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Simultaneous Hip Implant Segmentation and
Gruen Landmarks Detection

Asma Alzaid, Beth Lineham, Sanja Dogramadzi, Hemant Pandit, Alejandro F. Frangi and Sheng Quan Xie

Abstract— The assessment of implant status and com-
plications of Total Hip Replacement (THR) relies mainly on
the clinical evaluation of the X-ray images to analyse the im-
plant and the surrounding rigid structures. Current clinical
practise depends on the manual identification of important
landmarks to define the implant boundary and to analyse
many features in arthroplasty X-ray images, which is time-
consuming and could be prone to human error. Semantic
segmentation based on the Convolutional Neural Network
(CNN) has demonstrated successful results in many med-
ical segmentation tasks. However, these networks cannot
define explicit properties that lead to inaccurate segmenta-
tion, especially with the limited size of image datasets. Our
work integrates clinical knowledge with CNN to segment
the implant and detect important features simultaneously.
This is instrumental in the diagnosis of complications of
arthroplasty, particularly for loose implant and implant-
closed bone fractures, where the location of the fracture
in relation to the implant must be accurately determined.
In this work, we define the points of interest using Gruen
zones that represent the interface of the implant with the
surrounding bone to build a Statistical Shape Model (SSM).
We propose a multitask CNN that combines regression of
pose and shape parameters constructed from the SSM and
semantic segmentation of the implant. This integrated ap-
proach has improved the estimation of implant shape, from
74% to 80% dice score, making segmentation realistic and
allowing automatic detection of Gruen zones. To train and
evaluate our method, we generated a dataset of annotated
hip arthroplasty X-ray images that will be made available.

Index Terms— Arthroplasty, Image segmentation, Land-
marks detection, Medical image analysis, Statistical Shape
Model.

I. INTRODUCTION

TOTAL Hip Replacement (THR) follow-up radiographs

are used in routine evaluation and monitoring of pros-

thetic joints to identify potential complications. These include
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loosening, infection, and other short- and long-term problems

related to the region surrounding the implant. For example,

aseptic loosening, which is the most common cause of THR

revision [1], is detected by visually assessing the radiolucency

gaps around the implant and determining the positional varia-

tions of the implant in relation to the bone. The widely used

clinical protocol to assess implant status is the Gruen zone

system, which divides the interface between bone and implant

into seven zones (see Fig.1 (a)). In clinical practise, these

landmarks and the surrounding boundary of the implant are

defined by clinicians, are often time consuming, and are prone

to human error processes that could lead to inconsistencies in

outcomes between various clinical specialists. Automating the

identification of these landmarks and segmenting the implant

can minimise these problems and ultimately lead to more

efficient and reliable diagnoses, better treatment planning, and,

ultimately, better patient outcomes.

In several research studies [2] [3] and in medical imaging

analysis and assisted tools in orthopaedics such as Ortho

View and ELBRA, manual selection of anatomical landmarks

or implant boundaries is used for subsequent analysis. To

the best of our knowledge, there is currently no existing

work on automated identification of the Gruen landmarks.

On the other hand, several studies attempted to automate

the segmentation of the hip implant. The early work on

implant segmentation considered the analysis of images based

on hand-crafted features such as histogram thresholding [4]

[5], the Active Contour method initialised by using the Fast

Random Circle Detection Method [3], and the region growing

method initialised by applying the Hough transforms [2].

These methods do not generally apply to THR radiographs

and could provide good results only when implant components

are clearly presented on the X-ray images. Moving from

traditional methods to deep learning (DL) based methods,

Patel et al. [6] applied U-Net to segment hip implants as

an initial step for the classification of the type of implant.

Although convolution neural networks (CNN) showed state-

of-the-art results in many medical segmentation tasks, these

networks map the global shape structure and cannot define

local regional properties. In addition, these networks could

produce unrealistic segmentations, i.e. gaps or missing parts

in the segmented implant, especially when the training dataset

is limited, which is considered a major challenge in many

medical imaging research. Similarly, Gruen landmarks may

not have simple distinguishable features that a CNN can learn.

It is defined on the basis of the shape and geometry of

the implant and its surrounding bone. CNN exceeds learning
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hierarchical representations of visual features, but may have

difficulty capturing precise geometric features and shapes,

particularly if the training data set is small.

Increasing the dataset size would improve the performance

of CNN-based methods; however, it is difficult and time-

consuming to annotate a large number of THR X-ray images.

In addition, the quality, complexity, and variety of THR images

may limit the effectiveness of synthesising new data [7].

Therefore, we introduce a hybrid approach that uses the shape

knowledge of hip implants for simultaneous segmentation and

detection of Gruen landmarks in the implant. Although several

studies in the medical image analysis domain incorporate

shape knowledge into DL such as segmentation of the left

ventricle [8], brain boundary [9] and skin lesions [10], this is

the first work that uses such an approach for implant shape

segmentation and landmark localisation. This paper proposes

a multitask CNN to perform a binary segmentation map of

the implant, detect the implant tip point, and regress SSM

parameters to compute the shape of the implant. We employed

the Statistical Shape Model (SSM) to build a landmark-based

shape model from a training data set and fit this model to a

new image using the shape coefficients and pose parameters.

We combine the advantages of SSM for both imposing shape

constraints and describing the important landmarks of the

implant. Furthermore, we preserve the benefits of CNN to

extract complex features from images.

The integration of segmentation and regression of the shape

model parameters was used in other medical imaging domains,

using two parallel steps- one to predict shape parameters

and the other to predict the segmentation map such as in

prostate segmentation in the MRI image [11] or by combining

the two steps in one pipeline [12] [13]. Regression of SSM

parameters and distance map to segment the left ventricle was

developed in [12], while [13] predicted shape coefficients and

pose parameters to compute the coordinates of the landmark

points that approximated the final segmentation. Compared to

these methods, our approach improves the segmentation as

well as landmark identification by simultaneously predicting

the SSM parameters, the implant tip point and performing the

binary segmentation maps.

The novel contributions of this work are: (1) we propose an

integrated approach that allows segmentation of the implant

and automatic detection of the landmarks of interest in the

implant. (2) define the Gruen zone landmarks and represent

the shape of the implant femoral component accordingly. (3)

Annotated THR image dataset that defines implant landmarks.

It will be publicly available to enhance research in this field.

II. RELATED WORK

There are many approaches currently adopted in the med-

ical image domain that introduced the integration of shape

knowledge with CNN. These approaches can be divided into

five main categories: (1) post-processing by shape model, (2)

prior knowledge, (3) multiple CNNs and shape models, (4)

learning hidden representations of shape, and (5) shape prior

as regularisation in the objective function.

The shape model is used as a postprocessing step to

refine CNN segmentation. A method of using left ventricle

segmentation that initialised the segmentation with a faster

R-CNN model for detection and tracking was reported in

[15] followed by a selection-based sparse shape model and

a local deformable model to perform the final segmentation.

A modified Active Shape Model (ASM) was implemented to

refine the segmentation of the left ventricle in [8]. Since the

main limitation of ASM is the large outliers as a result of the

search for landmarks, the authors took advantage of CNN to

maximise the quality of feature extraction from images. The

Expectation Maximisation was selected to minimise the effect

of outliers during the ASM optimisation. Rather than using

segmentation maps to initialise the shape model, Tabrizi et al.

[16] predicted the bounding boxes as initialisations and the

final segmentation using weighted fuzzy ASM. Li et al. [17]

introduced a similar approach for myocardial segmentation,

where they applied random forest to build probability maps

from the detected bounding box and used SSM for the final

segmentation.

Prior shape knowledge is applied to generate the initial

segmentation. Nguyen et al. [9], split images into groups with

similar shapes and structures of brain boundaries. Then, prior

ASM was used for each group to generate coarse segmenta-

tion, followed by CNN and post-processing methods such as

Conditional Random Field (CRF) and Gaussian processes to

refine the segmented contours. Zotti et al. [18] reported an

extended U-Net architecture by incorporating multi-resolution

input and integrating a shape prior to being used as a template

for cardiac magnetic resonance segmentation. Shape priors

encoded the probability that a voxel is part of a specific

class, which is used in segmentation and to predict the central

location of the object.

More accurate results can be obtained by using multiple

CNNs and shape models. Ambellan et al. [19] proposed a

pipeline of multiple CNN and SSMs to segment knee bone

and cartilage from MRI images. The pipeline started with

2D U-Net to generate initial segmentation masks which are

then regularised by SSMs. Then, 3D U-Net is used to extract

smaller subvolumes of MRI. To further enhance the results,

another SSM is used as a post-processing step. Finally, a third

U-Net is used to segment the cartilage. Brusini et al. [20],

using U-Net, SSMs, and a second U-Net. They utilised three

orthogonal U-Nets and averaged their prediction to extract the

final segmentation. Duan et al. [21] reported a segmentation

method for cardiac images that combined a multitask DL

approach with an atlas as a prior shape. Their method trained

a Fully Convolutional Network (FCN) for both segmentation

and landmark detection. The landmarks were used to initialise

the atlas by selecting the most corresponding one, which is

used to refine the segmentation.

To learn the hidden representation of the anatomical shape

and topological structures to impose shape constraints on

the initial segmentation, denoising autoencoders (DAE) were

used for the post-processing step for lung segmentation [22],

constraint variational autoencoder (cVAE) to learn the latent

representation of cardiac shapes [23], and a Shape-aware

multiview autoencoder (Shape MAE) to learn the anatomical

shape priors of cardiac anatomy [24].

The approaches that combine the shape priors as regulari-
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Fig. 1. (a) Femoral component zones according to Gruen et al. [14], (b) Modified definition of Gruen zones. (c) Shape landmarks description.

sation terms in the loss function of the segmentation network

are based on using the distance between the landmarks [11]

[25] or the shape parameters [13] [12]. Normalised distant

maps for the contour constructed from SSM parameters were

combined in the segmentation as a parallel step to a network

that generated probability maps for prostate segmentation

[11], or as the initialisation step of the segmentation [25]. In

[13] a stage-wise regression model is proposed that initially

predicted the centre location of the prostate and subsequently

incorporated shape parameters and rotation vector predictions.

In contrast, [12] incorporated the regression of shape and pose

parameters along with the regression of distance maps in one

pipeline to segment the left ventricle. To enhance skin lesions

segmentation, a previously encoded shape was encoded as

a new loss term in an FCN, with non-star shape segments

penalised in the prediction maps [10].

In this paper, we propose a hybrid approach that leverages

the shape knowledge of the hip implant for simultaneous

segmentation and detection of important landmarks. A mul-

titask CNN is proposed that incorporates aspects of previous

approaches to automatically extract an implant shape repre-

sentation that can be used for several regional assessments.

Compared to category 5 approaches to use shape priors as

regularisation in the objective function, we regress the shape

parameters of an SSM that helps us identify the important

landmarks in the implant, which enables further computation

and extraction of implant surrounding regions. Unlike other

methods, we improve shape prediction by simultaneously de-

tecting the implant tip point and performing semantic segmen-

tation. In addition, a final alignment of the shape is calculated

by applying the ICP algorithm. Our proposed architecture is

designed as an encoder-decoder CNN where the features in

the encoder part have shape-related information. These feature

maps are shared by both branches- regression of pose and

shape parameters and semantic segmentation. This automates

the identification of the Gruen landmarks by constructing the

implant shape from the predicted parameters.

III. METHODS

A. Anatomical knowledge

The clinical evaluation of postoperative THR radiographs

includes examining changes in the appearance of implant

components and bone. Experienced clinicians depend greatly

Fig. 2. GPA steps: (a) Samples of training shapes. (b) Aligned shapes.
(c) mean shape

on their knowledge of anatomical priors such as the shape and

position of the implant and bone to assess radiograph images.

We include this knowledge in our DL model to segment

the implant and detect important landmarks of the femoral

component of the implant. The most widely used medical

system for evaluating the status of the femoral stem is the

Gruen system [14], which divides the femoral component into

seven zones on the anterior posterior radiograph (AP) (see Fig.

1 (a)). We introduce shape landmarks based on these zones

(Fig. 1 (b) shows the definition of Gruen landmarks).

B. Shape Model

THR radiograph images vary significantly in appearance

depending on the patient’s condition and complications after

THR surgery. A SSM that describes the shape of the object

and its variations [26], is generated from a training image set

that is annotated by a human expert and built from the analysis

of the shape variations. Interpretation of a new image requires

identifying the parameters that best match the model to the

image. An accurate SSM requires correspondence mapping

between shape landmarks. We define these landmarks using

the Gruen zones.

The localisation of these zones simplifies the analysis of

the surrounding region of the implant, which consequently

approximates the shape of the implant and localises the

important landmarks.
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Fig. 3. The proposed GruenNet architecture. The encoder block (EB) consisted of 3× 3 convolutional layer (conv), batch normalisation (BN) and a
parameterized rectified linear unit (ReLU) followed by another conv and BN. The downsampling (SD) consisted of conv followed by BN. The number
of feature maps (#FM) is presented for each block.

Fig. 1 (c) shows a complete description of the defined points

of reference. Additional landmarks within each zone were

added to accurately represent the shape of the implant.

After defining the landmarks, they are aligned using Pro-

crustes Analysis (GPA). GPA is an iterative method that starts

by selecting a random shape from the training set as the mean

shape. All shapes are aligned with reference to the mean

shape, which is re-estimated and the alignment is repeated.

The process ends when the estimated mean shape is equal to

the previous one. The resulting aligned shape is defined as:

(

x
′

y
′

)

=

(

tx
ty

)

+

(

cos θ − sin θ
s sin θ s cos θ

)(

x
y

)

(1)

Where (tx, ty), θ and s are the pose parameters (translation,

rotation and scaling). The average shape can be estimated as

follows:

x̄ =
1

S

S
∑

i=1

x
′

i (2)

Where x
′

i denotes the aligned shape vector and i ∈ {1, 2, ..S}.

This process is presented in Fig. 2. The S samples of the

training set are shown in Fig. 2 (a), while the aligned shapes

xi are shown in Fig. 2 (B) and the mean shape x̄ is presented

in Fig. 2(C).

Then, the Principal Component Analysis (PCA) is applied

to obtain shape variations. Given a set of shape vectors {x
′

i},

the mean shape is computed by using (2), and the covariance

of the data is computed by:

C =
1

S − 1

S
∑

i=1

(xi − x̄)(xi − x̄)T (3)

The eigenvectors P = {p1, p2, ...pt} and the corresponding

eigenvalues λt of C represent the directions of variation in

the data about the mean. The first M largest eigenvalues are

chosen such that:
M
∑

i=1

λi ≥ fvVT (4)

where fv defines the proportion of the total variation VT .

Assuming that the shape follows a Gaussian probability dis-

tribution, the shape can be approximated using:

x ≈ x̄+ Pb (5)

where P contains the first m eigenvectors and b is a m
dimensional vector given by:

b = PT (x− x̄) (6)

C. Dataset Pre-processing

All images are resized to 224× 224 px and normalised by

dividing by the largest pixel value (255). Pose parameters (θ
and s) and b-coefficients are normalised by min-max feature

scaling to values between 0 and 1. The position of the tip point

is used to generate a heat map image of size 224× 224 using

a Gaussian kernel with σ = 5.

Online data augmentation is used to increase the size of

the data set. This is computed by first applying random

transformations to the shape parameters as the following: the

shape coefficients b are modified by adding a random uniform

value baug = b+ a where a ∈ [−2, 2], random shape rotation

θ ∈ [−60, 60] and translation by a random value between [-

10,10]. The images are transformed according to the computed
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augmented shape using the Thin Plate Spline Transformation

method [27]. The masks and heat maps are created, respec-

tively. In addition, brightness variation [−0.2, 0.2] is applied

for data augmentation.

D. Gruen Net

The proposed Gruen network architecture for detecting

Gruen landmarks and performing implant segmentation is

presented in Fig. 3. The input to the network is the X-ray

image and has four outputs: (1) shape parameters bm. (2)

pose parameters θ and scale s. (3) implant tip point (cx, cy).
(4) segmentation maps. The proposed architecture consisted

of two branches; the green branch, which is responsible for

learning bm, θ and s, and the yellow branch, which learns the

binary segmentation map and the tip point heat map. The grey

layers are shared by all tasks. Semantic segmentation and tip

point prediction share the same features that are conducted

by an encoder-decoder to infer the probability label map.

The encoder part includes three residual blocks consisting of

two convolution layers with a kernel size of 3 × 3. Each

convolution layer is followed by batch normalisation and

the ReLu activation function. The encoder is followed by

the bridge part which consists of one residual block. The

decoder part uses both the feature map from the bridge and

the skip connections from different encoder blocks to learn the

binary classification of each pixel for both segmentation and

tip-point localisation tasks. Finally, the task-specific layers,

which consisted of convolution and ReLu layers followed by

a sigmoid function, are added to the network architecture.

The regression of the SSM parameter branch starts from the

bridge block. It shares three convolution layers and has two

specific convolution layers and a linear layer. Each convolution

is followed by batch normalisation and ReLu layers.

The network is trained using a weighted sum of multiple

loss functions (Lb, Lθ,s, Lsh, Lcx,xy
and Lseg). The shape

parameters loss (Lb) is defined as the Mean Squared Error

(MSE) between the ground truth shape parameters (bi,true)

and the predicted one (bi,pred):

Lb =
1

N

N
∑

i=1

(bi,true − bi,pred)
2 (7)

The pose parameters loss (Lθ,s) are defined as the sum of MSE

loss between the ground truth (θi,true, si,true ) and predicted

orientation and scale (θi,pred, si,pred):

Lθ,s =
1

N
(

N
∑

i=1

(θi,true − θi,pred)
2 +

N
∑

i=1

(si,true − si,pred)
2)

(8)

The heatmap regression is employed to detect the tip point.

For each image, a heatmap image is formed using a Gaussian

filter that is centred at the tip point location. Heatmap loss

(Lhm) is defined using the Cross Entropy (CE) loss function

as:

Lhm = hmtrue · log hmpred+(1−hmtrue) · log(1−hmpred)
(9)

where hmtrue is the ground truth label and hmpred is the

predicted probability of the point being the tip point.

The shape of the implant is calculated using the shape

parameters (bi, θi, si, and cx, cy) as described in Section III-

B. The shape loss (Lsh) is calculated by the MSE between

the predicted shape (shi,pred)) and the ground truth shape

(shi,true)):

Lsh = 1/N

N
∑

i=1

(shi,true − shi,pred)
2 (10)

The binary segmentation loss is defined using the CE loss

function:

Lseg = ytrue · log ypred + (1− ytrue) · log(1− ypred) (11)

where ytrue is the ground truth label and ypred is the predicted

probability.

IV. EXPERIMENTAL SETTINGS

Multiple experiments have been carried out to validate

the proposed method and the effect of each parameter. In

addition, different loss functions and hyperparameters have

been explored to obtain the best results. For simplicity, BSM

is referred to the segmentation resulting from the binary

segmentation map and SP is referred to the segmentation

constructed from the prediction of shape coefficients, pose

parameters, and tip points detection.

The purpose of the first experiment is to assess the perfor-

mance of each task separately; (1) the prediction of a BSM of

the image for semantic segmentation. (2) the prediction of the

SP for segmentation and location of landmarks. The BSM was

achieved by training the main branch of the proposed model

(Fig. 3 the grey and yellow parts for the segmentation task

only), while the SP predictions were learnt by training the grey

and green part and the yellow part for the heatmap prediction.

The effect of data augmentation was also investigated in both

tasks.

The second experiment aims to evaluate the performance

when combining both semantic segmentation and prediction

of shape and pose parameters in the learning process. In this

experiment, we also study the effect of adding the shape loss

(Lsh) that is computed from the shape and pose parameters.

The last experiment will study the impact of employing the

ICP method to align the segmentation map with the predicted

landmarks.

A. Dataset

To increase the variability of the X-ray images, two different

hip implant datasets were used to construct, train, and validate

the proposed method: Orthonet dataset [6] and in-house dataset

[28]. Orthonet dataset is a publicly available dataset that was

originally collected for the classification of implant model type

in knee and hip arthroplasty. It consisted of 1191 unilateral

hip X-ray images with 8 different implant models. Part of this

data set (198 images) was intended for implant segmentation.

Therefore, it includes the original X-ray images and the

implant mask images. The images have various sizes, and all

images represent the normal state of the implant. More details

about this data set and the generation of implant masks can be
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Fig. 4. 15 modes of shape variations. Green represents the mean
model. Yellow represents the deformed shape by −3

√
λi and blue

represents the deformed shape by 3
√

λi

found in [6]. The in-house dataset was generated for automated

peri-prosthetic femur fracture diagnosis [28]. It consisted of X-

ray images after the THR, which are considered normal cases,

and X-ray images with various types of fractures. More details

about this data set can be found in [28].

Due to difficulties of manual annotation of the ground truth,

this work has included part of both data sets. A total of 330

images were used for training and validation of the proposed

method. From Orthonet data, approximately 30 images were

randomly selected from each implant model. The remaining

images were selected from the in-house data and the choice of

images was based on the type of fracture. Fractures B1, B2,

and B3 occur within the implant region. Therefore, the images

were randomly selected from these types (approximately 30

images per type). Table I shows the distribution of the dataset.

The ground truth segmentations of the implant femoral

component and the SSM landmarks were annotated by a

clinical expert using the Microsoft VOTT tool. The landmarks

were annotated as described in Fig. 1 (c). The landmarks (2, 4,

6, 8, 10, 12, 14) are the Gruen zone landmarks, while the other

points are added to define the implant boundary precisely. The

implant masks were generated by filling the defined shape

area.

B. Implementation details

The femoral stem is represented by N = 15 landmarks and

(θ, tx, ty, s) are computed as explained in Section III-B. The

shape model has M = 15 modes of shape variation, which

explains 98% of shape variation. Fig. 4 shows examples of

the shape variations related to the first 15 eigenmodes of the

implant.

The data set was divided into two parts: training and

validation, with the ratio 75% : 25%, respectively. Different

augmentation methods have been applied to the data set, as

explained in section III-C, to minimise the effect of the small

data set size.

TABLE I

DISTRIBUTION OF THE DATASET.

The network was trained on a Windows machine equipped

with 8 GB RAM, Intel(R) Core(TM) CPU @ 3.00 GHz and

GeForce RTX 2080 graphics card. It is trained over 200 epochs

with AdamW optimiser, learning rate 1× 10−4, weight decay

5−4, and batch size = 8.

C. Evaluation settings

Multiple evaluation metrics were used to validate the pro-

posed method. As explained earlier, we evaluated the precision

of the femoral stem segmentation for both outcomes; BSM and

SP. The dice coefficient and Hausdorff distance were used to

evaluate the segmentation results.

Additionally, the performance of the predicted shape co-

efficients, pose parameters, and tip point prediction were

evaluated. For the evaluation of pose parameters, the absolute

error was used, where the orientation error is defined as

δθ = |θpred − θtrue| and the scale error is defined as δs =
|spred − strue|. The Euclidean distance was used to validate

the prediction of the tip point. In addition, the impact of
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TABLE II

DICE AND HD RESULTS FOR SEGMENTATION COMPUTED FROM BSM

(UPPER ROW) AND SEGMENTATION COMPUTED FROM THE

CONSTRUCTED IMPLANT SHAPE SP (BOTTOM ROW) IN THE ABLATION

STUDIES. THE BEST RESULTS ARE HIGHLIGHTED.

Experiment Dice (%) HD (px)

U-Net 74 ± 13.3 16 ± 23.4
BSM 78 ± 23.3 20 ± 23.6
BSM + A 79 ± 24 12 ± 17.9
BSM + SP + A 77.7 ± 22.7 10 ± 14
SBSM + A + Lsh 80 ± 22 8.8 ± 10.7

SPTXY 22.04 ± 24.11 34.7 ± 13
SPHM 56.7 ± 16.8 26 ± 30.6
SP + A 57.4 ± 17.7 24.8 ± 23.4
SP + BSM + A 62 ± 15.7 20 ± 15.7
SP + BSM + A + ICP 66.7 ± 17.7 17.5 ± 17.6
SP + BSM + A + Lsh 62 ± 15.2 20.4 ± 9
SP + BSM + A + Lsh + ICP 69.7 ± 16.7 16.8 ± 9.8

each parameter on the construction of the shape landmarks

is analysed by taking into account the ground truth of all

parameters except the studied one.

The shape landmarks were assessed using the Normalised

Root Mean Square Error (NRMSE). NRMSE measures the

average distance between the predicted and the ground truth

landmarks normalised by the distance between two adjacent

ground truth landmarks (xi−1, xi+1)

NRMSE =
1

N

N
∑

i=1

√

(xp
i − xt

i)
2 + (ypi − yti)

2

√

(xt
i−1

− xt
i+1

)2 + (yti−1
− yti+1

)2

(12)

Where N is the number of the landmarks, (xp
i , y

p
i ) is the

predicted landmark and (xt
i, y

t
i ) is the corresponding ground

truth landmark. Additionally, the cumulative error distribution

(CED) was used to assess the detection of the landmarks. CED

plots the cumulative NRMSE against the proportion of images

with an NRMSE less than or equal to a particular value.

The performance of using augmentation, adding shape loss

and applying the ICP algorithm was validated by the Dice

coefficient, Hausdorff, and NRMSE.

V. RESULTS

A. Ablation studies

In this paper, we integrate the implant shape into a DL

model to segment the implant and detect Gruen landmarks.

To demonstrate the effectiveness of our proposed method, we

performed ablation experiments on the THR dataset. The re-

sults in Table II presented the validity of our proposed method.

The upper rows of the table showed the segmentation result

computed from the BSM component, while the lower rows

showed the segmentation result computed from the predicted

shape and pose parameters SP. For simplicity, A represents the

data augmentation, Lsh represents the shape loss. For the BSM

task, the proposed model provided better segmentation results

compared to U-Net with a dice score of 78%. The performance

was further improved when data augmentation was introduced

with a dice score of 79% and HD of 12 px. Segmentation did

not improve when joining the prediction of shape parameters

in the training. However, introducing (Lsh) resulted in the

Fig. 5. Comparison of segmentation computed from BSM in ablation
studies. Red is the predicted segmentation and green is the ground
truth. The dice score is presented in each image

best segmentation performance with a dice score of 80%

and HD of 8.8 px. Fig. 5 illustrates examples of binary

segmentation results compared to ground truth segmentation in

different experimental settings. Additionally, the dice score is

reported for each image. The predicted segmentation appeared

disconnected when using BSM only, while the shape tends

to be connected when joining the regression of the shape

parameters, specifically when adding Lsh.

The lower rows of Table II demonstrated the segmentation

results computed from the SP task. Two experiments were

carried out to calculate the shape of the implant. The first

experiment regresses the translation, rotation, scale, and shape

parameters to compute the shape of the implant. For simplicity,

we denote this experiment as SPTXY . The second experiment

differs from the first in the computation of the translation

parameter which is computed on the basis of the position

of the implant tip point. The tip point is predicted using the

heatmap regression. We denote this experiment as SPHM . The

regression of shape and pose parameters only including the

regression of translation parameters (SPTXY ) produced poor

segmentation results. The performance is enhanced signifi-

cantly (by 34% dice score) when utilising the tip point to

calculate the translation parameter (SPHM ). Performance is

further improved by adding data augmentation. When joining

the BSM, the segmentation performance was improved in both

metrics (Dice = 62% and HD = 20 px). On the other hand,

the results have not changed when shape loss is introduced.

Applying the ICP algorithm to align the predicted shape

with the BSM results produced better shape segmentation

with dice = 69.7% and HD = 16.8 px. Fig. 6 showed some

examples from different experiments for segmentation using

the predicted shape. Additionally, a dice score is reported for

each example. The shape results improved with each change to

the training method. Furthermore, it is illustrated in the images

that when aligning the shape to the BSM the shape outcome

is enhanced.

Table III listed a further validation of the predicted shape

experiments by reporting the pose parameters (θ and s) errors,

the implant tip point detection error and the constructed shape
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TABLE III

MEAN AND STANDARD DEVIATION FOR ORIENTATION ERROR, SCALE ERROR, TIP POINT EUCLIDEAN DISTANCE, THE NRMSE FOR THE SHAPE

LANDMARKS AND AFTER APPLYING ICP METHOD. THE BEST RESULTS ARE HIGHLIGHTED.

Experiment θ() scale Tip point (px) Landmarks (px) ICP (px)

SPTXY 4.48 ± 3.24 0.13 ± 0.09 88.07 ± 19.73 1.54 ± 0.98 -
SPHM 5.80 ± 4.45 0.16 ± 0.12 5.11 ± 31.31 0.80 ± 1.44 -
SP + A 6.09 ± 4.34 0.14 ± 0.10 3.46 ± 23.09 0.71 ± 1.13 -
SP + BSM + A 4.78 ± 4.32 0.14 ± 0.10 2.17 ± 8.28 0.57 ± 0.42 0.36 ± 0.27
SP + BSM + A + LSh 5.41 ± 4.23 0.13 ± 0.10 1.29 ± 0.94 0.55 ± 0.30 0.33 ± 0.20

Fig. 6. Comparison of segmentation computed from SP in ablation
studies. Green is the truth of the ground, pink is the calculated shape,
and blue is the shape after applying the ICP algorithm. The dice score
is presented in each image.

landmarks error. Regression of pose and shape parameters

(SPTXY ) provided the best rotation and scale results with

∆θ = 4.48 and ∆s = 0.13. The same scale error was

produced when the BSM was combined with the training,

and the shape loss was added. However, we observed that the

error difference among the experiments for both orientation

and scale parameters was slightly low, demonstrating that

these parameters did not benefit from combined semantic

segmentation to some extent.

We measured the translation error using the distance be-

tween the predicted implant tip point and the ground truth

point. The results demonstrated that the translation parameter

has improved significantly with each modification of the

training method and provided the best result when the BSM

joined the training and the Lsh is applied. The regression of

translation parameters in the first experiment produced a large

error. Introducing the tip point heatmap prediction to compute

the translation parameters has improved the results from 88 px

to 5.11 px. Similarly, the shape landmarks have improved in

each alteration, and the best result has resulted from the last

experiment (SP + BSM + A + LSh). Shape landmarks have

been considerably enhanced by aligning the constructed shape

to the predicted segmentation, which has reduced the error by

0.22 px.

In addition, we studied the impact of the error in each shape

component i.e. translation, rotation, scale, and B-coefficient

to the final reconstruction of the shape landmarks. To study

the impact, shape landmarks are constructed by fixing the

values of all shape parameters to the ground-truth value

Fig. 7. The impact of error in translation, rotation, scale and B-
coefficient on the computation of the implant shape landmarks. Each
plot represents the mean NMSE for the shape computed by fixing all
parameters as ground truth values except the studied parameter where
the predicted value is used.

Fig. 8. cumulative error distributions. Comparing the performance of
each experiment using point-to-point distance normalized by the two
adjacent point distances.

except the parameter under investigation, which involved the

predicted value. Fig. 7 presented the NRMSE between the

ground truth landmarks and the computed shape. The figure

indicated that the landmark error resulting from the error

in the translation parameter has improved significantly with

each modification. In addition, the B-coefficient error indicated

a slight enhancement of the landmark error. On the other

hand, scale and translation errors have a major impact on the

landmark error compared to the other parameters.

Furthermore, we summarised the performance of landmark

detection using the CED curves. It can be seen in Fig. 8

that in both experiments, i.e. using the simultaneous training

method with data augmentation and by adding shape loss, the
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TABLE IV

QUANTITATIVE RESULTS FOR IMPLANT SEGMENTATION ON OUR

DATASET. BEST RESULTS ARE IN BOLD

Method Dice (%) HD (px)

UNet [29] 74.0 ± 13.3 16.0 ± 23.4
Res-Unet [30] 72.3 ± 12.0 17.5 ± 25.3
UNet ++ [31] 70.3 ± 13.1 33.0 ± 42.0
Attention UNet [32] 69.0 ± 16.0 44.2 ± 48.1
R2UNet [33] 48.2 ± 17.7 34.0 ± 25.9
CE-Net [34] 55.5 ± 5.50 135 ± 24.1
U2Net [35] 57.1 ± 9.32 124 ± 20.6
Our method 80.0 ± 22.0 8.80 ± 10.7

TABLE V

QUANTITATIVE RESULTS FOR GRUEN LANDMARKS DETECTION ON OUR

DATASET. THE BEST RESULTS ARE IN BOLD

Method NMRSE (px)

UNet 3.21 ± 1.02
VGG16 3.06 ± 1.35
DenseNet121 2.78 ± 1.07
ResNet50 2.90 ± 1.14
SwinNet 3.00 ± 1.28
Our method 0.55 ± 0.30

localisation of the landmarks, 80% of the images are below 0.5

NRMSE. On the other hand, ∼ 40% of images are below 0.5

NRMSE using only the prediction of shape parameters only

(SPHM+A and SPHM+A +LSh). Furthermore, the maximum

error produced by the simultaneous training method is lower

than in other experiments.

B. Experimental Comparison on Test Dataset

To validate the advantages of the proposed method, state-

of-the-art networks were considered for medical image seg-

mentation and landmark detection as a comparison strategy.

Seven state-of-the-art networks were utilised to compare the

segmentation results: UNet [29], Res-Unet [30], UNet++, [31],

Attention Unet [32] , R2Unet [33], CE-Net [34] , U2-net

[35]. Table IV listed the results of implant segmentation using

different segmentation networks. We can observe that with a

small-size dataset, the complex model might be more prone to

overfitting, introduce complexity, and cannot generalise from

limited training samples. UNet tends to be a better solution

because it has a relatively smaller number of parameters

compared to other variants. However, the use of shape priors

has significantly improved the results to 80% dice score.

Regarding the detection of Gruen landmarks, we com-

pared our method with different CNN-based networks (UNet,

ResNet50 [36], VGG16 [37], DenseNet121 [38] and SwinNet

[39]) to predict landmarks as direct regression of points or as

heatmap regression. Table V lists the NRMSE of each model

tested. The results indicated that our method significantly

improved landmark detection.

VI. DISCUSSIONS

A recent survey demonstrated that combining DL with

medical knowledge has a huge impact on the results of several

medical image analysis tasks, including segmentation and

diagnosis [40]. Therefore, we adopt this strategy for implant

joint images domain aiming to automate the segmentation of

the implant and detection of the Gruen landmarks. Despite the

challenges imposed by a limited dataset, incorporating implant

shape knowledge into CNN shows precise and valid implant

segmentation and Gruen landmark detection.

In this paper, we define the implant shape using the Gruen

landmarks definition and present a DL method to predict the

shape and pose parameters of the implant femoral component

and perform its semantic segmentation. Compared to typical

semantic segmentation, where each pixel is binary classified,

this approach predicts shape and pose parameters, which link

to landmarks representation that can be used in many diag-

nostic tasks. The diagnosis of implant complications depends

mainly on the position in relation to the implant. Therefore,

we defined the shape landmarks based on Gruen zones, to

combine the advantage of both the segmentation and the

detection of important landmarks. This is the first algorithm to

detect the locations of important landmarks and segment the

femoral component. This has been successfully demonstrated

through the comparison of the segmentation and landmark

detection results with the state-of-the-art segmentation and

landmark detection models. The landmarks localisation results

could be considered state-of-the-art results. The dataset used

in this work will be publicly available to enhance research on

this domain.

The results of the proposed approach indicated that the

regression of the shape and pose parameters is a more

challenging process compared to semantic segmentation. The

regression of shape and pose parameters is performed by

training on and predicting a small number of uncorrelated

values (19 values) per image using a limited-size dataset,

while the semantic segmentation is predicted based on a

large number of correlated values per image. Replacing the

regression of the translation parameters with the translation

computed from the prediction of the position of the tip point

has substantially improved the shape outcomes. Shape-based

data augmentation is used to increase the size of the training

data set. Although orientation prediction did not benefit from

the data augmentation, the prediction of the other parameters

has improved, which impacts positively on the computation of

the position of the landmarks.

Combining the training of semantic segmentation with the

regression of shape and pose parameters has improved the

results of the segmentation using the constructed shape (see

TableII). The shared layers between the two tasks enable

learning more relevant geometric features. We hypothesised

that introducing shape loss would impact the segmentation

output of both tasks. It has enhanced the semantic segmen-

tation performance, which also makes indirect benefit to the

segmentation based on the shape construction by aligning the

resulting shape to the semantic segmentation outcome.

This paper focused on segmentation and landmark detection

of implant femoral components; however, this method can be

extended to other implant joints.

VII. CONCLUSION

In this paper, we proposed a new CNN approach for jointly

segmenting the implant femoral component and regression of
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the pose and shape parameters. Implant landmarks’ positions

are computed from the predicted shape and pose parameters.

Experiments demonstrated that combining semantic segmenta-

tion has enhanced the overall outcomes of the shape landmarks

localisation. The results show that our method is accurate with

an overall segmentation dice score of 80% and HD of 8.8 px.

In addition, this work reported the state-of-the-art result of

the localisation of Gruen landmarks with NRMSE of 0.33.

Future work will consider extending this approach to other

implant joints and using it as an initial stage for the analysis

of complications from femur implants.
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