problems. Xiao et al.
[77] used a non-intrusive POD-RBF ROM for one-way and
two-way coupled FSI problems and found acceleration fac-
tors of order 105–106 while showing qualitative ROM-FOM
agreement. Hajisharifi et al. [98] applied a POD-RBF ROM
to a fluidised bed problem. Compared to the FOM, the
POD-RBF ROM provided an acceleration factor of order 105

and an accuracy of approximately 99% when reconstructing
the time evolution of the Eulerian and Lagrangian fields.
They tested local and global POD approaches and found
the local calculation of POD bases produced a more accurate
and efficient ROM.

Multi-scale (time) Similarly to POD-Projection techniques,
POD-Interpolation methods do not have any guarantee of
long-term solution stability.

Multi-scale (space) In principle, POD-Interpolation ROMs
can be coupled with 0D/1D models for boundary conditions
by including the coupling parameters describing the inflow/
outflow conditions in the ROM construction. When evaluating
the POD-Interpolation ROM, one can obtain the boundary
conditionparameter input from theoutput of the 0D/1Dbound-
ary condition model and use this to evaluate the 3D flow field
using the ROM. In this way, POD-Interpolation approaches
can be suitable for modelling highly resolved regions of interest
in 3D while conscribing to the effects of the peripheral vascula-
ture. This POD-Interpolation-SDR approach is yet to be applied
to vascular flow, but coupling 0D/1D models with 3D compu-
tational fluid dynamics (CFD) is common [67,81,95].

Other comments Walton et al. [76] noted that POD-Interp-
olation, when all POD modes are retained, is equivalent to
performing element-wise interpolation across all spatio-tem-
poral coordinates. Therefore, the maximum accuracy for a
POD-Interpolation ROM will be bounded by the element-
wise interpolation error. For this reason, the acceleration offered
by POD-Interpolation ROMs should not only be calculated
relative to the high-fidelity CFD model, but also relative to
the cost of performing element-wise interpolation of the
solution field. Despite this limitation, relative to element-
wise interpolation, POD-Interpolation is still capable of vastly
reducing the number of interpolation operations required to
calculate a new solution and the amount of data that needs to
be stored offline.

Summary POD-Projection and POD-Interpolation tech-
niques have been applied to a wide range of vascular flow
problems, including blood flow in tetralogy of Fallot patients
[80,81], coronary blood flow [30,82,100], aneurysm blood flow
[101], aortic blood flow [69,102] and FSI problems [92]. Tables 2
and3demonstrate that POD-InterpolationROMtechniques typi-
cally accelerate by factors ranging from 102 to 106, while
acceleration factors for POD-Projection ROMs range from 101

to 103. Wang et al. [96] compared POD-GP and POD-Interp-
olation approaches for steady-state heat conduction problems
with different numbers of parameters. They found that the
POD-GP approach was more reliable, with better performance
as the number of parameters grew. POD-Interpolation may
requiremore snapshots thanPOD-GP toachieve similaraccuracy,
so despite the faster evaluation times of POD-Interpolation, the
overall offline cost to build a ROM of equal accuracy to the
POD-GP ROM may be greater. Xiao et al. [99] and Xiao et al.
[97] performed two studies comparing POD-GP with various
POD-Interpolation techniques (Taylors, Smolyak, RBF interp-
olation). In both studies, the interpolation-based ROMs were
found to be approximately one order of magnitude faster while
maintaining good accuracy relative to the high-fidelity model.

Conclusion POD-Projection and POD-Interpolation
approaches have been applied to nonlinear, geometrically
complex, multi-physics vascular flow problems. Both of
these approaches can be coupled to 0D/1D models to capture
multi-scale phenomena across large spatial scales in the vas-
culature. Geometric parameterisations can be incorporated
into POD-based ROMs in an attempt to build models suitable
for unseen geometries, but these models are limited in their
generality and in the complexity of geometry they can
model with a reasonable number of parameters. Attempts
to build POD-based ROMs that are entirely general to geome-
try have seen either large errors [80] or minimal acceleration
[81]. POD-based ROMs are often unsuitable for problems
with large time scales, as the long-term stability of the POD
modes is not guaranteed.

2.3. Dynamic mode decomposition
Dynamic mode decomposition (DMD) was originally devel-
oped by Schmid [104] for analysing spatio-temporal data
from simulations and experiments. Modes are extracted from
the data and can then be used to describe the physical mechan-
isms present in the data or for dimensionality reduction. For
ROM construction, DMD can provide an alternative technique
to POD for extracting leading-order modes from data. DMD
trades the optimal reconstruction property of POD for physical
interpretability, as the eigenvalue associated with each mode
provides quantitative information on the oscillation frequency
or growth/decay rate of the given mode [105].

Both DMD and POD use the SVD, but the difference
arises in the construction of the snapshot matrix prior to per-
forming SVD. In POD, the snapshot matrix is given by
U = [u1,… , uN]. For DMD, the snapshot matrix is first divided
into two submatrices, U1 = [u1,… , uN−1] and U2 = [u2,… , uN].
The goal of DMD is to compute an approximation to the
matrix A, where U2≈AU1 [106]. To do this, SVD is applied
to U1 and the resulting decomposition is used to calculate
the pseudoinverse of U1, which is then used to calculate A.
Thus, DMD finds a best-fit linear model that approximates
the underlying time dynamics present in the data. In DMD,
N will typically be a set of timesteps for the evolution of
the system for one set of parameter values. Using the DMD
model, an initial state can be propagated forward in time at
a low cost. DMD ROMs are non-intrusive by being
equation-free and entirely data-driven.

Since its inception, numerous extensions to DMD have
been proposed to help tackle complexities such as nonlinear-
ity, varying characteristic time scales in a given application, or
handling externally driven data sequences. These extensions
are thoroughly presented in [33]. Despite its growing use as
a tool for analysing complex spatio-temporal data, DMD
has seen limited application to vascular flow. We will discuss
the applicability of DMD and its extensions to modelling
vascular flow.

2.3.1. Nonlinearity
DMD aims to find an optimal linear model based on data.
The underlying system in blood flow problems is nonlinear
but the strength of this nonlinearity will vary depending
upon the application. Habibi et al. [105] found that more
DMD modes are required in an aneurysm model than in a



Table 2. Various ROM papers using POD for vascular flow and other selected problems.

reference method application accuracy
acceleration
factor

general applications

Xiao et al. [77] POD-Interpolation

(RBF)

one-way FSI: flow past a cylinder — 727 000

two-way FSI: free-falling square — 73 200

FSI: bending beam — 257 000

Hajisharifi et al. [98] local POD-

Interpolation (RBF)

fluidised bed time evolution Eulerian field 98.9%, Lagrangian

field 98.4%

200 000

parametric fluidised bed 88.8%

vascular flow applications

McLeod et al. [80] atlas-based POD ToF PA flow: case 1 �70%a —

ToF PA flow: case 2 �80%a —

ToF PA flow: case 3 �50%a —

ToF PA flow: case 4 �80%a —

Guibert et al. [81] atlas-based POD ToF PA flow: patient 7 Δp 95.7%, outlet flow 96.0% ∼1.33
ToF PA flow: patient 13 Δp 93.9%, outlet flow 97.7%

Buoso et al. [30] POD-GP-DEIM FFR calculation in coronary stenosis: case 1 FFR 98%, min. p accuracy 70% 25

FFR calculation in coronary stenosis: case 2 FFR 92%, min. p accuracy 90%

Ballarin & Rozza [92] POD-GP fluid problem on moving domain — 30

stationary FSI of parameterised idealised

valve

— 16

unsteady FSI of parameterised channel — 10

Ballarin et al. [82] POD-GP coronary blood flow with varying physical

and geometric parameters

.99% 100

Ballarin et al. [100] POD-GP coronary blood flow with varying physical

and geometric parameters

.99% 1530b; 100b

Han et al. [101] POD-GP aneurysm blood flow with varying PI .95% 2410

Zainib et al. [103] POD-GP coronary artery bypass grafts .99% 9c

Girfoglio et al. [102] POD-Interpolation

(RBF)

aortic flow with LVAD p 99.5%, WSS 92.3%, ux 91.5%,

uy 87.8%, uz 88.6%

240

Girfoglio et al. [69] POD-Interpolation

(RBF)

aortic flow with LVAD: case 1 (PF

3.45 l min−1)

p 99.8%, WSS 95.9%, ux 95.0%,

uy 92.2%, uz 94.2%

7 200 000

aortic flow with LVAD: case 2 (PF

4.35 l min−1)

p 99.5%, WSS 92.8%, ux 90.3%,

uy 86.5%, uz 90.7%
aMaximum error estimated from graph in paper and used to calculate minimum accuracy (which occurs close to systole).
bAuthors report computational savings of 99% (therefore acceleration factor of 100). In total, 1530 acceleration factor is calculated from simulation times
presented for ten patients in table 2 of [100].
cMean acceleration calculated across three test cases in table 1 of [103].
DEIM, discrete empirical interpolation method; FFR, fractional flow reserve; FSI, fluid–structure interaction; GP, Galerkin projection; LVAD, left ventricular assist
device; p, pressure; Δp, pressure drop; PA, pulmonary artery; PI, pulsatility index; POD, proper orthogonal decomposition; RBF, radial basis functions; ROM,
reduced order model; ToF, tetralogy of Fallot; ux, x-component of velocity; WSS, wall shear stress.
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stenosis model to achieve a particular reconstruction accuracy,
highlighting the problem-specific nature of the complexity of
vascular flow. In cases where nonlinearity is strong, a large
number of measurements of the field of interest may be
required to ensure the nonlinearity is captured in the reduced
model. Extended DMD (EDMD) is an approach designed to
help with this issue by using nonlinear functions of the
measurements as input to the DMD algorithm [33,107].
2.3.2. Geometric complexity
Similarly to POD modes, DMD modes contain spatial infor-
mation, so this approach is well suited to constructing
ROMs for individual complex geometries. Habibi et al.
[105,108,109] have demonstrated the use of DMD to identify
blood flow structures in cerebral aneurysms and stenosis
models. However, as with POD, using DMD to evaluate
flow fields in an unseen geometry is very challenging.



Table 3. ROM papers comparing POD-Projection and POD-Interpolation approaches for various applications.

reference method application accuracy acceleration factor

Xiao et al. [99] POD-GP flow past a cylinder — 10

POD-I (Taylors) — 260

POD-I (Smolyak) — 390

Xiao et al. [97] POD-GP lock exchange — 12

flow past a cylinder — 10

POD-I (RBF) lock exchange — 496

flow past a cylinder — 779

Wang et al. [96] POD-GP four-variable heat conduction 99.81% —

six-variable heat conduction 98.17% —

POD-I four-variable heat conduction .99:99% —

six-variable heat conduction �50% —

GP, Galerkin projection; POD, proper orthogonal decomposition; POD-I, POD-Interpolation; RBF, radial basis functions; ROM, reduced order model.
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DMD is a less well-established technique than POD, so few (if
any) attempts have been made to tackle this problem.
 5
2.3.3. Multi-physics
DMD is suitable for multi-physics problems as the decompo-
sition can be applied separately to each field. DMD can also
be used to identify spectral coherence between each field in
multi-physics applications, which can help to improve under-
standing of the problem. So far, the main use of DMD in
multi-physics problems is to study FSI. Rodríguez-López
et al. [110] used DMD to capture spatio-temporal evolution
of flow over a flexible membrane wing using experimental
data. They found that basic DMD could not reconstruct
the fields accurately. Instead, they used high-order DMD
(DMDho), developed by Le Clainche & Vega [111]. Where
basic DMD only uses the previous snapshot, DMDho esti-
mates each snapshot as a linear combination of a number of
previous snapshots, thus improving performance in regimes
where the FSI was stronger. This suggests that as the com-
plexity of the system increases, accurate propagation of the
time dynamics may require more than just the previous snap-
shot. This is worth considering when adding complexity (e.g.
vessel elasticity, thrombosis models, device interactions) to
vascular flow DMD models.
2.3.4. Multi-scale (time)
DMD ROMs are perhaps most beneficial for problems of com-
plex temporal nature. A DMD ROM is inherently designed to
uncover time dynamics in a system and then propagate the
reduced system forwards in time. Vascular flow is often mod-
elled as periodic, with results from a single cardiac cycle taken
to be representative of the flow for all time. This assumption
can break down when autoregulation occurs or when complex
long-term physiological phenomena, such as blood clotting,
occur. The period of a cardiac cycle is roughly one second,
whereas processes such as blood clotting can occur over a
period of months. Multi-resolution DMD (DMDmr) provides
a way to robustly separate complex systems into a hierarchy
of multi-resolution time components [112]. DMDmr uses itera-
tively shorter snapshot sampling windows and recursive
extraction of DMD modes from slow to fast time scales,
which improves the predictions for short-time future states.
This technique has been further generalised by Dylewsky
et al. [113]. Provided with the appropriate data, DMDmr
may be able to produce ROMs that can capture both long-
and short-term effects of blood flow. Identifying a ROM for
long-term effects (clotting, plaque build-up etc.) may be par-
ticularly useful in reducing the cost of vascular models, as
current approaches are too expensive to simulate these pro-
cesses for the time scales over which they occur [3]. Another
approach to handle complex temporal patterns is multi-stage
DMD (mDMD) [105]. mDMD divides a temporal system
into stages and applies DMD to each stage in turn. This
allows more DMD modes to be used during periods with a
more complex flow, while reducing the number of modes
required when the flow is simpler, as demonstrated by
Habibi et al. [105]. This approach can improve the efficiency
of the ROM and reduce data storage requirements, but does
not extend the original DMD method to more complex
problems.
2.3.5. Multi-scale (space)
DMD modes are local to wherever the high-fidelity data were
generated, so using this approach for large regions of the vas-
culature is not possible without generating enormous
amounts of high-fidelity data. However, DMD with control
(DMDc) allows for input controllers to be integrated into
the DMD algorithm. Habibi et al. [105] used inlet velocity
as a controller for cardiovascular flow. It may be possible to
extend this approach to account for other flow parameters
or boundary conditions, thus allowing the inexpensive
DMD ROM to be coupled to 0D/1D SDR models that
account for the large-scale flow changes in the vasculature.
2.3.6. Summary
Despite DMD being used as a ROM technique, very few
papers directly compare the efficiency of the DMD ROM
with the FOM used to generate the training data. Table 4
highlights a few studies that did evaluate the DMD ROM
efficiency. From this, we can see speed-ups ranging from
∼100 to 102. This acceleration seems small, but given the
non-iterative equation-free nature of DMD ROMs, it is



Table 4. ROM papers using DMD for various applications.

reference method application accuracy acceleration factor

general applications

Bourantas et al. [114] DMD tumour ablation treatment simulation .99:8% ∼13–37
Lu & Tartakovsky [115] Lagrangian DMD 1D advection — 0.21a

1D advection–diffusion — 581a

1D inviscid Burgers equation — 0.81a

1D viscous Burgers equation — 993a

POD-GP 1D advection — 0.15a

1D advection–diffusion — 84.2a

1D inviscid Burgers equation — 0.09a

1D viscous Burgers equation — 69.4a

Beltrán et al. [116] DMDho-augmented FOM 1D Ginzburg–Landau equation — 6–254b

aAuthors include offline calculation times in DMD computational time, hence the ROM sometimes being slower than the FOM [115].
bAuthors define speed-up as ratio of total simulation time to the sum of the time-lengths of the snapshot computational intervals, which is a particular
definition suitable for their method [116].
DMD, dynamic mode decomposition; DMDho, high-order DMD; GP, Galerkin projection; FOM, full-order model; ROM, reduced order model; POD, proper
orthogonal decomposition.
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likely that they can provide more acceleration than this in
some scenarios. Furthermore, Lu & Tartakovsky [115]
included offline calculation times when determining the
ROM speed-up, so higher acceleration values would be
found if they only compared the online evaluation time
with the FOM.

Only a few papers in the literature use DMD for vascular
flow problems. Habibi et al. [105] used multi-stage DMD with
control (mDMDc) to reveal hidden low-dimensionality in
patient-specific blood flow in coronary stenosis and cerebral
aneurysms. They found that mDMDc requires fewer modes
than DMD to reconstruct the velocity fields to a given accu-
racy, but these modes were not used to construct a ROM.
Habibi et al. [109] used DMD for data assimilation in
Womersley flow, 2D idealised aneurysm flow and 3D real
aneurysm flow, but in this instance the DMD analysis was
not used to construct a ROM. Di Labbio & Kadem [117] per-
formed POD and DMD analysis of left ventricular flow and
found that while DMD requires more modes to achieve a par-
ticular energy level, it also preserves global particle advection
using fewer modes. Another important point to consider
when using DMD for vascular flow is that due to the periodic
nature of the flow, unstable modes will either decay or grow
over time, thus potentially under- and over-influencing the
dynamics as time goes on [117].

2.3.7. Conclusion
DMD can be used to construct reduced order linear dynami-
cal systems from data that approximate underlying nonlinear
dynamics. DMD ROMs can be inexpensively propagated
forwards in time or used to extract coherent structures from
data. DMD offers the benefit of having an associated
frequency attached to each mode, thus providing interpret-
ability (i.e. growth/decay/oscillation for each mode). DMD
modes contain spatial information so this approach can be
used to model individual complex geometries. DMD
models are typically built with time as the only input par-
ameter, so parametric DMD ROMs are rare; however, very
recent work has begun to investigate this by adding interp-
olation into the DMD approach [118]. DMDc offers the
potential to include input controllers into a DMD model, so
this approach can be used to include the effects of, for
example, varying inlet flow rate [105]. The input controllers
could also potentially be boundary conditions derived from
0D/1D blood flow models, thus allowing DMD ROMs to
account for larger portions of the vasculature. DMD can be
applied to multi-physics problems; however, a high-order
DMD approach may be required to correctly reconstruct the
fields of interest [111]. DMD ROMs are not commonly
applied to vascular flow problems to date. A promising appli-
cation of DMD in vascular flow is to problems where
evaluating the long-term effects is not possible with conven-
tional models. For these problems, DMD could perhaps be
used to construct an efficient ROM for the time dynamics
of long-term blood flow phenomena.

2.4. Other techniques
There are various other ROM techniques that have not been as
widely used as those discussed previously. Herein, wewill dis-
cuss two of those techniques, the reduced basis (RB) method,
which has seen some application to vascular flow problems,
and the proper generalised decomposition (PGD), which has
not been applied to vascular flow modelling.

2.4.1. Reduced basis
The RB method is usually applied to the fast solution of par-
ameter-dependent problems [29,119,120]. Similarly to POD-
based ROMs, the RB method uses a set of snapshots of the
FOM. Whereas POD uses the SVD to extract an optimal
basis from the snapshots, the RB method is more general
and can use various alternative approaches (e.g. Gram–
Schmidt orthonormalisation [121]) to construct a basis span-
ning a sub-space of typically much lower dimension than
that of the full-order solution manifold. RB methods often
employ a greedy procedure for basis construction, whereby
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optimal snapshots are computed based upon an a posteriori
error estimation [122]. A key advantage of the greedy
approach is that the specific dynamics of the problem at
hand guide the sample selection process [26]. Following
basis construction, a Galerkin projection is often applied to
build the ROM, similarly to POD-Projection ROMs.

The RB method has seen some application to vascular
flow problems. Manzoni et al. [123] used this approach with
RBF for interpolating the geometric parameters to calculate
flow fields in 2D parameterised carotid artery bifurcation
geometries. For two test cases of global deformations of the
carotid branches and stenosis near the carotid sinus, they
achieve speed-ups of 96 and 88 times, respectively. Lassila
et al. [124] applied the RB method to inverse problems
in flow through stenosed arteries and in optimal shape
design for femoropopliteal bypass grafts, reporting estimated
speed-ups of 30–175 times. While effective in predicting
downstream shear rates in the stenosis problem and in iden-
tifying optimal design configurations, the models were only
applied to 2D steady-state problems. Colciago & Deparis
[125] combined POD and the RB method, specifically the
greedy algorithm, to build a ROM for a haemodynamics
problem, noting CPU time gains of order 103. The application
was to a femoropopliteal bypass problem, which was mod-
elled using a 3D reduced FSI formulation, highlighting the
suitability of the RB approach to multi-physics applications.
The authors note that the greedy enrichment scheme can
favour reducing the error in certain variables, especially
when the quantities in the problem are of different orders
of magnitude, so care should be taken in building an appro-
priate error estimator for multi-physics applications. Aside
from vascular flow applications, the RB method has been
applied to various other nonlinear Navier–Stokes problems
[126,127], including FSI problems [128]. Coupling the para-
metric RB method to boundary conditions derived from
0D vascular models is possible in order to capture some
multi-scale spatial effects.

2.4.2. Proper generalised decomposition
PGD generalises POD using separated representations while
avoiding the need for any a priori knowledge about the solution
[129]. Not using snapshot generation allows PGD to be applied
to previously unsolved problems, which POD, DMD and RB
ROMs are mostly incapable of. For a problem defined in
space of dimension D, PGD provides an approximate solution
uN in the separated form

uNðx1,. . ., xDÞ ¼
XN
i¼1

F1i ðx1Þ � � � � � FDi ðxDÞ: ð2:10Þ

The PGD approximation is a sum of N functional products
involving D functions FjiðxjÞ [130]. PGD solutions are
constructed by successive enrichment, where a functional pro-
duct Fn is determined using the functions from the previous
n− 1 steps. It should be noted that each enrichment step
involves solving a nonlinear problem by means of a suitable
iterative process. In PGD, both the number of terms N and
the functions F are unknown a priori, making PGD an a priori
ROM method. In a typical separation of variables, the coordi-
nates xi could be space and time coordinates, but in PGD
additional coordinates can be included for problem-specific
inputs such as boundary conditions or material parameters.
Furthermore, if M nodes are used to discretise each of the
coordinate spaces, the total number of PGD unknowns is
N ×M ×D instead of theMD degrees of freedom found in stan-
dard mesh-based discretisations [130]. When the solution field
is sufficiently regular, the number of terms N will be relatively
small, highlighting how PGD overcomes the curse of
dimensionality [131].

PGD was initially developed for solving time-dependent
nonlinear problems in structural mechanics [132]. It has
since been applied to rheology [133] and the incompressible
Navier–Stokes equations [131]. Chinesta et al. [133] noted a
speed-up of the order of 102 when using PGD for a transient
rheology problem. Dumon et al. [131] found a speed-up of
approximately 100 times for a 2D stationary diffusion problem,
whereas a speed-up of 5–10 times was found for various
Navier–Stokes problems, the most complex of which was a
2D lid-driven cavity flow. PGD has also been applied to
multi-scale in time applications, where it is possible to separate
the time dimension (1D in nature) into a multi-dimensional
time space; however, in this study the authors are not able to
draw conclusions on the efficiency of the ROM [134]. PGD
has also seen application tomulti-scale in space andmulti-phy-
sics problems, where the authors highlight that the savings due
to PGD increase with problem complexity [135,136]. Despite
its potential usefulness in complex problems with known/
unknown equations, PGD has not seen as widespread use as
other reduced order techniques.
3. Accelerating simulations with machine
learning

Machine learning is a branch of artificial intelligence that
excels at extracting underlying patterns in data. The basic
building block of many machine learning algorithms is the
neural network, shown in figure 3. Neural networks consist
of a collection of processing units, called neurons, and a set
of directed weighted synaptic connections between the neur-
ons. The connections between neurons symbolise the passing
of information between neurons, with a fully connected
neural network (FCNN) meaning that all neurons in a
given layer receive information from all neurons in the pre-
vious layer and pass information to all neurons in the
subsequent layer. Each neuron processes the information it
receives via some calculations and produces an output.
The final layer is referred to as the output layer, where the
final output of the network is produced. The fully connected
neural network in figure 3 has two inputs, two hidden layers
with four neurons per layer and one output. The objective of
the network is to approximate a mapping between the input
and output variables, given data to learn from. In vascular
flow modelling, the inputs may be variables like space,
time or Reynolds number and the outputs may be velocity,
pressure or other variables of interest.

Each neuron is characterised by three functions: the
propagation function, the activation function and the output
function. The propagation function converts the vectorial
input from the previous layer’s outputs into a scalar input.
The activation function quantifies the extent towhich a particu-
lar neuron is active by applying a chosen function to the net
input, such as the hyperbolic tangent or rectified linear unit
functions [137]. Including activation functions for several
sequential layers allows the deep network to approximate
nonlinear mappings from inputs to outputs. The output
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Figure 3. Selected neural network designs that can be used for simulation acceleration. (a) A fully connected neural network with two inputs, two hidden layers
with four neurons per layer and one output. (b) A fully connected autoencoder, consisting of an encoder, a latent space and a decoder. (c) A physics-informed neural
network, where physical constraints based on partial differential equations (PDEs) and boundary conditions (BCs) are included in the loss function of the network.
x is position, t is time, u is velocity, p is pressure, superscript D or B means data or boundary point, Fi are N residual equations.
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function calculates the scalar output of a neuron based upon its
activation state. Each neuron has a trainable weight associated
with it, and each layer often has a trainable bias. Theseweights
and biases are the network parameters that are optimised
through training.

For a supervised learning problem, training data consist of
a set of inputs with known outputs. During the training pro-
cedure, input data are passed through the network to give an
output that is compared to the ground truth values for the
output. A loss function is used to quantify the discrepancy
between the network output and the ground truth output.
The parameters associated with the network are optimised,
typically through back-propagation and gradient descent
algorithms, in order to minimise the loss [138]. Once the net-
work has been trained to accurately match predictions for the
training dataset, it can be used for input data where ground
truth output values are unknown. Typically, the accuracy of
the networkwill be assessed by evaluating its output on a data-
set that was not used in training, or through procedures such as
cross-validation. A trained neural network can be considered
to approximate a function that maps the input data to
the output data. Hornik et al. [139] have demonstrated the
approximation power of sufficiently large and deep networks.
Variations on basic neural networks include autoencoders,
convolutional neural networks (CNNs), recurrent neural
networks (RNNs) and physics-informed neural networks
(PINNs), among others [140].

Machine learning and deep learning have both employed
neural networks to great effect in various classification and
regression tasks in fields such as computer vision and natural
language processing [141,142]. Common across all learning-
based strategies is the utilisation of data and the framework
of an expensive up-front training stage preceding a cheap
inference stage when evaluating the model for new data. In
this way, machine learning approaches bear resemblance to
ROM methods. A benefit of machine learning compared
to ROMs is that the operations used in machine learning
are highly parallelisable, which allows them to be trained
and tested using highly parallel computing hardware, such
as graphics processing units (GPUs). This can reduce the
time taken for training and inference, which is driving the
growing interest in using machine learning-based simulation
methods for acceleration.

Machine learning can be used in conjunction with ROMs,
where the dimensionality reduction inherent to the ROM pro-
vides acceleration and machine learning is used to improve
or replace some aspect of the ROM. For example, when
constructing an interpolative ROM, such as in the
POD-Interpolation method, using a neural network for
interpolation can produce a ROM capable of outperforming
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POD-GP ROMs in terms of both acceleration and accuracy for
certain applications [143–145]. Alternatively, machine learn-
ing can be used in place of conventional simulation
methods to directly infer solution fields or other quantities
of interest from inputs such as medical images and point
clouds of spatio-temporal coordinates [36,37]. In this instance,
the machine learning model itself provides acceleration
relative to the FOM, either through reduction of the dimen-
sionality of the problem or through exploitation of parallel
computing hardware.

3.1. Machine learning reduced order models
3.1.1. Machine learning-augmented reduced order models
Various attempts have been made to augment ROMs with
machine learning. Neural networks (NNs) are adept at
interpolation, so using them in POD-Interpolation ROMs is
a natural choice. Hesthaven & Ubbiali [143] were among
the first to apply a POD-NN ROM to parameterised steady-
state PDEs (the Poisson equation and lid-driven cavity
problems). In this model, the network approximates a map-
ping from the input parameter vector (including, e.g.
material/geometry parameters) to the ROM coefficients.
The POD-NN approach offers similar accuracy to POD-GP,
while reducing computation time by two to three orders of
magnitude. Wang et al. [146] extended the work by Hesthaven
& Ubbiali [143] to time-dependent PDEs and applied it to a
quasi-1D PDE problem. In this case, the time coordinate is
included as an additional input to the neural network, allow-
ing evaluation of the ROM at different timesteps. For the
simple test problem, the authors found ROM accuracy of
�99% and an acceleration factor of order 107 relative to the
FOM. San et al. [144] applied the POD-NN approach to the vis-
cous Burgers equation to model time-dependent nonlinear
wave propagation. San et al. [144] used a different network
design from Hesthaven & Ubbiali [143] and Wang et al.
[146], with San et al. [144] building a network that maps
from the ROM coefficients at time tn and any controllable
input parameters (e.g. Reynolds number) to an output that
characterises the ROM coefficients at time tn+1. Within this
framework, they present two variations: (i) a sequential net-
work, where the outputs are the ROM coefficients, and (ii) a
residual network, where the outputs are the residual between
the ROM coefficients of tn+1 and tn. Of these two approaches,
the residual network is found to be superior and both
approaches outperform POD-GP for the Burgers equation
application. Balzotti et al. [147] applied the POD-NN approach
to optimal control of steady-state flow in a patient-specific
coronary artery bypass graft. The Reynolds number parameter-
ised the inflow and was the single input parameter for which
the ROM was constructed. The objective of the optimal control
algorithm was to identify the normal stress that has to be
imposed at the outlet to ensure a satisfactory agreement
between the computed and clinically measured velocity fields.
Online evaluation of the ROM took approximately 10−4 s,
which is a speed-up of order 106 compared to the FOM. The
POD-NN model was comparably accurate to a POD-GP
model applied to the same problem, but the POD-NN ROM
was four orders of magnitude faster [103].

It is also possible to augment POD-GP ROMs with
machine learning. Two challenges in POD-GP ROMs are: (i)
the potential lack of long-term stability and accuracy and
(ii) the lack of complete decoupling for nonlinear governing
equation projection onto the reduced basis and the sub-
sequent high cost of evaluating these nonlinear reduced
operators. To address the first challenge, Wang et al. [148]
used a long short-term memory (LSTM) network, a type of
recurrent neural network designed to operate on sequential
data. The POD coefficients are fed into the LSTM units and
the physical/geometric parameters are fed into the initial
hidden state of the LSTM. When applied to various problems
(3D Stokes flow, 1D Kuramoto–Sivashinsky equation and 2D
Rayleigh–Bernard convection), the LSTM-POD-GP ROM is
found to improve stability and accuracy compared to POD-
GP for nonlinear problems. Furthermore, the LSTM ROM
facilitates accurate predictions beyond the time interval
of the training data. To address the second challenge,
Gao et al. [149] proposed a non-intrusive approach to
hyper-reduction that approximates the ROM velocity func-
tion using a FCNN. The FCNN-enhanced POD-GP ROM
was applied to two nonlinear PDEs (1D viscous Burgers
equation and 2D flame model) and found to be accurate to
approximately 95%. The ROM was also shown to be more
stable and accurate for the test problems than POD-GP with
alternative hyper-reduction methods (DEIM), in the limit of
a small basis. Another approach to improve accuracy is to
use machine learning to adapt the ROM to a given input.
Daniel et al. [150] used a deep classification network to rec-
ommend a suitable local POD-GP ROM from a dictionary
of possible ROMs. This approach could be used in conjunc-
tion with small local ROMs, which have been shown to
outperform a single global ROM in terms of accuracy and
acceleration [98,151].
3.1.2. Machine learning-based reduced order models
Dimensionality reduction is a crucial step in ROM construc-
tion and is commonly performed using techniques such as
POD or DMD. Autoencoders (figure 3) are neural networks
used to compress and decompress high-dimensional data
and are thus being increasingly used in the dimensionality
reduction step in reduced models. Autoencoders can provide
nonlinear data embedding, whereas POD and DMD
offer only a linear reduced basis [34,35]. This could allow
autoencoders to compress complex nonlinear data more accu-
rately than POD or DMD. Another approach that can offer
nonlinear dimensionality reduction is manifold learning.
Csala et al. [152] compared four manifold learning (locally
linear embedding, kernel principal component analysis
(PCA), Laplacian eigenmaps, isometric mapping) and two
ML-based (autoencoder, mode decomposing autoencoder)
nonlinear dimensionality reduction methods to PCA. They
found that all six of the nonlinear dimensionality reduction
methods achieved lower reconstruction errors than PCA
for spatial reduction, but that only the autoencoder-based
reduction was definitively superior for temporal reduction.
Maulik et al. [34] used a ROM based on a convolutional auto-
encoder (CAE) and an LSTM to model the viscous Burgers
equation and the inviscid shallow-water equations. In these
advection-dominated systems, the deep learning (DL)-based
ROM outperforms the POD-GP method. The CAE-LSTM
approach is 14 times faster than the POD-GP method, produ-
cing errors of the same magnitude. Pant et al. [35] used a 3D
CAE to compress simulation data and advance the solution in
time without solving the Navier–Stokes equations in an itera-
tive fashion. Using a 3D CAE allows for features to be
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extracted in both spatial and temporal axes, which mitigates
the need for an additional network (e.g. an LSTM) for time
propagation. Using this approach, the authors reduce compu-
tational run times by two orders of magnitude compared to
traditional CFD solvers.

Fresca et al. [153] constructed a POD-DL-ROM that uses
POD to reduce the dimensionality of the training data,
improve training efficiency and reduce complexity. Com-
pared to previous work by the same authors, enhancing
with POD reduces the DL-ROM training time from 15 h to
24min. The DL-ROM itself uses CAEs and feedforward
neural networks trained on the POD-reduced solution vec-
tors. Fresca & Manzoni [145] used the same approach for a
series of additional applications including an unsteady
advection–diffusion–reaction system, a coupled PDE–ODE
Monodomain/Aliev-Panfilov system, a nonlinear elastody-
namics problem and the unsteady Navier–Stokes equations.
For the most pertinent example, the Navier–Stokes problem,
the acceleration factor was of the order 105 compared to the
FOM while achieving a comparable accuracy to the more
expensive non-enhanced DL-ROM. Fresca & Manzoni [154]
used the same POD-DL-ROM for flow around a cylinder,
FSI between an elastic beam and a laminar flow, and blood
flow in a cerebral aneurysm. High levels of accuracy are
qualitatively displayed for each application. Acceleration fac-
tors for all applications are of the order of 105. Essentially, the
approach of Fresca et al. [145,153,154] reduces the size of the
data passed through the network and the amount of training
parameters required, thus improving the efficiency of training
and testing while preserving the precision of the DL-ROM
without POD enhancement.
3.1.3. Conclusion
Machine learning (ML) has a lot to offer the ROM field, as
demonstrated by the various studies in table 5 that used
ML and ROMs in conjunction. ML can be used to provide
closure in projection-based ROMs, improve interpolation
in POD-Interpolation ROMs, improve long-time ROM
predictions, or offer alternative dimensionality reduction
algorithms that are essential in almost all ROMs. ML-ROMs
are able to address the weaknesses that hinder various
reduced order methods, such as poor performance for non-
linear problems, lack of stability or lack of generality. As a
result, ML-ROMs will typically be suitable for a wider
array of vascular flow problems than the traditional ROM
techniques from which they are derived. Balzotti et al. [147]
demonstrated the superior acceleration capacity of a POD-
NN ROM compared to a POD-GP ROM for a vascular flow
problem due to the POD-NN approach being better suited
for the nonlinear nature of the problem. Similarly, Csala
et al. [152] demonstrated the superior spatial reduction
capability of nonlinear ML-based dimensionality reduction
techniques when applied to aneurysm blood flow, which
suggests that more accurate models may be possible using
ML-based reduction techniques. Fresca & Manzoni [154] con-
versely used traditional dimensionality reduction techniques
(POD) in conjunction with an ML-based ROM and achieved
high levels of accuracy and acceleration for aneurysm blood
flow. While not for vasclar flow applications, Wang et al.
[148] and Gao et al. [149] augmented POD-GP ROMs
with ML and achieved improved stability and accuracy.
These findings demonstrate that ML-ROMs are a compelling
option for vascular flow problems. In particular, ML-ROMs
can offer methods suitable for vascular flow problems that
are nonlinear, geometrically complex, multi-physics and
multi-scale in time.
3.2. Physics-informed machine learning simulation
Machine learning can be used to construct fast surrogate
models for vascular flow problems that directly predict
haemodynamic quantities of interest, as in work by Itu
et al. [37], Rutkowski et al. [155] and Liang et al. [156] (dis-
cussed further in §3.3.1). A criticism of this approach is that
the models do not guarantee the underlying physics in the
problem will be respected. This can be somewhat resolved
by incorporating known physics into the learning procedure
[157]. The most widely used techniques to achieve this are
physics-informed neural networks (PINNs), which can com-
bine data acquired from simulations or experiments with
knowledge of the underlying governing equations and
boundary conditions [36,158]. In contrast to most machine
learning simulation techniques, PINNs can be used in the
absence of data. PINNs without training data may be less
accurate than with data, but data-free PINNs offer a direct
alternative to standard numerical techniques [159]. While
PINNs were initially developed for solution and discovery
of PDEs in forward and inverse scenarios, the development
of data-free and parametric PINNs has since seen them
applied to simulation acceleration. PINNs have been demon-
strated to vastly reduce simulation times, particularly in the
context of parametric design optimisation problems, hence
our focus on this technique in this review [160,161].

A typical PINN is shown in figure 3. The PINN consists of
a network with simulation parameters (e.g. space/time coor-
dinates) as input and solution fields (e.g. velocity/pressure)
as output. Fully connected neural networks are typically
used for PINNs, but various other approaches have demon-
strated superior results for certain applications [162]. For
the chosen architecture, automatic differentiation is typically
used to differentiate network outputs with respect to its
inputs, thus acquiring derivatives such as ux, px, ut, etc.
which can be combined to formulate governing equation
residuals. For the incompressible Newtonian Navier–Stokes
equations, the residual of the x-momentum equation will
take the form

F1 ¼ ut þ uux þ vuy þ wuz þ px � 1
Re

(uxx þ uyy þ uzz), ð3:1Þ

where u = (u, v, w) is velocity, p is pressure and Re is the
Reynolds number. Reduced Navier–Stokes equations (e.g.
equation (2.3) for 1D blood flow) can also be used as
residuals [163]. The residuals are included in the loss function
for the network, which encourages the network to learn map-
pings that minimise the residuals and therefore satisfy
the underlying governing equations. It is possible to enforce
additional loss constraints that penalise the network for
non-satisfaction of boundary conditions, such as the no-slip
condition that is often applied on blood vessel walls. Alterna-
tively, boundary conditions can be imposed as hard
constraints through the network architecture [164]. Once
trained, the PINN is able to infer solution fields that satisfy
data, governing equations and boundary conditions.

PINNs are designed to improve the efficiency of non-
informed networks through reducing the amount of data



Table 5. Machine learning ROM studies for various applications.

reference method application comments on accuracy and/or acceleration

ML-augmented ROMs

Hesthaven &

Ubbiali [143]

POD-NN parameterised steady-state PDEs (Poisson

equation, LDC)

POD-NN achieves similar accuracy to POD-GP while

reducing CPU time by 2–3 orders of magnitude

Wang et al. [146] POD-NN parameterised unsteady PDE (quasi-1D

CVRC flow)

accuracy of �99% and acceleration factor of 107

San et al. [144] POD-NN (SN

and RN)

viscous Burgers equation (time-dependent

nonlinear wave propagation)

POD-NN approach outperforms POD-GP in interpolation

and extrapolation and is 102 times faster

Balzotti et al. [147] POD-NN steady-state flow in a coronary artery

bypass graft

POD-NN achieves similar accuracy to POD-GP and speed-

up of 106 and 104 relative to FOM and POD-GP,

respectively

Wang et al. [148] LSTM-enhanced

POD-GP

3D Stokes flow, 1D Kuramoto–Sivashinsky

equation, 2D Rayleigh–Bernard

convection

ROM improves stability and accuracy of POD-GP for

nonlinear problems and allows time predictions

beyond training data

Gao et al. [149] FCNN-enhanced

POD-GP

nonlinear PDEs (1D viscous Burgers

equation and 2D flame model)

ROM accuracy is �95%. ROM is more stable and accurate

than POD-GP with DEIM (in the small basis limit)

ML-based ROMs

Maulik et al. [34] CAE-LSTM viscous Burgers equation and shallow

water equations

CAE-LSTM has similar accuracy to POD-GP and is ∼14
times faster

Pant et al. [35] 3D CAE 2D flow (past a circular/square cylinder,

over a plate, in a channel) and SST

data

reconstruction accuracy is good and model can predict

future timesteps accurately. Acceleration factor of 102

Fresca et al. [153] POD-enhanced

CAE NN

left ventricular cardiac electrophysiology POD enhancement reduces training time from 15 h to 24

min

Fresca & Manzoni [154] POD-enhanced

CAE NN

flow around cylinder, FSI of beam and

laminar flow, cerebral aneurysm flow

high levels of accuracy are displayed and acceleration

factors are of order 105 for all applications

Fresca & Manzoni [145] POD-enhanced

CAE NN

flow past a cylinder POD-enhanced ROM has similar accuracy to non-enhanced

DL-ROM. Acceleration factor is 105

CAE, convolutional autoencoder; CPU, central processing unit; CVRC, continuously variable resonance combustor; DEIM, discrete empirical interpolation method;
DL, deep learning; FCNN, fully connected NN; FOM, full-order model; GP, Galerkin projection; LDC, lid-driven cavity; LSTM, long short-term memory; ML,
machine learning; NN, neural network; PDE, partial differential equation; POD, proper orthogonal decomposition; RN, residual network; ROM, reduced order
model; SN, sequential network; SST, sea surface temperature.
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required and helping the network train efficiently bydiscarding
non-physical mappings. A further benefit of PINNs is their
potential to be used as an alternative to traditional numerical
solvers. If data are unavailable, PINNs can be trained on PDE
residual points and boundary conditions alone, mirroring tra-
ditional numerical techniques’ procedure. However, the input
coordinates need only be a point cloud rather than the
volumetric mesh required for typical numerical solvers.
Furthermore, unlike traditional numerical solvers, when a
problem is ill-posed with incomplete or noisy boundary con-
ditions, PINNs are still a viable option [165]. A final benefit of
PINNs is that they are well suited to solving inverse problems
as well as forward problems, whereas traditional numerical
techniques are usually only suitable for forward problems.

Once trained, a PINN can quickly infer physics-respecting
solution fields given spatio-temporal inputs, making them a
promising acceleration technique. However, generalising a
PINN for additional input parameters can decrease accuracy
and increase training time, so the fast inference speeds must
be balanced against training cost and accuracy. Despite their
promise, PINNs are a relatively new technique for simulation
and the application of PINNs towards acceleration and
vascular flow is in its infancy. We aim to address three ques-
tions in order to determine the usefulness of PINNs for
vascular flow acceleration: (i) How suitable are PINNs
for simulation acceleration? (ii) How fast are PINNs relative
to traditional numerical techniques? (iii) Are PINNs suited
to the complexities of vascular flow acceleration?
3.2.1. How suitable are physics-informed neural networks for
acceleration?

Developing and using a PINN model often consists of three
stages: (i) generating or acquiring data from simulations or
experiments, (ii) training the network while incorporating
known physics and boundary conditions and (iii) using the
model to infer solutions for new inputs. In inference mode,
PINNs are usually faster than a traditional numerical model
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applied to the same problem. However, if the PINN relies on
data generated by the numerical model and requires a poten-
tially expensive training procedure prior to use, then the
question of how to use PINNs for acceleration remains. In
order to prove a useful and powerful tool for simulation
acceleration, PINNs will either need to be able to generalise
to unseen problems in a similar fashion to how parametric
ROMs operate, or they will need to have a sufficiently
small training time such that training a new PINN model is
more efficient than solving a traditional numerical model.

Generalising a PINN model can require adding additional
parameters into the training procedure. These parameters
could describe geometry, boundary conditions, or material
properties and there are various ways to incorporate this infor-
mation into the PINN. Themost straightforward approach is to
include additional network input parameters. Arthurs & King
[160] introduced two input parameters describing the peak
inflow rate and diameter in a pipe flow problem. Sun et al.
[159] similarly included parameters that describe geometry
and viscosity as input to their PINN. When parameterising
the network in this manner, an active learning strategy can
reduce the cost of up-front data generation. This consists of
refining the training data with additional finite-element
model (FEM) samples in regions of the parameter space
where the PINN prediction is poor. Costabal et al. [167] used
a positional encoding mechanism for PINNs that creates an
input space for the network representing the geometry of a
given object, improving PINNperformance in complex geome-
tries. However, for a Poisson forward problem in a simple
domain, the positional encoding method was not observed to
outperform traditional PINNs. De Avila Belbute-Peres et al.
[168] developed a hyper-PINN approach, where an additional
network is trained on sets of model input parameters (e.g. geo-
metric parameters, boundary conditions, material properties)
and network weights from previously trained PINN models
for each simulation configuration. This precursor network
learns how to map from the input parameter space to the
weights needed for the PINN model for that particular par-
ameter configuration. For a new parameter set, the precursor
produces theweights needed to directly use the PINN in infer-
ence mode, thus bypassing the need to train a new PINN
model entirely.

Alternatively to generalizing PINNs, reducing training
time sufficiently can mean that training a new PINN for
each problem is still a tractable approach. Kissas et al. [163]
suggested transfer learning to solve this problem. Transfer
learning consists of initialising new PINN models with the
parameters from a model previously trained on a similar
problem, which can drastically reduce training time. This is
similar to providing an accurate initial guess in iterative
numerical methods. A transfer learning approach could
allow for a new PINN to be trained for each new simulation
configuration (new geometry, boundary conditions, etc.)
while still providing an acceleration relative to solving the
problem with traditional numerical techniques. For this
approach to make sense, the new PINNmust be trained with-
out the use of training data from solving the numerical
model. To this end, Desai et al. [168] proposed a one-shot
transfer learning approach for PINNs, which consists of train-
ing for a selection of PDEs and then reusing some of the trained
layers for an unseen PDE, thereby reducing training time.
Another approach to accelerate training is to incorporate a
hyper-parameter into the activation functions in the PINN
[169]. The hyper-parameter dynamically changes the loss
function topology throughout training and is shown to acceler-
ate PINN convergence and increase accuracy. Residual-based
adaptive refinement can also accelerate training [170,171].
This approach aims to increase the number of network training
points in regions where the PDE residual is inaccurate
throughout training, thus accelerating convergence.
3.2.2. How fast are physics-informed neural networks?
Once the PINN training time is sufficiently reduced, or the net-
work is generalized appropriately, the question of how fast
PINNs are relative to traditional numerical techniques remains.
Table 6 collates the literature on PINNs where the authors
commented on the acceleration offered by their approach.

Arthurs & King [160] and Hennigh et al. [161] conducted
design optimisation studies using PINNs. Arthurs & King
[160] developed a parametric PINN model for Navier–
Stokes applications and ran a parameter sweep experiment
to identify the value of the geometric input parameter that
would lead to a target pressure drop. This is a typical
many-query problem, where repeated model evaluations
are required to identify some kind of threshold in the
output variable. The trained PINN required only 7.6 s to per-
form the sweep over 81 parameter points, whereas the same
sweep using FEMwould have taken 400 times longer. Scaling
up the number of parameter queries to 1 million only
increases the run time to 11.1 s, highlighting the scalability
of the PINN due to its fast inference speed. However, it
should be noted that the PINN evaluation was only per-
formed at two spatial points, as this is all that is required to
calculate the pressure drop. This demonstrates a benefit of
PINNs, in that they can be used to query specific regions of
interest, but the FEM model inherently evaluates the entire
spatial field, so directly comparing model efficiency is not
fair in this case. Hennigh et al. [161] presented NVIDIA
SimNet, an AI-accelerated multi-physics simulation frame-
work based on PINNs. They studied a design optimisation
problem where SimNet is able to reduce total compute time
by approximately 45 000 times compared to a commercial
solver and 150 000 times compared to OpenFOAM. Gao
et al. [173] trained physics-informed CNNs for super-
resolution of low resolution flow field inputs using
only knowledge of the conservation laws and boundary con-
ditions. They applied this approach to 2D flow in a vascular
domain and parametric super-resolution for internal flow
with a parameterised inlet velocity profile. The model accu-
rately refines the spatial resolution by 400 times for
the flow fields with any new inlet BCs sampled in the 20-
dimensional parameter space. The speed-up time for the
trained model compared to the highly resolved CFD model
is 3364 times. Sun et al. [159] used data-free parametric
PINNs for flow in 2D idealised stenotic and aneurysmal
vessels. They achieved accurate results in all test problems
with mean test errors of order 10−4–10−8 depending upon
the problem and variable of interest. The authors noted that
in the data-free PINN regime, implementing boundary and
initial conditions with hard constraints improved perform-
ance when compared with the more widely used soft
constraints. The trained PINN can be evaluated in 0.02 s,
whereas the CFD model takes 40 s, yielding a speed-up of
2000 times. However, training the PINN took hundreds
of times longer than an individual CFD simulation. The



Table 6. Various PINN papers that mention the acceleration capability of their method.

reference method application comments on accuracy and/or acceleration

general applications

Hennigh et al. [161] PINN heat sink design optimisation

problem

total compute time is reduced by approximately 45 000 times and

approximately 150 000 times compared to commercial and

OpenFOAM solvers, respectively

Arthurs & King [160] PINNs with

active

training

parametric Navier–Stokes (two

parameters)

PINN parameter sweep takes 7.6 s compared to 54 min for FEM. 400

times faster

cardiovascular applications

Gao et al. [149] PI-CNN SR of parameterised flow fields

for idealised vascular

problems

model accurately refines spatial resolution by 400 times and provides

speed-up of 3364 times relative to CFD model

Buoso et al. [172] PINNs with

RBF

reduction

left-ventricular biophysical

modelling

30 times faster than FEM including training (for evaluating only one

condition). Accuracy for ejection fraction 97%, peak SBP 93%,

stroke work 96%, myocardial strains 86%

Sun et al. [159] PINNs parametric flow in 2D idealised

stenotic and aneurysmal

vessels

PINN evaluation is 2000 times faster than CFD model, but training

takes hundreds of times longer than individual CFD simulations

CFD, computational fluid dynamics; FEM, finite-element model; PI-CNN, physics-informed convolutional neural network; PINN, physics-informed neural network;
RBF, radial basis functions; SBP, systolic blood pressure; SR, super-resolution.
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PINN will therefore only reduce total computational cost
in scenarios where a large number of model evaluations are
required, such as uncertainty quantification or design optim-
isation. Sun et al. [159] suggested that the speed-up offered by
their approach will be increasingly advantageous when more
complex applications are considered.
3.2.3. Physics-informed neural networks for vascular flow
acceleration

PINNs are inherently suited to nonlinear problems due to the
nonlinear function approximating capacity of the network. In
fact, the earliest applications of PINNs include nonlinear
PDEs, such as the Navier–Stokes and Schrödinger equations
[36]. Since then, PINNs have been successfully applied to var-
ious cardiovascular fluid dynamics problems, all of which
are governed by the nonlinear Navier–Stokes equations
[162,163,174–178].

Individual complex geometries are relatively straightfor-
ward to handle with PINNs. Instead of the usual volumetric
mesh required for traditional numerical techniques, PINNs
require only spatio-temporal coordinates as input and do not
require connectivity between these points. Volumetric
meshes may still be required in order to generate simulation
data to train the PINN, but if the PINN is used to generalise
across geometries, then users can forego the time-consuming
meshing step for some of the geometries [159]. Raissi et al.
[179] used PINNs to infer flow fields from concentration
fields in an image-derived 3D aneurysm model and
Sun et al. [159] applied PINNs with hard boundary condi-
tion enforcement to model flow in idealised stenosis and
aneurysm models. This highlights two geometrically relevant
applications of PINNs.
PINNs can also tackle multi-physics problems. Figure 3
shows a single-physics PINN, but additional physics can be
added by using a second network that maps from the same
inputs as the first network (space and time) to different out-
puts (e.g. displacements and stresses for solid mechanics). It
is therefore possible to calculate all the required derivatives
in order to impose the governing equations and boundary
conditions from each aspect of the multi-physics problem.
This approach has been applied to an inverse Navier–
Stokes and Cahn–Hilliard blood flow-thrombosis problem
[177], multi-phase heat transfer [180] and FSI [181].

Basic PINNs are not commonly applied to extrapolating
the associated PDE in time. Kim et al. [182] proposed a
dynamic pulling method (DPM) to overcome this issue.
DPM manipulates the PINN’s gradients to ensure the PDE’s
residual loss term continuously decreases during training.
This is shown to improve extrapolation in time for various
test problems. Basic PINNs are also not well suited to pro-
blems spanning very large spatial regions. This issue with
large spatial and temporal domains is that the domain can
become arbitrarily large, leading to prohibitive training
times. The primary approach to tackling these problems is
incorporating domain decomposition into the PINN frame-
work. Decomposing the large spatio-temporal domain into
smaller sub-domains allows for sub-PINNs to be trained in
each sub-domain. This improves training efficiency as well
as reducing error propagation, allowing for domain-specific
hyper-parameter tuning, increasing representation capacity
and facilitating paralellisation [183].

Conservative PINNs (cPINNs), extended PINNs (XPINNs)
and parallel-in-time PINNS (PPINNs) are three possible
domain decomposition approaches that can tailor PINNS for
multi-scale problems. cPINNs enforce conservation properties
at spatial sub-domain boundaries using flux continuity and
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solution averaging across the interfaces [183]. XPINN is an
extension to cPINN that applies to any type of PDE, not only
conservation laws, and allows for decompositions in time
and space [184]. Shukla et al. [185] compared cPINN and
XPINN for a series of forward problems and found that for
space decomposition, cPINNs are more efficient in terms of
communication cost but that XPINNs are more flexible
as they can handle time decomposition, a wider array of
PDEs and arbitrarily shaped sub-domains. PPINNs are an
extension to PINNs that mitigate the issue of long-time inte-
gration through time-domain decomposition and using a
coarse-grained solver for long-time supervision [186]. The
coarse-grain solver provides initial conditions for the PPINN
in each time sub-domain. The coarse-grain solver needs be
fast enough to solve the long-time PDE with some degree of
accuracy cheaply, hence reduced-order or simplified models
are viable options. Meng et al. [186] stated that the PPINN
method could be extended to spatial domain decomposition,
with a coarse-grained solver used to estimate the global sol-
ution and then a series of PINNs applied in parallel to spatial
sub-domains, thus increasing training efficiency relative to
applying one PINN for the entire domain.

3.2.4. Conclusion
PINNs offer a mixture of numerical mechanistic models and
data-driven phenomenological models. Training a PINN
model can be expensive compared to running a high-fidelity
numerical model, so they are most useful for acceleration
when a once-trained PINN can be used for numerous par-
ameter or geometry instances. Various methods have been
studied to parameterise PINNs [159,160,166,167]. An alterna-
tive approach is to use PINNs in conjunction with transfer
learning techniques to quickly retrain the model for a new
system instance [168]. Employing techniques such as these
can make PINNs a viable option for accelerating vascular
flow simulations, particularly as PINNs (and extensions
thereof) are well suited to handling nonlinear, geometrically
complex, multi-physics and multi-scale modelling problems.

3.3. Other techniques
Given the relatively recent application of machine learning to
simulation and the continued growth of the machine learning
field, there are numerous other machine learning methods
that have been or can potentially be applied to vascular
flow acceleration. Reviewing them all in detail is beyond
the scope of this study, and in most instances, there is insuffi-
cient relevant literature to do so, but we will briefly discuss
several of these approaches and highlight how they may
prove useful in the future for our target application.

3.3.1. Physics-agnostic machine learning simulation
An alternative to augmenting/constructing ROMs using
machine learning or attempting to encode physics into
machine learning is to build a machine learning model that
directly predicts the haemodynamic quantities of interest
from inputs such as images or geometries [37,155]. Some of
these approaches are collated in table 7. One of the earliest
examples of this is by Itu et al. [37], who used a machine
learning model to predict FFR given parameterised coronary
artery anatomy as input. The model consists of a FCNN with
inputs corresponding to features of the coronary anatomy
and FFR as the solitary output. Using this approach, the
authors achieved an accuracy of 83.2% in correctly diagnos-
ing positive ischaemia and reduced model run time by a
factor >80.

Liang et al. [156] trained a DNN to predict steady-state
pressure and velocity fields in the thoracic aorta using 729
aorta geometries generated from a statistical shape model
and CFD data generated for each geometry [193]. The DNN
consisted of autoencoders to encode the aorta shapes and
the fields of interest and another network to map between
the encoded shapes and fields. The trained network predicted
velocity and pressure fields with mean errors of 2.0% and
1.4%, respectively. DNN evaluation time is approximately
one second, whereas each CFD simulation took approxi-
mately 15 min, giving a speed-up of approximately 900
times. Liang et al. [194] applied this network structure to
identifying the geometry corresponding to a particular
pressure field, thus demonstrating an application of this
method to inverse modelling. Morales et al. [189] applied
two FCNNs, one with prior dimensionality reduction and
one without, to predict endothelial cell activation potential
(ECAP) from left atrial appendage (LAA) geometry. Their
models were trained on 210 LAA geometries using CFD
data. With and without dimensionality reduction, the aver-
age error was 5.8% and 4.7%, respectively. The network
with dimensionality reduction was approximately 50 times
faster than the other network when performing cross-vali-
dation. Gharleghi et al. [191] used a machine learning
surrogate to replace a transient CFD solver in order to calcu-
late WSS in the left main bifurcation of the coronary artery.
The network requires the steady-state CFD solution for a
given case as an input, but can then predict the transient
WSS to an accuracy of .95% within 0.2 s using a CPU and
0.001 s using a GPU. Rutkowski et al. [155] trained a CNN
to map from 4D flow phase-contrast magnetic resonance
images to highly resolved flow fields using CFD data as
labels. The focus of this work was fast and accurate flow
field generation directly from images, foregoing the need
for time-consuming and expensive simulation set-up and
execution. The network successfully de-noised flow images,
improved velocity field accuracy and enhanced near-wall
flow measurements. Ferdian et al. [190] similarly developed
a residual network that was applied to super-resolution of
4D flow magnetic resonance images of aortic blood flow.
Their approach was able to predict flow rates in a real patient
to greater than 95% accuracy within 40–90 s depending on
the image size.

Various physics-agnostic machine learning simulation
methods have been able to accurately and efficiently predict
flow fields and flow-derived quantities in vascular flow appli-
cations. Provided that a FOM can be constructed and that
sufficient data can subsequently be generated, the breadth of
vascular flow problems that could be accelerated by these sur-
rogate models is large. However, the vast amount of data
required to generate accurate results could constrain these
approaches, particularly in vascular flow applications where
geometric data are typically derived from medical images
that can be expensive to acquire and difficult to process. This
is highlighted by Liang et al. [156], Morales et al. [189] and
Gharleghi et al. [191] relying upondata augmentation strategies
to extend their cohorts of real patients into larger cohorts of
mostly synthetic patients. While this is necessary to create suf-
ficiently large datasets, there is a risk that the augmentation
may produce unrealistic results, as demonstrated by Morales



Table 7. Various machine learning simulation papers applied to vascular flow problems that mention the acceleration capability of their method.

reference method application comments on accuracy and/or acceleration

general applications

Cai et al. [187] DeepONet steady-state electroconvection accuracy .99%. Acceleration factor approximately 103

Mao et al. [188] DeepONet coupled flow and finite-rate chemistry MSE is approximately 10−5. Acceleration factor

approximately 105

cardiovascular applications

Itu et al. [37] FCNN FFR prediction from coronary artery

anatomy

83.2% diagnostic accuracy for ischaemia. Acceleration

factor >80

Liang et al. [156] AE and FCNN steady-state haemodynamics prediction in

thoracic aorta

velocity accuracy, 98.0%. Pressure accuracy, 98.6%.

Acceleration factor approximately 900

Morales et al. [189] FCNN ECAP prediction from LAA geometry mean accuracy, 95.3%. Acceleration factor 144a

FCNN with PCA mean accuracy, 94.8%. Acceleration factor 7200a

Ferdian et al. [190] residual CNN super-resolution of aortic 4D flow MRI flow rate prediction accuracy .95%. Prediction time

40–90 s

Gharleghi et al. [191] U-Net-style

CNN

transient WSS prediction in left main

bifurcation of coronary arteries

accuracy .95%. Prediction time of 0.2 and 0.001 s

with CPU and GPU, respectivelyc

Li et al. [38] Point-Net haemodynamics prediction before and after

coronary artery bypass surgery

prediction accuracy �90%. Acceleration factor 600

Li et al. [39] Point-Net haemodynamics prediction before and after

aneurysm treatment by FDS

prediction accuracy .87%. Acceleration factor 1800

Yin et al. [192] DeepONet predicting damage progression and P–V

curves in aortic dissection

P–V accuracy .95%b. Prediction time is <1 s, FOM

simulation time is ∼12 hours using 20 processors
aTen-fold cross-validation used with 300 geometries. One round of cross-validation on 30 geometries took 30 s or 25 min for each model. This is used to
calculate evaluation time for one geometry and compared to reported 2 h CFD simulation time to calculate acceleration factors.
bP–V accuracy taken for test cases with damage included, from table 3 of [192].
cNetwork requires steady-state CFD result as input, which takes <2 min to calculate. With this included, acceleration factor is approximately 90.
AE, autoencoder; CFD, computational fluid dynamics; CPU, central processing unit; DeepONet, deep operator network; ECAP, endothelial cell activation potential;
FCNN, fully connected NN; FDS, flow-diverting stent; FOM, full-order model; FFR, fractional flow reserve; GPU, graphics processing unit; LAA, left atrial
appendage; MRI, magnetic resonance images; MSE, mean-squared error; NN, neural network; PCA, principal component analysis; P–V, pressure–volume.
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et al. [189] discarding 30% of their initial training samples due
to unrealistic flow features. It is possible that data augmenta-
tion approaches from the wider machine learning field, such
as variational autoencoders or generative adversarial net-
works, could provide techniques to generate highly realistic
synthetic datasets [195–197]. Another issue with physics-
agnostic machine learning simulation methods is that the
up-front cost of running CFD simulations in large cohorts to
generate training data and the subsequent cost of training the
complex network can lead to large overall costs. Despite
these challenges, machine learning surrogate models are able
to make predictions in previously unseen geometries due to
being trained over an extensive array of different geometries.
This is a crucial challenge in many vascular flow modelling
problems that most acceleration techniques do not address
with such generality.

3.3.2. Point network simulation
Typical convolutional deep learning architectures require regu-
lar input data, such as images. Point-Net was developed to
allow the direct use of irregular point cloud data with tech-
niques typically applied to regular input data [198]. A benefit
of using a Point-Net architecture is its ability to generalise
well to new input point clouds. This means generalising to
unseen geometries for vascular flow applications, which can
lead to large savings in simulation times. Point-Net-based
models have been applied to cardiovascular flow problems.
Li et al. [38] used a Point-Net-based model to predict steady-
state haemodynamics before and after coronary artery bypass
surgery. Their approach yielded a prediction accuracy for vel-
ocity and pressure fields of around 90%. The time to evaluate
the deep learning model was 600 times less than for the CFD
model (1 s versus 10min), although 40 h of training time was
required prior to using the former. The same authors also
applied their Point-Net-based model to predict steady-state
aneurysm haemodynamics before and after treatment with a
porous-medium flow-diverting stent model [39]. A similar
prediction accuracy was found (.87%) and the calculation
time was reduced by a factor of 1800. Kashefi & Mukerji
[199] developed a physics-informed Point-Net (PIPN) and
evaluated it for steady-state incompressible flow problems.
The acceleration factor is approximately 35 for trained PIPN
evaluation compared to the standard numerical solver. Com-
pared to PINNs, the accuracy of PIPNs is similar when
trained to the same convergence criterion, but the compu-
tational cost of PINNs is 18 times greater. This factor is
increased when exploiting the inherent generalisation of
PIPN to model new geometries, as in this scenario, the PINN
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will often need to be re-trained. PIPN is a recent technique that
has not yet been applied to vascular flow.
oyalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

21:20230565
3.3.3. Operator networks
The function approximation capacity of neural networks iswell
known, but it is also possible for neural networks to approxi-
mate operators that map between function spaces [200]. The
first and most general operator network is the deep operator
network (DeepONet) [40]. DeepONet consists of a branch net-
work, which encodes the input function space, and a trunk
network, which encodes the domain of the output functions.
The input to the branch network are function values at fixed
sensors and the input to the trunk network are spatio-temporal
coordinates at which to evaluate the operator. The output of
the trunk network is a set of basis functions, and the output
of the branch network is the basis coefficients [41]. Combining
the basis coefficients and functions using the dot product gives
the operator network output. Following training, the Deep-
ONet approximates the underlying solution operator for the
input function and coordinate spaces. Other operator learning
methods include the Graph Kernel Network and Fourier
Neural Operator [201,202]. Physics-informed extensions to
operator networks that can reduce the required training data
have also been studied [41,203].

Operator learning approaches have been applied to var-
ious linear and nonlinear problems involving explicit and
implicit operators [40]. Cai et al. [187] used DeepONets for
electroconvection, which is a multi-physics problem involving
coupled flow, electric and concentration fields. They noted that
training the DeepONets takes approximately 2 h, but the
evaluation time once trained is less than 1 s, representing a
speed-up of approximately 1000 times when compared with
the NekTar solver used to generate training data. Mao et al.
[188] used DeepONet for a hypersonic flow problem involving
a coupling between flow and finite-rate chemistry. They found
that the trained network was five orders of magnitude faster
than the CFD solver used to generate the data. Furthermore,
Cai et al. [187] and Mao et al. [188] combined multiple Deep-
ONets to build a DeepM&MNet, which is specifically
designed to handle multi-scale and multi-physics modelling.
DeepONets have also been used as a surrogate for expensive
microscopic models, thus accelerating the coupling between
micro- and macro-scale models [204]. Recent work has also
investigated using physics-informed DeepONets for long-
time integration of parametric partial differential equations
[205]. Applications of operator learning to vascular flow pro-
blems are limited, but two examples are by Yin et al. [192]
and Arzani et al. [206]. Yin et al. [192] applied DeepONets to
simulation of aortic dissection, a complex fluid–structure inter-
action problem. The DeepONet was able to make predictions
in less than 1 s, whereas the FEM used to produce training
data took approximately 12 h to run using 20 processors.
Arzani et al. [206] applied an operator learning surrogate
model to 2D cardiovascular flow applications, but the focus
of this work was on the interpretability and generalisation
rather than acceleration.

Compared to function-based learning strategies, a benefit
of operator learning is that they demonstrate small generalis-
ation errors [40]. Furthermore, DeepONets have been shown
to overcome the curse of dimensionality, in that they do not
require exponentially more training data to improve the
approximation accuracy [207]. These techniques can
potentially addressmanyof the inherent complexities of vascu-
lar flow, particularly the multi-physics and multi-scale nature
of the problem, but they have not yet seen widespread
adoption.
4. Discussion and outlook
4.1. Summary
This review presents simulation accelerationmethods based on
ROM andmachine learning for the target application of vascu-
lar flow. The review focuses on five complexities that are
common in vascular flow problems, but which are also
found across a multitude of other domains; namely: (i) nonli-
nearity, (ii) geometric complexity, (iii) multi-physics, (iv)
multi-scale in time and (v) multi-scale in space. Each complex-
ity presents unique challenges for vascular flow simulations
and their acceleration. The ROM methods discussed in this
review are spatial dimension reduction (SDR), POD and
dynamic mode decomposition (DMD) ROMs, as well as brief
overviews of reduced basis (RB) methods and proper general-
ised decomposition (PGD). The machine learning approaches
reviewed are machine learning-augmented ROMs, machine
learning-based ROMs, physics-informed neural networks
(PINNs), physics-agnostic networks, Point-Nets and operator
networks. We found that all acceleration methods are
well suited to some of the complexities of vascular flow and
limited for others, as highlighted in table 8.
4.1.1. Reduced order modelling
SDR methods are suitable for capturing spatial multi-scale
behaviour and some nonlinear and multi-physics effects,
but only in simplified geometries where axisymmetry or
other assumptions are valid [45]. These methods calculate
bulk quantities instead of full spatio-temporal fields and
are not designed for temporal multi-scale problems. SDR
methods are widely used in various vascular applications,
with one of its most common uses in deriving boundary con-
ditions for 3D models [45,63]. Due to their simplistic nature,
SDR models can provide large acceleration ranging from two
to six orders of magnitude [54].

POD-based ROMs branch into two categories depending
upon whether they combine POD with projection or interp-
olation. POD-Projection and POD-Interpolation ROMs are
able to calculate 3D time-varying solution fields in individual
complex geometries. POD-Projection has been applied to var-
ious vascular flow problems [30,80–82,92,100,101]. Both
approaches are suitable for multi-physics problems. For non-
linear problems, the projection applied to the governing
equations does not fully de-couple the ROM and the full-
order model, limiting the acceleration offered by POD-Projec-
tion ROMs. POD-Interpolation does not depend upon the
governing equations of the system, so it does not suffer the
same limitations for nonlinear applications. However, POD-
Interpolation ROMs have been shown to generalise less effec-
tively than their projection-based counterparts [96]. Neither
POD-Projection nor POD-Interpolation are well suited to
multi-scale modelling in time, with the long-term stability
of POD modes not guaranteed. Finally, while neither
approach is inherently well suited to spatial multi-scale mod-
elling, coupling the POD-based ROM to an SDR ROM could
produce a model that can quickly and accurately provide full



Table 8. Reduced order modelling and machine learning acceleration methods and their suitability for modelling various vascular flow complexities. RB, PGD
and Point-Net simulation acceleration approaches were briefly reviewed in this paper but not in sufficient detail to include in this table.

method nonlinearity geometric complexity multi-physics multi-scale (time) multi-scale (space)

ROMs

SDR ✓ ✗ ∼ ✗ ✓

POD-P ∼ ✓ ✓ ✗ ✗a

POD-I ✓ ✓ ✓ ✗ ✗a

DMD ✓ ✓ ∼ ✓ ✗a

machine learning-augmented ROMs

POD-I-NNb ✓ ✓ ✓ ∼ ✗a

POD-P-NNb ✓ ✓ ✓ ∼ ✗a

machine learning methods

physics-agnostic ✓ ✓c ✓ ✓d ✓d

PINN ✓ ✓ ✓ ✓e ✓e

DeepONet ✓ ✓ ✓ ✓ ✓

Key: ✓, method is suitable; ∼, somewhat suitable; ✗, not suitable.
aIn isolation the methods are not well suited for spatial multi-scale problems, but they can be coupled to patient-specific SDR models so that boundary
conditions are derived from large portions of the vasculature.
bIncludes various types of NN used in conjunction with the ROM approach, such as FCNNs or RNNs.
cPhysics-agnostic approaches are not only suitable for complex individual geometries, but are capable of generalising to previously unseen geometries.
dWhile suitable for multi-scale problems in principle, the data-hungry nature of physics-agnostic approaches may lead to prohibitive data requirements for
problems spanning large spatial and time scales.
eBasic PINNs are not designed for multi-scale problems, but extensions such as cPINNs, XPINNs and PPINNs are.
cPINNs, conservative PINNs; DeepONet, deep operator network; DMD, dynamic mode decomposition; FCNN, fully connected NN; PGD, proper generalised
decomposition; POD, proper orthogonal decomposition; POD-I, POD-Interpolation; POD-P, POD-Projection; NN, neural network; PINN, physics-informed NN; PPINNs,
parallel-in-time PINNs; RB, reduced basis; RNN, recurrent NN; ROM, reduced order model; SDR, spatial dimension reduction; XPINNs, extended PINNs.
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spatio-temporal fields in a region of interest while capturing
the influence of the systemic vasculature. Due to the non-
iterative nature of POD-Interpolation, it can typically provide
large accelerations ranging from two to six orders of magni-
tude, whereas POD-Projection acceleration ranges from one
to three orders of magnitude [77,97,99,100].

Similarly to POD-based ROMs, DMD ROMs can provide
full spatio-temporal fields in individual geometries and could
be coupled to SDR models to capture the influence of large
regions of the vasculature. DMD ROMs are less common
than POD-based approaches, so application to multi-physics
simulation acceleration has not been thoroughly investigated.
The main benefit to DMD ROMs is that they are designed to
approximate the temporal dynamics of the system, which
makes them well suited to the long-time model integration
required in temporal multi-scale problems.

Other techniques include RB methods and PGD. RB
methods are a similar approach to POD-Projection ROMs
and have been successfully applied to various nonlinear,
multi-physics, geometrically complex problems [126–128]. RB
methods have been applied to vascular flow problems such
as flow field calculation in 2D parameterised carotid arteries,
inverse modelling in stenosed arteries and flow in femoropo-
pliteal bypass problems [123–125]. The acceleration offered
by RB methods ranges from two to three orders of magnitude.
PGD sits apart from most ROM methods, as it uses separated
representations and successive enrichment a priori instead of
applying dimensionality reduction to snapshots from the
full-order model a posteriori in order to construct the reduced
basis [129]. PGD has been applied to Navier–Stokes and
rheology applications with acceleration ranging from one to
two orders of magnitude [131,133]. This approach is well
suited for separable problems, whether the separation is in
space or time [130,134,135]; however, it has not been applied
as widely as other ROM methods and has seen no application
to vascular flow simulation acceleration.

4.1.2. Machine learning simulation acceleration
Machine learning offers an array of approaches for simulation
acceleration. A common approach is to usemachine learning in
conjunction with ROMmethods, where the learning algorithm
augments or replaces part of the ROM method. Neural net-
works can be used to provide a powerful high-dimensional
interpolation algorithm in the POD-Interpolation ROM
approach [143,144,146] or to overcome the difficulties POD-
Projection ROMs encounter for nonlinear equations [148,149].
Autoencoders can also replace the dimensionality reduction
common acrossmost ROMmethods [34,35]. Another approach
is to build amachine learningROMbased on autoencoders and
feedforward neural networks while using POD for dimension-
ality reduction of the data passed to themachine learningROM
[145,153,154]. Machine learning can overcome some of the
limitations of traditional ROMs and broaden the scope of
problems for which the ROM methods are suitable.

PINNsare amachine learning-based simulationmethod that
lies at the intersection of equation-based anddata-drivenmodel-
ling [36]. To be used for simulation acceleration, PINNs need to
be able to generalise across new input parameters and/or geo-
metries or they need to be sufficiently fast to train that a new
PINN can be constructed for each new problem instance.
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The former can be achieved by adding extra inputs to the net-
work or by constructing a precursor network that handles the
parametric dependence in the problem [160,166,167]. Faster
training times can be achieved through techniques such as trans-
fer learning, trainable activation functions and residual-based
adaptive refinement [163,168,170,171]. When used in an accel-
eration context, such as many-query parameter sweeps, PINNs
have been demonstrated to reduce total simulation time by
two to five orders of magnitude, depending upon the appli-
cation and the number of queries [160,161]. PINNs and their
extensions are suitable for all of the complexities that commonly
occur in vascular flow problems and have been successfully
applied to aneurysm flowmodelling and synthesis of non-inva-
sive flowmeasurements in a bifurcating vessel model [163,179].

Alternative machine learning-based simulation techniques
include physics-agnostic methods, Point-Nets and operator
networks. Physics-agnostic simulation methods have been
applied to vascular flow problems such as fractional flow
rate prediction in coronary arteries, steady-state pressure and
velocity prediction in the thoracic aorta, inverse geometry pre-
diction in the aorta, endothelial cell activation potential
prediction and prediction of flow fields from magnetic reson-
ance images [37,155,156,189,194]. While these approaches can
accelerate solution evaluations by two to three orders of mag-
nitude and tend to generalise well to previously unseen
geometries, they require large datasets and the network out-
puts do not necessarily respect the underlying physics in the
problem. Point-Nets facilitate the use of powerful convolu-
tional deep learning architectures on datasets consisting of
point clouds. They have been used for steady-state haemody-
namics predictions before and after coronary artery bypass
surgery and aneurysm flow diversion, producing accurate pre-
dictions and reducing prediction time by two to three orders of
magnitude compared to the computational fluid dynamics
model [38,39]. Point-Nets generalise well to new geometries
despite paying no attention to underlying governing
equations, but require large datasets for training. Physics can
inform Point-Nets, but this is a new technique with very few
use cases to date [199]. Operator learning techniques, such as
DeepONets, are other powerful simulation techniques that
have demonstrated strong generalisation capabilities, the abil-
ity to accelerate by two to five orders of magnitude, and the
ability to overcome the curse of dimensionality [40,187,188].
However, operator learning is an emerging technique that
has only seen a small number of applications to vascular
flow problems to date [192,206].
4.2. Challenges
Despite years of research on ROMs and the recent application
of machine learning to simulation acceleration, applying
these techniques to real-world vascular flow problems
remains challenging. Three key challenges to address that
have been identified by this review are

1. The development of accelerated simulation methods that
can handle large geometric variability, facilitating their
application to previously unsimulated and dynamically
varying geometries.

2. The development of accelerated simulation methods for
multi-scale problems, enabling seamless evaluation of
small- and large-scale processes over short- and long-term
time scales.
3. The development of a benchmarking framework for accel-
erated simulation methods, allowing for systematic
quantification and comparison of new approaches and
driving transparent progress in the field.

A critical challenge to widespread adoption of simulation
acceleration in vascular flow applications is incorporating
large geometric variability into the models. Whether per-
forming large-scale testing of medical devices in cohorts
with varying anatomy, simulating medical device responses
as part of treatment planning for an individual patient, or
providing real-time surgical feedback during operation, the
ability of the accelerated model to accurately evaluate haemo-
dynamics in a previously unsimulated or dynamically
changing geometries is essential. Efforts to introduce geo-
metric variability into vascular flow ROMs have mainly
focused on developing parameterised models [30,82,92,100].
While these approaches yielded accurate results, acceleration
was only of one order of magnitude in most cases, with the
largest acceleration roughly three orders of magnitude. Fur-
thermore, models typically only used a small number of
parameters describing features such as vessel diameter or ste-
nosis severity and position [30]. In pathologies with highly
complex shapes, such as aneurysms, identifying descriptive
parameterisations with few parameters may not be possible.
This would be further exacerbated by device modelling
or fluid–structure interaction. A possible approach to over-
come this is to use domain decomposition ROMs that can
partition an unseen geometry into sub-geometries that bear
resemblance to the geometries for which snapshots were pre-
viously calculated [208,209]. This approach has been applied
to flow over urban landscapes and pipe flow problems so far,
but could potentially be applied to vascular flow problems,
where the sub-geometries could be a set of commonly
required vascular segments and configurations. ML
approaches such as physics-agnostic simulation methods
[156,189,191] and Point-Nets [38,39] have demonstrated the
ability to generalise to unseen geometries by using large
sets of mostly synthetic geometries and corresponding simu-
lation data for training. These are the most promising
attempts to provide generalisation across geometries in vas-
cular simulation acceleration, but they are still hampered by
the amount of data required and the risk that data augmenta-
tion strategies can lead to unrealistic results. Informing these
approaches with physics could potentially reduce the data
requirement and increase the reliability of the results but
there have been few studies into this to date [199].

Multi-scale problems represent the second challenge for
accelerated simulation of vascular flow models. When using
computationalmodels to inform treatment decisions or in asses-
sing medical device safety and efficacy, short- and long-term
metrics are likely to be required. Depending upon the specific
problem, models of small-scale processes like thrombosis or
endothelialisation may need to be coupled to models of large-
scale haemodynamic effects. In principle, DMD ROMs are
well suited to long-term solution evaluation, but the few studies
using this approach for vascular flowapplications have focused
on solution reconstruction rather than long-term prediction
[105,109]. Domain decomposition PINN methods, such as
cPINNs, XPINNs and PPINNs, are suitable for multi-scale pro-
blems in time and space, but also have seen little use in vascular
flow applications [183–185]. DeepONets have also shown great
potential for multi-scale applications. Wang & Perdikaris [205]
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used DeepONets for long-time prediction of partial differential
equations, while Cai et al. [187] and Mao et al. [188] used
modular DeepONets trained individually on single-physics
single-scale problems to facilitate multi-physics and multi-
scale modelling for electroconvection and flow-chemistry
applications. Modular DeepONets are referred to as
DeepM&MNets (Deep Multi-Physics & Multi-Scale Networks)
and represent a promising approach towards the challenge of
long-time evaluation of multi-physics and multi-scale models
which are crucial in vascular flow applications.

The final challenge we want to highlight is the need
for a benchmarking framework for assessing simulation
acceleration methods. Throughout this review, quantitatively
comparing different approaches has proved challenging due
to the following factors that vary across studies: (i) amount
of training data; (ii) training details, e.g. stopping/conver-
gence criteria, number of modes retained in model; (iii)
accuracy and acceleration metrics, e.g. error metrics and vari-
ables of interest, acceleration relative to FOM or entire offline
cost; (iv) target applications. To overcome this challenge, we
propose the development of a benchmarking framework for
use in the simulation acceleration community. This should
consist of a series of example problems of varying nature
and complexity, datasets for each example problem for use
in training, specified allowances and/or metrics for the com-
putational cost of data generation and training, and metrics
defined for assessment of accuracy and acceleration. The
example problems should also be motivated by real-world
problems where a balance often must be struck between the
amount of training data available for the machine learning
model and the task for which it is to be used (e.g. many-
query tasks, control problems, real-time prediction etc.).
Development and subsequent use of this framework would
enable objective assessment and comparison of methodologi-
cal advances in the field. Inspiration could also be taken from
the medical image analysis field, where challenge problems
are commonly proposed with publicly available data and
predefined metrics to assess model performance for tasks
like registration and segmentation [210,211].

4.3. Outlook
Accelerated vascular flowmodels are essential for applications
such as in silico trials (ISTs), patient-specific treatment plan-
ning, and real-time surgery feedback. ISTs can require the
evaluation of nonlinear, multi-physics, multi-scale models in
large cohorts of virtual patients, which are anatomically and
physiologically diverse, undergoing treatment with different
devices [3,212]. Patient-specific treatment planning requires
similarly complex models that can be evaluated in an individ-
ual patient in a reasonable time frame given the prognosis of
the pathology in question. Real-time surgery feedback requires
complex model evaluation in individual patients fast enough
to provide haptic feedback or visualisations to the surgeon per-
forming the procedure [44]. These three applications highlight
some of the impact that accurate and efficient vascular flow
models can have on patient care, which makes developing
these approaches a worthwhile endeavour. This review has
identified that the key challenge to be addressed is the develop-
ment of multi-scale simulation acceleration methods that can
handle the large geometric variability inherent to vascular
flow problems. We also suggest that to achieve quantifiable
and transparent progress in simulation acceleration, the
community should develop a benchmarking framework con-
sisting of a series of exemplar problems with standardised
metrics for assessing acceleration and accuracy. This would
benefit both the simulation acceleration and the vascular flow
modelling communities.
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