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Abstract
This Special Topic focuses on magnetohydrodynamic (MHD) processes in the deep 
interiors of planets, in which their fluid dynamos are in operation. The dynamo-gen-
erated, global, magnetic fields provide a background for our solar-terrestrial envi-
ronment. Probing the processes within the dynamos is a significant theoretical and 
computational challenge and any window into interior dynamics greatly increases 
our understanding. Such a window is provided by exploring rapid dynamics, par-
ticularly MHD waves about the dynamo-defined basic state. This field is the subject 
of current attention as geophysical observations and numerical modellings advance. 
We here pay particular attention to torsional Alfvén waves/oscillations and magnetic 
Rossby waves, which may be regarded as typical axisymmetric and nonaxisymmet-
ric modes, respectively, amongst a wide variety of wave classes of rapidly rotating 
MHD fluids. The excitation of those waves has been evidenced for the Earth — 
whilst their presence has also been suggested for Jupiter. We shall overview their 
dynamics, summarise our current understanding, and give open questions for future 
perspectives.

Keywords MHD · Rotating fluids · Waves · Dynamos · Planets

A. Nilsson and S. M. Tobias have contributed equally to this work.

 * K. Hori 
 khori@people.kobe-u.ac.jp

 A. Nilsson 
 andreas.nilsson@geol.lu.se

 S. M. Tobias 
 s.m.tobias@leeds.ac.uk

1 Graduate School of System Informatics, Kobe University, Rokkodai 1-1, Nada, Kobe 657-8501, 
Japan

2 Department of Geology, Lund University, Sölvegatan 12, Lund 22362, Sweden
3 Department of Applied Mathematics, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, 

UK

http://orcid.org/0000-0001-8293-5499
http://crossmark.crossref.org/dialog/?doi=10.1007/s41614-022-00104-1&domain=pdf


 Reviews of Modern Plasma Physics (2023) 7:5

1 3

5 Page 2 of 28

1 Introduction

1.1  Some background on magnetic field

Our planet has a global magnetic field that is predominantly an axial dipole nearly 
aligned with the geographical poles. As this field shapes part of the solar-terres-
trial environment it is of great interest in the Special Topics. The large-scale struc-
ture of the magnetic field, including the dipole, has its origin in the interior below 
the surface (Fig. 1a). The field has persisted for at least 3.4 billion years (Tarduno 
et al. 2010); however it is not the result of a permanent magnet — it exhibits vari-
ations on many different timescales. For example the dipole component has occa-
sionally weakened and reversed its polarity on intervals of the order 105–107 years 
(e.g., Cande and Kent 1995; Biggin et al. 2012), whilst other components drift west-
wardly on periods of the order 102–103 years (e.g., Bullard et al. 1950; Nilsson et al. 
2020). Moreover timeseries of the field observations repeatedly experience abrupt 
changes, called jerks, on intervals of the order 100–101 years (e.g., Courtillot and Le 
Mouël 1984; Mandea et al. 2010). All of these variations with an internal origin are 
referred to as geomagnetic secular variation.

Dynamo action is believed to operate in the interior region termed the fluid outer 
core, which is located below ∼ 54.6% of the planet’s radius RE (hereafter we denote 
rcore ∼ 0.546RE ). The fluid outer core is made of liquid iron and some lighter chemi-
cal components. The origin of the dynamo process lies in the motion of the electri-
cally conducting fluid, this induces an electric current within the region, and that 
maintains a magnetic field. The detailed processes have not entirely been solved, 
owing to their theoretical and computational complexity; the fluid dynamics therein 
is likely dominated by the planet’s rotation and magnetic field, rather than iner-
tia and viscosity (as we see below). Geodynamo theory therefore necessitates the 
understanding of the MHD of rapidly rotating fluids. In that respect the research area 
shares a lot with the atmospheric and oceanic dynamics, and so may be regarded as 
part of “geophysical fluid dynamics”.

Some other planets are found to possess global magnetic fields that are also 
thought to be generated through dynamo mechanisms (see reviews, e.g., by Steven-
son (2010); Jones (2011); Schubert and Soderlund (2011); and references therein). It 
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Fig. 1  a Earth’s magnetic field in 2020 at r = 0.546RE = rcore , the top of the fluid core (reproduced from 
Finlay et  al. (2020) with spherical harmonics of degree up to 13). b Jupiter’s magnetic field in 2016–
2021 at r = 0.85RJ , supposed to be a top of the metallic hydrogen region (reproduced from Connerney 
et al. (2022) with spherical harmonics of degree up to 18)
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is however still unclear where in those planets dynamos operate; the internal struc-
tures of planets other than Earth are not well determined. Jupiter, for example, is 
a gaseous planet mostly made of hydrogen and helium and has the strongest plan-
etary magnetic field (Fig. 1b). The gas giant’s dynamo is likely active in the metallic 
hydrogen envelope; though the exact location is uncertain. Indeed the NASA Juno 
spacecraft (e.g., Bolton et  al. 2017; Stevenson 2020) has been orbiting the planet 
to determine the internal structure, and is producing evidences that the conductive 
region likely spans up to ∼ 80 − 90 % of the planet’s nominal radius RJ . Recall that 
Earth’s dynamo sits deep inside and is masked by the rocky mantle, which acts as 
an insulator, screening the small-scale structure of the magnetic field. Exploring 
the fields of other planets, particularly Jupiter where the conducting region is not 
screened as effectively, could provide us with deeper knowledge about the operation 
of natural dynamos (Jones and Holme 2017).

1.2  A brief introduction to dynamo theory

The early foundations of dynamo theory were made over a century ago and pro-
gress involved advances in applied mathematics and fluid dynamics. Early outcomes 
involved the demonstration of multiple anti-dynamo theorems that limit the structure 
of dynamo-generated magnetic fields and the flows that generate them; for example 
Cowling’s Theorem states that a purely axisymmetric magnetic field cannot be gen-
erated by dynamo action, whilst Zel’dovich’s theorem maintains that a purely two 
dimensional fluid motion cannot drive a dynamo; we refer to Moffatt (1978); Roberts 
(1994); Dormy and Soward (2007); and Tobias (2021) for reviews. Those early works 
unraveled key elements for dynamo action, one of which is the necessity of inter-
actions between toroidal and poloidal components of the magnetic field, which are 
defined from a decomposition of the field based on the solenoidal condition. Mean-
field theory, where the interacting terms, e.g., the electromotive force arising from tur-
bulent interactions are modelled or parameterised, yields steady or oscillatory solu-
tions, dependent on the relative strength of interactions; there is yet a wealth of theory 
describing limitations on the form and applicability of the interaction terms (Moffatt 
1978; Hori and Yoshida 2008; Tobias 2021). This theory yields the basics of how a 
global magnetic field can be maintained and also mechanisms for periodic cycles.

In the age of computational physics and geophysics, numerical investigations 
have been pursued to solve the self-consistent dynamo problem, where the magnetic 
field is destabilised and sustained by fluid motions that are driven, for example, by 
buoyancy, and acts back on the flows that are driving it. Buoyancy-driven convec-
tion is thought to be a primary source of planetary dynamos, including Earth and 
Jupiter, where the planet’s thermal evolution is active. Convective instability has 
been greatly studied, alongside the dynamo instability and we refer to Jones (2015) 
for reviews. Numerical dynamos driven by convection in spherical shells first suc-
ceeded in the 1990s in reproducing the generation of global magnetic field and its 
polarity reversals (Glatzmaier and Roberts 1995; Kageyama and Sato 1995). This 
was followed by many numerical simulations (see reviews by Christensen and 
Wicht (2015) and Jones (2011)) to reveal their scaling properties (e.g., Christensen 
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and Aubert 2006; Davidson 2013), and to replicate individual planets and moons 
including gaseous planets (Jones 2014; Gastine et  al. 2014b). Owing to the large 
separation of timescales that are relevant to the dynamics of Earth’s magnetic field, 
early geodynamo simulations suffered from an issue such that their self-generated 
magnetic fields did not represent the physical regime expected to pertain to Earth’s 
interior, called the magnetostrophic regime (see below). However recently a con-
sensus is building that simulations are beginning to enter the relevant regime (e.g., 
Yadav et al. 2016; Dormy 2016; Schaeffer et al. 2017; Aubert et al. 2017); there are 
still ongoing debates, for example, on the existence of strong-/weak- field branches 
(Dormy 2016) and on the lengthscale-/spatial- dependence of the force balance 
(Schwaiger et al. 2019), i.e., on what scales the viscous balances pertain.

1.3  Detailed observations

Concurrently, geophysical observations together with data modelling techniques 
have been advancing enormously. Ground-based measurements and archaeological/
sedimentary records have been analysed to enable the recovery of the field evolution 
for past few thousand years down to a spatial wavelength of  72◦ (e.g., Korte et al. 
2011; Nilsson et  al. 2014; Hellio and Gillet 2018). This has enabled the descrip-
tion, for example, of millennial-scale high-latitude westward drifts (Nilsson et  al. 
2020) and spikes (Davies and Constable 2017). Moreover, today’s satellite missions, 
including the Swarm mission, have mapped in detail the variations of the present-
day geomagnetic field. Global models based on such measurements have established 
detailed descriptions of the secular “variation”, defined by the temporal derivative of 
the interior-origin field, and also the “acceleration” (the second derivative) arising 
from the fluid core (e.g., Finlay et al. 2020). This analysis has led to the discovery 
of rapid dynamics, such as the several-year westward drift near the equator (Chulliat 
et al. 2015) and the polar jet (Livermore et al. 2017).

It has also enabled inversions to describe the fluid motion over the dynamo 
region: such an outcome is called the “core flow model”. We refer to Holme (2015) 
for a review. A prominent feature found by those inversions is a single anticyclonic 
vortex, sometimes referred to as the eccentric gyre (Fig.  2) (e.g., Pais and Jault 
2008), which has likely persisted for more than 100 years, although some fluctua-
tions are observed. Currently data assimilation, where observations are combined 
with theoretical dynamo models, is becoming a common technique to provide core 
flow information (e.g., Fournier et  al. 2011; Gillet et  al. 2019). It could therefore 
also be quite natural to construct core flow models for other planets. This has, in 
part, been attempted for Jupiter, in which the magnetic secular variation was realised 
in early missions (e.g., Ridley and Holme 2016); now the Juno mission is going to 
provide more details (Moore et al. 2019; Bloxham et al. 2022).

1.4  Waves: the focus of the Special Topics

With motivation from the advances described above, we here focus on MHD 
waves in planetary dynamos. They seemingly give a framework for thinking about 
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the secular variation/acceleration and rapid dynamics, in contrast to convection or 
dynamo action, in which diffusion matters and for which a typical timescale is of 
the order of 105 years and more in Earth, for example. Indeed, exploring waves is 
highly beneficial as their properties could yield information about the interior that is 
inaccessible through direct observations. The related science of seismology has suc-
cessfully scanned the elastic structure of our terrestrial planet, however is hindered 
from probing the fluid dynamo region in detail. An alternative investigation, utlising 
MHD waves could potentially visualise this, sensing the hydromagnetic properties 
such as the poloidal and toroidal component of the magnetic field; in some sense 
there is an analogy with the study of the properties of the solar atmosphere using 
“coronal seismology”.

We give a mathematical formulation to describe our problem below. We begin 
with the fluid (MHD) description. We here consider anelastic fluids where the 
Lantz-Braginsky-Roberts-Jones formalism (e.g., Braginsky and Roberts 1995; Jones 
et al. 2009, 2011) is adopted, which enables the inclusion of stratification for sub-
sonic flows. We assume that the equilibrium state is close to adiabatic, well-mixed, 
and hydrostatic with density � . The velocity of interest u is subsonic (cf. the sound/
seismic waves of the order 104 m/s in Earth) so that the continuity equation becomes

For simplicity, we assume that the basic state � depends solely on spherical radius, r. 
Focusing on the dynamics whose characteristic timescales are shorter than the diffu-
sion times (see above), we then consider the momentum equation

where � is the rotational angular velocity, j is the current density, B is the mag-
netic field, and p′ is a reduced pressure incorporating the gravitational potential. The 
induction equation for magnetic field B is given by

(1)∇ ⋅ �u = 0 .

(2)�
[
�u

�t
+ (u ⋅ ∇)u + 2� × u

]
= −∇p� + j × B ,
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Fig. 2  Core flows inverted from geomagnetic secular variation. Arrows represent velocity, of the order 
10−3 m/s, in the equatorial plane. Averages a over 1840–1990, adapted from Pais et al. (2015), and b over 
1890–2010, reproduced from Gillet et al. (2019)



 Reviews of Modern Plasma Physics (2023) 7:5

1 3

5 Page 6 of 28

where the MHD approximation has been made in the non-relativistic Maxwell equa-
tions and combined with Ohm’s law for a moving condutor. Of course the magnetic 
field is solenoidal. The density variation in Earth’s fluid core is likely less than 20%, 
so for models of the Earth � in those equations may be assumed to be constant and 
the theory reduces to the incompressible, Boussinesq equations of MHD. In Jupiter, 
by contrast, the density varies by orders of magnitude. Wave solutions are obtained 
as fluctuations about a basic (or background) state of density, flow, and magnetic 
field. Conversely, measurement of wave properties such as frequencies could allow 
the inference of physical quantities of the background media.

Here we note the above equations give an ideal framework to examine the wave 
dynamics particularly and ought to be distinguished from those for dynamo action 
and convection (see above). Current planetary dynamo simulations, as discussed 
in Sect.  1.2), mostly solve equations including buoyancy, viscosity and diffusion. 
Below we shall adopt those simulations to examine to what extent our diffusion-free, 
buoyancy-free framework could be beneficial.

We first consider some dimensionless parameters to define the dynamical 
regime of interest. A key parameter is the Rossby number Ro = U∕LΩ , where U 
and L are a typical velocity and lengthscale respectively; this quantifies the relative 
strength of the inertia to the Coriolis force in the momentum equation. In Earth’s 
fluid core Ro ∼ 1 × 10−5 , provided the speed U is represented by the slow inverted 
core flows of ∼ 10−3 m/s and L ∼ 106 m (a global scale), and Ω ∼ 7.3 × 10−5 s−1 . 
Jupiter’s metallic region likely has Ro ∼ 6 × 10−6 for U ∼ 10−2 m/s, L ∼ 107 m, and 
Ω ∼ 1.8 × 10−4 s −1 . Those suggest a minor role of the inertia, compared with rota-
tion — at least on large lengthscales (and even for quite small scales!). For hydrody-
namic flows, the fluid motion in those situations may be expected to be two dimen-
sional (invariant in the direction of rotation), via the Proudman-Taylor theorem; such 
a mode is often called geostrophic, where the Coriolis force is largely balanced by a 
pressure gradient. In the presence of magnetic field, it is possible to have a force bal-
ance where the Coriolis, Lorentz, and pressure gradient forces are important; this is 
called a magnetostrophic balance and we stress that different balances may be found 
at different scales. These balances will have a significant impact on the dynamics, 
not only wave dynamics but also that relating to convection and dynamo action. 
Overviewing all aspects is beyond the scope of the present paper. Here we just com-
ment that waves will be capable of diagnosing such a dynamo state and focus on that 
aspect.

Analysis of MHD waves in rotating fluids dates back to the 1950-60s (e.g., Leh-
nert 1954; Hide 1966; Malkus 1967; Braginsky 1967; Acheson and Hide 1973). Those 
ideas were examined further, as geomagnetic modelling and core flow inversions were 
upgraded (e.g., Zatman and Bloxham 1997; Finlay and Jackson 2003). We are in an 
exciting era, where new data and tools are increasingly arriving (Sect. 1.3) and this has 
led to a re-invigoration of theoretical investigations, as well as observational explora-
tions (e.g., Gillet et  al. 2010; Finlay et  al. 2010; Buffett 2014). This is intrinsically 

(3)
�B

�t
+ u ⋅ ∇B = B ⋅ ∇u − (∇ ⋅ u)B
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linked to — and sheds light on — geophysical issues such as the existence of a thin 
stably-stratified layer atop Earth’s fluid core, overlying the main dynamo region. 
Waves in such a stratified environment were termed Magnetic-Archimedes-Coriolis 
(MAC) waves (Braginsky 1967). This contrasts with those in unstratified situations, 
where such waves are referred to Magnetic-Coriolis (MC) waves.

What makes the subject attractive is the wide variety of different wave classes. 
This arises from the combination of MHD, rotation, and stratification in some cases; 
all of which singly are classic research areas in fluid dynamics — however their 
combination yields a unique physics. (This could be analogous to the situation for 
plasma physicists, who seem to enjoy another blend with particles, compressibility, 
and so on.) The complex situation is manifested even for linear waves where classifi-
cation itself is an ongoing topic of current research; spherical geometry and the mor-
phology of the basic magnetic field makes the problems distinctive. For example, a 
comprehensive investigation in a spherical, magnetised, shallow-water system was 
recently made by Márquez-Artavia et al. (2017), where a simple background field 
was assumed; here recall an equivalent analysis in the hydrodynamic case was made 
by Longuet-Higgins (1968). Further works are finding peculiar eigenmodes such 
as equatorially or polarly trapped ones (e.g., Buffett and Matsui 2019; Nakashima 
2020; Chi-Durán et al. 2021).

Below we overview our recent work, linking to the broader subject. The focus 
here is two wave classes, torsional Alfvén waves (Sect.  2) and magnetic Rossby 
waves (Sect.  3). They are characteristic axisymmetric and nonaxisymmetric MC 
modes respectively that can be excited within dynamo regions. Their dynamics are 
dictated by the magnetostrophic balance in rapidly-rotating systems. We examine 
the fundamentals of such waves and exemplify their role in Earth and Jupiter. This 
will give us the physical basis to consider further complications, such as the intro-
duction of stratification to the waves.

2  Torsional Alfvén waves

We initially examine an axisymmetric mode, termed a torsional oscillation or tor-
sional Alfvén waves. We begin with some fundamentals of the theory (Sect. 2.1), 
and then examine their importance for Earth (Sect. 2.2); we than provide a re-exam-
ination in updated geomagnetic datasets (Sect.  2.3) and potential implications in 
Jupiter (Sect. 2.4).

2.1  Fundamentals

We here outline the basic theory, following the literature (e.g., Braginsky 1970; 
Roberts and Aurnou 2012; Jault and Finlay 2015; Hori et al. 2019). Our basic equa-
tion is the azimuthal component of (2) in cylindrical polar coordinates (s,�, z) where 
the z coordinate is supposed parallel to the rotation axis � . To seek the axisymmet-
ric two-dimensional component, we take the integral over cylindrical surfaces along 
the rotational axis to yield
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where j = (∇ × B)∕�0 is the current, the magnetic permeability �0 = 4� × 10−7 in 
SI units, and êz is the unit vector in the azimuthal direction. Here f  and ⟨f ⟩ denote 
the �-average (i.e., the axisymmetric part) and the z-average from z+ to z− , respec-
tively, for an arbitrary function f. Outside the tangent cylinder, which is an imagi-

nary cylinder circumscribing the inner shell, z± = ±
√

r2
o
− s2 ≡ ±H where ro is the 

radius of the conducting region: hereafter we only consider the region outside the 
tangent cylinder. From the divergence theorem, and the continuity equation (1), the 
Coriolis force FC vanishes, i.e., there is no net mass flux across a given cylindrical 
surface. When the inertia including the Reynolds term FR (and viscosity) is negligi-

ble compared with the Coriolis and Lorentz forces FL (i.e., magnetostrophic bal-

ance), the equation yields a steady state, ∫ ê𝜙 ⋅ (∇ × B) × B∕𝜇0 dS = 0 , termed the 
Taylor state (Taylor 1963) by which the magnetic field configuration is constrained.

Allowing small perturbations about this state yields waves/oscillations (see the 
detailed derivation in Teed et al. (2014); Hori et al. (2019)). We split magnetic field 
and velocity into their temporal mean and fluctuating parts, which are hereafter 
denoted by tildes and primes, repectively, i.e., f̃ = (1∕�) ∫ fdt and f � = f − f̃  where 
� is a time window of integration and f̃ � = 0 . Substituting the induction equation 
(3) into the Lorentz term FL of (4) and assuming that an ageostrophic term is suf-
ficiently small, we get a single equation:

where h = z+ − z− is the height of the cylinder of radius s along the z axis, i.e., 
h = 2H outside the tangent cylinder. The left hand side of (5) presents the homo-
geneous part of the PDE and the equation of torsional Alfvén waves. Terms on 
the right hand side can be interpreted as forcing to the wave equation, where FLD 
denotes the Lorentz force FL excluding the restoring part for the wave. In the restor-

ing force U2
A
= ⟨B̃2

s
⟩∕�0⟨�⟩ , representing the squared Alfvén speed given by cylin-

drical averages of radial field Bs . The homogeneous equation describes waves propa-
gating in cylindrical radius s with the speed UA . They may travel either inwardly 
( −s ) or outwardly ( +s ), and may also superpose to give a standing wave referred to 
as “oscillations”. Their schematic illustration is shown in Fig. 3. Typical timescales 
can be interannual to decadal in Earth and Jupiter (Sects. 2.2 and 2.4). Classically, 
these waves are ideally supposed to be non-dispersive; in reality they could be dis-
persive owing to the geometry and dissipation. The Reynolds forcing FR likely plays 
a minor role in Earth’s fluid core, as there is no exchanges with the rocky mantle 
and the reduced importance of inertia signified by the small Ro. This implies that 

(4)
𝜕

𝜕t
⟨𝜌 u𝜙⟩ = −

�
ê𝜙 ⋅ (∇ ⋅ 𝜌uu)

�
− 2Ω⟨𝜌 us⟩ +

�
ê𝜙 ⋅

1

𝜇0

(∇ × B) × B

�

≡FR + FC + FL ,

(5)
�2

�t2

⟨u�
�
⟩

s
−

1

s3h⟨�⟩
�

�s

⎛⎜⎜⎝
s3h⟨�⟩U2

A

�

�s

⟨u�
�
⟩

s

⎞⎟⎟⎠
=

�

�t

FR + FLD

s⟨�⟩ ,
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the Lorentz force FLD is a major driver (Braginsky 1970; Teed et al. 2015). In Jupi-
ter the lack of rigid boundaries and the presence of significant zonal flows in the 
molecular envelope is likely to make the Reynolds forcing FR more significant than 
FLD (Hori et al. 2019).

2.2  Torsional waves in Earth’s core

Torsional waves are best illustrated in the geodynamo through both observations and 
simulations. Early studies (e.g., Braginsky 1970) sought possible wave motion on 
a ∼ 60 year timescale, which is a relevant peak in the geomagnetic variation as we 
shall see below. Zatman and Bloxham (1997) extended those investigations to find 
fluctuations in the azimuthal component of core flows that were inverted from the 
magnetic secular variation. With the torsional oscillation theory they attempted to 

infer the 1d structure of the Alfvén speed UA and to estimate a ⟨B̃2
s
⟩1∕2 of the order 

0.1 mT within the dynamo.
Meanwhile, scaling properties of convection-driven dynamos (Sect.  1.2) sug-

gested an internal field strength of the order 1 mT, implying a shorter timescales for 
torsional oscillations. Gillet et  al. (2010) explored signals of several years in core 
flow models and attributed them, not the decadal signal, to the torsional oscillations. 
They also evaluated the angular momentum exchange with the rocky mantle to show 
the fluctuations were compatible with a variation in length-of-day, i.e., the rotation 
rate of the planet, in which a period ∼ 6 years was seen.

Their picture raised further interesting questions. First, the identified wave 
exhibited outward propagation toward the equator from deep and appeared to be 
excited quasi-periodically; when it approached the equator, no clear reflections at 
the equator were observed. Indeed numerical dynamo simulations embraced travel-
ling waves, rather than standing ones (e.g., Wicht and Christensen 2010; Teed et al. 
2014; Schaeffer et al. 2017). Schaeffer and Jault (2016) pointed out that the dissipa-
tion across the core-mantle-boundary would inhibit wave reflections there, to leave 
travelling modes only: the processes were nicely demonstrated by the solution of 
an initial value problem (Gillet et al. 2017). In contrast, spherical magnetic convec-
tion simulations with no couplings with the mantle being assumed reproduced the 

u

u
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u

u u
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Fig. 3  Schematic illustration of torsional Alfvén waves/oscillations (adapted from Hori et al. (2022))
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one-way propagation excited near the tangent cylinder repeatedly (Teed et al. 2019): 
Fig. 4 depicts such a case. This dynamics is likely a natural consequence of the con-
vection in the fluid core, which is most vigorous near the tangent cylinder in which 
buoyancy sources arise from the inner core solidification. The simulation by Teed 
et al. (2019) reveals that it is possible to launch an axisymmetric disturbance of the 
Alfvén frequency there, which is absorbed as it approaches the rigid boundary of the 
rocky mantle.

However observationally, whilst core flow inversions illustrate the wave-like pat-
terns, these signals do not appear in the magnetic data clearly. Silva et  al. (2012) 
examined over decadal timeseries of the geomagnetic secular acceleration, �2Br∕�t

2 , 
at chosen locations in terms of the Fourier transform and empirical mode decompo-
sition and reported identification of ∼ 6 year periodicities. We shall address this in 
the following subsection.

2.3  Geomagnetic data revisited

We here revisit the geomagnetic data for torsional waves, given the recent improve-
ment in observational datasets. Moreover, data-driven techniques are drastically 
advancing and are now capable of extracting signals more efficiently. Here we adopt 
a technique called dynamic mode decomposition, DMD (e.g, Schmid 2010; Kutz 
et al. 2016). This may be regarded as an update of the Fourier transform and proper 
orthogonal decomposition (POD) — equivalent to the principal component analy-
sis (PCA) — and may approximate spatio-temporal data in the form of the sum of 
normal modes. For instance, a given dataset X = X(�, t) may be approximately rep-

resented as 
∑r

j=1
bjΦj(�) exp (�jt) where bj is real and �j and Φj are complex. Here 

Im�j , Re�j , bj , and Φj(�) denote, respectively, the frequency, growth rate, magnitude, 

and spatial structure of the j-th DMD mode (out of the total r modes). The outcomes 
can therefore be compared with normal mode solutions of the wave equation (5) [see 
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Appendix A and Figure A1a for normal mode calculations]. The methodology was 
utilised in spherical MHD simulations (Hori et al. 2020b).

The data to be analysed is the axisymmetric fluctuating part of both the cylindri-
cally-radial secular variation �Bs∕�t and the azimuthal core flow u′

�
 on the core sur-

face rcore between 1940–2005: the datasets depends on latitude � and time t. These 
are computed from ensemble averages of 50 realisations given by the up-to-date 
assimilation model (Gillet et al. 2019) that we refer to as cov-obs2019 hereafter. The 
model gives the coefficients of spherical harmonics of the magnetic potential, 
termed the Gauss coefficients, and the equivalent values for the core flow. So we first 
calculate the component �Bs∕�t and u� at rcore , with the Schmidt normalised associ-
ated Legendre function. We then compute their axisymmetric parts, average over the 
realisations, and remove the temporal means at each � . To seek wave signals that 
have the form [B�

s
, u�

�
] ∝ exp i�t , we put the two sets of the latitude-time data 

together into the decomposition analysis and perform the DMD over the dataset. 
Here we examine the data at 140 gridpoints between ±69.5◦ and for 65 snapshots 
sampled every year. We then introduce a delay coordinate to stack the data and to 
capture either travelling or standing waveforms (e.g., Kutz et al. 2016): the method-
ology is also described in Hori et al. (2022). As the rms error between the input and 
reconstructed datasets are found to be minimised for a delay coordinate of 2, we set 
this parameter below.

Figures  5a and b show the spectrum and the dispersion of the DMD signals, 
respectively. They show spectral peaks at low frequencies (corresponding to periods 
of 64.9, 32.3, and 20.9 years) and also local peaks around a period of ∼ 6 years (the 
shaded region). The latter comprises of four individual modes (highlighted by col-
oured symbols), out of which two are found to be low quality ( Im𝜆∕2Re𝜆 < 4 ) — in 
this case meaning highly dissipative — and two to be high quality ( Im�∕2Re� ∼ 13 ). 
The two wave-like modes have periods of 6.6 and 6.3 years: we refer to them as 
Modes 1 and 2, respectively, and highlight them in red and blue. Their latitudinal 
structures with respect to s are given in figure c: Mode 1 in red has one zero crossing 
at s∕rcore ∼ 0.65 . This could be a signature of the first eigenmode of torsional wave 

(5) [see figure A1a for a background B̃s of maximum 3.9 mT]. If this field structure 
is assumed, the second eigenmode could be predicted: whose frequency is indicated 
by a vertical line labelled as T2 in the figures a and b: we refer to the chosen mode as 
Mode 3 (in cyan). The three Modes are reconstructed for the spatio-temporal struc-
ture of u′

�
 in figures d–e. The pattern shows the travelling nature in either hemi-

sphere nicely, suggesting the DMD analysis reproduces the early reports (e.g., Gillet 
et al. 2010) and extracts the relevant modes.

The corresponding pattern in the magnetic field �Bs∕�t is now visualised in fig-
ures f–g. We can detect some travelling features; however the detected signal only 
exhibits a magnitude of 1% or smaller of the overall variation. This in part explains 
why the torsional waves are not easily detected in magnetic data. Meanwhile the 
analysis here demonstrates how the data analysis is capable of pulling out such a 
tiny, but physically important, signal. 
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2.4  Torsional oscillations in Jupiter

Given the presence of torsional waves in Earth’s fluid core, one might expect to 
find them in other planets. Indeed the potential for their discovery has been grow-
ing as planetary exploration and numerical modelling advance. Modern numerical 
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Fig. 5  DMD analysis of axisymmetric geomagnetic secular variation and core flow in 1940–2005 (pro-
duced from Gillet et  al. (2019)). a Spectral and b dispersion diagrams of the dataset comprising of 
u�
�
(�, t) and �Bs∕�t(�, t) . Periods are represented in years on the top of each panel. Symbols highlighted 

in color indicate Modes in a window of period 5.5 − 7.5 years (shaded region). Individual Modes in the 
window are highlighted by different colors and symbols: we refer to the red and blue asterisks as Modes 
1 and 2, respectively, whilst the magenta and green crosses represent dissipative modes. The vertical 
dashed-dotted line labelled by Ti indicates the frequency of the i-th TW normal mode for a background 
field ⟨�B2

s
⟩1∕2 ≲ 3.9 mT (see figure A1a). One Mode found in the vicinity of the T2 line is also indicated in 

cyan and is referred to as Mode 3. c Latitudinal structures of u′
�

 for Modes 1 (red), 2 (blue), and 3 (cyan) 
are represented with respect to s∕rcore . Solid (dashed) curves show its profile in the northern (southern) 
hemisphere. d–e Reconstructed spatiotemporal structure of u′

�
 for the superposition of Modes 1–3. f–g 

Similar to figures d–e but of �Bs∕�t . In d,f northern and e, g southern hemispheres
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dynamos, that implement the transition from the metallic to molecular hydrogen 
envelopes of Jupiter, have succeeded in reproducing the dipole-dominated, global 
magnetic field (Jones 2014; Gastine et  al. 2014b). Using those numerical models 
Hori et  al. (2019) proposed that torsional Alfvén waves on timescale of the order 
1–10 years could be excited in the gas giant too; zonal fluctuations seen for a fidu-
cial case are exhibited in Fig. 6. Moreover the simulations demonstrated that Jovian 
torsional waves could be standing waves; here waves would partially reflect from 
the interface that is created by the abrupt change in the electrical conductivity as 
the metallic hydrogen transits to the molecular hydrogen. The ratio of reflection and 
transmission is essentially determined by the wavenumber of the oscillation and the 
skin depth for the mode. 

Such fluctuations in zonal velocity could impact on the dynamics beyond the 
metallic region. One consequence could be fluctuations in length of day — as hap-
pens in Earth. The simulations above suggested a magnitude of the order 10−2 s or 
smaller, so likely very tiny. Nonetheless it is worth noticing that the planet’s rota-
tion rate, or the System III coordinate system determined from its periodic radio 
emission, is measured to such precision and its variation was the subject of some 
debate (e.g., Higgins et al. 1996). Another consequence is remarkable in a gaseous 
planet: zonal flow fluctuations arising from MHD waves may partly transmit into 
the overlying poorly-conducting envelope, whilst dissipating. This implies the deep 
oscillation might be probed through near-surface observations, such as visible, infra-
red, and microwave measurements. Now the Juno’s multiple measurements were 
reported to be consistent with the surface zonal wind extending down to thousands 
of kilometres, 0.93–0.96RJ (e.g., Kaspi et al. 2018; Moore et al. 2019).

Interestingly, ground-based telescope observations have witnessed intradec-
adal to decadal variations of the surface (e.g., Fletcher 2017). To seek the tropo-
spheric dynamics, Antuñano et al. (2019) investigated infrared images taken at ∼ 5 
� m wavelength for more than 30 years and found cycles of 4–9 years in latitudinal 
bands between ∼40◦ N and ∼40◦ S. Those observations might be accounted for by 
the torsional oscillations arising from the interior (Hori et al. 2022). The scenario 

Fig. 6  Similar to Fig. 4 but in a dynamo simulation for Jupiter’s metallic hydrogen region (adapted from 
Hori et al. (2019)). Here the cylindrical radius s is normalised by the cutoff radius, rcut ∼ 0.96RJ , of the 
simulation. White curves indicate phase paths of the Alfvén speed UA . A dimensional time is represented 
in years on the top of the panel. Horizontal dashed lines indicate radii across which density and electrical 
conductivity drop by orders
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necessitates the processes coupling amongst the modulations in zonal flows, the 
tropospheric convection, and its infrared observation. This exemplifies the notable 
dynamics of a gaseous planet in contrast with a terrestrial planet.

3  Magnetic Rossby waves

Now we move onto nonaxisymmetric modes. They can be classified into three cat-
egories: Rossby waves, Alfvén waves, and waves that have certain characteristics of 
both, termed magnetic Rossby waves. First we discuss their fundamental properties 
via linear theory (Sect. 3.1) and explore their relevance in the geodynamo and the 
geomagnetic westward drift (Sect. 3.2); then we move on to discuss weakly nonlin-
ear effects (Sect. 3.3).

3.1  Fundamentals

Guided by the literature (e.g., Hide 1966; Hori et al. 2018), we describe these non-
axisymmetric waves for anelastic fluids. We here adopt an illustrative quasi-geos-
trophic model for rotating spherical shells (e.g., Busse 1970, 1976; Canet et  al. 
2014): the 2d model is schematically illustrated in Fig. 7a. This approach ought to 
be distinguished from the full problem (1)–(3), as pioneered by Malkus (1967). One 
of his solutions is exhibited in Fig. 7b, representing a symmetric mode with respect 
to the equator, i.e., a magnetic Rossby mode. 

Our basic equation here is the vorticity equation. We take the curl of the momen-
tum equation (2) in cylindrical coordinates to yield the equation for the axial (z) 
component of vorticity, � = ∇ × v . This ensures conservation of the potential vorti-
city (2Ω + �z)∕�H in the absence of terms other than the inertial and Coriolis forces. 

Fig. 7  a The 2d quasi-geostrophic model adopted. b An eigenfunction for background B̃� ∝ s and con-
stant � (Malkus 1967). Normalised radial velocity ur is presented in the meridional plane with respect to 
the rotation axis �
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The classic Rossby waves arise from vortex tube stretching and shrinking to con-
serve the potential vorticity.

To seek the MHD equivalent we consider the z-component of the vorticity equa-
tion averaged over z,

where ∇H ⋅ A = (1∕s)�(sAs)∕�s + (1∕s)�A�∕�� for a vector A . We separate the 
variables, u and B , into the temporal mean (denoted by tildes) and fluctuation (by 
primes) in time. Linearising (6), together with (3), yields

provided �⟨��z⟩∕�t ∼ ⟨�⟩�⟨��
z
⟩∕�t . Now the Coriolis term is represented via the beta 

parameter. For the incompressible/Boussinesq fluids this is given by the topographic effect,

as non-penetrative conditions at the boundaries imply uz = ±us dH∕ds = ∓us s∕H at 
z = ±H outside the tangent cylinder (e.g., Busse 1970). When the density varies sig-
nificantly, the beta effect instead arises from compressible effects,

where the z-integral of the third term of (6) is performed (e.g., Gastine et al. 2014a; 
Sasaki et al. 2018). Here note the validity of this expression depends on the dynam-
ics of the anelastic fluid, particularly on the z-integral of the Coriolis term, i.e., to 
what extent the vorticity is stretched along z between the boundaries ±H . For more 
discussions on compressible beta effects we refer to Glatzmaier et al. (2009); Jones 
et  al. (2009); Verhoeven and Stellmach (2014); and Busse and Simitev (2014). In 
Earth’s fluid core in which the density change is minor and there are solid bounda-
ries, the topographic effect is clearly a reasonable driver. However, the compressible 
effect will be relevant in Jupiter’s interior.

Introducing the streamfunction � for the velocity perturbation, e.g., 
⟨u�⟩ ∼ ∇H × 𝜓(s,𝜙, t)êz with êz being the unit vector in the direction of the rotation 
axis, we find (7) to give a wave equation. We now suppose that the background mag-
netic field and flow are both steady and axisymmetric to seek solutions of the form 
of 𝜓 = �̂� exp i(m𝜙 − 𝜔t) . Here the background flow is supposed to be dominated by 
the zonal component. The wave equation then becomes

(6)
�

�t
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where �̂� = 𝜔 − ⟨�U𝜙⟩m∕s , and the squared Alfvén frequency is given by 

�2
M
= ⟨B̃2

�
⟩m2∕�0⟨�⟩s2 . This equation goes singular when B̃2

s
∕�0⟨�⟩ , the local speed 

of torsional Alfvén waves, crosses zero. If the torsional wave is slow compared with 
the Alfvén and Rossby waves travelling in azimuth, eq.  (10) may be further reduced 
to a second-order ODE:

Here a critical layer will appear if �̂�2
→ 𝜔2

M
 . If this does not occur in the domain, 

(11) yields a set of two solutions. This eigenvalue problem for different profiles of 
�2
M

 in Boussinesq fluids was explored by Canet et al. (2014).
To examine the basic properties of the equation, we here suppose a WKBJ-type 

solution, �̂� = A0s
−1∕2 exp i ∫ n(s)ds [see Appendix  B for details], where the local 

dispersion relation is given by

and the Rossby wave frequency �R = �ms∕(m2 + n2s2 + 1∕2) . The quadratic equa-
tion (12) has roots

In the limit 𝜔2
M
∕𝜔2

R
≫ 1 , e.g., high wavenumbers for a given basic state, these sim-

ply yield the Alfvén waves along the toroidal field. Their unique properties become 
evident in another limit 𝜔2

M
∕𝜔2

R
≪ 1 to yield

The fast modes, with frequency �+ , are essentially equivalent to the hydrodynamic 
waves. Their timescales are basically ruled by � , or the planet’s rotation rate, but 
are shorter in the presence of the background magnetic field. Their phase velocity is 
prograde in a thick shell problem (such as that applicable for the Earth’s fluid core) 
(Busse 1970, 1986), while the group velocity is retrograde. Note that these direc-
tions appear to be opposite from the conventional Rossby waves in the atmosphere. 
Fig.  8 demonstrates a fast wave seen in Jovian dynamo simulations, in which the 
compressible beta effect plays a role. 

The slow modes, with frequency �− , are unique to the rotating MHD system, 
travelling retrogradely; the frequency is given by the ratio of the squared Alfvén 

frequency to the Rossby frequency. Hence they are sensitive to ⟨B̃2
�
⟩ , or the toroi-

dal field strength. Their timescales may vary from 101 to 104 years in Earth’s fluid 
core, indicating a link to the centennial geomagnetic westward drift (Hide 1966) 
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(Sect.  3.2). The dispersive nature of this mode is also noticeable. For the case of 
topographic effects, the slow mode dispersion relation (14) may be rewritten as

where the geometrical effect in the Rossby frequency is omitted. This is reduced to a 
relationship proportional to m3 when the azimuthal wavenumber dominates over the 
radial one. The wave motion is highly dispersive in the � direction; this dispersive 
nature gives a strong steer to possible nonlinear behaviour (i.e., the presence of soli-
tons as discussed in Sect. 3.3). This is not the case when the radial structure is more 
complicated, i.e., m2 ≪ s2n2 ; in that case the �-propagation is largely non-disper-
sive while the s-propagation is weakly dispersive. We here recall that both magnetic 
Rossby modes are capable of travelling in s: this is analogous to the atmospheric 
version which may travel in latitude too (e.g., Vallis 2017).

(15)�− ∼ −
⟨B̃2

�
⟩(r2

o
− s2)

2�0⟨�⟩Ωs4
m(m2 + s2n2) ,

)b()a(

)d()c(

Fig. 8  Fast magnetic Rossby waves seen in a jovian dynamo simulation (run E in Jones (2014) and 
Hori et  al. (2019)). a Azimuth time section and b wavenumber-frequency power spectrum of ⟨u′

s
⟩ at 

s = 0.25rcut ∼ 0.24RJ . In figure a, solid black lines represent phase paths of fast compressible Rossby 

waves plus the zonal flow advection, �+∕m + ⟨Ũ�⟩∕s , for m = 8 and n = 0 : dashed-dotted lines indi-

cate their group velocity, ��+∕�m + ⟨Ũ�⟩∕s . In figure b, black curves show the expected dispersion rela-
tions of advection plus wave �± for the compressible beta parameter and n = 0 (solid), 3 (dashed), and 5 
(dashed-dotted). White dashed lines for the advection only; white solid curves for the advection plus the 
Alfvén wave ( ±�M ). c Phase speeds of compressible (red) and topographic (blue) Rossby waves, �R∕m , 
as a function of normalised s. (d) Radial profiles of ⟨u′

s
⟩ at � ∼ 2�∕3 . Curves exhibit snapshots at dif-

ferent times, which are indicated in the legend. Dotted ones indicate the expected variability s−3∕2 [see 
Appendix B for details]
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All theory needs to be re-addressed when 
‖‖‖‖
�Bs𝜕∕𝜕s

‖‖‖‖ ≫
‖‖‖‖(
�B𝜙∕s)𝜕∕𝜕𝜙

‖‖‖‖ . As indi-

cated from (7) or (10) the slow mode for the case would imply highly dispersive 
motion in s. This seems to be the regime recently explored by Gerick et al. (2021), 
who computed eigenmodes in an extended 2d model for a nonaxisymmetric back-
ground B̃s to obtain high wavenumber modes for the interannual westward drift 
(Sect. 3.2).

3.2  Magnetic Rossby waves in the Earth

Slow magnetic Rossby waves were proposed by Hide (1966) to explain the ∼300 year 
geomagnetic westward drift (Sect. 1). This migration has been seen in centennial mod-
els (e.g., Finlay and Jackson 2003) and in millennial models (e.g., Hellio and Gillet 
2018; Nilsson et al. 2020). A complementary scenario to this is that the westward drift 
arises because of the advection by large-scale flows in the geodynamo (e.g., Bullard 
et  al. 1950; Aubert et  al. 2013). It is more likely that the observed feature consists 
of a combination of advection and wave propagation; some early works on numerical 
dynamos pointed out that migration speeds seen in simulations did not match the flow 
advection speed (Kono and Roberts 2002; Christensen and Olson 2003).

Using updated geodynamo simulations, Hori et  al. (2015) re-addressed nonax-
isymmetric motions in terms of the 2d theory above, and demonstrated that the retro-
grade drifts in the simulations were well explained by slow waves (15) riding on the 

mean flow advection ⟨Ũ�⟩m∕s (Fig. 9). The nonaxisymmetric waves may be excited 
through any driving mechanism; here convection in the spherical shell plays a major 
role. The preferred wavenumber, or the frequency, is thus determined by convec-
tive activities. The nature of the observed waves clearly depends on the regime of 
the driving mechanism: in the case of convection a slow wave will be favourable 
when the magnetic diffusion time is longer than the thermal one, while the opposite 

)b()a(

Fig. 9  Slow magnetic Rossby waves in a geodynamo simulation (adapted from Hori et al. (2018)). a Azi-
muth time section and b wavenumber-frequency power spectrum of ⟨u′

s
⟩ at the mid radius s = 0.5rcore . 

In figure a solid black lines represent phase paths of slow magnetic Rossby waves plus the zonal flow 
advection, i.e., �−∕m + ⟨Ũ�⟩∕s for m = 5 and n = 0 ; white dashed lines indicate the advection speed 
only. In figure b, solid black (white) curves represent the expected dispersion relations of advection plus 
the wave �± ( �M ) for the topographic beta parameter n = 0 . White dashed lines for the advection only
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regime will yield other modes including diffusive modes travelling progradely 
(Busse 1976; Finlay 2008; Hori et al. 2014). Analyses of the simulations confirmed 
that the slow waves emerged when the magnetostrophic terms were dominant in the 
vorticity equation (6) (Hori et al. 2018). The identification of those waves, as well as 
torsional Alfvén waves, may signify a dynamo in the magnetostrophic regime. 

It is useful to examine the geomagnetic data for nonaxisymmetric components. 
Figure  10a displays the longitude-time section, from 1880 to 2015, of the secu-
lar variation, �Bs∕�t , at latitude ∼40◦ N corresponding to s∕rcore ∼ 0.77 , in cov-
obs2019. The westward drift, clearly visible on this timescale, appears to consist 
of multiple drift speeds. This is evident by the 2d FFT spectrum in figure b. Here a 
linear relation, � ∝ m , indicated by the dashed line, represents an advection effect 
by mean flow. Clearly this simple advection model can not explain the multiple sig-
nals observed. We add the dispersion relations of the slow wave too: the black solid 

curve for the local theory (15) for ⟨B̃�⟩1∕2 ∼ 15 mT and blue asterisks for normal 

mode solutions provided a background B̃� ∝ s of maximum 13 mT (Appendix A 

and Figure A1b). Those speeds for chosen m are indicated by different lines in the 
figure a. This attempt is inconclusive but indicative that today’s geomagnetic data-
sets are capable of capturing the signatures of waves. It would be crucial to ana-
lyse them on multiple timescales; the slow wave timescale may vary by a few orders 
of magnitude (see above). Probing the slow wave will enable the estimation of the 
toroidal magnetic field (Hori et  al. 2015), which is confined within the dynamo 
region, i.e., inaccessible through direct measurements.

Beyond the framework above, a zoo of nonaxisymmetric waves is being explored. 
State-of-the-art numerical geodynamo calculations exhibit different wave classes 
(e.g., Aubert and Finlay 2019; Aubert and Gillet 2021) such as Alfvén modes about 
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Fig. 10  Nonaxisymmetric motion of geomagnetic secular variation, �Bs∕�t , in 1880–2015 (pro-
duced from Gillet et  al. (2019)). a Longitude-time section, Hövmoller diagrams, and b 2d spectrum, 
the sum over 39–41◦ N. In figure a the green, cyan, black lines indicate the speeds of signals at m = 3 , 
4, and 7, respectively, as identified by circles in the spectrum. In figure b the dashed line represents 
fadv = U0m∕2�s given U0 = 0.32◦/yr at the radius s = 0.77rcore (Pais et al. 2015; Hori et al. 2015); the 

black solid curve represents f = fadv + �−∕2� , based on the local theory (15) for ⟨B̃2

�
⟩1∕2 = 15 mT; blue 

asterisks indicate f = fadv plus the frequency of the first normal mode solutions (11) for Malkus field 
⟨B̃�⟩ ∝ s of magnitude 13mT (see figure A1b)
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inhomogeneous poloidal part B̃s and also fast Rossby modes likely. These have been 
linked geomagnetic jerks (Sect. 1) and to nonlinear interactions with the convective 
dynamics for the dynamo. More recently, based on the linear calculations by Gerick 
et  al. (2021), Gillet et  al. (2022) attributed slow modes of high radial wavenum-
ber for a background B̃s to the equatorial westward drift of ∼ 6 years (Sect. 1.3). An 
alternative idea for the rapid drift is that Rossby waves are excited in the stratified 
layer at the top of the core, as an MAC wave (Buffett and Matsui 2019). These are 
ongoing topics; we shall remark further in the final section.

3.3  Finite amplitude effects

A novel finding by the numerical simulations described above was the sharp wave-
form of the slow wave (e.g., Fig. 9a). These are isolated and steepened, rather than 
forming wave trains as expected for a linear dispersive wave. Moreover, their crests 
appear to be cleaner than the troughs. Those observations are reminiscent of cnoi-
dal waves and solitons of finite amplitude, which are both known to be solutions of 
the Korteweg-de Vries (KdV) equation. Indeed, the approximated dispersion rela-
tion (15) has the dispersive term proportional to m3 , as in the KdV equation. Weakly 
nonlinear analyses were recently explored (Hori 2019; Hori et al. 2020a) in terms 
of 2d annulus models (Busse 1976) and spherical models (Canet et al. 2014). This 
contrasts with analyses in equatorial shallow-water MHD (London 2017), in which 
fast modes in a stratified environment were a primary focus. (Hydrodynamic Rossby 
waves are known to shape coherent structures and to be governed by soliton equa-
tions in certain regimes (e.g., Redekopp 1977; Williams and Yamagata 1984); those 
solutions were proposed as an explanation for the Jupiter’s Great Red Spot.)

The model setting adopted by Hori (2019) and Hori et al. (2020a) is essentially 
same as above (Fig.  7a). For simplicity the magnetic field is also assumed to be 
two dimensional so that it can be represented by the magnetic potential g such that 
B = ∇ × g(s,𝜙, t)êz ; this is analogous to the streamfunction � for the velocity, 
u = ∇ × 𝜓(s,𝜙, t)êz . Also we suppose the density is constant and the beta parameter 
is topographic. Following a standard multiple-scale technique called the reductive 
perturbation method, we introduce slow variables with small perturbation � ( ≪ 1 ) 
such that � = �3∕2t and � = �1∕2(� − ct) and expand the two variables to get asymp-
totic solutions such that [� , g] = [�0, g0] + �[�1, g1] + .. . Hence a long-wave limit is 
being studied.

The zeroth order is given by the basic state. At the first order O(�) the two gov-
erning equations yield a linear, 2nd-order homogeneous PDE for g1 . Assuming 
a separable solution in form g1 = Φ(s)G(� , �) reduces the problem to an ODE in 
dimensionless form,

(16)LΦ ≡

⎧⎪⎨⎪⎩

B̃�

�s

⎡⎢⎢⎣
B̃�

s

d

ds
s
d

ds
−

d

ds

1

s

d

ds
sB̃�

⎤
⎥⎥⎦
+

⎛⎜⎜⎝
Ũ�

s
− c

⎞⎟⎟⎠

⎫⎪⎬⎪⎭
Φ = 0 ,
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where L denotes the linear differential operator comprising of s, d∕ds , B̃� , �, Ũ� , 
and c. This is an eigenvalue problem with eigenvalues c and associated eigenfunc-
tions Φ , together with appropriate boundary conditions. Here it is worth noting that 

the equation becomes singular as B̃�

2

∕� → 0 but this is unlikely as Ũ�∕s → c . This 
is distinct from the hydrodynamic cases; there Redekopp (1977) addressed solitary 
Rossby waves in the vicinity of the critical layer when a wave speed approaches the 
mean flow speed. What happens around any magnetic critical layer, including its 
continuous solutions, is entirely uncertain.

Focusing on the discontinuous solutions, we proceed to the next order to deter-
mine the structural function G(� , �) . After some algebra, the vorticity and induction 
equations at O(�2) are found to yield an inhomogeneous PDE for g2 , whose homo-
geneous part is given as Lg2 = 0 . We thus require a solvability condition to suppress 
the secular terms, yielding

Here � and � are determined from the O(�)-eigenfunction Φ , its adjoint solution Φ† , 

and the basic state B̃� , Ũ� , and � : see detailed expressions in Hori et al. (2020a). 
This evolution of the structural function G(� , �) , and hence g1 , is therefore governed 
by the the Korteweg-de Vries equation if the coefficients are both nonzero. Equiva-
lent analyses in the cartesian model (Hori 2019) show that the coefficient of non-
linear effect would be nonzero unless B̃� , � , and Ũ� are all uniform. This could be 
readily satisfied for a spherical system, for which � is nonuniform.

In spherical shells Hori et  al. (2020a) solved the eigenvalues problem (16) to 
calculate the coefficients of (17) for different sets of the basic state magnetic fields 

B̃� and velocity profiles Ũ� . They found nonzero values for the coefficients for the 
all cases they explored, implying that the KdV equation is the correct canonical 
description. As its solutions are well known, our asymptotic solution may be simply 

(17)
�G

��
+ � G

�G

��
+ �

�3G

��3
= 0 .

(b)(a)(a)

Fig. 11  a 1-soliton and b N-soliton solutions of slow magnetic Rossby waves for Malkus field, B̃� = s 
(after Hori et al. (2020a)). Streamfunction � in the equatorial plane in snapshots. Dashed (solid) curves 
indicate their negative (positive) values, implying anticyclonic (cyclonic) motion
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illustrated. Cases for the 1- and N-soliton solutions are demonstrated in Fig. 11. The 
solitary wave solution as seen in Fig.  11a implies an anticyclonic isolated vortex 
that is drifting retrogradely with the speed of the linear wave, the order of 102 to 104 
years in Earth’s core. Here recall that core flow inversions have revealed an anti-
cyclonic gyre persisting in the fluid core for more than 100 yrs (Fig.  2). An up-
to-date geomagnetic model for the past 9000 years was recently reported to exhibit 
a westward-drifting eastern-western hemispherical asymmetry, with quasi-periodic 
behaviours of ∼1300 years, potentially related to a similar planetary gyre (Nilsson 
et al. 2022). The origin of the asymmetry has been discussed in terms of couplings 
with the rocky mantle and the solid inner core (e.g., Aubert et al. 2013). Meanwhile, 
geodynamo simulations demonstrated the emergence of such a coherent structure 
as a natural consequence of the fluid dynamics therein (Schaeffer et al. 2017). The 
soliton solutions above show that the gyre shape can simply be explained using nat-
ural nonlinear wave dynamics. 

4  Concluding remarks and perspectives

In this paper we have discussed the topic of rotating MHD waves, or MC waves, 
largely motivated by recent advances of geophysical observation and numerical 
modelling. The subject embraces rich physics in addition to providing the potential 
for probing the interiors of natural dynamos. As illustrated by linear theory, there 
are many different wave classes.

To obtain fundamental insights, we have paid particular attention to torsional 
Alfvén waves/oscillations and magnetic Rossby waves that can be excited in the geo- 
and jovian- dynamos. The two wave classes may be considered as typical modes 
occurring in magnetostrophic balance of rapidly rotating MHD fluids (Sect.  1.4). 
They may particularly be relevant for understanding the planetary magnetic varia-
tions, length-of-day variations, and possibly the surface appearance in gaseous plan-
ets. The observations enable the possible inference of the strength and its spatial 
structure of the poloidal field component within the dynamo region, and of the “hid-
den” toroidal component there. This will provide a crucial constraint on the dynamo 
theory at all.

Despite the sterling attempts of theoretical and computational scientists, we 
believe that there remain some unexplored issues and open questions, namely:

• The class of rotating MHD waves, whether MC or MAC, is clearly a zoo, exhibit-
ing different dynamics and behaviours. Even the slow Rossby wave class appears 
to be distinct, dependent on the background magnetic field and the regime. We 
need a concrete catalogue to distinguish these modes and to elucidate their indi-
vidual behaviours. This will enable the prediction of which waves best suit the 
inference of the quantity of interest within the dynamo.

• A mathematical challenge is to address the critical layers arising from the back-
ground magnetic field profile, the relevance of continuous spectra, and their 
potential feedbacks on the mean state; they were partly addressed (Acheson 
1972; Nakashima 2020). Those concepts have been explored in the plasma phys-
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ics and geophysical fluid dynamics, in which mean flows tend to be of primary 
interest. Their knowledge and techniques could hint at solutions in the current 
context.

• Is it possible to find waves that are topologically protected, such as those that 
have been found to exist in hydrodynamic rotating systems and plasmas (Del-
place et al. 2017; Parker et al. 2020a, b)? If so, the edge waves could allow us to 
sense the vicinity of a boundary including a thin stably stratified layer.

• From an observational point of view, the existence of those waves and their char-
acterisation are still a subject of debate. In particular, distinguishing a few can-
didate modes/branches from data seems to be a tricky issue. A methodology to 
separate individual waves has led to significant progress in Earth’s seismology, 
and meteorology likely. Today’s data-driven approaches might help to endorse 
this: they are now capable of extracting signals to incorporate the physics.

• Whereas wave motion could provide us the information about deep dynamos, do 
they play any roles in the dynamo action and the internal dynamics at all? There 
are classic ideas such as inertial wave generating helicity and thus a dynamo 
(Moffatt 1978; Davidson and Ranjan 2015) and the supression of zonal mean 
flows in the presence of magnetic field (Tobias et  al. 2007). Furthermore, the 
interaction of waves with critical layers could lead to the driving of mean flows. 
It is uncertain how individual waves classes might feed dynamos. This would be 
another theoretical challenge for the future.

Appendix A Normal mode calculations

Normal mode solutions of torsional waves (5) and of magnetic Rossby waves (11) 
are computed individually, whilst considering a basic state in a spherical shell out-
side the tangent cylinder.

For normal mode solutions, e.g., ⟨u�
𝜙
⟩ = û𝜙(s) exp i𝜔t , the homogeneous part of 

(5) implies a second-order ODE with variable coefficients. This is an eigenvalue 
problem to determine the eigenfunction û𝜙 with eigenvalue � , given a basic state of 
UA and ⟨�⟩ . Here we suppose a basic field, UA ∝ (3∕2) cos {�(3∕2 − 50s∕19ro)} + 2 , 
which was adopted by Canet et al. (2014) to represent the 1d structure of the poloi-
dal field part in the geodynamo (Gillet et al. 2010). The density � is assumed to be 
constant. We use the Matlab routine bvp4c to solve the eigenvalue problem in 
0.35 ≤ s∕ro < 1 . The boundary conditions are dû𝜙∕ds = 0 at the inner boundary and 
û𝜙 + (1 − s∕ro)dû𝜙∕ds = 0 at s∕ro = 0.99999 : the latter is introduced to avoid the 
numerical issue for singularities (Hori et al. 2020a). Figure A1a depicts profiles of 
eigenfunctions û𝜙 , for which a normalising factor is imposed at the inner bound. 
Their eigenvalues � are listed in the legend in terms of dimensional periods 
T = 2�∕� . For calculating the dimensional values we use � = 1.13 × 104 kg∕m3 , 

ro = rcore = 3.485 × 106 m , and a factor of 1.12 × 10−3 T  for B̃s , implying the maxi-
mal strength of the assumed backgound field is about 3.9 mT.

Similarly, the eigenvalue problem (11) for magnetic Rossby waves is solved for 
the eigenfunction �̂� and the eigenvalue �̂� , given a basic state �M , � , and azimuthal 
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wavenumber m. We retain the constant density assumption, and assume a simple 

profile for the basic field, B̃� ∝ s∕ro (Malkus 1967), since the structure of the toroi-
dal field in the geodynamo is unknown. The beta parameter is given topographi-
cally (8), i.e., � ∝ s∕(1 − s2∕r2

o
) . The inner boundary condition is now �̂� = 0 , while 

the modified condition is again adopted at the outer boundary. Figure A1b demon-
strates the first normal modes for m = 1, 3, and 4. The eigenvalues are presented 
in the legend, where we suppose the dimensional quantities above and additionally 
Ω = 7.29 × 10−5 s−1 and a maximal strength B̃� of 13 mT. 

Appendix B WKBJ solutions

To gain insight of nonaxisymmetric wave motion (11), we suppose the coefficients 
slowly vary in s and seek a WKBJ solution. Rewriting the ODE as

we seek solutions in form of �̂� = A(s) exp i𝜃(s) . The ODE is then split into real and 
imaginary parts:

(B1)
d2�̂�

ds2
+

1

s
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ds
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Fig. A1  a Normal modes of torsional oscillations (5). The black solid curve shows the normalised profile 
of the given background field UA (Gillet et al. 2010; Canet et al. 2014). Other curves show the eigenfunc-
tions û𝜙 of the 1st (red), 2nd (green), and 3rd (cyan) normal modes. The eigenvalue of the i-th normal 
mode is listed in the legend, in which the period Ti is represented in years for a maximal background 
poloidal field 3.9 mT. b Normal modes of magnetic Rossby waves (11). The black solid and blue dashed 
curves show the normalised profiles of a background field ⟨B̃�⟩ (Malkus 1967) and beta parameter � , 
respectively. Other curves show the eigenfunctions �̂� of the 1st normal mode for m = 1 (red), 3 (green), 
and 4 (cyan). For visualisation their profiles are presented in the negative domain, as −�̂� . Periods Ti of 
the i-th eigenvalue are represented in years, given a background toroidal field of maximal magnitude 13 
mT
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respectively. The amplitude is assumed to be slowly varying so that the highest order 
term of the real part is small, compared with other terms. Substituting this into the 
imaginary part gives

If d2�∕ds2 is also smaller than the other terms the equation is drastically simplified. 
Wave-like solutions then exist when 𝜆2 > 1∕2s2 , leaving

The local radial wavenumber d�∕ds (we denote as n) is determined by �̂� , � , m, s, 
and �2

M
 . The solutions become evanescent when 𝜆2 < 1∕2s2 . Also it implies that the 

radial velocity, ⟨u′
s
⟩ , varies with s−3∕2.
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