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ABSTRACT

Distribution-based global sensitivity analysis (GSA), such as variance-based and entropy-based
approaches, can provide quantitative sensitivity information. However, they can be expensive to
evaluate and are thus limited to low dimensional problems. Derivative-based GSA, on the other
hand, require much fewer model evaluations. It is known that derivative-based GSA is closely linked
to variance-based total sensitivity index, while its relationship with the entropy-based measure is
unclear. To fill this gap, we introduce a log-derivative based functional to demonstrate that the
entropy-based and derivative-based sensitivity measures are strongly connected. In particular, we
give proofs that, similar to the case with variance-based GSA, there is an inequality relationship
between entropy-based and derivative-based important measures. Both analytical and numerical
verifications are provided. Examples show that the derivative-based methods give similar variable
rankings as entropy-based index and can thus be potentially used as a proxy for both variance-based
and entropy-based distribution-type GSA.

Keywords entropic sensitivity index; sensitivity inequality; conditional entropy; exponential entropy; Ishigami function

1 Introduction

The most widely adopted global sensitivity analysis (GSA) methods are derivative-based and distribution-based.

The most common distribution-based approach examines variability using the output variance. Variance-based methods,
also called Sobol’s indices, decompose the function output into a linear combinations of input and interaction of
increasing dimensionality, and estimate contribution of each input factor to the variance of the output [1]. As only the
2nd order moments are considered, it was pointed out in [2] that the variance based sensitivity measure is not well suited
for heavy tailed or multimodal distributions. Entropy is a measure of uncertainty similar to variance: higher entropy
tends to indicate higher variance (for Gaussian, entropy is proportional to log variance). Nevertheless, it was shown in
[2] that entropy-based methods and variance-based methods can sometimes produce significantly different results.

Both variance-based and entropy-baesd global sensitivity analysis (GSA) can provide quantitative contributions of each
input variable to the output quantity of interest. However, the estimation of variance and entropy based sensitivity indices
can become expensive in terms of number of model evaluations. This limits the the appliation of both variance-based
and entropy-based methods to low dimensional problems.

In contrast, derivative-based methods are much more efficient as only the average of the functional gradients across the
input space is needed. It is thus often used for screening of a large number of input variables. For example, the Morris’
method [3] constructs a global sensitivity measure by computing a weighted mean of the finite difference approximation
to the partial derivatives, and it requires only a few model evaluations.

ar
X

iv
:2

31
0.

00
55

1v
1 

 [
m

at
h.

N
A

] 
 1

 O
ct

 2
02

3



Entropic view of derivative GSA A PREPRINT

It is thus interesting to find out how to use derivative-based methods to mitigate the dimensionality issues of variance
and entropy based approaches.

Previous studies have found a link between the derivative-based and variance-based indices. In [4], a sensitivity measure
µ∗ is proposed based on the absolute values of the partial derivatives. It is empirically demonstrated that for some
practical problems µ∗ is similar to the variance based total index. In [5], Sobol and Kucherenko have proposed the
so-called derivative-based global sensitivity measures (DGSM). This importance criterion is similar to the modified
Morris measure, except that the squared partial derivatives are used instead of their absolute values. In addition, an
inequality link between variance based global sensitivity indices and the DGSM is established in the case of uniform or
Gaussian input variables.

This inequality between DGSM and variance-based GSA has been extended to input variables belonging to the large
class of Boltzmann probability measures in [6]. A new sensitivity index, which is defined as a constant times the crude
derivative-based sensitivity, is shown to be a maximal bound of the variance based total sensitivity index. Furthermore,
in [7], the variance-based sensitivity indices are interpreted as difference-based measures, where the total sensitivity
index is equivalent to taking a difference in the output when perturbing one of the parameters with the other parameters
fixed. The similarity to partial derivatives helps to explain why the mean of absolute elementary effects from the Morris’
method can be a good proxy for the total sensitivity index.

However, the relationship between derivative-based and entropy-based sensitivity indices is still unknown. In this
paper, we will provide a novel proof that, for a monotonic function, entropy-based total sensitivity index is equivalent
to the global sensitivity index based on log derivatives. More generally, we demonstrate that the exponential of the
entropy-based sensitivity measure is bounded by the derivative-based indices, including the modified Morris’ index
and DGSM proposed in the literature. The missing link between the derivative-based and entropy-based GSA is thus
established and that is the main contribution of this paper.

In this paper, we focus on entropy-based GSA and explore its link with derivative-based GSA. However, it should
be noted that there are many other moment-indepdent sensitivity measures [8], which are often based on a distance
metric to measure the discrepancy between the conditional and unconditional output probability density functions
(PDFs). For example, sensitivity indices based on the modification of the input PDFs have been proposed in [9] for
reliability sensitivity analysis, where the input perturbation is derived from minimizing the probability divergence under
constraints. [10] proposed a moment independent δ-indicator that looks at the entire input/output distribution. The
definition of δ-indicator examines the expected total shift between the conditional and unconditional output PDFs,
where the shift is conditional on one or more of the random input variables. Recently, the Fisher Information Matrix has
been proposed to examine the perturbation of the entire joint probability density function (jPDF) of the outputs, and
is closely linked to the relative entropy between the jPDF of the outputs and its perturbation due to an infinitesimal
variation of the input distributions [11, 12].

In what follows, we will first review both derivative-based and entropy-based global sensitivity measures in Section
2. In Section 3, the relationship between these two indices are established, where mathematical proofs are given for
general multivariate functions. For the purpose of verification, demonstrating examples are given in Section 4 for both
monotonic and general functions. Concluding remarks are given in Section 5.

2 Global sensitivity analysis

In this section, both derivative-based and entropy-based sensitivity measures will be briefly reviewed, for the purpose of
establishing a link between them in the next section.

2.1 Derivative-based indices

Consider the function y = g(x) where the function g(·) is differentiable. Functionals based on ∂g/∂xi have been
proposed to examine the global sensitivity with respect to the parameter xi.

For example, the modified Morris sensitivity index µ∗ [13] is an approximation of the functional:

µi = EX

[∣
∣
∣
∣

∂g

∂xi

∣
∣
∣
∣

]

(1)

where in [5], a similar functional called DGSM has been studied:

νi = EX

[∣
∣
∣
∣

∂g

∂xi

∣
∣
∣
∣

2
]

(2)
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Table 1: Variance-based indices vs. entropy-based indices

Variance-based indices Entropy-based indices

Main Effect
V (Y )− E[V (Y |xi)]

V (Y )

H(Y )− E[H(Y |xi)]

H(Y )

Total Effect
E[V (Y |x∼i)]

V (Y )

E[H(Y |x∼i)]

H(Y )

In addition, we will introduce the following functional based on log derivatives:

li = EX

[

ln

∣
∣
∣
∣

∂g

∂xi

∣
∣
∣
∣

]

(3)

to explore a link between entropy and derivatives based global sensitivity indices. Note that different from µi and νi,
the log-derivative based index li can be negative.

Note that these there sensitivity indices are closely related as:

eli ≤ µi ≤
√
νi (4)

where it is evident that µi ≤
√
νi based on Cauchy-Schwarz inequality. In addition, we have eli ≤ µi using Jensen’s

inequality as the logrithmic function is a concave function.

2.2 Entropy-based indices

Entropy is a measure of the average uncertainty, or the degree of non-uniformality, represented by the distribution.
Global sensitivity indices can be formulated using entropy, analogously to the variance based sensitivity indices [14]:

ηi =
H(Y )− E[H(Y |xi)]

H(Y )
=

I(Xi, Y )

H(Y )
(5)

where H(Y ) is the entropy of Y , and H(Y |Xi) = E[H(Y |xi)] is the expected conditional entropy of Y given Xi.
I(Xi, Y ) is the mutual information which measures how much knowing Xi reduces uncertainty of Y or vice versa.

The index ηi in Eq 5 measures the excepted reduction in the entropy of of Y by fixing Xi. This can be regarded as the
main effect contribution of Xi to the entropy of Y , in analogy to the main effect index from variance-based indices as
seen in Table 1.

Similarly, an entropy-based total sensitivity index can be defined as [15]:

ηTi =
E[H(Y |x∼i)]

H(Y )
(6)

where the average is calculated over all possible values of X∼i. This measures the remaining entropy of Y if the true
values of X∼i can be determined, in analogy to the total effect index from variance-based indices as seen in Table 1.

3 Link between derivative-based and entropy-based GSA

In this section, the relationship between the derivative-based and entropy-based sensitivity indices is explored. We
will consider the function y = g(x) where the function g(·) is differentiable. Let X be a continuous random variable
with probability density function (PDF) given by fX(x). Y = g(X) can be regarded as a transformed variable and the
transformed PDF fY (y) can then be found via the Jacobian matrix. We will start from a one-dimensional input variable
and extend it to two-dimensional and multi-dimensional cases using the method of dummy variables.

3.1 one dimensional variable

If y = g(x) has a unique inverse x = g−1(y), the conditional PDF of the output Y given the input X can be written as:

fY |X(x, y) = δ(y − g(x)) =
δ(x− g−1(y))

|g′ (g−1(y))| (7)

3
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where δ(·) is Dirac’s delta distribution. The marginal PDF of Y is thus given as:

fY (y) =
fX(g−1(y))

|g′ (g−1(y))| =
fX(x)

|g′ (x)| (8)

The entropy of the continuous random variable Y is thus:

H(Y ) = −
∫

fY (y) ln fY (y)dy

= −
∫

fX(x) ln
fX(x)

|g′ (x)|dx

= H(X) +

∫

fX(x) ln |g′ (x)|dx

(9)

where dy = g′ (x) dx for the change of variable.

E[ln |g′ (x)|] = H(Y )−H(X) (10)

3.2 two dimensional variables

In the two-dimensional case, we will make use of the concept of dummy variables to utilise the Jacobian matrix. Let
y1 = g1(x1, x2) = g(x) and y2 = g2(x1, x2) = x2 as a dummy variable. We assume that the functions g1(·) and
g2(·) have unique inverses (this condition will be generalised in Section 3.4). Then the transformed joint PDF of
Y = {Y1, Y2} is:

f(y1, y2) =
f(x1, x2)

|det J| (11)

where J is the Jacobian matrix:

det J =

∣
∣
∣
∣
∣

∂g1
∂x1

∂g1
∂x2

∂g2
∂x1

∂g2
∂x2

∣
∣
∣
∣
∣
=

∂g1
∂x1

(12)

The entropy of Y can then be found as:

H(Y1, Y2) = −
∫

fY (y1, y2) ln fY (y1, y2)dy1dy2

= −
∫

fX(x1, x2) ln
fX(x1, x2)

|g′1 (x1)|
dx1dx2

= H(X1, X2) +

∫

fX(x1, x2) ln |g′1 (x1)|dx1dx2

(13)

Assuming the input variables are independent, i.e., H(X1, X2) = H(X1)+H(X2), and note that y1 = y and y2 = x2
is a dummy variable:

H(Y |X2) = H(X1) + E

[

ln

∣
∣
∣
∣

∂g(x)

∂x1

∣
∣
∣
∣

]

(14)

where the expectation is with respect to the jPDF of the input variables. We have used the property of the conditional
entropy, where H(Y,X2) = H(Y |X2) + H(X2). Note that H(Y |X2) = E [H(Y |x2)] is the expected conditional
entropy.

3.3 multi-dimensional variables

Let y1 = g1(x) where x = (x1, x2, . . . , xn), and introduce dummy variables yi = gi(x) = xi with i = 2, . . . , n.
Assuming the functions gi(·) have unique inverses, the transformed jPDF is:

fY (y) =
f(x)

|det J| (15)

where J is the Jacobian matrix with Jij = ∂gi/∂xj .

4
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Note that for the Jacobian matrix from the 2nd row onwards, i.e., i ≥ 2, ∂gi/∂xj = 1 when i = j and ∂gi/∂xj = 0
when i ̸= j. Therefore, the Jacobian matrix in this case is a triangular matrix. As a result, the Jacobian determinant is
the product of the diagonal entries:

det J =

∣
∣
∣
∣
∣
∣

∂g1
∂x1

× 1× · · · × 1
︸ ︷︷ ︸

2 to n

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣

∂g1
∂x1

∣
∣
∣
∣

(16)

The entropy of Y is thus:

H(Y) = −
∫

fY (y) ln fY (y)dy

= −
∫

fX(x) ln
fX(x)
∣
∣
∣
∂g1(x)
∂x1

∣
∣
∣

dx

= H(X) +

∫

fX(x) ln

∣
∣
∣
∣

∂g1(x)

∂x1

∣
∣
∣
∣
dx

(17)

where Y = {Y1, X2, X3, . . . , Xn}.

Note that H(Y) = H(Y1|X2∼n) +H(X2∼n), and assuming the input variables are independent, we then have:

H(Y |X2∼n) = H(X1) + E

[

ln

∣
∣
∣
∣

∂g(x)

∂x1

∣
∣
∣
∣

]

(18)

where the expectation is with respect to the jPDF of the input variables. Note that H(Y |X2∼n) = E [H(Y |x2∼n)] is
the expected conditional entropy.

The reasoning above uses the first variable x1 as an example. However, the results hold for any variables via simple
row/column exchanges, which only affects the sign of the determinant but not its modulus.

3.4 summary

In summary, for a differentiable function y = g(x), where x = (x1, x2, . . . , xn), there exists a relationship between
the entropy and the expectation of the partial derivatives:

κi = E [H(Y |x∼i)]−H(Xi) = E

[

ln

∣
∣
∣
∣

∂g(x)

∂xi

∣
∣
∣
∣

]

(19)

where ∼ i indicates the index ranges from 1 to n excluding i. Note that H(Y |X∼i) = E [H(Y |x∼i)], where the
expectation is with respect to all possible values of X∼i.

The above relationship holds only if the transformation g(·) has a unique inverse. For a general differentiable function,
we have the following inequality instead [16]:

κi ≤ li (20)

where li is used to denote E

[

ln
∣
∣
∣
∂g(x)
∂xi

∣
∣
∣

]

as in Eq 3.

As the exponential function is a monotonic increasing function, and taking account of the relationship in Eq 4, we can
then relate entropy to the derivative based global sensitivity indices as:

eκi ≤ eli ≤ µi ≤
√
νi (21)

where li, µi and νi are derivative-based sensitivity indices as given in Section 2.1. For example, µi is used to denote
E [|∂g(x)/∂xi|], which can be regarded as the limiting value of the modified Morris’ global sensitivity index [5] as
given in Eq 1, while νi is the DGSM sensitivity index proposed in [5]. Equation 21 thus establises an inequality
relationship between exponential entropy and the global sensitivity measures based on partial derivatives.

Note that it is the exponential entropy that has a direct relationship with the derivative-based global sensitivity measures.
Recall that the entropy of a random variable with a uniform distribution is ln(b− a), where a, b are the bounds of the
distribution. Taking the natural exponential of the entropy in this case results in b− a, which is the range of the uniform
distribution. Therefore, the exponential entropy eH can be regarded as a measure of the extent, or effective support, of a
distribution [4]. As H(Y |X∼i) measures the remaining entropy in average if the true values of X∼i can be determined,
the exponential entropy based index eκi thus indicates the ratio between the range of output distribution, conditioning

5
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on X∼i are known, and the range of input Xi. And this ratio is upper bounded by derivative-based sensitivity indices,
including the modified Morris’ sensitivity index µi.

Studies in [2] already noted that an exponetial transformation of the standard entropy-based sensitivity measures may
improve its discrimination power. In addition, as pointed out in [15], entropy for continuous random variables (aka
differential entropy) can become negative. This is a drawback of entropy-based sensitivity method. In contrast, eκi is
based on exponential entropy and thus always positive.

For the purpose of screening and identifying non-influential inputs, the inputs are typically assumed to have the same
level of uncertainties, i.e., H(Xi) = H(Xj). As the output entropy H(Y ) does not affect the relative values, the new
index eκi is essentially the same as the entropy-based total index ηi given in 1.

4 Examples

The mathematical relationship proved in Section 3, between derivative-based and entropy-based GSA, is numerically
verified in this section. The equality between κi and li in Eq 19 is first examined for monotonic functions, and the
Ishigami function and G-function are then used to demonstrate the inequality in Eq 21 for general functions.

All input variables are assumed to have the same uniform distribution for each function, while Gaussian distributions are
used for example 5. Having the same distributions for all inputs, on the one hand, is for simplicity of the demonstrating
examples; on the other hand, is a commonly adopted approach for input variable screenings, which is the main function
of the entropy-based total sensitivity index.

4.1 Monotonic functions

For verification purposes, all the examples in this section are chosen to have tractable expressions for both the integral of
derivatives and the conditional entropies. For examples 1− 3, the conditional entropies are also numerically estimated
using the method given in Appendix A. This is to demonstrate that numerical estimation of entropy-based sensitivity
indices can be very expensive. And that is the main motivation to establish a link with the derivative-based method, so
that it can be used as a potential proxy for entropy-based GSA.

Figure 1: Surface plots, with contours shown underneath, for the monotonic functions in examples 1-3.

Example 1. Consider the function y = x1 + ex2 , where the partial derivatives are ∂y/∂x1 = 1 and ∂y/∂x2 = ex2 .

For xi ∼ U(0, 1), the expected value li = E

[

ln
∣
∣
∣
∂g(x)
∂xi

∣
∣
∣

]

can be integrated analytically as 0 and 1/2 for x1 and

x2 respectively. The sensitivities indices based on conditional entropy can also be calculated analytically in this
case. κ1 = H(Y |X2) − H(X1) = 0, where H(Y |x2) = H(X1) = 0 as the differential entropy remains constant
under addition of a constant (ex2 is a constant for H(Y |x2)). As the transformed variable V = ex has a PDF

V ∼ 1/v, 1 < v < e, κ2 = H(Y |X1) − H(X2) = EX1
[H(Y |x1)] − 0 = EX1

[

−
∫ e

1
1
y
ln 1

y

]

= 1/2. Therefore,

κ1 = l1 and κ2 = l2, as given by Eq 19.

Example 2. Consider the function y = x1 × x2, where the partial derivatives are ∂y/∂x1 = x2 and ∂y/∂x2 = x1.

For xi ∼ U(0, 1), the expected value E

[

ln
∣
∣
∣
∂g(x)
∂xi

∣
∣
∣

]

are −1 for both x1 and x2. Recall that the differential entropy

6
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Table 2: Sensitivity results for the monotonic functions in examples 1-3 (surface plots in Figure 1). Conditional entropy
results are obtained from Monte Carlo sampling with number of samples ranging from 103 to 108. The results from 108

samples are compared to the exact results and the relative error are less than 1% for all functions. Also given are the
corresponding analytical results for derivative-based indices.

Number of
Samples
xi ∼ U(0, 1)

y = x1 + ex2 y = x1 × x2 y = x1 + 3x2

κ1 κ2 κ1 κ2 κ1 κ2

1.00E+03 0.0934 0.5251 -0.9057 -0.8468 0.2279 1.1269
1.00E+04 0.0602 0.5225 -0.9111 -0.9211 0.1043 1.1093
1.00E+05 0.0315 0.5131 -0.9528 -0.9593 0.0526 1.1047
1.00E+06 0.0148 0.5069 -0.9760 -0.9755 0.0242 1.1019
1.00E+07 0.0068 0.5034 -0.9879 -0.9878 0.0113 1.1000
1.00E+08 0.0032 0.5015 -0.9939 -0.9939 0.0052 1.0993

Exact results 0.0000 0.5000 -1.0000 -1.0000 0.0000 1.0986

error - -0.30% 0.61% 0.61% - -0.06%

l1 l2 l1 l2 l1 l2

E

[

ln
∣
∣
∣
∂y
∂xi

∣
∣
∣

]

0.0000 0.5000 -1.0000 -1.0000 0.0000 1.0986

increases additively upon multiplication with a constant, κ1 = H(Y |X2) − H(X1) = EX2
[H(x1) + ln |x2|] =

∫ 1

0
lnx2dx2 = −1. Therefore, κi = li, i = 1, 2 as given by Eq 19.

Example 3. Consider the function y = x1 + 3x2, where the partial derivatives are 1 and 3 for x1 and x2 respectively.

For xi ∼ U(0, 1), the expected value E

[

ln
∣
∣
∣
∂g(x)
∂xi

∣
∣
∣

]

can be integrated analytically as 0 and ln 3 ≃ 1.0986. It is

straightforward to show that, as in previous examples, κ1 = 0 and κ2 = ln 3, which are the same as l1 and l2.

Example 4. Consider the product function y = x1x
r
2, where r ≥ 1 (for r = 1, we recover the function in example

2). For x1, x2 ∼ U(0, 1), it is straightforward to show that s1 = −r and s2 = ln r − r. For entropy based
indices, we have κ1 = H(Y |X2) −H(X1) = EX2

[H(x1) + ln |x2|] =
∫ 1

0
lnxr

2dx2 = −r, which is the same as l1.

κ2 = H(Y |X1)−H(X2) = EX1
[H(Y |x1) + ln |x1|]− 0 = EX1

[

−
∫ 1

0
p(y|x1) ln p(y|x1)

]

− 1 = ln r − r, where

p(y|x1) =
1
r
y

1

r
−1 as the transformed variable V = xr has a PDF V ∼ 1

r
v

1

r
−1, 0 < v < 1. Therefore, κ1 = l1 and

κ2 = l2 as shown by Eq 19.

Example 5. Consider the linear function y =
∑n

i=1 aixi. This function has been used in [14] to demonstrate the
equivalence between entropy based and variance based sensitivity indices for Guassian random inputs. In the case
with independent inputs, the sensitivity index based on the conditional entropy can be obtained as κi = H(Y |X∼i)−
H(Xi) = 1/2 ln 2πea2iσ

2
i − 1/2 ln 2πeσ2

i = ln |ai|, where σ2
i is the variance for the random input xi. The results are

the same as the derivative based index li = ln |∂y/∂xi| = ln |ai|, which demonstrates the equality given in Eq 19.

4.2 General functions

Both Ishigami function and G-function are commonly used test functions for global sensitivity analysis, due to the
presence of strong interactions. These two functions, each with three input variables, are used in this section to
demostrate the inequality relationship derived in Eq 21.

The conditional entropies, for the estimation of the sensitivity index κi, are estimated numerically using Monte Carlo
sampling as described in Appendix A. Different number of samples are used, ranging from 1e6 to 1e8. For each
estimation, the computation is repeated for 20 times and both the mean value and the standard deviation (std) are
reported in Table 3 and 4.

7
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For the estimation of derivative-based indices, li and µi, Matlab’s inbuild numerical integrator "integral" is used with
default tolerance setting. Note that the index νi is not compared here, as its relationship with µi has been studied
elsewhere [5].

To rank the input variables, sensitivity indices in this section are normalised. For example, eκi/
∑

eκi is used for the
entropy-based sensitivity results. As a result, the rankings in Table 3 and 4 are shown as percentages.

Example 6. The Ishigami function, y = sin(x1)+a sin2(x2)+bx4
3 sin(x1), is often used as an example for uncertainty

and sensitivity analysis. It exhibits strong nonlinearity and nonmonotonicity, as can be seen in Figure 2. In this case,
a = 7 and b = 0.1 are used, and the input random variables have uniform distributions, i.e., xi ∼ U(−π, π) for
i = 1, 2, 3.

The sensitivity results are listed in Table 3. The index κi is estimated with different number of samples, and each
estimation with 20 repetitiions for variability assurance. It is clear from the small std that the estimation is well
converged. The index eκi is then estimated using the mean value from the results with 1e8 samples, and compared with
derivative-based indices eli and µi.

First, from Table 3, it is clear that the inequality among eκi , eli and µi from Eq 21 is satisfied. Second, the ranking is
similar from these three indices, with x2 being the most important, thus suggesting using the derivative-based indices as
a proxy for entropy-based importance measure. Third, we note in passing that the quantitative ranking based on eκi is
very close to the results reported in [2]. This is different from the variance-based total sensitivity results, as compared
in [2], which ranks x1 being the most important.

Figure 2: Scatter plot for the Ishigami function, y = sin(x1) + a sin2(x2) + bx4
3 sin(x1).

Example 7. Consider the so-called G-function, y =
∏3

i=1(|4xi−2|+ai)/(1+ai), which is often used for numerical
experiments in sensitivity analysis. It is a highly nonlinear function, as can be seen in Figure 3 for a two-variable
example. In this case, ai = (i − 2)/2, for i = 1, 2, 3. The input random variables have uniform distributions, i.e.,
xi ∼ U(0, 1) for i = 1, 2, 3. A lower value of ai indicates a higher importance of the input variable xi, i.e., x1 is the
most important, while x3 is the least important in this case.

The sensitivity results for the G-function, in the same format as Table 3, are reported in Table 4. It is clear that, not
only the inequality relationship in Eq 21 is satisfied, the three indices give the same quantitative ranking of the three
variables. Note that eli and µi produce the same resutls, as the effect of logrithm and exponential operations cancels out
for this product function.

5 Conclusions

• A link between derivative-based and entropy-based global sensitivity measures has been establised.

• For monotonic functions, mathematical proofs are given for the equality between the expected log-derivative
sensitivities and entropy based global measures.

• For general functions, the exponential of the entropy-based sensitivity measures is found to be upper bounded
by derivative-based global sensitivity indices.
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Table 3: Sensitivity results for the Ishigami function. The conditional entropy based sensitivity results are obtained for
different number of samples. This is repeated for 20 times and the mean and standard deviation (std) are given. Also
shown are the three indices eκi , eli and µi, for which the inequality in Eq 21 is clearly satisfied.

Ishigami function
y = sin(x1) + a sin2(x2) + bx4

3 sin(x1)

Number of
Samples

κ1 κ2 κ3

mean std mean std mean std

1.00E+06 -0.4474 7.40E-04 -0.0764 1.07E-03 -0.8669 1.61E-03
3.16E+06 -0.4994 2.87E-04 -0.1079 3.61E-04 -0.9726 5.24E-04
1.00E+07 -0.5400 2.40E-04 -0.1356 1.57E-04 -1.0685 4.06E-04
3.16E+07 -0.5756 1.97E-04 -0.1582 1.17E-04 -1.1543 3.24E-04
1.00E+08 -0.6043 9.77E-05 -0.1770 8.56E-05 -1.2313 1.69E-04

x1 x2 x3

sensitivity ranking sensitivity ranking sensitivity ranking

eκi 0.5464 32.6% 0.8378 50.0% 0.2919 17.4%
eli 1.0667 21.9% 3.5000 71.8% 0.3087 6.3%
µi 1.8769 22.6% 4.4563 53.6% 1.9739 23.8%

Figure 3: Surface plots, with contours shown underneath, for an example of G-function with 2 variables.

• Numerical examples show that the derivative-based methods give similar variable rankings as entropy-based
index and can thus be potentially used as a proxy for entropy-based GSA.
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Table 4: Sensitivity results for the G-function, where the inequality in Eq 21 is clearly satisfied. Same key as Table 3

G-function y =

3∏

i=1

|4xi − 2|+ ai
1 + ai

Number of
Samples

κ1 κ2 κ3

mean std mean std mean std

1.00E+06 0.3473 1.40E-03 -0.1383 1.48E-03 -0.3993 1.55E-03
3.16E+06 0.3431 9.71E-04 -0.1584 8.19E-04 -0.4273 7.72E-04
1.00E+07 0.3401 6.17E-04 -0.1735 5.41E-04 -0.4480 4.77E-04
3.16E+07 0.3384 4.66E-04 -0.1841 3.75E-04 -0.4630 3.20E-04
1.00E+08 0.3377 3.58E-04 -0.1917 2.67E-04 -0.4739 2.34E-04

x1 x2 x3

sensitivity ranking sensitivity ranking sensitivity ranking

eκi 1.4018 49.2% 0.8255 29.0% 0.6226 21.8%
eli 4.0000 46.2% 2.6667 30.8% 2.0000 23.1%
µi 4.0000 46.2% 2.6667 30.8% 2.0000 23.1%
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Appendix A Numerical estimation of entropy

Adopting the approach from [17], the xy-plane is gridded by equal size cells (∆x×∆y) with coordinates (i, j). The
probability of observing a sample in cell (i, j) is:

pij =

∫∫

cell(i,j)

f(x, y)dxdy ≈ f(xi, yj)∆x∆y (A.1)

where (xi, yj) is the centre of the cell.

Assuming the jPDF is approximately constant within a cell, the joint entropy can be represented as:

H(X,Y ) = −
∫

f(x, y) ln f(x, y)dxdy

≈ −
∑

f(xi, yj) ln f(xi, yj)∆x∆y

≈ −
∑

pij (ln pij − ln(∆x∆y))

≈ −
∑

(
kij
N

ln
kij
N

)

+ ln(∆x∆y)

(A.2)

where kij represents the number of samples observed in the cell (i, j), and N is the total number of samples.

Similarly, the conditional entropy can be approximated as:

H(Y |X) = −
∫

f(x, y)
ln f(x, y)

f(x)
dxdy

≈ −
∑

pij (ln pij − ln pi − ln∆y)

≈ −
∑

(
kij
N

ln
kij
ki

)

+ ln∆y

(A.3)

where ki =
∑

j kij and similar expressions can be derived when X is a vector variable.
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