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Abstract
Advanced biofuels have the potential to supplant significant fractions of conven-
tional liquid fossil fuels. However, the range of potential compounds could be
wide depending on selected feedstocks and production processes. Not enough
is known about the engine relevant behavior of many of these fuels, particu-
larly when used within complex blends. Simulation tools may help to explore
the combustion behavior of such blends but rely on robust chemical mecha-
nisms providing accurate predictions of performance targets over large regions of
thermochemical space. Tools such as automatic mechanism generation (AMG)
may facilitate the generation of suitable mechanisms. Such tools have been
commonly applied for the generation of mechanisms describing the oxidation
of non-oxygenated, non-aromatic hydrocarbons, but the emergence of biofuels
adds new challenges due to the presence of functional groups containing oxygen.
This study investigates the capabilities of the AMG tool Reaction Mechanism
Generator for such a task, using diethyl ether (DEE) as a case study. A method-
ology for the generation of advanced biofuel mechanisms is proposed and the
resultant mechanism is evaluated against literature sourced experimental mea-
surements for ignition delay times, jet-stirred reactor species concentrations,
and flame speeds, over conditions covering φ = 0.5–2.0, P = 1–100 bar, and
T = 298–1850 K. The results suggest that AMG tools are capable of rapidly pro-
ducing accuratemodels for advanced biofuel components, although considerable
upfront input was required. High-quality fuel specific reaction rates and thermo-
chemistry for oxygenated species were required, as well as a seed mechanism,
a thermochemistry library, and an expansion of the reaction family database to
include training data for oxygenated compounds. The finalDEEmechanism con-
tains 146 species and 4392 reactions and in general, provides more accurate or
comparable predictionswhen compared to literature sourcedmechanisms across
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the investigated target data. The generation of combustionmechanisms for other
potential advanced biofuel components could easily capitalize on these database
updates reducing the need for future user interventions.
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1 INTRODUCTION

Recent IPCC reports clearly state the urgent need to
drastically reduce greenhouse gas (GHG) emissions and
limit global warming to 1.5◦C.1,2 However, global energy
demand is predicted to grow significantly, due largely to
a rise in global population and the increasing demands of
developing regions for transportation and goods haulage.3
These sectors are heavily reliant on crude oil, raising envi-
ronmental concerns which must be addressed rapidly.
Alongside other factors (such as energy security and
resource scarcity), these environmental concerns provide
considerable motivation for the development of alter-
native (non-fossil) liquid fuels. Various such fuels have
emerged with the potential to replace significant quanti-
ties of fossil-derived transportation fuels, including several
advanced biofuels.4–9 Like all biofuels, advanced biofuels
are produced from biomass feedstocks. However, unlike
unsustainable first-generation biofuels (which often rely
on food crops), advanced biofuels are produced via the con-
version of lignocellulosic biomass, such as inedible plant
matter, energy crops, and waste.
To effectively utilize the developing range of advanced

biofuels available, it is necessary to determine their
impacts on the performance and emissions of conven-
tional engine technologies. Exhaustively characterizing
each new fuel (and their various blends) experimen-
tally is an extremely costly and time-consuming process,
while the need to eliminate the use of fossil-derived fuels
is urgent. Computer modelling provides an opportunity
to predict combustion behavior relatively cheaply and
quickly but requires a robust, detailed chemical kinetic
mechanism, that is capable of simulating combustion
behavior over wide ranges of pressures, temperatures,
and equivalence ratios. The large, detailed mechanisms
that typically describe the combustion of advanced bio-
fuels may contain hundreds of species and thousands
of reactions. Examples of this can be seen in the litera-
ture for detailed mechanisms describing the combustion
of diethyl ether (DEE) (746 reactions, 3555 species),10
anisole (1240 species, 6004 reactions),11 n-octanol (1280
species, 5337 reactions),12 and blended biofuel mixtures
such as the ethyl levulinate, ethanol, and diethyl ether
blend mechanism (575 species, 1657 reactions) of Howard

et al.13 Creating highly accurate, detailed mechanisms by
hand is often tedious, error-prone, and requires exten-
sive expert knowledge of reaction pathways. Also, for
combustion systems, the reaction rate coefficients for the
vast majority of these reactions are uncertain, due to a
lack of direct experimental measurements or high-level
theory calculations.14 Only a small fraction of the rate
coefficients of relevance for advanced biofuel oxidation
mechanisms have been studied directly, and of those, even
less have been studied at combustion relevant conditions.
The experimental measurement of thermodynamic and
transport properties for hundreds of relevant species, or the
determination of thousands of rate coefficients is clearly
infeasible. Accurate quantum mechanical calculations for
suchparameters could reduce thisworkload butwould still
be extremely computationally demanding. Approaches
which can generalize information obtained from exper-
imental measurements or theory-based calculations for
well-studied species and reactions, and use this to estimate
unknown reaction rate parameters and species thermo-
chemistry, could potentially provide a solution to these
issues.

1.1 Automatic mechanism generation

Recently, the chemical engineering community has devel-
oped a contagious excitement regarding the prospect of
machine learning (ML) and artificial intelligence (AI)
techniques entering the research space, with the poten-
tial to assist in the development of new technologies and
solve historic problems.15–17 Regarding the development
of detailed kinetic models, it is often claimed that ML
can be applied to algorithmically predict fundamental
thermokinetic information (such as species thermody-
namic properties and reaction rate parameters) for unex-
plored species, based on decades of carefully determined
data for more conventional species containing similar
functional groups. Effectively, data-driven predictions like
these can be applied autonomously to aid in the develop-
ment of detailed kinetic models through automatic mech-
anism generation (AMG). AMG methods also limit the
likelihood of human error by automating time consuming
processes and embedding expert understanding.18
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MICHELBACH and TOMLIN 3

TABLE 1 An example showing how training data for small species and well characterized reactions may be utilized in a reaction family
to predict reaction rates for larger species with similar structures.

Reaction
Rate coefficient (k(T))
(m3/(mol*s))

Training reaction #1 9.35 × 10−1𝑇2.29

exp

(
3266.45 J∕mol

𝑅𝑇

)
23

Training reaction #2 2.26 × 10−3𝑇2.93

exp

(
16903.36 J∕mol

𝑅𝑇

)
24

Training reaction #3 2.73 × 101𝑇1.81

exp

(
−
3633.39J∕mol

𝑅𝑇

)
23

Unknown reaction #1 2.26 × 10−3𝑇2.93

exp

(
16903.36 J∕mol

𝑅𝑇

)

Unknown reaction #2 1.13 × 10−3𝑇2.93

exp

(
16903.36 J∕mol

𝑅𝑇

)

Unknown reaction #3 9.35 × 10−1𝑇2.29

exp

(
3266.45 J∕mol

𝑅𝑇

)

Unknown reaction #4 2.73 × 101𝑇1.81

exp

(
−
3633.39 J∕mol

𝑅𝑇

)

The potential of the AMG concept has inspired the cre-
ation of several tools, featuring a variety of implementation
methodologies. However, the basic underlying principles
of AMG are common throughout. All possible reactions
which may occur between a set of user-defined reactants,
are predicted by a database of reaction ‘families’. These
families may describe a reaction template and provide rate
estimates based on large sets of training data, for reac-
tions which display similar structural changes. Examples
of such families include hydrogen abstraction, internal
hydrogen migration, and cyclic ether formation. In this
way, training data for the reactions of well characterized
species can be applied to estimate reaction rates for species
which have not been extensively studied. A selection of
simple examples for this process can be seen in Table 1. In
this example, several unknown hydrogen abstraction reac-
tion rates for oxymethylene ether (OME1) and di-n-butyl
ether (DNBE) are estimated based on ‘training’ reaction
rates for the relatively well-studied species of dimethyl
ether (DME), DEE, and n-pentane. In the case of unknown
reactions #1 and #3, rates are estimated to be equal to
those of training reactions #2 and #1, respectively. In real-
ity, while molecular structures local to the reaction site
are similar between these unknown and training reactions,
these estimations will have a limited degree of accuracy,
as species specific phenomena and non-nearest neighbor
interactions influence the rate of reaction. This introduces
uncertainty into this estimation processwhichmayneed to
be addressed by the AMG user (by sourcing additional rate

data from the literature) or the AMG tool itself. An exam-
ple of how this issue may be addressed during the AMG
process can be seen in the calculation of rate parameters
for unknown reaction #2. In this case, the rate parameters
of training reaction #2 are utilized. However, the clear dif-
ference between the two relevant structures necessitates
significant corrections to the training rate. For the pur-
pose of this example, the reaction path degeneracymethod
is applied (as employed by RMG19) to modify the pre-
exponential A-factor. Here, the reaction path degeneracy
refers to the total change in spin multiplicity due to the
reaction. Due to the differences in local structures, this
corrected estimate may still not be sufficient and would
certainly be a target for model development and refine-
ment. Unknown reaction #4 shows a scenario for DNBE
in which the nominal reaction site (the terminal carbon)
is far from the ether moieties present in DME and DEE,
so the use of training data for these species is inappro-
priate. Instead, in a case like this, it may be sufficient to
appropriate the rates of straight-chain alkanes, such as
the n-pentane reaction shown in training reaction #3. The
influence of the ether group on local bond dissociation
energies is minimal at this abstraction site.20 However,
site selectivity is not only due to bond dissociation ener-
gies (particularly in the case of hydrogen abstractions by
OHradicals), and interactions between the abstracting rad-
ical and oxygenated functional groups can cause some
sites to be favored. An example of this can be seen in
straight chain alcohols such as propanol or n-butanol, in
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4 MICHELBACH and TOMLIN

which the O atom of the alcohol group forms a stabilizing
hydrogen bond with the abstracting OH radical, facilitat-
ing abstraction at the γ site.21 A similar phenomena is also
observed for hydrogen abstractions from esters.22 Estimat-
ing such interactions is beyond the capabilities of these
simple rate estimation methods, highlighting the need to
embed accurate, relevant, and up-to-date rate parameters
in the estimation process where possible.
Some AMG tools (such as MAMOX)25 incorporate reac-

tion lumping tominimize the amount of required reactions
and thus, the size of the generated mechanism, whereas
others will generate elementary reactions only. As the
kinetic model is enlarged algorithmically, through the
exploration of reaction pathways and generation of rate
parameters, the AMG tool must determine which reac-
tions and species are necessary. Termination criteria are
implemented which aim to include only important reac-
tions and limit the size of the generatedmechanism. These
criteria will vary between different AMG tools. Early ter-
mination methods utilized a rank-based method, limiting
the maximum number of reaction steps.26,27 Tools such as
Genesys28 employ a rule-based termination criteria, which
employs pre-defined constraints for each reaction family.
Reactions are only included in the mechanism if all these
constraints (or rules) are met. These rules may require
user-definition for each reaction family, requiring knowl-
edge of chemical kinetics. Rate-based termination criteria
rely on reactor simulations to determinewhich species and
reactions should be included in the mechanism, eliminat-
ing reactions and species which do not meet minimum
reaction flux requirements. As this method is simulation
based, it relies heavily on accurate species thermochem-
istry and reaction rate parameters. A rate-based method is
employed by RMG,29 the description of which is expanded
upon in Section 2.1.
During the process of reaction exploration, rate parame-

ters may be scaled based on the relative molecular struc-
tures or reaction degeneracy.19 For reversible reactions,
reverse rate coefficients are calculated based on the for-
ward and equilibrium rate coefficients, maintaining ther-
modynamic consistency, as shown by Equation (1). Here,T
is the temperature at which the reaction is occurring, R is
the molar gas constant, Δ𝐺0

𝑟𝑥𝑛 is the standard free energy
of the reaction, Δn is the change is moles, P is the standard
pressure, Keq is the equilibrium constant, and kf and kr are
the forward and reverse rate coefficients, respectively.

𝑘𝑓

𝑘𝑟
= 𝐾𝑒𝑞 =

(
𝑅𝑇

𝑃

)−Δ𝑛

exp

(
−Δ𝐺0

𝑟𝑥𝑛 (𝑇)

𝑅𝑇

)
(1)

Species thermochemistry is critical to the determina-
tion of reverse reaction rates. If known, this data may
be supplied by the user, in NASA polynomial format.

For species where no experimentally determined or quan-
tum mechanically calculated data exists, thermochemical
parameters are often estimated using Benson-style group
additivity (GA) methods.30 This method assumes that
the thermochemistry of a given molecule can be cal-
culated via the contributions of all the various ‘groups’
within the molecule. For this method, a group is defined
as a central polyvalent atom and all neighboring atoms.
The implementation of the group additivity method may
vary between different AMG tools, but values for stable
molecules are typically calculated as the sum of group con-
tributions, determined from the experimental measure-
ment or quantum mechanical calculation of molecules
which share groups. These values have been collated and
summarized multiple times in the literature and are con-
stantly subject to updates, as well as the definition of new
groups.31–35 These calculations may be subject to various
correction factors, depending on the species, including
non-next nearest neighbor interactions (NNI), ring strain,
and resonance corrections.31,32,35 Group additivity esti-
mates for free radicals are also subject to a ‘correction’,
as individual group values are understandably difficult to
determine for such species. The hydrogen bond increment
(HBI) method is commonly applied to calculate estimates
for radicals (R) based upon the thermodynamic param-
eters of the parent molecule (RH) and a correction to
account for the loss of a hydrogen atom.36 The accuracy
of this method is highly variable and is strongly depen-
dent on the availability and accuracy of data for individual
groups, but when solved algorithmically, the calculation
method is rapid and can produce enthalpy of formation
estimates within 5 kJ/mol of the nominal values.31–35 How-
ever, combustion simulations of key targets have been
shown to display significant sensitivity to species ther-
mochemistry and individual group contributions, so even
small uncertainties in this method can propagate through
the model.37,38 Therefore, it is necessary that tools include
a comprehensive, up-to-date database of group contribu-
tions and corrections, which can be easily modified by
users.
To distinguish between individual species and enable

the algorithmic identification of structural groups, each
species requires an unambiguous, unique species repre-
sentation. This is not a trivial process considering the
potential size and complexity of detailed mechanisms.
Species must be defined such that no duplicates can
exist, and the molecular structure is described as com-
pletely as possible. This representation can then be used
to search for functional groups, reaction moieties of rele-
vance to different reaction families, and GA contributions,
including the necessity for GA corrections. The estima-
tion of unknown species transport properties may also
be dependent on group contribution methods, which
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MICHELBACH and TOMLIN 5

require a robust species representation. Such information
is required for the simulation of reacting gas-phase flows,
through the description of parameters such as diffusivity,
heat conductivity, and mixture viscosity. Diffusion coeffi-
cients for each species are calculated using Lennard-Jones
parameters, which are commonly estimated using group
contributionmethods, such as the Joback GAmethod.39,40
It is also not uncommon for estimates of unknown trans-
port parameters to be made by empirical correlations,
when this data are not provided by the user.29,41
Various AMG strategies have been extensively described

and reviewed previously in the literature.14,42–44 Com-
monly utilized AMG tools include Genesys (Ghent
University),28 EXGAS (CNRS and the Université de
Nancy),45 MAMOX (Politecnico di Milano),25 KUCRS
(University of Tokyo),46 andRMG(Massachusetts Institute
of Technology).29
De Bruycker et al.47 applied Genesys to generate prenol

and iso-prenol sub-mechanisms for the development of
an oxidation and pyrolysis model. For these automat-
ically generated sub-mechanisms, elementary reactions
were classified into various reaction families. These fam-
ilies were used to determine rate coefficients for most
reactions, with rates estimated by various techniques
(including group additivity, analogy to known reactions,
Evans-Polanyi, and reactivity structure-based rate rules).
The initialmodel produced byDe Bruycker et al.47 severely
underpredicted acetaldehyde concentrations measured in
a jet stirred reactor (JSR), but this was improved signifi-
cantlywith updates based on reaction path analysis.Hakka
et al.48 produced a kinetic model for predicting the oxida-
tion of methyl and ethyl butanoates, using EXGAS. This
model was then evaluated against experimental JSR con-
centration measurements and shock tube ignition delay
times (IDTs). Ultimately, the study found that their model
was incapable of correctly predicting the conversion of
methyl butanoate and the formation of ethylene (with
respect to JSR measurements). The underlying chemistry
driving the oxidation was investigated by reaction flux
and sensitivity analyses, which identified ethyl esters as
a potentially significant source of carboxylic acid, limit-
ing their viability as an alternative fuel component. Sakai
et al.49 produced a kinetic model for the prediction of DEE
autoignition, using a combination of quantum chemistry
calculations and KUCRS rate rules. Relevant rate rules
were derived from works on the oxidation of iso-octane
and butanol isomers50,51 and applied to DEE hydrogen
abstractions. The DEE model was evaluated against shock
tube (ST) and rapid compression machine (RCM) IDTs,
and it was shown to reproduce the experimental data well
at the majority of the conditions examined.
RMG is one of the most frequently utilized AMG pack-

ages, commonly applied in the construction of detailed

kinetic models, as well as for the estimation of thermo-
chemical properties.35,52 As such, a literature review of
the numerous instances in which RMG has been applied
would be beyond the scope of this work, though some stud-
ies of interest are summarized here. Early applications of
RMG were understandably focused on generating models
for simple alkanes. One example of this can be seen in the
study of Van Geem et al.,53 which generated a pressure
dependent model for the steam cracking of n-hexane. This
model was capable of accurately predicting the conver-
sion of n-hexane and the yields of major products, without
fitting any kinetic parameters to their experiments. A sub-
stantially reduced version of the model managed to retain
a good degree of agreement with experimental data while
improving computational time, indicating that the large
models initially produced by RMGmay not always provide
the most efficient modelling solution. The combustion of
alcohols was another early target for RMG studies, likely
due to the significant research interest in these species
as alternative fuels. In 2011, an RMG generated n-butanol
pyrolysis model was published by Harper et al.54,55 and
compared to newly acquired pyrolysis data. Reaction flux
and sensitivity analyses highlighted important reactions,
which were targeted for model refinement via quantum
chemistry calculations. The final model was further eval-
uated against a wide range of literature data including
JSR measurements and shock tube IDTs, performing well
throughout.
As the development of RMG continued and the com-

munity became more familiar with AMG techniques and
applications, the modelling of more complex systems with
RMG generated mechanisms became more feasible. By
2014,Allen et al.56 had produced anRMGgeneratedmodel,
using the now deprecated RMG-Java (version 3.3),57 for
investigating the combustion chemistry of di-isopropyl
ketone (an analogy for a series of potential advanced bio-
fuels produced by endophytic fungi). For the mechanism
generation, Allen et al.56 used built-in RMG libraries to
supply thermodynamic data and to seed (a concept which
is discussed in the Section 2.1 of this work) the small
species core of the reaction mechanism. When initially
evaluated against pyrolysis and oxidation speciation data,
as well as RCM IDTs, the model struggled to replicate the
NTC (negative temperature coefficient) region intensity
present in the experimental results. However, the authors
then identified key species and reactions through sensitiv-
ity analysis, making refinements to the mechanisms based
on quantum chemistry calculations. These refinements
led to a significant improvement in model predictions
and identified the importance of accounting for resonance
stabilization in the estimation of species thermochemistry.
Recently, Dong et al.58 (2023) investigated the combus-

tion and pyrolysis chemistry of butyl acetate, using newly
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6 MICHELBACH and TOMLIN

generated RMG mechanisms. Accurate parameters for
species and reactions were calculated prior to mechanism
generation and stored in theRMGdatabase, allowingRMG
to utilize them automatically. The identification of influ-
ential species via flux analysis and the impact of standard
enthalpy of formation (ΔHf,298K) perturbations, allowed
formodel improvement through the iterative refinement of
uncertain thermochemistry. This produced a model with
good predictive capabilities. However, the authors identi-
fied that a major flaw of the RMG generated model could
be found in the uncertainty of sensitive low temperature
oxidation pathways, due to a lack of accurate training
data and a reliance on highly uncertain rate rules. This
caused a limited degree of accuracy in model predictions,
particularly at low temperatures.
It is clear from this selection of literature that RMG (and

AMG as a whole) is a powerful tool, with the potential
to produce highly accurate, robust models when applied
correctly. However, in its current state, the process is not
completely autonomous and can require extensive input by
a user with expert knowledge to achieve the desired goal.
This is not necessarily a negative; a minimum knowledge
requirement will always be necessary to triage issues, pro-
vide expert critical analysis, and prevent the propagation
of incorrect information. However, the time investment
required to become proficient with AMG tools (such as
RMG) and to develop a reliable mechanism generation
methodology can be comparable to that of producing a
detailedmechanism by hand, eliminating one of themajor
advantages of AMG. On the other hand, once the tools
and training data have been established, they can be more
routinely applied to other molecules with similar func-
tional groups, and thus for developing mechanisms for
complex blends, AMGmethods could offer substantial sav-
ings. In this study, a general methodology is proposed for
the generation of mechanisms describing the combustion
of advanced oxygenated biofuels using RMG, based on the
lessons learnt from the literature and experience. As an
example, a mechanism is generated for the prediction of
DEE oxidation and compared against various literature
mechanisms and experimental data. The effectiveness of
RMG when utilized for this purpose is evaluated and rec-
ommendations are made regarding the application and
development of AMG tools.

1.2 Diethyl ether

DEE is selected for this case study due to its nature as an
oxygenated hydrocarbon, which has received significant
research attention during recent decades as a potential bio-
fuel. This is largely due to its ease of production, high
cetane number and preferential physical properties rela-

tive to similar species, such as dimethyl ether (DME).59–62
As an advanced biofuel, DEE may be produced directly
from cellulosic ethanol via an acid catalysed dehydration59
or as a by-product from the ethanolysis of lignocellulosic
biomass.63,64 DEE is highly reactive and volatile (with a
cetane number of approximately 139, boiling point of 35◦C,
and a flash point of −45◦C65), limiting its use as a fuel in
its pure form. However, DEE has been extensively studied
as a blending component for use in compression ignition
(CI) engines, with ethanol65–67 and conventional diesel
fuels.68,69 As a result of the potential of DEE as a biofuel, a
large amount and variety of experimental data relative to
the combustion of DEE already exists in the literature. This
includes IDTs measured in RCMs and shock tubes67,70–73;
speciation measurements collected from JSR, plug flow
reactor (PFR), and shock tube experiments10,74–78; and
several studies of DEE flames.79–84 In parallel to this exper-
imental exploration of DEE combustion, several studies
have attempted to produce detailed kinetic models to
predict the observed behavior.
In 2010, Yasunaga et al.72 published one of the ear-

liest chemical kinetic studies of the DEE pyrolysis and
oxidation systems, including a detailed kinetic model for
high-temperature ignition, validated against shock tube
IDTs and speciation measurements. Sakai et al.,49 build-
ing on the work of Yasunaga et al.,72 calculated species
thermochemical data and reaction rate coefficients for
important low-temperature oxidation reactions85 and uti-
lized them in the development of a DEE mechanism
for low and high temperature ignition. This model pro-
duced a good agreementwith IDTmeasurements at engine
relevant conditions. However, Sakai et al.49 alsomade arbi-
trary modifications to their derived thermochemical data,
tuning the mechanism to achieve more accurate predic-
tions (particularly in the NTC region). Detailed sensitivity
and uncertainty analyses were subsequently performed
on the Sakai mechanism by vom Lehn et al.37. Using
uncertainty minimization techniques, they produced an
optimized version of the Sakai mechanism which repro-
duced experimental IDTs more accurately. Tran et al.10
published a new, detailed model, not based on solely
the mechanisms of Yasunaga et al.72 and Sakai et al.,49
in 2019. The authors were motivated to create a new
mechanism by the poor representation of their JSR and
PFR measurements provided by the available models at
the time. Jet-stirred reactor gas chromatography (JSR-
GC) measurements for the conversion of DEE and the
production of various important intermediates were well
represented by the model, though the model is compar-
atively poor at predicting IDTs, particularly in the NTC
region. In 2021, Danilack et al.86 published an investiga-
tion into the influence of non-Boltzmann reactions on the
ignition behavior of DEE, using a newly generated DEE
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MICHELBACH and TOMLIN 7

mechanism. The authors computed stationary points on
multiple potential energy surfaces of relevance to DEE
oxidation, at the UCCSD(T)-F12b/cc-pVTZ-F12 level of
theory.87,88 They then went on to calculate the correspond-
ing temperature and pressure dependent rate constants,
using theRRKM/ME codeMESS andmicrocanonical tran-
sition state theory.86,89 However, this mechanism only
considered a single DEE chain-branching pathway. In
a following publication, Danilack et al.90 expanded on
this mechanism to include five additional chain branch-
ing pathways, to investigate the potential influence of
O2QOOH diastereomers on DEE auto-ignition. In both
cases, the studies were entirely theoretical endeavors and
neither mechanism was validated against experimental
data. From this brief summary of detailed DEE mecha-
nismdevelopment, it is apparent that no singlemechanism
is effective at accurately predicting both autoignition and
speciation measurements accurately. As such, there is a
need for a robust general purpose DEE combustionmodel.

2 METHODOLOGY

The development of a reliable mechanism generation
methodology using RMG, specifically for the prediction
of oxygenated advanced biofuel combustion, is one of the
core objectives of this study. Understanding the evolution
of the final methodology and the lessons learnt during
this process is vital to discussing the implications for the
current state and future development of AMG tools. As
such, it would be inappropriate to detail the final mech-
anism generation methodology in this section. Instead,
thismethodology section is dedicated to describing general
RMG use and providing simulation details. Subsequent
sections are then dedicated to describing and evaluating
the various mechanism generation methodologies inves-
tigated in this study, their impacts on the efficacy of the
resulting mechanisms, and their additional analysis and
data requirements.

2.1 Reaction mechanism generator

Full details of the RMG methodology and the the-
ory underpinning its operation are provided in the
literature.19,29 General AMG methodologies have been
summarized in Section 1.1. The RMG mechanism genera-
tionmethodology is summarized here from the perspective
of a user, to ensure a foundational level of understand-
ing regarding the mechanism generation process, and
to inform the necessity of the subsequent changes for
the accurate prediction of advanced biofuel combustion
phenomena.

To initialize mechanism generation, RMG requires the
user to provide an input file which contains specifications
for various necessary parameters. This includes reactor
conditions, starting species concentrations, termination
criteria, andmodel tolerances. Important species and reac-
tions are determined using an implementation of the
Susnow et al.91 rate-based algorithm. The user-defined
set of initial species (the initial model core) are reacted
under the specified initial conditions to generate a list
of possible product species (the model edge). A database
of reaction families and training data are employed to
enable this exploration of possible reactions and species,
as described generally in Section 1.1. The latest stable
version of the RMG database (3.0.0) contains an extensi-
ble set of 77 reaction family templates.19,92 However, not
all of these are applicable to the oxidation and pyrol-
ysis of gas phase mixtures. For these cases, by default
RMG utilizes 51 of these reaction families, though if the
user wishes to include others, these can simply be spec-
ified within the input file. While RMG features a wide
range of reaction family templates, the amount of train-
ing data incorporated into the database is heavily biased
towards a much smaller number of families. Approxi-
mately half of the reaction families contain less than five
training reactions and only 17 families contain more than
20 reactions.92 These 17 reaction families contain a total of
8831 training reactions, with 3107 and 2894 of these reac-
tions being utilized as training data for the two largest
families, ‘H_abstraction’ and ‘R_Addition_MultipleBond’,
respectively. To determine which reaction templates and
training data are applicable for a given species, each
molecule is described by a unique adjacency list: a graph
data type representation of the atoms and bonds in a given
molecule, the syntax of which is described in detail in the
literature.29 Example adjacency lists for DEE, the asso-
ciated fuel radicals, and selected oxidation intermediates
are presented in Supplementary Materials, while a full
description of the adjacency list notation can be found
in the RMG literature.29 Using this representation, func-
tional groups can be identified. These groups are also
described by adjacency lists, which differ slightly, in that
atom types are used in the list definition, rather than
specific elements. These atom types describe local bond
structures and a comprehensive list is available in the
literature,29 so it is not repeated here. The definition of
species and functional groups in this manner allows high
quality training data acquired for a well-studied species
to be generalized and algorithmically applied to a species
with an unknown reaction rate. Reaction rate parame-
ter predictions are automatically scaled by RMG based
on reaction path degeneracy.19 For the generation of an
accurate detailed mechanism, this methodology is reliant
on the provision of relevant, high quality training data
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8 MICHELBACH and TOMLIN

(experimental measurements or low uncertainty quantum
mechanical calculations), specific to the functional groups
of interest. If these are not present, inappropriate reaction
rates will be applied and can propagate leading to poten-
tially large uncertainties inmodel predictions. An example
of this would be the use of a hydrogen abstraction train-
ing rate derived from straight chain alkanes (i.e., propane)
when attempting to predict a rate for the secondary hydro-
gen abstraction of DEE. In this case, the presence of the
ether group would significantly decrease the relevant C-H
bond dissociation energy, thus accelerating the associ-
ated rate of reaction.93,94 Appropriate training reactions
are generally lacking for oxygenated species throughout
the database of reaction families, particularly for ethers,
esters, and molecules which feature multiple oxygenated
functional groups.
The reactor simulation may run to completion or termi-

nate early if the reaction flux to an edge species exceeds
a user-specified tolerance. In each case, edge species are
then brought into the model core if their flux exceeds the
characteristic flux of the system.29 By default, only the edge
species with the largest flux is brought into the core, and
the process is repeated until the global termination criteria
is reached (as defined by the user in the input file). How-
ever, RMGalso allows the user to specify howmany species
can be moved from the edge to the core in a single simu-
lation, to enhance the tools ability to identify competing
reactions pathways, like those typical of low temperature
oxidation.22,95 The accuracy of thermochemistry and reac-
tion rate parameters of relevance to the species of interest
is critical to the generation of an appropriate model core.
Ultimately, themodel core will describe the contents of the
generated mechanism.
Thermodynamic parameters for species may already be

present in the RMG database, contained within thermo-
dynamic libraries. These libraries catalogue high-quality
thermochemical data sourced from experimental mea-
surements and quantum mechanical calculations, which
can be accessed by RMG during mechanism generation.
However, the majority of these libraries focus the provi-
sion of thermochemistry for small species typical of all
hydrocarbon combustion systems, such as alkanes, cyclic
species, organic molecules containing nitrogen or sul-
fur, and the associated combustion intermediates.92 Little
thermochemical information is provided for the complex
oxygenatedhydrocarbons typical of advanced biofuels. The
user can create a new thermodynamic library describing
the thermochemistry of their species of interest, but accu-
rate values for low temperature oxidation intermediates
are unlikely to exist in the literature for more complex
or emerging biofuel species. In this case, RMG will esti-
mate species thermochemistry using a GA methodology.
This method broadly follows that described in Section 1.1,

with corrections (of relevance to gas phase kinetics) for
radical species (using the HBI method), NNIs (including
non-cyclic gauche interactions), ring and polycyclic strain,
and ketenes.36,92,96–101 The group database alone (with-
out any correction groups) contains 2085 groups and their
associated contributions (RMG database version 3.0.0).
However, while not necessary for the prediction of ther-
mochemistry in this case study, this database still requires
expanding and updating to increase the accuracy of group
attribution and estimates for the oxidation intermediates
present during the combustion of complex oxygenated bio-
fuel species, such as ethyl levulinate. In special cases, RMG
can also predict species thermochemistry using a machine
learning model or on-the-fly quantum mechanical calcu-
lations, but these are not utilized in this study due to poor
estimation performance for oxygenates and computational
cost, respectively.19,29,92
Reactor conditions directly impact the included species,

reactions, and therefore the conditions at which themodel
is applicable. The reactor conditions forwhich themodel is
generated, must describe the thermodynamic and mixture
conditions of the final intended application, in terms of
temperature, pressure, and initial mole fractions. Ranged
reactors are an RMG feature which allows the user to
specify a range of reactor conditions (rather than a series
of fixed-point reactors), which are then sampled using a
weighted stochastic grid sampling algorithm. RMG doc-
umentation claims that these ranged reactors reduce the
number of simulations needed during the generation pro-
cess and improve the representation of reaction conditions
that would otherwise occur in the thermodynamic space
between individually specified reactors. This feature is also
more convenient for the user, relative to the definition
of potentially dozens of individual point reactors.19 For
gas-phase applications, RMGcan currently onlymodel iso-
baric, isothermal, homogeneous batch reactors (defined as
a simpleReactor in RMG).19,29
For the purpose of this study, ranged reactors are defined

to cover a wide range of conditions relevant for low
temperature combustion. This includes temperatures of
550–1100 K, pressures of 1–40 bar, equivalence ratios (φ)
of 0.5–2.0, and a range of diluents (Ar, CO2, N2). Dilu-
ents and equivalence ratios are specified by describing the
starting species concentrations, within the reactor block.
Reaction systems are simulated until pre-determined ter-
mination criteria are met. These criteria may be specified
as a termination time, species concentration, rate ratio, or
some combination of these. In this study, simulations are
defined such that they terminate at a simulated time of 1 s
or at a conversion of 99.9% of DEE, whichever occurs first.
While not usually important at engine relevant pressures,
pressure dependent reaction networks for C4 and larger
molecules are known to have a considerable influence at
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MICHELBACH and TOMLIN 9

the low pressures and high temperatures typical of labora-
tory flame speed experiments.102 For this reason, the RMG
pressure dependence module is utilized to estimate pres-
sure dependent kinetics based on a simplification of the
full master equation model: the modified strong collision
method.103,104 Thismethod usually provides good accuracy
with a much lower level of computational cost.29,103
Model tolerances limit which species are included in the

model core, as defined by the user specification of flux
tolerances. A core flux tolerance which is too high may
cause RMG to miss critical species and reactions, whereas
a low tolerance will increase the computational cost of
the mechanism generation, in terms of time for conver-
gence and RAM (random-access memory) usage. Species
and reaction data are stored in RAM during the mecha-
nismproduction process, and this issue of highRAMusage
has been a persistent problem for RMG.29,105 The issue is
exacerbated in the region of low temperature oxidation,
particularly for large species and complexmixtures (which
are of interest for many advanced biofuels). The termina-
tion of a mechanism generation process due to exceedance
of a computers RAM limit is not an uncommon occur-
rence. This can be minimized by carefully creating input
files, but this requires experience and knowledge of the
RMG mechanism generation process and the influence of
model tolerances. System specific features, such as the uti-
lization of ‘swap spaces’ inmodern Linux systems, can also
limit the occurrence of premature model termination by
artificially increasing the memory available. However, this
is a persistent RMG issue and if tools such as this are to
be applied for the detailed investigation of complex fuel
mixtures, development beyond the exclusive use of RAM
for data storage is likely required (i.e., the use of tempo-
rary files stored inmemory, for informationwhich does not
need to be accessed rapidly). The mechanisms generated
in this study for DEE are unlikely to meet the RAM limit
of a conventional, modern system, reaching a maximum
reported memory usage of 4818 MB and less than 4 h of
run time. However, it should be noted that this is themem-
ory use reported by RMG at the end of each generation
step and not the peak system memory usage, which can
spike considerably above this value during the generation
of pressure dependent rate parameters. Such unreported
memory spikes can cause issues during the mechanism
generation process, including premature termination (as
discussed in Section 3.4).
Evenwith lowmodel tolerances, the flux criteriamethod

employed by default in RMG is not always capable of
identifying highly important but low flux pathways. This
is particularly true for those pathways which result in a
net increase of radicals, such as chain branching. RMG
allows the user to apply specific branching criteria toler-
ances, which can assist the model in identifying important

edge reactions based on their expected impacts on core
species concentrations. However, it is usually much more
effective to utilize good seed mechanisms to fulfil this
purpose. Seed mechanisms contain reaction rate informa-
tion that the user wishes to include in the model core,
overriding RMGs native rate estimates. RMG will then
build on the model core in the usual manner.29 A good
seed mechanism should utilize high quality data to guide
the mechanism generation process, particularly when the
RMG kinetic database is insufficient. In general, it is
good practice to provide a fuel specific seed mechanism
which (at a minimum) describes the key initiation and
branching reaction steps, as well as any low uncertainty
rate data which the user wishes to include in the model.
Seed mechanisms can also be utilized to embed well-
defined sub-mechanisms in the initial model core. Reac-
tion libraries are created identically to seed mechanisms
but defined differently within the input file. Information
from reaction libraries is not automatically included in the
model core. Instead, libraries serve as a database of spe-
cific reaction data which is called upon by RMG when
the reactions in question are deemed relevant. Similarly,
thermodynamic information for species may be defined
in thermodynamic libraries, which will override any RMG
estimates. All the models generated in this study consist of
a small molecule core defined by pre-packaged RMG seed
mechanisms: ‘BurkeH2O2inN2’, ‘BurkeH2O2inArHe’, and
‘C2H4+O_Klipp2017’.106,107 A C0-C4 library is also uti-
lized, based on the extensively validated AramcoMech
2.0,108 to ensure well-defined small molecule chemistry.
Fuel specific seed mechanism information for each model
is described in the appropriate following sections. Trans-
port data are provided by the pre-packaged ‘NOx2018’109
librarywhere possible, or otherwise estimated byRMG.All
tolerances and generator options used in the production of
the final DEEmodel are shownwithin the RMG input file,
presented in Supplementary Materials.

2.2 Reactor simulations

The final mechanism generated in this study is evalu-
ated against a range of DEE combustion data, sourced
from various experimental studies. This includes RCM
and ST IDTs,67,70,72 JSR-GC speciationmeasurements,10,110
and flame speeds.80 Simulations of each of these systems
are produced using Chemkin-Pro (2022 R1), using the
closed homogeneous batch reactor, perfectly stirred reac-
tor, and pre-mixed laminar flame-speed calculation mod-
ules, respectively. All simulations are conducted under the
conditions specified in the original studies. For flame sim-
ulations, curvature, and slope refinement criteria of 0.05
are found to produce grid independent results, without
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10 MICHELBACH and TOMLIN

requiring an excessively long compute time. The predic-
tive capabilities of the RMG mechanism generated in this
study are also compared against those of three indepen-
dently generated DEE mechanisms from the literature:
those from Sakai et al.,49 Tran et al.,10 and Danilack et al.90
In the case of the Danilack et al.90 mechanism, only the
version without diastereomers included is used.
To account for RCM facility effects and heat losses after

compression, case dependent volume histories derived
from non-reactive pressure profiles (as provided by the
original study of Issayev et al.67) are applied to produce
‘variable volume’ reactor simulations. ST measurements
often exhibit a gradual pressure rise behind reflected
shock waves, which can be observed in experimental pres-
sure traces. In this study, ST simulations account for
this by imposing an experimentally determined pressure
gradient, as defined in the data sources.67,70 This is not
particularly important at conditions where ignition occurs
rapidly but can be influential for relatively long IDTs (i.e.,
IDTs > 2 ms).
The final steps of the mechanism production method-

ology applied in this study (‘post-processing’), employ
model analysis techniques in the form of local A-factor
sensitivity analysis for reactions, brute force enthalpy of
formation sensitivity analysis, and rate of production (RoP)
analysis. Local A-factor sensitivity and RoP analyses are
conducted using Chemkin-Pro. Local A-factor sensitiv-
ity analysis is performed for peak OH concentrations, in
the case of IDT simulations, and end-point concentra-
tions of DEE, EVE, CH2O, C2H4, C3H6, C2H5OH, and
C4H8O2-CY (2-Methyl-1,3-dioxolane) during the simula-
tion of the JSR-GC experiments performed by Tran et al.10
The brute force enthalpy of formation sensitivity analy-
sis is performed for homogeneous IDT predictions and
completed using Cantera, and has been documented in
detail previously.111 In this study, these techniques are not
applied to fully investigate the underlying DEE chemistry
driving combustion. Instead, they are utilized to iden-
tify key reactions and species for further investigation, to
improve the accuracy of themodel. Where possible, highly
sensitive species and reactions which also contain uncer-
tain thermodynamic or rate parameters are updated with
less uncertain rates, sourced from calculations or experi-
mental data within the existing literature. Similarly, RoP
analysis is employed to identify potentiallymissing or erro-
neous reactions. Erroneous reactions may be present in
the generated mechanism due to the allocation of uncer-
tain rates or inappropriate training data during model
core enlargement steps. The case is similar for missing
reactions. However, identification of missing reactions is
non-trivial (evenwith the assistance of RoP analysis) and is
often reliant on the user’s knowledge of reaction pathways
specific to the relevant species or functional group. The

search for missing reactions may also be informed by the
automated exploration of potential energy surfaces using
tools such as KinBot,112 but such a search is not performed
in this work. Missing reactions may also occur as a conse-
quence of competing erroneous reactions, which (due to
their exaggerated reaction flux) direct the exploration of
the reaction network towards unrealistic or unimportant
reaction pathways.

3 MECHANISM GENERATION
PROCESS

To determine the effectiveness of RMG for producing
detailed kinetic mechanisms of complex low temperature
oxidation for oxygenated fuels and to develop an optimal
mechanism production methodology for such cases, DEE
is used as a case study. Several development steps are inves-
tigated in the following sections, starting with the most
basic use of RMGwith no updates in the core training data
or group specifications and without the use of a fuel spe-
cific seed mechanism. This is referred to as development
stage (1). In subsequent development steps an appropri-
ate seed mechanism is included, and updates are made
to the core databases within RMG. These methods and
their impact on IDT predictions are detailed by develop-
ment stages (2) and (3), respectively. The impact of each
method is investigated independently in the correspond-
ing development stages. In the final stages, various post
processing tools are applied to identify key species and
reaction steps requiring improvements in their parame-
terization, as described in development step (4). A simple
block diagram is provided in Figure 1 to provide additional
clarity as to the structure of this description of the mecha-
nism development. Figure 2 shows the predicted IDTs for
themechanisms produced during each development stage,
compared against the experimental RCM and shock-tube
data of Issayev et al.,67 and the shock-tube measurements
of Uygun,70 for an undiluted stoichiometric DEE/oxidizer
mixture. Comparative analysis of the models shown and
detailed descriptions of the evolution of the model devel-
opment process are provided in the subsequent sections.
All newly produced seed mechanisms, reaction libraries,
thermochemistry libraries, and database expansions are
available in Supplementary Materials.

3.1 Development stage (1) – Minimal
(RMG baseline)

The minimal method used in development stage (1),
is performed only to provide a baseline ‘worst-case’
DEE mechanism for comparative purposes. The method
described here is not advised anywhere in the RMG
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MICHELBACH and TOMLIN 11

F IGURE 1 A simple block diagram to aid in the description of
the mechanism development process. Refer to Section 3 of the main
manuscript for detailed descriptions of each development stage.

F IGURE 2 Variable volume IDT predictions of the various
DEE mechanism iterations produced in this study. Symbols show
the experimental RCM and shock-tube data of Issayev et al.,67 and
the shock-tube measurements of Uygun,70 lines show the model
predictions. Closed symbols represent RCMmeasurements and
open symbols show ST measurements. Reactor conditions are
Tc = 550–1100 K, Pc = 20 bar, φ = 1.0.

documentation or literature, nor is it a suitable method
for the production of a detailed kinetic mechanism. How-
ever, ultimately AMG tools should be aiming to require
as little user intervention as possible to truly facilitate
the rapid, autonomous production of kinetic mechanisms.
This mechanism is generated using a clean install of the
latest stable version of RMG (RMG 3.1.0) and the associ-
ated RMG database. The mechanism generation process
is only provided with the small molecule core (described
previously) and basic thermodynamic libraries. These
thermodynamic libraries include parameters derived from
the work of Burke et al.106 for the high-pressure combus-
tion of H2/O2 mixtures (‘BurkeH2O2’), high-accuracy ab
initio thermochemistry for various small molecules as cal-
culated by Goldsmith et al.113 (‘DFT_QCI_thermo’), and
the ‘primaryThermoLibrary’. Initial species (fuel, oxidizer,
and diluents) are specified by their canonical SMILES
strings, but no other fuel specific information is provided.
This minimal method primarily shows the results of

mechanism generation using RMGs default database, as
all fuel specific rates are estimated using RMGs internal
reaction family templates and training data. As evidenced
by Figure 2, this methodology produces an unacceptably
poor model. Predicted IDTs are orders of magnitude larger
than the literature sourced experimental data (for the same
conditions) and none of the low temperature behavior
expected for DEE is observed (i.e., the NTC region). It
is clear from these results that a default installation of
RMG is insufficient for identifying and estimating the reac-
tion rates of key low temperature combustion pathways in
this case. The thermodynamic parameter estimations pro-
duced by RMG are also likely contributing to the poor per-
formance of themodel. Group-additivity based estimations
are subject to significant uncertainties when compared to
ab initio calculations or experimental measurements. The
recent literature has reiterated the significant influence
of uncertainties in species thermodynamic properties on
the accuracy of global predictions (such as IDTs), espe-
cially in the low to intermediate temperature combustion
regions.37,38,111,114 Uncertain fundamental data in the RMG
databasemay further influence themechanism generation
process through the exclusion of important reactions and
species (mechanism truncation error), as the calculated
fluxes are not representative of the real scenario. Therefore,
the specification of accurate species properties is critical
to the production of a detailed model. These issues can
mostly be addressed by two techniques: the provision of a
high-quality seed mechanism and thermodynamic library
(as described in Section 2.1), and the expansion and updat-
ing of the RMG database to include kinetic information
relevant to the fuel species (and its important oxidation
intermediates). Development stages (2) and (3) apply each
of these methods, respectively.
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12 MICHELBACH and TOMLIN

3.2 Development stage (2) – Fuel
specific seed mechanism

As described in Section 2.1, the provision of a high-
quality seed mechanism can aid RMG in the identification
of important reaction pathways, which the flux-criteria
algorithm would typically fail to include in the model
core. This is predominantly an issue for the generation
of low temperature oxidation mechanisms. As well as
guiding RMG’s reaction pathway exploration, the inclu-
sion of a seed mechanism provides an opportunity to
specify any low-uncertainty fuel specific rate parameters
that the user wishes to include in the final mechanism.
Similarly, thermodynamic libraries are used to specify
the thermodynamic properties of species, overriding and
group-additivity derived parameters.
Care must be taken when producing a seed mechanism

for usewith RMG, particularly when this seed is based on a
literature sourced sub-mechanism. Non-elementary reac-
tions are common even in detailed mechanisms, particu-
larly in the representation of low-temperature degenerate
chain branching steps. Several elementary reaction steps
are occasionally lumped together using quasi-steady state
assumption (QSSA) methods, which assume that rapidly
reacting species are in local equilibrium with slower react-
ing species. Examples of this can be observed in the dibutyl
ether mechanism of Thion et al.,20 in which the decom-
position of keto-hydroperoxides lumps together multiple
fast decomposition reactions to give: ‘C4OC4KETA-3 →
nC3H7 + CO2 + C2H4 + CH3CHO + OH’. For an
RMG seed mechanism, such reactions should be care-
fully removed from the scheme where possible, since the
algorithmic exploration of reaction pathways does not dis-
tinguish between elementary reactions determined using
the internal database and the lumped reactions present
in the seed mechanism, resulting in the presence of
duplicate reaction paths within the final scheme. While
heavy thermodynamic library loading (the inclusion of
many thermodynamic libraries) is a common and perfectly
acceptable practice when applied carefully, the same tech-
niques should not be applied to the specification of seed
mechanisms within the RMG input file. Not only will this
cause the generation of an unnecessarily largemechanism,
but the use of seed mechanisms which are unconnected
to the initial model can cause solver issues, as simula-
tions struggle to converge. An unconnected mechanism
in this sense refers to a mechanism which is unrelated to
the system of interest (but perhaps was included by the
user as it contains some rate parameters of relevance) or
describes reaction pathways which cannot be connected
to those present in the initial core by the addition of
RMGs elementary reaction families. Using unconnected

seed mechanisms as reaction libraries is an appropriate
alternative.
Development stage (2) incorporates a DEE seed mech-

anism derived primarily from the DEE sub-mechanism of
Tran et al.,10 containing 86 reactions. Key reactions covered
by the seed include initiation H-abstractions of DEE by
H, OH, and HO2 radicals, primary, secondary, and tertiary
oxygen additions, subsequent internal isomerization reac-
tions, HO2 elimination, and cyclic ether formation. All the
rate parameters present in the seed are derived from exper-
imental measurements or detailed calculations. Reaction
rates based on estimations or correlations with other
species are not included in the seed mechanism, and are
generated by RMG, using the unmodified RMG database
(v3.0.0).92 The DEE mechanism of Tran et al.10 is chosen
as the basis for this seed due to the model’s extremely good
agreement with experimental JSR-GC data, despite rela-
tively poor IDT predictions when compared to other DEE
mechanisms is the literature.37,49,67
The conversion of literature sourced data to an RMG

seed mechanism is not always an easy process, despite the
availability of a pre-packaged RMG tool which converts
Chemkin formatmechanisms into RMG reaction and ther-
modynamic libraries. The opportunity for human error
occurs as a result of the requirements of the conversion
tool and the often-inconsistent species notation present
in literature sourced mechanisms. To parse the Chemkin
format inputs, the RMG tool requires the specification
of a species dictionary which describes each species in
the mechanism by its adjacency list. Adjacency lists can
be determined by tools available on the RMG website, if
the species identifier is known (supported formats include
SMILES, InChI, CAS number, and some species names).
Fortunately, the majority of relevant species in the Tran
et al.10 mechanism are provided with a SMILES string by
the original authors, which removes the scope for human
error due to misinterpretation of the species notation.
However, the by-hand determination of species adjacency
lists from this information and the production of an
RMG format species dictionary is still a time-consuming
process, particularly for larger mechanisms (i.e., Aram-
coMech 2.0). Species thermodynamic data prescribed by
CBS-QB3 level calculations in the Tran et al.10 mechanism
is extracted and converted to a new RMG thermodynamic
library and included in themechanism generation process.
Species thermochemistry derived from GAmethods is not
extracted from the Tran et al.10 mechanism, as this will be
generated by RMG.
As shown by Figure 2, the introduction of species-

specific reaction rate and thermodynamic data, through
the inclusion of a seed mechanism and thermodynamic
library in development stage (2), displays an obvious
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MICHELBACH and TOMLIN 13

TABLE 2 A summary of the number of training reactions and
structural groups added per reaction family, during the database
expansion.

Reaction family
Training
reactions added

Structural
groups added

Cyclic_Ether_Formation 57 6
Disproportionation 4 0
H_Abstraction 349 17
HO2_Elimination
_from_PeroxyRadical

11 2

intra_H_migration 40 10
R_Recombination 3 7
R_Addition_MultipleBond 6 1

Note: Reaction families are identified by their RMG assigned names.

improvement in the accuracy of DEE IDT predictions rela-
tive to the minimal mechanism generated in development
stage (1). In the seeded model, IDT predictions are much
shorter throughout the investigated regime, with some
evidence of an NTC-like region starting to develop. This
region is not strictly an NTC region, but it does show a
locally significant decrease in reactivity with increasing
temperature. IDT predictions at the high-temperature end
of the regime (>1000 K) appear to be reasonably in line
with experimental measurements, although there is a lack
of experimental data in this region to evaluate against.
There is clearly still scope for major improvements in
the model’s predictive capability, as apparent in the lack
of NTC intensity and the large under-prediction of low
temperature reactivity.

3.3 Development stage (3) – A database
expansion for oxygenated functional
groups

The lack of appropriate training data for various oxy-
genated functional groups (i.e., ethers, esters, ketones) in
the default database leads to the inclusion of inaccurate
rate data in the model, as derived from training data for
inappropriatemolecular structures. Development stage (3)
aims to minimize the misappropriation of training data by
expanding the internal database with contemporary reac-
tion rate parameters for the oxygenated functional groups
typical of biofuels. This database expansion includes the
addition of 470 training reactions and 43 structural groups,
primarily sourced from the literature,10,49,85,115–137 with a
minority of the new rates provided by CBSQB3 level cal-
culations available in the RMG GitHub repository. Table 2
presents a summary of these expansions, showing the
number of reactions and groups added per reaction fam-
ily. Care must be taken when performing such a database

expansion, with priority given to low uncertainty, high
level of theory calculations and experimentally determined
rate parameters.Modified database files are provided in the
Supplementary Materials, which detail the source for each
additional training reaction.
For new or under-represented functional groups, new

training data additions should focus initially on funda-
mental examples of the group of interest, before building
the molecular chain length until it is representative of
the nominal species. For example, several new hydrogen
abstraction training reactions are included for dimethyl
ether (DME),127 wherein the carbon chain length on either
side of the ether group is only one carbon. The chain length
is then increased to the two carbons present in DEE, by
utilizing rate parameters for ethyl methyl ether (EME).127
For species which may feature longer carbon chains con-
nected to an ether or ester group (if no specific information
is apparent for relevant esters), such as butyl levulinate,
the chain length of the training species is extended to
cover methyl propyl ether,115 which features a three car-
bon long chain on one side of the ether group. Beyond this
chain length the ether group is unlikely to significantly
contribute to the bond dissociation energy of the termi-
nal C-H bonds, so such a H abstraction reaction can be
estimated using rate parameters derived for alkanes. How-
ever, care must be taken to ensure that such sites are not
subject to effects of stabilizing hydrogen bonding between
the oxygenated functional group and abstracting radical,
as mentioned in Section 1.1. New structural group defi-
nitions are required to accurately describe the functional
groups and reaction sites present in the additional training
data. Groups are defined by RMG adjacency lists, as pre-
viously described. Unfortunately, no pre-packaged tools
are readily available for the expansion of structural group
information for reaction families, so these must currently
be determined and carefully updated by-hand, to avoid
introducing potential sources of error and uncertainty. The
over-specification of groups, wherein the group is so rig-
orously defined that it cannot be applied to other similar
species, is a potential pitfall in this process that the user
should be aware of. An automated tool for the identifica-
tion and addition of new structural groups for database
expansion could reduce the likelihood of such errors and
ultimately improve the mechanism generation process for
complex species and mixtures, such as those present in
advanced biofuels. Database updates in general can be dif-
ficult and time consuming to perform. A pre-packaged
Python script is available to convert RMG libraries into
training data, but the limited documentation available for
some of the standalone tools packaged with RMG can
make the process inaccessible and intimidating for inex-
perienced users and limits the effectiveness of mechanism
generation.
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14 MICHELBACH and TOMLIN

After completing this database expansion, the mecha-
nism is generated repeating the process applied in devel-
opment stage (1) (i.e., no DEE seed mechanism is used).
Despite the identical mechanism generation process, the
mechanism produced in stage (3) shows a clear improve-
ment over the predictions of that produced during stage
(1), without the need to include a DEE specific seed mech-
anism. In particular, the presence of an NTC region is an
obvious improvement over the previous model, which did
not feature any of the expected low temperature oxida-
tion behavior. This highlights the importance of accurate
training data for generating models capable of predicting
complex reaction pathways. In this case, the additional
training data have allowed RMG to capture some of the
behavior present in the low temperature oxidation of DEE,
which relies on a complex balance of competing chain ter-
minating and branching pathways. The expanded database
utilized in this development stage is also applicable for
the generation of further oxygenated species in the future,
without the need to repeat any of the database expansion
performed here.
While the improvement in predictions relative to the

mechanism produced in stage (1) is dramatic, there are
still issues with the mechanism generated in stage (3),
which are apparent in Figure 2. Whilst the NTC behav-
ior predicted by the model developed in this stage is
very clear, it occurs in the incorrect temperature region
for DEE. Experimental data shows that, at these condi-
tions, the NTC region occurs at much lower temperatures,
peaking at approximately 800 K rather than the predicted
950 K. IDTs are also too long throughout the regime, pre-
dicting a less reactive mixture than experiments would
suggest. This would clearly be an issue for the prediction
of engine performance and emissions, as the IDT is a crit-
ical parameter for modelling the developing combustion
environment. Ultimately, it must be the end goal to utilize
such mechanisms and their generation techniques for the
rapid development of alternative fuel strategies through
the rapid screening of their performance and emissions
impacts with the aid of simulation tools. Therefore, it is
critical that properties like IDTs are predicted accurately
throughout the engine relevant regime. Evidently, for
the RMG mechanism to produce accurate predictions for
advanced biofuels, a combination of the methods utilized
in development stages (2) and (3) is required.

3.4 Development stage (4) –
Combination and post-processing

The use of the DEE seed mechanism of stage (2) and the
database expansion of stage (3) are combined in devel-
opment stage (4), to produce the final exploratory DEE

mechanism. To more accurately predict the formation
and consumption of ethyl vinyl ether (EVE), a small sub-
mechanism is generated using the samemethod described
in stage (1), which is then combined with the DEEmecha-
nism generated in this section. A separate sub-mechanism
is used, rather than including an additional simpleRe-
actor block for EVE within the RMG input file for the
DEE mechanism, to avoid a memory (RAM) limit issue
during the generation of pressure dependent reactions.
During the calculation of pressure dependent reaction
rates (using the modified strong collision method), mem-
ory use increases drastically, creating a spike in usage.
As the model edge and core become larger, the memory
required to store relevant reaction rate and species ther-
mochemistry information increases. Spikes inmemory use
can then cause the generation process to momentarily
exceed the memory limit of the system, forcing the mech-
anism generation process to prematurely terminate. In
order to preserve pressure dependence, it is necessary to
limit the size of the model core and edge by generating
the EVE sub-mechanism separately. During DEE oxida-
tion, EVE is primarily formed via HO2 elimination and
hydrogen abstractions from fuel radicals. The relationship
between this intermediate species and chain terminating
reactions makes it an important species for modelling
the low temperature oxidation of DEE. At this stage a
seed mechanism is also introduced for ethanol, based
on the work of Zhang et al.,138 containing 74 reactions.
This seed mechanism is included to guide the genera-
tion of ethanol specific chemistry present during DEE
combustion. Ethanol is a knownproduct of DEEdecompo-
sition at high temperatures. JSR-GCmeasurements ofDEE
oxidation performed by Tran et al.10 also show the pres-
ence of ethanol at temperatures of 500–1000 K, indicating
some formation due to low temperature chemistry. This
additional seed mechanism also enables the prediction of
blended DEE and ethanol fuel, as shown in Section 4.4.
After mechanism generation, the model is subject to a

suite of post-processing and analysis techniques, which are
utilized to further improve the predictive capabilities of the
mechanism. The initial post-processing step is the identi-
fication of non-physical reaction rates which violate the
bimolecular collision rate limit. These collision rate vio-
lators are common in modern detailed mechanisms, as
shown in the study ofChen et al.139 Theirwork investigated
20models for such violators and found that 15 of these con-
tained either a large number of offending reaction rates
or rates which exceeded the limit by a considerable fac-
tor. The number of violators also increases as the reaction
rate parameters present in seed mechanisms and libraries
are extrapolated to conditions outside of their validated
regimes. Fortunately, tools for the screening of collision
rate violators are provided by RMG, which generates a
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MICHELBACH and TOMLIN 15

F IGURE 3 An example showing the top 10 most sensitive reactions as identified by a local A-factor sensitivity analysis for peak OH
concentration predictions at Tc = 700 K, Pc = 20 bar, and φ = 1.0. A positive sensitivity indicates that an increase in the reactions A-factor
would produce an increase in OH concentration, which corresponds with a decrease in IDTs.

report of violating reactions after mechanism generation.
However, it is the user’s responsibility to act on this report.
For themechanism generated in stage (4), reactions which
violate the bimolecular collision rate are removed from
the seed mechanism (or library) and the mechanism is
re-generated. In total, only six violators are identified for
the DEE mechanism generated in this stage, as most of
the potentially violating reactions are removed from seed
mechanisms prior to generation, due to the exclusive selec-
tion of high-quality rate parameters. These reactions only
violate the collision limit at the extremes of the investigated
thermodynamic regime, at temperatures of 500 and 1500K,
and pressures of 1 and 40 bar. Of the six collision limit vio-
lators, only the decomposition of ethanol into CH2CH2OH
and a H radical exceeded the rate limit by a considerable
amount (a violation factor of 681.28) and only at conditions
of 500 K and 1 bar.
As described earlier, reaction rate and thermodynamic

sensitivity analysis are utilized to identify sensitive reac-
tions and species, with sensitive and uncertain values
being targeted for improvement. RoP analysis is combined
with knowledge of low temperature oxidation chem-
istry and species or group specific literature, to identify
any unusual, high flux reaction paths or the absence
of expected pathways. Using this information, it is then
possible to investigate the reaction seed or database to
determine the source of these erroneous reactions or deter-
mine why pathways may be missing. For example, it is not
uncommon for inaccurate thermochemistry or an inappro-
priate database reaction to make an unrealistic reaction
preferential to the accepted consensus pathways. All the
reaction rate parameter changes performed as a result

of these analyses are presented in Supplementary Mate-
rials. An example of a local A-factor sensitivity analysis
for peak OH concentration is shown in Figure 3, which
displays the normalized sensitivities for top 10 most sen-
sitive reactions at conditions of Tc = 700 K, Pc = 20 bar,
and φ = 1.0. In total, 39 reactions are subject to changes
and eight reactions are added to the mechanism. Of
particular importance for the prediction of IDTs is the
removal of an RMG generated reaction, from the tem-
plate family ‘R_Addition_Multibond’: CH3CHO+C2H5O2
↔ C2OC2-AO2H-1. This reaction describes the reverse
of an elementary step, which is already accounted for
by a lumped QSSA reaction present in the seed mecha-
nism, for the C-O and C-C β-scission of QOOH species
(C2OC2-AO2H-1↔ CH3CHO + CH3CHO + OH).10 Reac-
tions describing the 2nd oxygen addition and subsequent
O2QOOH decomposition to form ketohydroperoxides and
an OH radical, are modified with the rates proposed by
Danilack et al.,90 to account for updates made to sensitive
thermochemistry, identified via an enthalpy of formation
sensitivity analysis for IDTs. Of the sensitive reactions dis-
played in Figure 3, the reactionO2+C2H5OC2H4-A↔HO2
+EVE is alsomodified, with theRMGgenerated rate being
updated using the ethanol oxidation rate parameters of da
Silva et al.140
The Tran et al.10 mechanism, which provided the

DEE seed and thermochemistry, utilized the modified
O2QOOH thermochemistry of Sakai et al.49 for species
C4O-AO2H-BO2, C4O-AO2H-1O2, C4O-AO2H-2O2,
C4O-BO2H-AO2, C4O-BO2H-1O2, and C4O-BO2H-AO2.
Thermochemistry for these species is extracted from
the Tran et al.10 mechanism and included in the DEE
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16 MICHELBACH and TOMLIN

TABLE 3 A catalogue of thermochemistry modifications made to the RMG generated mechanism. The literature sources for each set of
species thermochemistry are provided in the table.

Species name Structure
Original ΔHf,298K
(kcal/mol)

Updated ΔHf,298K
(kcal/mol)

EVE −33.8010 −34.4390

C4O-AO2H-BO2 −75.5049 −71.6690

C4O-AO2H-1O2 −86.0449 −83.6390

C4O-AO2H-2O2 −75.4249 −74.1390

C4O-BO2H-AO2 −75.3249 −71.0890

C4O-BO2H-1O2 −75.5749 −72.6890

C4O-BO2H-2O2 −63.7049 −72.6890

thermochemistry library created for this work. These
species are identified as sensitive for IDT predictions
(as has been discussed previously in the literature37,49)
and uncertain, due to the −10 kJ/mol enthalpy of for-
mation change made by Sakai et al.49 This change is
2.2 times larger than the mean absolute error reported
for the CBSQB3 method used in their calculations
(4.6 kJ/mol).49,141 Specific thermochemistry for these
species is replaced in the current work with the calculated
values of Danilack et al.,86 which applied a higher level
of theory (UCCSD(T)-F12b/cc-pVTZ-F12//B2PLYPD3/cc-
pVTZ). The thermochemistry of EVE is also found to be
sensitive for IDT predictions but the difference between
the enthalpy of formation as determined by CBSQB3
methods in the Tran et al.10 mechanism, and the value
calculated by Danilack et al.86 is small (0.63 kcal/mol
or 2.64 kJ/mol). It should be noted that neither reaction
rate parameters nor species thermochemistry have been
‘tuned’ in this work in order to achieve accurate model
predictions. Model updates are based entirely on reducing
the uncertainty of sensitive thermokinetic parameters
by updating these with recent literature data of a lower
degree of uncertainty. Any predictive improvements are
a by-product of this methodology. Thermochemistry
modifications are summarized in Table 3.

After mechanism generation and post-processing modi-
fication, the model is reduced using the Ansys Workbench
software and the direct relation graph with error propa-
gation (DRGEP) reduction method.142 This reduction is
performed using a zero-dimensional homogeneous reac-
tor to simulate IDTs, at conditions of φ = 0.5, 1.0, and
2.0, Pc = 1, 10, 20, and 40 bar, and Tc = 500–1100 K.
The reduction is performed with an IDT tolerance of 3%
throughout the temperature regime, which translates to a
flux tolerance of 2.25%, to remove any superfluous reac-
tions included by the RMG generation. Due to the flux
criteria employed during generation, it is common for
RMG to generate mechanisms which contain a large frac-
tion of such reactions, which are not important to the
overall combustion process. In this case, the mechanism
reduction process produces a mechanism which contains
146 species and 4392 reactions (a reduction of 95 species
and 3037 reactions from the full mechanism). Of these
reactions, rate parameters for 140 reactions are included
directly from seedmechanisms (86 reactions from theDEE
seed mechanism, 72 from the ethanol seed mechanism,
and 40 from the small molecule core), 400 reactions are
sourced from the Aramco 2.0 reaction library, eight addi-
tional reactions are included during post-processing, and
the remaining 3844 reactions are generated by RMG (1050
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MICHELBACH and TOMLIN 17

are generated as pressure dependent networks and 2794
are estimated based RMG reaction families and training
reactions). Clearly, most of the reactions present in the
RMG mechanism are generated using training reaction
rate parameters (>62% of the reactions in the reduced
mechanism). It would not be feasible to calculate or
determine reaction rate parameters for each of these reac-
tions using experimental or quantummechanicalmethods
when attempting to produce a mechanism. For compari-
son, the mechanism of Tran et al.10 contains 746 species
and 3555 reactions, while that of Sakai et al.49 contains 341
species and 1867 reactions, and that of Danilack et al.90
contains 228 species and 1377 reactions. Hence the reduced
RMG mechanism contains the fewest species but still has
the largest number of reactions. This may partly be due
to some remaining low importance reactions, but it is
also likely that ‘by-hand’ mechanisms will contain lumped
reaction steps, whereas RMG produces elementary reac-
tion sequences which leads to a larger number of overall
steps. For simulation purposes, it is the number of species
which is more critical to the computational cost of solving
the chemical rate equations numerically.
As shown in Figure 2, the application of a combination

of the methods applied in stages (2) and (3), along-
side post-processing and analysis, produces a mechanism
(development stage (4)) which provides extremely accu-
rate IDT predictions throughout the entire temperature
regime. The NTC region displays the correct intensity and
occurs at the appropriate temperature. It also features the
‘double hump’ or ‘shouldering’ which is indicative of the
multi-stage ignition typical of DEE autoignition,67 and is
reliant on various key chain branching O-O bond scission
reactions, as shown in the recent work of Sakai et al.143
However, it is not sufficient for a mechanism to be vali-
dated by a global target (such as IDTs) over a small range
of conditions (φ = 1.0, Pc = 20 bar, Tc = 500–1100 K) if it
is to be generalizable and applicable for simulations of dif-
ferent types of combustors. A good, detailed mechanism
must be robust, providing accurate predictions for a range
of targets at many engine relevant conditions.

4 MODEL EVALUATION

In the following sections, the RMG generated mecha-
nism produced in development stage (4) is evaluated
against various experimental DEE target measurements
(as detailed in Section 2.2). However, the objective of
this study is not primarily to produce an effective and
robust DEE model. As previously discussed, the primary
objective of this study is to investigate to capabilities of
AMG (specifically RMG), for the production of detailed
advanced biofuel mechanisms, using DEE as a case study

fuel species. Therefore, this evaluation will not focus on
a detailed analysis of the underlying chemistry driving
the autoignition of DEE, which has already been thor-
oughly documented in the literature.10,67,72,86,90,144 Instead,
the following sections provide a critical analysis of the
RMG models predictive capabilities, relative to a selection
of literature sourced mechanisms.10,49,90 These literature
mechanisms are selected as, while they may borrow some
DEE specific reactions and thermochemistry from previ-
ous mechanisms (including each other), they have been
independently produced and include a variety of different
reaction pathways, rate parameters, and thermochemistry.
They have also been produced for different purposes and
as such, are validated against different target parameters.
The Sakai et al.49 mechanism was evaluated against RCM
and ST IDTs by the original authors, whereas Tran et al.10
evaluated their mechanism against speciation measure-
ments taken from JSR and PFR experiments. The Danilack
et al.90 mechanism has not been validated against any
experimental results, as the objective of their work was not
to provide highly accurateDEEpredictions, but to quantify
the effects of non-Boltzmann reactions on predictions as
well as the impact of often ignored diastereomers.86,90 This
mechanism is included in the comparative assessment
due to the large amount of newly generated thermo-
chemistry and reactions rate coefficients produced, which
were calculated at a relatively accurate level of the-
ory (UCCSD(T)-F12b/cc-pVTZ-F12//B2PLYPD3/cc-pVTZ)
some of which have been incorporated into the final
mechanism produced in this work.

4.1 Diethyl ether ignition delay times

The homogeneous IDT of a fuel is not only important for
determining knock resistance and pre-ignition propensity.
It is a highly important property which defines the time
taken for a specific fuel mixture to oxidize and engage in
rapid heat release, at a given set of thermodynamic con-
ditions. The duration of this delay greatly influences the
evolution of the combustion process within reciprocating
engines.9,145 Therefore, it is a bare minimum requirement
that an automatically generated detailed model, designed
for the prediction of engine relevant combustion phenom-
ena, can accurately predict the associated IDTs. Figure 4
shows the variable volume model predictions of the RMG
mechanism generated in this study, compared alongside
the predictions of three literature mechanisms10,49,90 and
the RCM and ST measurements of Issayev et al.67 and
Uygun.70 The conditions presented range fromφ= 0.5–1.0,
Pc = 20–40 bar, and Tc = 550–1100 K.
At both stoichiometric conditions (Pc = 20 and 40 bar),

the IDT predictions of the RMG generated mechanism are
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18 MICHELBACH and TOMLIN

F IGURE 4 A comparison of predicted IDTs from this study and selected literature sourced mechanisms,10,49,90 accounting for RCM and
ST facility effects. Predictions are evaluated against the experimental data of Issayev et al.67 and Uygun.70 Closed symbols represent RCM
measurements and open symbols show ST measurements.

excellent. At 20 bar, the RMGmodel produces IDTs which
are within the uncertainty rage of experimental mea-
surements throughout the temperature regime, with the
exception of the highest temperature condition. However,
here the difference between experimental measurements
and simulations is still minor (<0.2 ms). As previously
mentioned, the predictions in the NTC region are partic-
ularly impressive. The story is similar for the 40 bar case,
with only a small over prediction of reactivity for the low
temperature RCM predictions. When comparing against
the predictions of the selected literature mechanisms, only
the Sakai et al.49 mechanism provides a similar level of
accuracy, particularly in the NTC region. While the IDT

predictions of the Sakai et al.49 mechanism are marginally
more accurate at 20 bar, it fails to match the NTC inten-
sity observed at 40 bar. The RMGmechanismmatches this
intensity accurately. The Tran et al.10 mechanism provides
reasonable predictions at low and high temperatures for
both stoichiometric cases, but fails to match the observed
NTC behavior for either pressure. Notably, the RMGmech-
anism out-performs the Tran et al.10 mechanism for these
IDT targets, although it provided the DEE seed during
mechanism generation. As expected, the mechanism of
Danilack et al.90 does not provide accurate IDT simu-
lations, under-predicting reactivity throughout. Variable
volume RCM predictions are not shown for the Danilack
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MICHELBACH and TOMLIN 19

F IGURE 5 High temperature DEE IDTs, as predicted by the RMGmodel and selected literature mechanisms. Predictions are compared
against the ST measurements of Yasunaga et al.,72 shown by open symbols. All fuel mixtures constitute 1% DEE by mole in an argon diluent,
with varying O2 content, dependent on stoichiometry.

et al.90 mechanism at any of the conditions displayed in
Figure 4, as all of these predicted IDTs in excess of 100 ms.
Under lean (φ = 0.5) fuel/air conditions, the models

all lose some accuracy at the highest temperatures. The
IDT predictions of the RMG and Sakai et al.49 models are
nearly identical throughout both the 20 and 40 bar lean
regimes, providing good predictions of the low tempera-
ture RCM measurements and reasonable predictions for
NTC region ST measurements. The mechanism of Tran
et al.10 however, tends to under-predict DEE reactivity for
RCMmeasurements and over-predict reactivity in theNTC
region. Overall, both the RMGmodel and the Sakai et al.49
mechanism display good predictive capabilities for a wide
range of engine relevant conditions, with minor perfor-

mance differences between the two models. However, it
should be noted that the RMG mechanism contains less
than half the amount of species contained in the Sakai
et al.49 mechanism (RMG: 146, Sakai et al.49: 341).
At higher temperatures (>1200 K), the IDT predictions

of the models are all similar. This can be seen in Figure 5,
which compares the predictions of the models with the ST
measurements of Yasunaga et al.,72 at 1 atm and φ = 0.5,
1.0, and 2.0. The similarity between the predictions of the
RMG, Sakai et al.,49 and Tran et al.10 mechanisms is likely
due to the similar small molecule chemistry, which such
high temperature IDTs are known to be highly depen-
dent on. The Danilack et al.90 mechanism shows some
minor differences when compared to the others, which
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20 MICHELBACH and TOMLIN

F IGURE 6 Model predictions for the concentrations of DEE (C4H10O), O2, CH2O, and EVE, in a JSR with varying temperature. Symbols
show the JSR-GC measurements of Tran et al.10 Stoichiometric, 106.7 kPa, 2 s residence time, 1/6/93 mol% DEE/O2/He.

are possibly a result of the new small molecule chemistry
employed.86,146 In general, these high temperature ST IDT
predictions are reasonable for all the investigated models.
However, in a similar trend to that observed in Figure 4,
stoichiometric predictions are clearly the most accurate.
Changing the stoichiometry to either lean or rich decreases
the effectiveness of all the models, indicating that more
fundamental research is required at these conditions to
determine accurate reaction rate parameters.

4.2 Jet stirred reactor species
concentrations

Species concentration measurements obtained during fuel
oxidation experiments can provide valuable insight into a
fuel’s combustion chemistry, as well as identifying poten-
tially toxic or harmful combustion products which may
limit the viability of an advanced biofuel. It is therefore
important that such species concentration measurements

can be well predicted by a model if it is to inform engine
and fuel blend design. Providing only an assessment of
IDT predictions would also constitute a misrepresentation
of the RMG model’s capabilities relative to the litera-
ture sourced mechanisms, particularly as the Tran et al.10
model was primarily developed to model JSR-GC mea-
surements, rather than IDTs. Figure 6 shows the JSR-GC
measurements of Tran et al.,10 for DEE, O2, CH2O, and
EVE. The predictions of the four models are also shown.
DEE concentration predictions are very good for the

RMG generated mechanism and display the characteris-
tic double NTC. However, there is a clear under-prediction
for DEE conversion from 600 to 700 K. This is in con-
trast to the Tran et al.10 mechanism which predicts each
JSR-GC measurement almost exactly, including this low
temperature NTC region. Even with this difference, the
RMG predictions are still good, especially considering that
the mechanism contains less than 20% of the number
of species present in the Tran et al.10 mechanism. The
other literature sourced mechanisms do not provide good
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MICHELBACH and TOMLIN 21

predictions for the concentrations of DEE over the temper-
ature range but do display similar double NTC behavior.
The study of Tran et al.10 identified that the first NTC
results from competition between the β-scission reactions
of hydroperoxyl (QOOH) fuel radicals and the first oxygen
addition. During the development of the RMG mecha-
nism, the first oxygen addition was identified as sensitive
for IDT prediction. The Tran et al.10 rates for these reac-
tions are reverse rates simply calculated using the Sakai
et al.49 rates and thermochemistry, originally calculated
at the CBSQB3 level of theory. To eliminate the potential
for uncertainty introduced by this reverse rate calcula-
tion, these rates were reverted to the values presented
by Sakai et al.49 This modification contributed consider-
ably to both the under-prediction of DEE consumption
during this NTC but also the accurate prediction of NTC
IDTs. Clearly, more fundamental work is required here to
determine accurate rate parameters and thermochemistry,
beyond composite CBSQB3 calculations.
The predictions of the RMG mechanism are good for

O2 concentrations and are very similar to the predictions
of the Tran et al.10 mechanism. Formaldehyde (CH2O) is
also important not only due to its environmental conse-
quences on emission, but it is also thought to contribute
significantly to heat release behavior during oxidation, as
it is present in large quantities and is quickly consumed
as a precursor to HO2 formation.147,148 At these condi-
tions, the RMG mechanism produces the most accurate
predictions for CH2O concentration. At temperatures of
500–600K, the Tran et al.10 considerably underpredicts the
formation of CH2O, whereas the RMG mechanism gives
predictions much closer to the measured values. When
temperatures exceed 800 K, all of the investigated models
over-predict the formation of CH2O, but the RMG model
provides a marginally better estimate than the Tran et al.10
mechanism. While the predictions of the Sakai et al.49
mechanism are marginally closer to the measured value
at this temperature than the RMGmechanism, the predic-
tions throughout the rest of the temperature regime are
poor. None of the mechanisms produce accurate predic-
tions for EVE concentrations. For the RMG mechanism,
most of the reactions associated with EVE formation (such
as the hydrogen abstractions of fuel radical species) and
consumption are generated by RMG rate rules, introduc-
ing a high degree of uncertainty into these predictions.
However, the predictions of the RMG model are the clos-
est to the experimental values in terms of magnitude,
suggesting that the database expansion and inclusion of
an EVE sub-mechanism has been beneficial. Dewey and
Rotavera149 discussed the importance of the consumption
mechanisms for R+O2 intermediates and highlighted the
benefits of including sub-mechanisms for such species in
the RMG generation process. Their study found that the

inclusion of these sub-mechanisms led to an improve-
ment inmodel predictions of experimental species profiles,
similar to the results shown in this study for the RMG gen-
erated mechanism. Rate parameters for initiation through
the hydrogen abstraction of DEE by an OH radical are
not estimated by RMG and are identical to those pro-
vided in the Tran et al.10 seed mechanism. Hartness and
Rotavera150 recently identified the significance of branch-
ing fractions for such initiation reactions in mechanisms
which include peroxy radical chemistry. The RMG gener-
ated mechanism used in this study and the mechanism
of Tran et al.10 provide the best estimates for EVE con-
centration, while sharing the same rate parameters for
the highly influential hydrogen abstraction by OH reac-
tions. However, it is difficult to form conclusions based
only on these reactions, due to the considerable differ-
ences between each mechanism investigated, including
significant differences in the rate parameters and ther-
mochemistry of several influential reactions and species,
respectively. Total reaction rate coefficients and branching
ratios for these reactions are provided in Supplementary
Materials for each of the literature sourced mechanisms.
The formation and consumption of EVE is clearly a tar-
get for future DEE model development in general, not just
for the RMG generated mechanism, as this species is asso-
ciated with chain terminating low temperature oxidation
pathways for DEE.
Many species concentrations show a bimodal dis-

tribution with changing temperature, including C2H4,
C2H5OH, and C4H8O2-CY, as shown in Figure 7. The
RMG mechanism successfully predicts such a distribu-
tion for the concentration of C2H4 but, like the Tran et al.
mechanism,10 the first concentration peak is considerably
over-predicted. The Sakai et al.49 and Danilack et al.90
mechanisms give a goodprediction ofC2H4 concentrations
in this initial peak and all the investigated mechanism
predict the higher temperature second peak accurately.
C2H5OH is formed in small quantities during the low
temperature oxidation of DEE. Below 600 K the RMG
model significantly under-predicts the concentrations of
C2H5OH, whereas the Tran et al.10 mechanism predicts
concentrations well in this region. However, this is not
the case at temperatures >600 K, wherein only the RMG
mechanism provides reasonable predictions. C4H8O2-CY
is a cyclic ether formed by the decomposition of QOOH
species to produce C4H8O2-CY and an OH radical. Again,
the RMG mechanism produces the most accurate pre-
dictions for the concentration of this species, with the
Tran et al. mechanism under-predicting the concentration
between 575 and 675 K. The bimodal concentration dis-
tribution is predicted by both the RMG and Sakai et al.49
mechanisms, although in both cases the location of the sec-
ond concentration peak occurs at a lower temperature than
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22 MICHELBACH and TOMLIN

F IGURE 7 Model predictions for the concentrations of ethene (C2H4), ethanol (C2H5OH), propene (C3H6), and 2-Methyl-1,3-dioxolane
(C4H8O2-CY), in a JSR with varying temperature. Symbols show the JSR-GC measurements of Tran et al.10 Stoichiometric, 106.7 kPa, 2 s
residence time, 1/6/93 mol% DEE/O2/He.

is observed experimentally. While the Tran et al.10 mecha-
nism predicts also predicts a bimodal distribution for C3H6
concentrations, this is not observed in the experimental
data, nor is it predicted by any of the other models.
As pressures are increased to more engine relevant

conditions, the species concentration predictions of the
RMG mechanism continue to show a good level of accu-
racy, comparable to those of the Tran et al.10 mechanism.
Species concentrations for DEE and CH2O at lean fuel/air
conditions (φ = 0.5) and 10 atm are displayed in Figure 8.
It is clear to see that the increase in pressure results in a
suppression of the DEE NTCs, though some NTC behav-
ior is still apparent. It is suggested in the literature that the
suppression of the first NTC is due mainly to a promotion
of 2nd oxygen addition reactions and the high-pressure
stabilization of RO2 and QOOH radicals. The 2nd NTC
is also impacted by high-pressure RO2 stabilization but is
also suppressed pressure dependent enhancement of HO2
chemistry.110 The RMG mechanism correctly predicts this
suppression but stillmarginally over-predictsDEE concen-

trations in both NTC regions. However, the predictions of
the RMG mechanism are still much more accurate than
those of the Sakai et al.49 andDanilack et al.90 mechanisms
and provide a reasonable degree of accuracy throughout
the temperature regime. CH2O concentration predictions
are good for both theRMGmechanism and the Tran et al.10
mechanism, with the RMG simulations more accurately
predicting concentrations during the 700 K peak and the
Tran et al.10 mechanism achieving a marginally better
accuracy in the 850 K region.
When the pressure is increased further to 100 atm (a

pressure not uncommon during combustion within recip-
rocating engines), the suppression of DEE NTC behavior
is even more apparent. At the lean (φ = 0.5), high-
pressure conditions displayed inFigure 9, the experimental
measurements of Wang et al.110 show none of the charac-
teristic low temperature combustion behavior. The RMG
model predicts this change in behavior well, with only
the Tran et al.10 mechanism providing marginally more
accurate predictions throughout the temperature regime.
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MICHELBACH and TOMLIN 23

F IGURE 8 Model predictions for the concentrations of DEE (C4H10O) and CH2O, in a JSR with varying temperature. Symbols show the
JSR-GC measurements of Wang et al.110 Lean (φ = 0.5), 10 atm, 1.2 L/min flow rate, 0.5/6/93.5 mol% DEE/O2/N2.

F IGURE 9 Model predictions for the concentrations of DEE (C4H10O) and CH2O, in a JSR with varying temperature. Symbols show the
JSR-GC measurements of Wang et al.110 Lean (φ = 0.5), 100 atm, 3 L/min flow rate, 0.5/6/93.5 mol% DEE/O2/N2.

CH2O predictions are reasonable for all the investigated
mechanisms, though the Sakai et al.49 mechanism does
over-predict CH2O concentrations considerably around
700 K. The RMG and Danilack et al.90 mechanisms also
over-predict CH2O concentrations after the initial peak at
550 K, whereas the Tran et al.10 mechanism under-predicts
concentrations for the majority of the temperatures
investigated.

4.3 Diethyl ether flame speeds

Adiabatic DEE flame speeds, as measured by Gille-
spie et al.,80 are displayed in Figure 10 alongside the

predictions of the RMG, Tran et al.,10 and Danilack
et al.90 mechanisms. The Sakai et al.49 mechanism is
not included in this assessment, as no transport data
are provided by the authors, and to generate new trans-
port data would be misrepresentative of the mechanism’s
performance. As supplied, the Danilack et al.90 mech-
anism also contains incomplete transport data, missing
parameters for eight DEE oxidation intermediates: the
two ROOH species (C2OC2H4OOH-A and C2OC2H4OOH-
B), ethoxyacetaldehyde (C2H5OCH2CHO), both possible
ethoxyethanols (C2H5OC2H2OH-A and C2H5OC2H4OH-
B), ethyl acetate (EA), and bothRO species (C2H5OC2H4O-
A and C2H5OC2H4O-B). These species are only involved
in reactions which Danilack et al.90 sourced from the Tran
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24 MICHELBACH and TOMLIN

F IGURE 10 A comparison of the 298 K DEE flame speed
measurements of Gillespie et al.,80 with the model predictions of the
RMG generated, Tran et al.,10 and Danilack et al.90 models.
Measurements and predictions are displayed for varying
equivalence ratios, from φ = 0.55 to 1.6.

et al.10 mechanism, so for the purposes of this analysis, the
missing transport data are completed using the parameters
supplied by Tran et al.10
The flame speed predictions of the RMG model are

extremely accurate from equivalence ratios of φ = 0.55
to 1.35. At richer equivalence ratios, the model begins to
under-predict the flame speed slightly, getting worse as the
fuel/air ratio increases. A similar trend is observed for the
Tran et al.10 mechanism, though the predictions for both
models are good throughout. While the Danilack et al.90
mechanism produces similar predictions for lean condi-
tions, there is a clear over-prediction of flame speeds as the
equivalence ratio increases.

4.4 Diethyl ether/ethanol blend

So far, this study has demonstrated the RMG can produce
highly effective models for the prediction of DEE com-
bustion phenomena. However, advanced biofuels are often
blended with other biofuel components, fossil fuels, or
combustion enhancing additives to improve engine per-
formance or minimize harmful emissions.8,67,151,152 The
production of a combined mechanism for such blends by-
hand can be difficult and error prone. Species notation is
often different between mechanisms, particularly as the
intermediate oxidation species become more complex and
niche, and mechanisms are not always well documented
or adequately referenced. RMG generated mechanisms
can be combined relatively simply by either performing

F IGURE 11 Variable volume predictions of DEE/ethanol
blend IDTs, compared to the RCMmeasurements of Issayev et al.67

Blending ratio of 50/50 by mole DEE/ethanol, φ = 1.0, Pc = 20 bar,
Tc = 550–1100 K. IDT predictions produced using the mechanism
developed in this study are also shown for DEE at the same
conditions, to show the impact of DEE and ethanol fuel blending.

a direct combination (which simply combines the mech-
anisms together with user defined priorities, eliminating
any unmarked duplicates), or by converting the individ-
ual mechanisms into seed mechanisms and using these to
generate a new combined mechanism. The latter method
may take considerably more computation time, but it will
also generate cross reactions between the different species
and their products, which a direct combination will not.
As described in Section 3.4, the mechanism generated in
this study utilizes the latter method described here, by
including an ethanol seed mechanism based on the work
of Zhang et al.138
DEE and ethanol blends have been investigated exten-

sively in the literature due to their strikingly differ-
ent autoignition responses and common production
process.67,153–155 The difference in reactivity between the
two fuels facilitates the production of binary blends with
a large range of potential octane/cetane numbers and thus
may facilitate tailored fuel blending approaches. Model
predictions for the IDTs of a 50/50 by mole DEE/ethanol
blend are shown in Figure 11, alongside the RCM mea-
surements of Issayev et al.67 It is not expected that the
literaturemodels selected will provide highly accurate pre-
dictions for this blend, as theywere all exclusively designed
for DEE (though some ethanol specific chemistry will
be covered by each mechanism’s small molecule core).
Simulation results for the mechanism of Sakai et al.49
are not presented here, as convergence issues at these
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MICHELBACH and TOMLIN 25

conditions outside of the mechanisms validated regime
prevent the completion of variable volume simulations.
Predictions for the RMG generated mechanism are good
throughout, indicating an accurate interpretation of the
blending response between the two fuel species. The sup-
pression of the DEE NTC by ethanol is particularly well
predicted and is evident in the comparison with predic-
tions of pure DEE IDTs in Figure 11. This is an important
blending interaction which could be highly influential for
determining engine performance. The high level of perfor-
mance demonstrated relative to the literature mechanisms
is likely due to the inclusion of an additional, high-
quality ethanol seed mechanism. The literature sourced
mechanisms rely on the corresponding small molecule
sub-mechanisms to interpret this blending response.

5 DISCUSSION AND CONCLUSIONS

AMG tools (such as RMG) have the potential to accelerate
the production of detailedmechanisms for the combustion
of complex fuels and enable the rapid design and develop-
ment of advanced biofuels and strategies for their blending.
Such tools use relatively simple algorithmic approaches to
enable the generalization of high-quality thermochemical
data through the use of reaction families, training data and
group additivity methods, rather than complex machine
learning tools. However, since they embed knowledge of
molecular structures, they are unlikely to lead to wildly
unrealistic estimates for reaction rate parameters and
important thermodynamic and transport properties. Using
DEE as a case study, this work has shown that when appro-
priate reaction families and training data are incorporated,
such tools are capable of producing robust mechanisms
that are comparable to, or outperform, hand-built litera-
ture mechanisms for oxygenated fuels, across a range of
key combustion targets and conditions. IDT predictions
for the RMG mechanism were considerably more accu-
rate than those of the Tran et al.10 mechanism, particularly
for stoichiometric conditions within the NTC region. The
mechanism of Sakai et al.49 also performed well for IDT
predictions but did not predict the NTC intensity of the
stoichiometric, 40 bar conditions, which was well pre-
dicted by the RMG mechanism. JSR-GC measurements
were well predicted by the RMG mechanism, providing
comparable results to those of the highly accurate Tran
et al.10 mechanism for these targets. In the case of many
intermediate oxidation species, the RMG model even out-
performed the predictions of the Tran et al.10 model, as
shown in Figure 6 (CH2O andEVE) and Figure 7 (C2H5OH
and C4H8O2-CY). Speciation predictions continued to per-
form well as the RMGmodel was extrapolated beyond the
conditions which it was originally designed for, as shown

by the 100 atm predictions in Figure 9. The RMG mecha-
nism was also shown to provide accurate IDT predictions
for a DEE/ethanol blend as displayed in Figure 11. No tun-
ing of reaction rates or thermochemistry was carried out in
this work.
In an idealworld, it would be possible to apply such tools

with minimal user intervention from the start, in order
to generate robust mechanisms. However, it was neces-
sary in this work to update the thermochemistry database
as well as training data for key reaction families relevant
to complex and oxygenated functional groups. A high-
quality seed mechanism was also required. However, once
database updates were complete, the AMG methodology
was capable of producing a model much faster when com-
pared to the generation of such a mechanism by hand,
and with considerably less input from the user. In addi-
tion, these updates will be relevant for future application
of RMG to other oxygenated fuel components that are
likely to become more important with the emergence of
complex blended fuels, such as those produced by the
alcoholysis of lignocellulosic biomass.8 Such blends con-
tainmultiple oxygenated functional groups (alcohol, ether,
ester, and ketone groups are present in the fuel species
alone) and the more complex species may have little to
no data available in the literature. The database updates
prepared as part of this work have been made available
in supplementary material for the benefit of future appli-
cations of RMG to oxygenated fuel components. Current
methods for database expansion are not always clear, mak-
ing them inaccessible to inexperienced users, increasing
the knowledge and time investment required to construct
robust mechanisms with AMG tools. To facilitate wider
application of AMG tools, and to improve the efficiency
of the approach, it would be highly beneficial to have an
easily accessible central database of such inputs with regu-
lar updates. Currently, such information must be sourced
from the supplementary materials of published studies or
GitHub branches and forks of the RMG database, which
are not always adequately referenced or described. Main-
taining such a database would not be without effort, but
the task could potentially be automated with the help of
AI tools in the future.
In summary, this study has shown that AMG tools are

currently capable of producing advanced biofuel combus-
tion mechanisms, which are robust and highly accurate
across a wide range of combustion relevant targets. While
the process is not currently fully autonomous, it requires
relatively little input from the user, though expert level
knowledge is still required to interpret analysis and pro-
vide accurate seed mechanisms and training data. Future
work towards the rapid development of such models
should focus on the provision of accurate reaction rates and
thermochemistry for relevant functional groups and their
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26 MICHELBACH and TOMLIN

inclusion into relevant AMG databases. This would not
only improve predictive accuracy but should alsominimize
the need for mechanism post-processing.
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