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RESEARCH ARTICLE

www.advquantumtech.com

Scalable Quantum Spin Networks from Unitary
Construction

Abdulsalam H. Alsulami,* Irene D’Amico, Marta P. Estarellas, and Timothy P. Spiller*

Spin network (SN) systems can be used to achieve quantum state transfer

with high fidelity and to generate entanglement. A new approach to design

spin-chain-based spin network systems, for short-range quantum information

processing and phase-sensing, has been proposed recently in Advanced

Quantum Technologies. In this paper, the scalability of such systems is

investigated, by designing larger SN systems that can be used for

longer-range quantum information tasks, such as connecting together

quantum processors. Furthermore, more complex SN designs, which can

produce different types of entangled states, are presented. Simulations of

disorder effects show that even such larger SN systems are robust against

realistic levels of disorder.

1. Introduction

Spin chain systems are linear spin networks (SNs) that have been
shown to be useful for realizing various tasks in quantum in-
formation processing (QIP). For example, such systems can be
used to efficiently transfer quantum information from site to site,
a process known as quantum state transfer.[1–3] Transferring in-
formation with unit fidelity can occur in certain SNs, in a pro-
cess known as perfect state transfer (PST).[4–6] SNs have interest-
ing entanglement properties[7] and can also be used to generate
and/or distribute entanglement.[8,9]

One of the main advantages of SN systems is that they repre-
sent a generic mathematical model of coupled two-level systems
that can be realized experimentally bymeans of different physical
systems, such as quantumdots,[2,10,11] trapped ions,[12] and super-
conducting qubits.[13,14] Another advantage is that SN can be set
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up to achieve desirable QIP tasks through
natural dynamics,[15] without requirement
of switching on or off couplings between
qubits (e.g., using time-dependent fields),
which otherwise may cause additional er-
rors.
Spin systems with more complex

topologies[16–21] have potential for wider
application than linear chain systems,
including for quantum sensing.[21–23] A
simple example of a SN system, designed
by coupling together two identical PST
chains via a unitary transformation, has
already been proposed.[21] These systems
were shown to have applications for robust
routing of quantum information, entan-
glement generation, and quantum phase

sensing. Here, we systematically apply the unitary construction
method in ref. [21] to show its potential to produce scalable SN
systems. This larger SN systems could be used for the application
of longer-range QIP tasks. Furthermore, more complex forms of
SN are proposed in order to realize different types of bipartite and
multipartite entanglement. Modeling of different types of disor-
der effects in these systems reveals that they function very ro-
bustly under such errors, demonstrating the potential to be used
for various practical quantum technology purposes.
The outline of this paper is as follows: Section 2 will describe

the model of our system. Section 3 will discuss scalable SN sys-
tems, designed by coupling together two PST chains, that can
be used for various QIP purposes. Section 4 will introduce more
complex SN systems, designed by coupling together multiple
PST chains, with its applications. Then, in Section 5, we conclude
and discuss future work.

2. The Model

A generic SN system can be described by the following time-
independent XY-Hamiltonian:

XY =
1

2

∑
i,j

Ji,j(𝜎
x
i
𝜎x
j
+ 𝜎

y

i
𝜎
y

j
) +

N∑
i=1

𝜖i

2
(𝜎z

i
) (1)

whereN is the total number of sites/spins and Ji,j are the coupling
parameters representing the interaction between sites i and j. The
spin component for site i is represented using Pauli operators 𝜎x

i
,

𝜎
y

i
, and 𝜎z

i
. The second term in the equation represents the on-

site energies for all sites i (the energy cost for an excitation at site
i). Unless diagonal error is included in the system, we consider
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the on-site energies to be independent of the site i, so we can set
all these to zero, 𝜖i = 0.
In a SN prepared such that all sites have spin down, a single-

excitation at a site i is defined as a spin up, with a state |ri⟩ =
|00… 1i00…⟩. The total number of excitations is conserved, as
the HamiltonianXY commutes with the total number of excita-
tions, even in the presence of disorder.Wewill therefore only con-
sider the single-excitation sub-space, as this suffices to achieve
the desired QIP phenomena.
It is well-known that spin chains can exhibit PST or quasi-

PST by setting the coupling parameters Ji,i+1 either by tuning the
boundary couplings, J1,2 and JN−1,N ,

[24–27] or by controlling each
coupling parameter, Ji,i+1.

[2,4,16,28–30] We use the latter approach,
where the coupling parameters are set to be

Ji,i+1 = J0
√
i(N − i) (2)

with the maximum coupling Jmax occurring in the middle of
the chain. We set Jmax = 1 (unless otherwise stated) to define
our energy units. Since the maximum coupling occurs in the
middle of the chain, we can derive J0 as J0 = 2Jmax∕N and J0 =

Jmax∕
√

N2

4
−

1

4
, for even and odd chains respectively.

Fidelity is a useful tool used to test howwell a desirable process
is achieved. Here, it will track the overlap in time of the system
state with a desirable state |𝜓des⟩

F(t) = | ⟨𝜓des| e−it |𝜓(0)⟩ |2 (3)

with |𝜓(0)⟩ the initial state, the relevant static system Hamilto-
nian , and with the reduced Plank constant set to be ℏ = 1.
For a chain described by Equation (2), PST happens at time

tm = 𝜋∕(2J0) (also known as mirroring time)[16] and is achieved
when the fidelity of an evolved initial state |r1⟩ = |100…⟩ against
the desirable state |rN⟩ = |00… 01⟩ is equal to unity. Note that,
given the relationship between J0 and Jmax, for a fixed Jmax = 1,
the mirror time scales in proportion to N, which is the natural
situation for any physical implementation.
As will be discussed shortly, to describe practical systems,

we consider errors. We therefore use ensembles of systems de-
scribed byHamiltonians containing independent random errors.
For such ensembles, the average fidelity can be calculated as

F(t) = Tr(𝜌(t) |𝜓des⟩ ⟨𝜓des|) (4)

where 𝜌(t) = 1

K

∑K

i=1
|𝜓i(t)⟩ ⟨𝜓i(t)| is the ensemble density matrix

and K the number of systems in the ensemble.
Entanglement of formation (EOF) is used to quantify the de-

gree of entanglement between a pair of qubits regardless of
whether they are in a pure or mixed (reduced) state. The EOF is
defined as in ref. [31]. When considering the presence of random
errors in the system, the average of many realizations of EOF is

calculated as EOF =
1

K

∑K

i=1
f (𝜌red)i, where f (𝜌

red)i = EOFi repre-

sents the EOF calculated from the reduced density operator 𝜌red

of the two relevant sites for a single randomly generated example
of disorder.[21,32]

Figure 1. Diagram of a large two-chain SN system of size N.

2.1. Off-Diagonal Disorder

Off-diagonal disorder represents the error in the coupling param-
eters of the system. The effect of this type of error on the system
is therefore investigated by adding a perturbation to the coupling
interaction of the Hamiltonian XY in Equation (1)

J
perturbed

i,j
= Ji,j + J

′

i,j
(5)

where J
′

i,j
= Edi,jJmax. The perturbation units are set by Jmax, the

dimensionless parameter E sets the scale of the error, and di,j rep-
resent random numbers, here from a Gaussian distribution with
a standard deviation of w =

1

2
√
3
and a zero mean,[21]

2.2. Diagonal Disorder

The diagonal disorder represents the inhomogeneity in the en-
ergy required to excite a site i. Therefore, the second term of the
Equation (1) is now present, with 𝜖i = EdiJmax, where E and the
random di have the same definitions as before.

3. Two-Chain Spin Networks

Various quantum processing operations, such as routing, entan-
glement, and phase sensing have been implemented previously
in a small SN of size N = 6,[21] and in order to account for scala-
bility, we will now investigate these phenomena in larger SN sys-
tems.
One way to scale the SN system is by connecting together

longer spin chains. Following the method in ref. [21], we de-
sign an, in principle, arbitrarily large SN systems, by coupling
together two PST chains by means of a Hadamard-like unitary
transformation.[21] Such a SN will maintain the PST property
within each original chain, as the unitary transformation of the
uncoupled chains preserves the spectrum and only changes the
eigenstates. An example of a large two-chain SN, each of size
N∕2, is shown in Figure 1. We stress that the unitary transforma-
tion is a design step, and so it is the final SN device (Figure 1) that
should be implemented experimentally. Note, the dashed lines in
Figure 1 are the new couplings that connect the two uncoupled
chains as a result of the unitary transformation of the Hamilto-
nian. Furthermore, the coupling between sites N

2
+ 1 and N

2
+ 2

is now negative as denoted by the horizontal bar. This notation
for couplings applies to all SNs figures.
This and other spin-chain-based SN can be used for longer-

distance quantum communication, or longer-range entangle-
ment generation than the spin-chain-based SN in ref. [21]. Such
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SN systems have an advantage over spin chains due to the
fact that they offer wider opportunities for routing and can be
used at the same time also for phase sensing and entanglement
generation.[21] Moreover, for a SN of multiple chains, discussed
in Section 4, the difference in energy between the largest and the
smallest coupling, for an equivalent long spin chain, would be
larger, and this could be an experimental limitation, depending
on hardware. Similarly, connecting together a few short chains
instead of utilizing just a single longer one may reduce the num-
ber of different values for the couplings to be experimentally en-
gineered, which may be an advantage for certain types of imple-
mentation.

3.1. Router between Qubits 1 and N

One of the major advantages of using a spin-chain-based SN is
that useful phenomena can be realized by exploiting the natural
dynamics of the system. Considering the SN system of size N
(even) (Figure 1), the system can be operated as a router such
that information (encoded as a single-excitation) is sent from site
1 to site N, as we now describe.

3.1.1. Router Protocol

We start by first preparing the system such that all sites have spin
down state |00⋯ , 0⟩. Then, a single-excitation is injected at site
1 at t = 0

|𝜓(0)⟩ = |r1⟩ (6)

Under the natural dynamics of the system, this state will
evolve through the system as |𝜓(t)⟩ = e−it |𝜓(0)⟩. At the mirror-
ing time, t = tm, the excitation will be in a superposition between
sites N

2
and N

2
+ 1

|𝜓(tm)⟩ = e−i𝜑(N)√
2
(|r N

2
⟩ + |r N

2
+1⟩) (7)

The overall phase factor is given by e−i𝜑(N) = (−i)
N

2
−1. This is

consistent with previous results for linear chains.[16] The state of
the system then evolves back to site 1 at t = 2tm. This is because
of the SN PST properties and the Hadamard-based construction.
In order to operate the system as a router, we intervene by ap-

plying a phase flip at either site N

2
or site N

2
+ 1 at t = tm. We

choose to apply the phase flip at site N

2
+ 1, obtaining

|𝜓(tm)⟩𝜋 =
e−i𝜑(N)√

2
(|r N

2
⟩ + ei𝜋 |r N

2
+1⟩) (8)

The state will then evolve to site N at t = 2tm, so

|𝜓(2tm)⟩ = e−i𝛾(N) |rN⟩ (9)

with an overall phase factor of e−i𝛾(N) = (−i)N−2.
The routing protocol is described in Figure 2 and is confirmed

by our numerical simulations.

Figure 2. The routing protocol is achieved by injecting a single-excitation

at site 1 at t = 0 and a phase flip at site N

2
+ 1 at t = tm.

3.1.2. Router Robustness

We now investigate the robustness of the routing protocol for dif-
ferent N values. In order to do so, we measure the fidelity of the
system against state |rN⟩ at t = 2tm, the expected time the excita-
tion should take to evolve from site 1 to site N in the error-free
case. This is done for different error strength E and for different
N values, as shown in Figure 3. Each point in the plots has been
averaged over 1000 realizations.
Interestingly, the routing fidelity at t = 2tm in the presence of

diagonal disorder remains above 98% with error strength of E ≤

5% up to N = 100. Even for error strength up to E = 10%, which
is relatively high error, the fidelity remains above 92% up to N =

100. On the other hand, the fidelity in the presence of off-diagonal
disorder remains above 90% for error strength of E ≤ 10% and
up to N = 40. The fidelity then decays as E and N increases. The
system robustness for the routing protocol for large SN systems
suggests that this SN design could be useful for quantum com-
munications within the scale of a quantum processing device.
As we have seen above, the quality of the routing protocol de-

grades with an increasing amount of error in the system and with
an increasing system size (E andN, respectively). This is because
the quantum information tasks the SN are designed to deliver
rely on quantum interference between different amplitudes in
the system, and so disruption of the interference damages deliv-
ery of the task. For most processes considered in this work, the
value of the performancemetric (for example of the fidelity) in the
ideal case is at its maximum: This implies that small modifica-
tions of the system parameters will affect the performancemetric
only to second order. It follows that increasing the number of cou-
plings, keeping the average amount of disorder small, will thus
affect the system performance less than increasing the average
amount of disorder beyond a perturbative amount, while keeping
N constant. Further increasing disorder will additionally disrupt
the coherence and quantum interference in the system,which are
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Figure 3. The router fidelity robustness at t = 2tm in the presence of diagonal (a) and off-diagonal (b) disorder against differentN values and for different
error strength E. The white line indicates the fidelity 90% threshold (±1% due to numerical discretization).

responsible for delivering the desired SN operation. Eventually,
a very large amount of disorder can even result in localization,
where in effect the excitation does not move at all.[33] Further-
more, for largeN, the system ismore susceptible to error because
there are more amplitudes involved in the quantum interference
that deliver the process. This explanation of how the quality of
the protocol degrades with disorder and with the scalability (in-
creasing N) applies to all the protocols discussed in this paper.

3.2. Entanglement Generation

Quantum entanglement has been generated by different proto-
cols based on spontaneous emission[34,35] or coincident detection
of two fiber-based infrared photons.[36] Another approach with
photons is the generation ofmode entanglement, for example be-
tween the two output modes of a beam-splitter when just a single
photon is sent into one of the input modes. In our work, here we
generate this form of entanglement. Such a bipartite maximally
entangled state can be generated between the ends of the SN in
two different ways, as demonstrated below.

3.2.1. First Entanglement Protocol

The system is first initialized with a single-excitation injected at
site 1 at t = 0, as shown in Equation (6), and left to evolve. At
t = tm, the system will be in a state as given in Equation (7), and
we apply a phase of ei𝜋∕2 at site N

2
+ 1. The system is then left to

evolve for another duration of tm, which will result in a bipartite
maximally entangled state at 2tm given by

|𝜓(2tm)⟩ = e−i𝛿(N)(
1 + ei𝜋∕2

2
|r1⟩ + 1 − ei𝜋∕2

2
|rN⟩) (10)

with a global phase given as e−i𝛿(N) = (−1)
N

2
−1. This entanglement

generation protocol is shown in Figure 4.
We now investigate the robustness of this protocol. We there-

fore compute the EOF between sites 1 and N at t = 2tm, the
expected time at which the bipartite maximally entangled state
forms in the error-free case. This is done for different error
strengths E and for differentN values, as shown in Figure 5. Each
point in the plots has been averaged over 1000 realizations.

The EOF of the bipartitemaximally entangled state in the pres-
ence of diagonal disorder remains above 96% with E = 5% and

up to N = 100. For a larger error of E = 10%, the EOF remains

above 94% up to N = 50. On the other hand, the EOF is less ro-

bust in the presence of off-diagonal disorder, with the EOF
>
∼ 92%

for E = 10% and SN size up to N = 20. As the SN size N and the

error strength E increases, the EOF decays.

3.2.2. Second Entanglement Protocol

In this protocol, we initialize the system by injecting a single ex-
citation at a central vertex of the diamond (e.g., at site N∕2) such
that

|𝜓(0)⟩ = |r N

2
⟩ (11)

Figure 4. The entanglement generation protocol is achieved by injecting

a single-excitation at site 1 at t = 0 and a phase of ei𝜋∕2 at site N

2
+ 1 at

t = tm.
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Figure 5. EOF between sites 1 and N at t = 2tm for different SN size in the presence of diagonal (a) and off-diagonal (b) disorder with different error

strength E. White lines have same meaning as in Figure 3 but for the EOF.

Then, the resultant evolution of this state at t = tm will be given
by

|𝜓(tm)⟩ = e−i𝜑(N)√
2
(|r1⟩ + |rN⟩) (12)

This is a bipartitemaximally entangled state between site 1 and
site N. It is achieved naturally, with no phase application. If not
extracted or used, the state evolves back to the initial state, with
the excitation localised at site N∕2, at t = 2tm, to keep oscillating
with a 2tm period. A similar behavior can be seen by injecting the
single-excitation at site N

2
+ 1, but with a different global phase

due to the negative sign of the coupling between sites N

2
+ 1 and

N

2
+ 2.[21]

We now compare the robustness of this second entanglement
protocol with the previous entanglement protocol. Figure 6 de-
scribes a 12-site SN and shows that the second entanglement pro-
tocol, where |𝜓(0)⟩ = |r N

2
⟩, is more robust than the previous en-

tanglement protocol (where |𝜓(0)⟩ = |r1⟩), and especially so for
E > 10%. This is because the state evolution in the second entan-

Figure 6. Robustness of the bipartite maximally entangled state between
site 1 and site N (here N = 12) for two different entanglement protocols
in the presence of off-diagonal disorder. Blue: protocol with initial state

|𝜓(0)⟩ = |r6⟩, with EOF measured at t = tm. Orange: protocol with initial

state |𝜓(0)⟩ = |r1⟩, with EOF measured at t = 2tm.

glement protocol involves fewer sites (see Figure 7) and is col-
lected at t = tm, whereas the previous entanglement protocol in-
volves all the sites with respect to the excitation evolution and is
collected at t = 2tm.

3.3. Phase Sensing

The SN can also be used as a phase sensor device that retrieves
an unknown phase applied at a known site and time. Assuming
an unknown phase factor of ei𝜃 is applied at site N

2
+ 1 at t = tm,

the task is to retrieve this unknown phase angle, 𝜃. In our previ-
ous work on the SN of sizeN = 6,[21] we have proposed a protocol
that can be used to retrieve this unknown angle even in the pres-
ence of significant error. Using the proposed phase sensing pro-
tocol, we investigate below the robustness of the phase sensing
for larger SN systems.

3.3.1. Phase Sensing Robustness

The robustness of the phase sensing protocol has been investi-
gated against coupling disorder and on-site energy disorder with
relatively large error strengths of E = 5% and E = 10%. The per-
formance of our phase sensing protocol in retrieving a range of

Figure 7. Fidelity of each site as a function of the rescaled time t∕tm in
the second entanglement protocol. It shows that the excitation evolves
through all sites except site 7. This is for SN of N = 12.

Adv. Quantum Technol. 2023, 2300238 2300238 (5 of 15) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 8. The obtained angles versus the unknown angles, in degrees, for SN of size N = 20 with error strength of E = 5% (a), for SN of size N = 20
with error strength of E = 10% (b), for SN of size N = 50 with error strength of E = 5% (c), and for SN of size N = 50 with error strength of E = 10%
(d). This is shown also for the ideal case (no error, black) and for both types of disorder with angles being averaged over 1000 realizations. Inset: the
standard deviation, 𝜎

𝜃
, of the mean of the obtained angles.

unknown angles ranging from 0◦ to 360◦ (in degrees), for differ-
ent SN sizes, is illustrated in Figure 8.
It is clear from Figure 8 that the obtained angles in the pres-

ence of on-site energy disorder are very similar to the ideal case,
which is attributed to the strong robustness of the SN in the
presence of diagonal disorder. In the coupling disorder case with
E = 5% (Figure 8a,c), the obtained angles are almost accurate
except for angles around 45◦ where they deviate slightly from
the ideal case, especially for N = 50. On the other hand, the ob-
tained angles in the presence of coupling disorder with E = 10%
(Figure 8b,d) show deviation from the ideal case for various un-
known angles, especially for large SN of N = 50. These observa-
tions can also be understood by looking at the mean of the stan-
dard deviation, 𝜎

𝜃
, which clearly shows that there is clear fluctua-

tion in the coupling disorder case versus small fluctuation in the
on-site energy disorder case.
Therefore, our SN device can be scaled up to N = 50 and still

be used as a phase sensor with very good performance against
both types of disorder, as long as the error strength is E ≤ 5%.
This good performance can still be observed when E = 10%, even
for N = 50 if the errors in the system are due to on-site energy
disorder and forN = 20 if the errors arise from coupling disorder.
As already discussed in Section 3.1.2, these figures demonstrate

that the scalability (increasing N) has a smaller impact on the
protocol, compared to increasing the amount of error strength E.

3.4. Spin Networks of Unequal Chains

We now investigate a SN system of unequal chains (i.e., SN de-
signed by coupling together two PST chains of different lengths).
For example, a SN of two PST chains,A and B ofNA = 3 sites and
NB = 4 sites, respectively, is shown in Figure 9. Since the chains
in this SN are not equal, the time evolution through each chain
is different. Therefore, we denote the mirroring time of the first
chain and the second chain as tm,A and tm,B, respectively. This SN

Figure 9. Example of a SN made by coupling two unequal PST chains, in
this case a 3-site PST chain with a 4-site PST chain.
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can be used too to generate the routing and entanglement proto-
cols, as discussed below.

3.4.1. Routing

The routing protocol, in the error-free case, is achieved in the SN
regardless of the SN size and regardless of whether the SN chains
are equal or not. For example, if in the SN shown in Figure 9 we
inject a single-excitation at site 1 at t = 0 and a phase flip at site 3
at t = tm,A, then after another evolution of t = tm,B the state of the
system will be given by

|𝜓(tm,A,B)⟩ = −i |r7⟩ (13)

where tm,A,B = tm,A + tm,B denotes the time the excitation needed
to evolve from site 1 to site 7.
In the general case, for a longer 2-chains SN of arbitrary length

NA + NB = N, the routing protocol will still work in the same way
and the routed state will be given by

|𝜓(tm,A,B)⟩ = e−i𝛾(N) |rN⟩ (14)

3.4.2. Entanglement Generation

Generation of a bipartite maximally entangled state between the
ends of this SN is not straightforward due to the different lengths
of the SN chains.
When a single-excitation is injected at site 1 at t = 0 and a

phase of ei𝜋∕2 is injected at site 4 at tm,A, amplitudes of the excita-
tion will then propagate through the first chain (the shorter one)
and through the second chain (the longer one). At 2tm,A, the am-
plitude of the excitation that evolves through the first chain will
be localized at site 1, while the excitation’s amplitude that evolves
through the second chain will be delocalized over its sites. There-
fore, the state of the system at 2tm,A will be given by

|𝜓(2tm,A)⟩ = 1 + ei𝜋∕2

2
|r1⟩ + a(|r3⟩ − |r4⟩)

+ b |r5⟩ + c |r6⟩ + f |r7⟩
(15)

where a ≈ −0.031 + 0.031i, b ≈ 0.15 + 0.15i, c ≈ 0.31 − 0.31i,
and f ≈ −0.36 − 0.36i.
The fidelity of the system against |r1⟩, against |r7⟩, and the

EOF between sites 1 and 7 are plotted as a function of time in
Figure 10. The plot demonstrates that at 2tm,A, half of the excita-
tion is at site 1 and the other half is in a superposition as given
in Equation (15). It is also clear from the plot that after few oscil-
lations, at t = 8tm,A, the state of the system is almost a maximally
entangled state between sites 1 and 7 as the EOF is very close to 1.
This, however, is not a perfect generation of the desired state, as
the mirroring times of the two chains are not equal. This can be
resolved by exploiting the dependence of tm on Jmax (see Section 2)
and adjusting the maximum coupling of one of the chains.
If we choose to adjust the maximum coupling of chain B

(which is the longer chain), this will result in an increase of its
maximum coupling Jmax,B, thus speeding up its time evolution to

Figure 10. Fidelities of the system against desirable state |r1⟩ (F vs |r1⟩,
blue) and against desirable state |r7⟩ (F vs |r7⟩, orange) and the EOF be-
tween them, green, as labeled in figure.

match that of chain A (tm,B = tm,A). This adjustment of the Jmax,B
is given by

Jmax,B =
𝜋NB

4tm,A
, if NB is even (16)

Jmax,B =
𝜋

√
N2
B
−1

4

2tm,A
, if NB is odd (17)

If instead we adjust the maximum coupling of chain A (which
is the shorter chain), this will result in a decrease of its maximum
coupling Jmax,A, thus retarding its time evolution to match that of
chain B (tm,A = tm,B). This adjustment of the Jmax,A is given by

Jmax,A =
𝜋NA

4tm,B
, if NA is even (18)

Jmax,A =
𝜋

√
N2
A
−1

4

2tm,B
, if NA is odd (19)

Both solutions (adjusting the shorter or the longer chain) are
viable solutions where physically possible, but we choose to ad-
just the shorter chain, A, which relies on reducing the coupling
strengths. This is because adjusting the longer chain, B, requires
increasing couplings, which might not be practical. Specifically,
when NB ≫ NA, if an experimental constraint on the maximum
coupling is already saturated in the uncoupled chain B, no fur-
ther increase of these couplings would be possible.
Having set the mirroring time of both chains to be equal, we

can now generate a bipartite maximally entangled state between
the ends of the SN, following the protocol given in Figure 4 or
the second entanglement protocol given in Section 3.2.2. Let us
use the second protocol, where we start with a single-excitation at
site 3 at t = 0 and let the system evolve for a duration of tm,A. The

Adv. Quantum Technol. 2023, 2300238 2300238 (7 of 15) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH

 2
5
1
1
9
0
4
4
, 0

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/q

u
te.2

0
2
3
0
0
2
3
8
 b

y
 T

est, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [0

3
/0

1
/2

0
2
4
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se



www.advancedsciencenews.com www.advquantumtech.com

Figure 11. The robustness of the EOF of the bipartitemaximally entangled
state (generated using the second entanglement protocol) at the first time
it forms, tm,A, in the presence of diagonal disorder (diag) and off-diagonal
disorder (off-diag) with different error strengths, E, ranging from 0% to
50%. Each point has been averaged over 1000 realizations. White line has
the same meaning as in Figure 5.

state at tm,A will then be given as a bipartite maximally entangled
state between sites 1 and 7

|𝜓(tm,A)⟩ = 1√
2
(− |r1⟩ + i |r7⟩) (20)

For a SN of unequal chains of an arbitrary length, injecting a
single-excitation at the top site of the central vertex of the SN di-
amond (e.g., site 3 in Figure 9) at t = 0 will naturally generate a
bipartite maximally entangled state between sites 1 and N at tm,A
given as

|Ψ(tm,A)⟩ = 1√
2
(e−i𝛼(NA) |r1⟩ + e−i𝛼(NB) |rN⟩) (21)

where the phase factors e−i𝛼(Nj) = (−i)Nj−1, j = A, B.
The robustness of the bipartite maximally entangled state gen-

erated in Equation (20) is investigated by calculating the EOF
between sites 1 and 7 at the first time it forms (tm,A). This is

shown in Figure 11where the robustness of EOF in the presence
of diagonal disorder with significant error strength of E = 20%

is ≈ 99.5%. In the presence of off-diagonal disorder, the EOF is
found to be > 97% for error strength of E ≤ 10%.

4. Multiple-Chain Spin Networks

Thus far, we have investigated a SN that is built by coupling to-
gether two chains. A more general method of scaling the SN sys-
tem is to couple together more than two spin chains. The con-
cept of modularization (i.e., connecting together multiple iden-
tical systems) has been used for high-fidelity QST[37] and modu-
lar entanglement.[38] We now move to the discussion of SN with
more than two component spin chains. The building blocks of
these multiple-chain SN are once more uncoupled PST chains,
coupled together by unitary transformation.[21]

Figure 12. A three-chain SN, each of three sites. Sites 1, 2, and 3 represent
the first chain; sites 4, 5, and 6 represent the second chain; sites 7, 8, and
9 represent the third chain.

4.1. Example: Three Chains of 3-Sites SN

The SN we discuss here is built by coupling together three PST
chains, each of three sites (Figure 12). The unitary transforma-
tion used to transform the Hamiltonian of the uncoupled chains
is chosen such that it superposes sites 3 and 4 as well as sites 6
and 7. The matrix of the unitary transformation for the single-
excitation basis is given as

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0

0 0 1√
2

1√
2

0 0 0 0 0

0 0 1√
2

−1√
2

0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1√
2

1√
2

0 0

0 0 0 0 0 1√
2

−1√
2

0 0

0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(22)

Our SN indeed has the potential to achieve various interesting
phenomena, and therefore, it can be used to support various tasks
in quantum technologies, including generating different types of
entangled states, as will be seen below.

4.1.1. Routing Protocol

The routing protocol is straightforward and can be achieved by
injecting a single-excitation at site 1 at t = 0, a phase flip at site
4 at t = tm, and another phase flip at site 7 at t = 2tm, which will
then result in an excitation being at site 9 at t = 3tm.

4.1.2. W-State Entanglement

The entanglement based on an excitation shared equally be-
tween three sites is generally called W-state entanglement.[39,40]

This kind of entanglement not only provides the possibilities
to investigate quantum nonlocality[41] but also have various ap-
plications in quantum information protocols such as quantum
teleportation,[42] superdense coding,[43] and quantum secure di-
rect communication.[44] Our SN (Figure 12) can be used to gen-
erate W-state entanglement as will be discussed below.
When a single-excitation is injected at site 1 at t = 0, it will

evolve to be in a superposition state being at sites 3 and 4 at t = tm.
If at this time an arbitrary phase of ei𝜃 is applied at site 4, the
resultant evolved state at t = 2tm will be given by

|𝜓(2tm)⟩ = 1 + ei𝜃

2
|r1⟩ + 1 − ei𝜃

2
√
2
(|r6⟩ + |r7⟩) (23)
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Figure 13. Fidelity of each site as a function of the rescaled time t∕tm
shows that the W state generated between sites 1, 6, and 7 keeps form-
ing at each even tm (i.e., 2tm, 4tm, 6tm,…).

Therefore, if the phase factor applied at site 4 at tm is ei𝜙, where
𝜙 = arccos(−1∕3), then the resultant evolved state at t = 2tm will
be an equal superposition state between the excitation being at
sites 1, 6, and 7, which is a W-state

|W⟩ = 1 + ei𝜙

2
|r1⟩ + 1 − ei𝜙

2
√
2
(|r6⟩ + |r7⟩) (24)

Due to the periodicity of our SN, if the system is left to evolve,
then the W state will keep forming at regular time intervals as
shown in Figure 13. The protocol for generating the W-state en-
tanglement is demonstrated in Figure 14.
The robustness of the W-state entanglement generated in

Figure 14 is investigated by measuring the fidelity of the system
with a desirable state chosen as a W entangled state. The fidelity
is thereforemeasured at the first time theW entangled state is ex-
pected (2tm) in the presence of both types of disorder (Figure 15).

Figure 14. Generation of a W-state entanglement. The phase applied at
site 4 is 𝜙 = cos−1(−1∕3).

Figure 15. The robustness of the fidelity of the W entangled state at the
first time it forms, 2tm, in the presence of diagonal disorder (diag) and off-
diagonal disorder (off-diag) with different error strengths, E, ranging from
0% to 50%. Each point has been averaged over 1000 realizations. White
lines have the same meaning as in Figure 3.

The W-state entanglement turns out to be very robust against
diagonal disorder, giving fidelity up to 97% with a significant er-
ror strength of E ≤ 25% and fidelity of 98.5% with E ≤ 5%. In
the presence of off-diagonal disorder, the W-state entanglement
is still very robust as the fidelity is found to be ≥ 95% even with
significant error strength of E ≤ 20%, but then it decays as E in-
creases.

4.1.3. Other Entangled States

Entanglement based on an excitation shared equally between
four or more sites is called multipartite W-type state (MWS)
entanglement.[45] We will now show how a MWS entanglement
(shared between four sites) can be generated.
The system is first initialized with a single-excitation injected

at site 5 at t = 0

|𝜓(0)⟩ = |r5⟩ (25)

and let to evolve for time t = tm∕2. The resulting evolved state
will be given by an equal superposition state between four sites,
a MWS entanglement

|𝜓(tm∕2)⟩ = i

2
(− |r3⟩ + |r4⟩) − i

2
(|r6⟩ + |r7⟩) (26)

If we do nothing, the excitation will then evolve back to site
5 at t = tm and keeps evolving between Equations (25) and (26)
due to the periodicity of the system. However, as we have seen
above, the application of a local phase can change the direction of
the excitation evolution. Therefore, we will use this to generate a
bipartite maximally entangled state (between the ends of the SN).
A bipartite maximally entangled state between the ends of the

SN (sites 1 and 9 in Figure 12) can be generated by injecting two
phase flip simultaneously at sites 4 and 7 at tm∕2, the time the
system state is in a MWS entanglement (Equation (26)). Then,
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Figure 16. Illustration of the injection protocol used to obtain a MWS en-
tanglement between sites 3, 4, 6, and 7. Additional two phase flips can be
applied simultaneously at sites 4 and 7 in order to obtain a bipartite max-
imally entangled state between the ends of the SN. The excitation then
keeps evolving between a MWS entanglement and a bipartite maximally
entangled state.

the system is left to evolve for a further duration of tm and will
result in the desired state given by

|𝜓(3tm∕2)⟩ = i√
2
(|r1⟩ + |r9⟩) (27)

The generation of these two types of entangled states is illustrated
in Figure 16.
The robustness of the bipartite maximally entangled state gen-

erated in Figure 16 is investigated bymeasuring theEOF between
sites 1 and 9 at the first time it forms (3tm∕2), against both types
of disorder (Figure 17). In the presence of a diagonal disorder, the

EOF > 99% even with a large error strength of E ≤ 15%, whereas

in the presence of off-diagonal disorder, its EOF scales up to 98%

Figure 17. The robustness of the EOF of the bipartitemaximally entangled
state at the first time it forms, 3tm∕2, in the presence of diagonal disorder
(diag) and off-diagonal disorder (off-diag) with different error strengths,
E, ranging from 0% to 50%. Each point has been averaged over 1000 real-
izations. White line has the same meaning as in Figure 5.

with error strength of E ≤ 10%. The robustness of our SN system
in generating maximally entangled state gives our SN the poten-
tial to be used in various quantum information processing.

4.2. Example: Three Chains of 4-Sites SN

Let us now extend our investigation to a larger SN that is built by
coupling together three PST chains, each of four sites (Figure 18).
The unitary transformation used to transform the Hamiltonian
of the uncoupled chains is chosen such that it superposes sites 4
and 5 as well as sites 8 and 9.

4.2.1. W-State Entanglement

Generation of a W-state entanglement is also possible in this SN,
as described below.
By injecting a single-excitation at site 1 at t = 0 and a phase

factor of ei𝜙, where 𝜙 = arccos(−1∕3), at site 5 at t = tm, the resul-
tant evolved state at t = 2tm will be an equal superposition state
between sites 1, 8, and 9

|W⟩ = −
1 + ei𝜙

2
|r1⟩ − 1 − ei𝜙

2
√
2
(|r8⟩ + |r9⟩) (28)

The robustness of the W-state against different types of disor-
der is shown in Figure 19. In the presence of diagonal disorder,

the W-state robustness remains
>
∼ 99% up to E = 15% when it is

measured at t = 2tm. On the other hand, the W-state robustness

against off-diagonal disorder remains
>
∼ 98% for E ≤ 10% and de-

cays as the error strength increases, E ≥ 10%. Overall, theW-state
is very robust as long as E ≤ 10%, which suggests the potential
of our SN for practical W-state entanglement generation.

4.2.2. MWS Entanglement

We have seen in the previous example, Section 4.1.3, that it was
straightforward to generate a MWS entanglement due to the fact
that there exists a site (i.e., site 5 in Figure 12) that is directly cou-
pled with the central vertices of the diamonds. However, this is
not the case in the SN shown in Figure 18. Therefore, we will use
another protocol to generate the MWS entanglement in this SN.
In our SN (Figure 18), we seek to generate a MWS entan-

glement between sites 4, 5, 8, and 9. In order to do so, the SN
coupling parameters need to be adjusted such that the excita-
tion evolution time through the central chain is not equal to
the excitation evolution time through the other chains. This is
done by setting the maximum coupling of the second chain to be
Jmax,B = 1∕2, while keeping the maximum coupling of the first
and third chains to be Jmax,A = Jmax,C = 1. The letters A, B, and
C represent the first, second, and third chains of the SN. Conse-
quently, the mirroring time for the second chain will be equal to
twice the mirroring time of the first chain (i.e., tm,B = 2tm,A).
Having established that, we now start by initializing the system

with a single-excitation injected at site 5 at t = 0

|𝜓(0)⟩ = |r5⟩ (29)
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Figure 18. Diagram of a three-chain SN, each of four sites.

AMWS entanglement can then be generated by evolving the ini-
tial state for time t = 2tm,A. Over this period of time, half of the ex-
citation amplitude evolves to a superposition state between sites
8 and 9, while the other half evolves to site 1 and returns back
to sites 4 and 5. This is because of the relationship imposed be-
tween the mirroring times. Therefore, a MWS entanglement at
t = 2tm,A will be a given as

|𝜓(2tm,A)⟩ = −
1

2
(|r4⟩ + |r5⟩) − i

2
(|r8⟩ + |r9⟩) (30)

At t = 4tm,A, the state of the system evolves to the excitation being
entirely localized at site 4

|𝜓(4tm,A)⟩ = |r4⟩ (31)

We note that this is not a simple return to the initial t = 0 state.
This is because there is a time-difference with respect to the exci-
tation amplitude evolution through chains A and B. This results
in different phases arising for the amplitudes in chains A and B,
leading to destructive interference (see Appendix A). Under fur-
ther evolution, at t = 6tm,A, the state of the systemwill again form
a MWS entanglement, but including a different relative phase
from the one at 2tm,A (Equation (30))

|𝜓(6tm,A)⟩ = −
1

2
(|r4⟩ + |r5⟩) + i

2
(|r8⟩ + |r9⟩) (32)

Figure 19. Demonstration of the W-state robustness in the presence of
diagonal disorder (diag) and off-diagonal disorder (off-diag) with different
error strengths, E, ranging from 0% to 50%. Each point has been averaged
over 1000 realizations. White line has the same meaning as in Figure 3.

Figure 20. Fidelity of each site as a function of the rescaled time t∕tm,A.
It is clear that the MWS entanglement (between sites 4, 5, 8, and 9) is
periodic.

At t = 8tm,A, the state finally evolves back to its initial state

|𝜓(8tm,A)⟩ = |r5⟩ (33)

The detailed periodicity of our SN system dynamics can be
seen by plotting the evolution of the excitation probability for
each site as a function of time, as shown in Figure 20.
Let us now investigate the robustness of the MWS entangle-

ment generated at t = 2tm,A (Equation (30)) against both types of
disorders. Figure 21 shows that the fidelity of the MWS entangle-

Figure 21. The robustness of the MWS entanglement in the presence of
diagonal disorder (diag) and off-diagonal disorder (off-diag) with different
error strengths, E, ranging from 0% to 50%. Each point has been averaged
over 1000 realizations. White line has the same meaning as in Figure 3.
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Figure 22. Diagram of a large SN.

ment is very robust against both types of disorders, particularly
against diagonal disorder.

4.2.3. Maximally Entangled State

The variation of Jmax also enables generation of a bipartite max-
imally entangled state between both ends of the 3-chain SN
(Figure 18) at a specific time. This is not possible in the SN of
three identical spin chains (i.e., SN of equal Jmax) because of the
timings of the amplitude propagation. Therefore, the maximum
coupling of the second chain is set to be Jmax,B = 1∕2 and as a
result, tm,B = 2tm,A.
We start by injecting a single-excitation at site 5 at t = 0,

|𝜓(0)⟩ = |r5⟩ and injecting a phase flip ei𝜋 at site 9 at t = 2tm,A,
with the result that the further evolved state of the system at
t = 3tm,A will be given by

|𝜓(3tm,A)⟩ = 1√
2
(i|r1⟩ − |r12⟩) (34)

This shows how variation of Jmax values in parts of a complex
SN can adjust the timing of amplitude arrivals, to deliver all parts
of a desirable distributed state at the same time.

4.3. Example:M Chains of 3-Sites SN

Here, we illustrate the possibility of generalizing the results to
evenmore complex and larger SNs. The building blocks of the SN
discussed here are uncoupled 3-site PST chains, coupled together
with a unitary transformation,[21] as shown in Figure 22 for the
case ofM = 5.
Operating this SN as a router by sending an excitation from

site 1 to site 15 is possible using an extension of the router pro-
tocol discussed above. It can be achieved with a single-excitation
injected at site 1 at t = 0 and a phase flip applied separately at site
4 at tm, at site 7 at 2tm, at site 10 at 3tm, and at site 13 at 4tm.
Generation of a W-state entanglement is also possible follow-

ing the protocol shown in Figure 14.

4.3.1. Generation of MWS Entanglement

MWS entanglement can be generated between any four sites at
the vertices of the diamonds of the SN in Figure 22, due to the
richer topology of this SN. TheMWS entanglement can be gener-
ated between sites 3, 4, 6, and 7 if we inject a single-excitation at
site 5 and evolve for tm∕2, whereas if we inject a single-excitation
at site 8 and evolve for tm∕2, then the MWS entanglement will be
generated between sites 6, 7, 9, and 10. Similarly, theMWS entan-
glement can be generated if the single-excitation is injected at site

11. It is also possible to generate theMWSentanglement between
sites 3, 4, 9, and 10 if a single-excitation is injected at either sites
6 or 7 and evolved for tm. Similarly, if we inject a single-excitation
at either sites 9 or 10 and evolve for tm, a MWS entanglement be-
tween sites 6, 7, 12, and 13 will be generated. Thismethod of gen-
erating MWS entanglement is applicable to longer 3-site-chains’
SN systems in the same way.

4.3.2. MWS Entanglement Transfer

This SN allows also to transfer the MWS entanglement through
the SN by applying a phase to generate quantum interference and
change the spatial direction of the excitation evolution. The re-
lated protocol is illustrated in Figure 23. Due to the PST in the
building blocks of our SN, the excitation will keep oscillating be-
tween MWS entanglement of sites 3, 4, 12, and 13 and MWS en-
tanglement of sites 6, 7, 9, and 10. This is illustrated in Figure 24
with plotting the fidelity of each site as a function of time.
The robustness of the MWS entanglement is investigated by

measuring the fidelity of the system against a desirable state cho-
sen as a MWS entanglement. The fidelity is measured at 3tm∕2
(i.e., at the first time the MWS entanglement is formed between
sites 3, 4, 12, and 13) in the presence of two types of disorder
(Figure 25). TheMWS entanglement robustness against diagonal
disorder is shown to have fidelity> 99% up to large error strength
of E = 10%. The fidelity is very robust up to error strength of
E = 5% for both types of disorder. Since in real experiments the
error strength is expected to be much less than 10%, our SN can
be used to generate a MWS entanglement with very good robust-
ness against disorder. The robustness and scalability in generat-
ing such entangled states gives our SN the potential to be used
in quantum teleportation in solid-state systems.

5. Conclusion

Utilizing unitary transformations to couple SN components,[21]

we have designed and modeled a range of scalable SN systems,
capable of various quantum information processing tasks. We
have realized and investigated in detail systems capable of rout-
ing and unknown phase sensing. In addition, we have shown
how components of different size can be coupled together, to
achieve coordinated behavior at a chosen later time, by control of
the maximum coupling between qubits, Jmax, in the various com-
ponents.
We have also designed and demonstrated SN systems capa-

ble of creating and distributing bipartite,W-state, andmulti-party
W-state entanglement. We have shown that theW-state entangle-
ment generation protocol can be used in any SN comprising an
even or odd number of chains, as long as the numbers of sites in
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Figure 23. Generation of MWS entanglement between further sites. At t = 0, we inject a single-excitation at site 8 and evolve for tm∕2; then we apply
two phases flip simultaneously at sites 7 and 10; then we evolve for tm where the state will be a MWS entanglement between sites 3, 4, 12, and 13.

each relevant chain are equal. Otherwise, Jmax adjustments can be
applied, to tune mirror times tm, in order to achieve the desired
distributed final state at a chosen later time.
All our SN investigations have been undertaken including the

presence of diagonal and off-diagonal disorder.Modeling of these
large SN systems has demonstrated significant robustness, even
with large error strength E. In general, SN robustness is observed
up to a typical error strength of E ≤ 10%. For example, the fi-
delity of the router protocol in SN systems remains above 92%
with E = 10%, for chain sizes up to N = 100 subject to diagonal
disorder. It also remains above 90% with E = 10% up to N = 40,
subject to the more damaging off-diagonal disorder. All our ro-
bustness results are very encouraging for future experimental ap-

Figure 24. The fidelity of each site as a function of the rescaled time t∕tm
for the protocol shown in Figure 23. It is clear that the state keeps evolving
from aMWS entanglement (between sites 6, 7, 9, and 10) to anotherMWS
entanglement (between sites 3, 4, 12, and 13), and vice versa.

plications because 10% is a relatively high error strength. Good
realistic devices can be expected to have error strengths signifi-
cantly lower than 10%. We also note that both methods of scaling
the SN (increasing the number of sites per chain while keeping
the number of chains fixed, or vice versa) show very similar ro-
bustness against disorder. (We do not present detailed numerical
results here.)
Our work presented thus far has been undertaken consider-

ing just the single-excitation sub-space of the SN systems. How-
ever, considering two- or multiple-excitation sub-spaces has sig-
nificant potential to further expand the range of possible applica-

Figure 25. The robustness of the fidelity of the MWS entanglement at
3tm∕2, in the presence of diagonal disorder (diag) and off-diagonal dis-
order (off-diag) with different error strengths, E, ranging from 0% to 50%.
Each point has been averaged over 1000 realizations. White line has the
same meaning as in Figure 3.
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tions of such SN systems, for example, the engineering of unitary
design for quantum gates and protocols, leveraging the higher
excitation sub-spaces. We plan to explore such applications in fu-
ture work.

Appendix A: Excitation Amplitudes Evolving
Different Phases

When a single-excitation is injected at site 5 (Figure 18 in Section 4.2.2),
amplitudes for the excitation will evolve through both chains of the SN.
Thus, an amplitude for the excitation evolves through the chain A of length
NA and another amplitude evolves through the chain B of length NB. The
different phases that result from the excitation amplitudes evolving though
A and B determine the final state, as we now describe.

Consider the excitation amplitude that evolves through A. This will
evolve to site 1 at tm,A with an overall phase factor of e

−i𝛼(NA) = (−i)NA−1 =

i, as NA = 4. Thus, the excitation amplitude at site 1 at tm,A will be given
by

|site1(tm,A)⟩ = i√
2
|r1⟩ (A1)

Then, this excitation amplitude evolves back from site 1 to being in a
superposition state between sites 4 and 5, acquiring another overall phase
of i, so the amplitude at 2tm,A will now be given with an overall phase of
-1,

|site4,5(2tm,A)⟩ = −
1

2
(|r4⟩ + |r5⟩) (A2)

If the system evolves for another period of 2tm,A, the amplitude at 4tm,A

will be given by

|site4,5(4tm,A)⟩ = 1

2
(|r4⟩ + |r5⟩) (A3)

Consider now the other amplitude of the excitation, that evolves
through chain B, which by design has weaker couplings. This will there-
fore take twice the time the excitation amplitudes takes to evolve through
chain A, so tm,B = 2tm,A. The amplitude of the single excitation injected at
site 5 that evolves through the chain B ends up in a superposition state
between sites 8 and 9 at tm,B, with an overall phase factor of (−i)

NB−1 = i,
but in addition because the coupling between sites 5 and 6 is negative, the
overall phase is −i,

|site8,9(tm,B)⟩ = −i
1

2
(|r8⟩ + |r9⟩) (A4)

Following this, the excitation amplitude will evolve back to being in a su-
perposition state between sites 4 and 5 at 2tm,B, with another overall phase
of i and a further relative phase of −1 at site 5 because of the negative cou-
pling between sites 5 and 6. Thus, the amplitude at 2tm,B will be given by

|site4,5(2tm,B)⟩ = 1

2
(|r4⟩ − |r5⟩) (A5)

We have seen how the excitation amplitudes evolve through each chain.
These can be combined to give the state of the system at 2tm,B, which will
simply be the sum of Equations (A3) and (A5), as 2tm,B = 4tm,A, so the
state of the system at 2tm,B is given as

|𝜓(2tm,B⟩ = 1

2
(|r4⟩ + |r5⟩ + |r4⟩ − |r5⟩) = |r4⟩ (A6)

It is now clear that if there is no difference in the excitation time through
each chain (i.e., tm,A = tm,B), then the state of the system at 2tm,B will sim-

ply be the sum of Equations (A2) and (A5), as 2tm,B = 2tm,A, so the state
would be given as

|𝜓(2tm,B⟩ = 1

2
(− |r4⟩ − |r5⟩ + |r4⟩ − |r5⟩) = − |r5⟩ (A7)

We note that if we evolve for another 2tm,B, then both equations (Equa-
tions (A6) and (A7)) will evolve back to |r5⟩, demonstrating periodicity
with period 4tm,B.
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