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A B S T R A C T

Probabilistic sensitivity analysis identifies the influential uncertain input to guide decision-making. We propose
a general sensitivity framework with respect to the input distribution parameters that unifies a wide range of
sensitivity measures, including information theoretical metrics such as the Fisher information. The framework
is derived analytically via a constrained maximisation and the sensitivity analysis is reformulated into an
eigenvalue problem. There are only two main steps to implement the sensitivity framework utilising the
likelihood ratio/score function method, a Monte Carlo type sampling followed by solving an eigenvalue
equation. The resulting eigenvectors then provide the directions for simultaneous variations of the input
parameters and guide the focus to perturb uncertainty the most. Not only is it conceptually simple, but
numerical examples demonstrate that the proposed framework also provides new sensitivity insights, such as
the combined sensitivity of multiple correlated uncertainty metrics, robust sensitivity analysis with an entropic
constraint, and approximation of deterministic sensitivities. Three different examples, ranging from a simple
cantilever beam to an offshore marine riser, are used to demonstrate the potential applications of the proposed
sensitivity framework to applied mechanics problems.

1. Introduction

The use of mathematical models to simulate real-world phenomena
is firmly established in many areas of science and technology. The
input data for the models are often uncertain, as they could be from
multiple sources and of different levels of relevance. The uncertain
inputs of a mathematical model induce uncertainties in the output and
sensitivity analysis identifies the influential inputs to guide decision-
making. A broad range of approaches can be found in the literature,
but in practice, the input uncertainties are commonly quantified by
a joint probability distribution. The analysis of the input and output
relationship in this probabilistic setting is called probabilistic sensitivity
analysis [1].

A suitable measure can be used to summarise the induced output
uncertainties. Commonly used metrics are the (central) moment func-
tions of the uncertain output, such as the mean and variance, and
the probability of failure, i.e., the probability that the random output
would exceed a certain threshold. In addition, the average uncertainty
or information content can be measured using entropy that is based on
the entire distribution function of the random output [2]. The proba-
bilistic sensitivity analysis then examines the relationship between the
uncertain input and the induced uncertainty of the output. In particular,
we are interested in identifying which input parameters would impact
the output metrics the most, i.e., the largest output change for the same
input variation, to guide decision-making.

E-mail address: jy419@cam.ac.uk.

In this setting, the sensitivity of the point estimates, such as the
moment functions and the failure probabilities, can be obtained us-
ing the partial derivatives of the metrics with respect to (w.r.t) the
input distribution parameters. Although the general application of the
derivative-based sensitivity analysis can be limited by the difficulty of
computing the derivatives, the derivatives w.r.t the input distribution
parameters can be more easily evaluated by differentiation inside the
expectation operator (c.f. Eqs. (1)–(4) in Section 2). This is possible
because the individual samples of the random output are not directly
dependent on the input distribution parameters. As a result, the partial
derivative operation is only evaluated w.r.t the joint probability density
function (PDF) of the input, and this approach is called the likelihood
ratio/score function method (LR/SF) [3,4].

As described, the LR/SF method is merely a mathematical trick.
Nevertheless, if used together with a sampling method, it is efficient as
the uncertainty metric and its sensitivity can be evaluated in a single
simulation run (c.f. Section 3.4). The LR/SF method has been applied
to general objective functions in stochastic optimisation [3], the failure
probability in reliability engineering [5] and some distribution-free
properties of the LR/SF method are discussed in [6].

The sensitivity of entropy, on the other hand, cannot be directly
evaluated using the LR/SF method. Instead, sensitivity related to en-
tropy is often analysed using the Kullback–Leibler (K-L) divergence
(aka relative entropy), by measuring the divergence between two PDFs
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(probability density functions) corresponding to two different cases.
This approach is studied in [7] for safety assessment to explore the
impact on risk profile due to input uncertainties and in [8] for engi-
neering design before and after uncertainty reduction of the random
variables of interest. A similar approach using the mutual information
between the input and the output has also been studied for sensitivity
analysis [9]. The mutual information can be regarded as a special form
of the K-L divergence except that it requires the use of the joint PDF. As
the K-L divergence is not a metric, alternative distance measures such
as the Hellinger distance has been proposed to quantify the difference
between two PDFs and the corresponding sensitivities [10].

It should be noted although the relative entropy is not a metric,
its infinitesimal form is directly linked to the Fisher information [11]
which is a metric tensor and this link has been explored in [12] for
probabilistic sensitivity analysis using the Fisher information matrix
(FIM). The LR/SF method can then be used to compute the FIM
efficiently for sensitivity analysis of the output entropy [12].

In this paper, we propose a new sensitivity matrix 𝐫 that unifies the
sensitivity of a wide range of commonly used uncertainty metrics, from
moments of the uncertain output to the entropy of the entire distribu-
tions, in a single framework. This is made possible by the likelihood
ratio/score function method (LR/SF) where the sensitivity to the input
distribution parameters of different metrics can be expressed in the
same form (c.f. Eq. (4)). The 2nd moment of the sensitivity matrix,
E
[
𝐫𝐫T

]
, arises naturally when the impact of input perturbation on the

output is examined. Moreover, the maximisation of the perturbation
of the output uncertainty metrics leads to an eigenvalue problem of
the matrix E

[
𝐫𝐫T

]
. The eigenvalues represent the magnitudes of the

sensitivities with respect to (w.r.t) simultaneous variations of the input
distribution parameters 𝐛, and the relative magnitudes and directions of
the variations are given by the corresponding eigenvectors. Therefore,
the eigenvectors corresponding to the largest eigenvalues are the most
sensitive directions to guide decision-making.

The sensitivity matrix 𝐫 can be seen as a counterpart of the deter-
ministic sensitivity matrix (Jacobian matrix) as the elements of 𝐫 are the
normalised partial derivatives of the output uncertainty metrics w.r.t
to the distribution parameters of the uncertain input (c.f. Eq. (6)). The
resulting eigenvectors, therefore, have direct sensitivity interpretation.
It should be noted that although the sensitivity matrix 𝐫 is formulated
and estimated using the LR/SF method, the use of the 2nd moment
matrix and its eigenvectors for sensitivity analysis additionally captures
the interactions of the sensitivities of different metrics.

In addition, the current work is motivated by a recent study [13]
where a special case of the proposed sensitivity matrix has been applied
successfully to the combined sensitivity analysis of multiple failure
modes. We are going to show that, not only does E

[
𝐫𝐫T

]
capture

the combined perturbation effect of multiple metrics, e.g., multiple
failure modes or multiple moment functions, but also include the Fisher
information matrix (FIM) as a special case. Application of the FIM
for sensitivity analysis can be found in many areas of science and
engineering. For example, the Fisher Information Matrix (FIM) has
been applied to the parametric sensitivity study of stochastic biolog-
ical systems [14], to assess the most sensitive directions for climate
change given a model for the present climate [15] and as one of the
process-tailored sensitivity metrics for engineering design [12].

It should be noted that there are two main differences between the
proposed framework and the commonly used variance-based sensitivity
analysis [16]. First, variance-based approaches study how the variance
of the output can be decomposed into contributions from uncertain
inputs. It ranks the factors based on the assumption that the factor can
be fixed to its true value, i.e., complete reduction of the uncertainties,
which is rarely possible in practice [1]. In contrast, the proposed
framework uses partial derivatives to examine the perturbation of the
output metrics due to a variation of the input distribution parameters.
As the distribution parameters are often based on data, it is equivalent
to asking which uncertain dataset the decision-makers should focus

on to change the output the most. And this is particularly pertinent
to data-driven applications like digital twins [12]. Second, the output
sensitivity measure from the variance-based methods is the percentage
contribution, of each factor or the interactions between factors, to
the output variance. The proposed framework, on the other hand,
outputs the eigenvectors of the sensitivity moment matrix E

[
𝐫𝐫T

]
as

the principal sensitivity directions for simultaneous variations of the
input distribution parameters. This is based on a more pragmatic view
that given a finite budget to change the parameters, maximising the
impact on the output follows the principal sensitivity directions, which
tend to be a simultaneous variation of the parameters because their
effects on the output are likely to be correlated. More discussions on
the budget constraint can be found in Section 3.2 with a generalisation
to the generalised eigenvalue problem.

It should be noted that despite the differences, for some cases, the
aggregated index for individual parameters given in Eq. (25) can be
used to compare the Fisher sensitivity results against the variance-
based main and total sensitivity indices. This has been done in [17]
for a 15-dimensional problem, and in that case, the dominant first
eigenvector of the FIM seems to correspond to the main effects from
the variance-based sensitivity analysis.

In what follows, the general sensitivity framework is introduced in
Section 2 where the sensitivity analysis is reformulated as a standard
eigenvalue problem. In Section 3, we discuss various properties of
the proposed framework, including the link to the Fisher information
matrix and the possible extension to a generalised eigenvalue problem
for robust sensitivity analysis. A benchmark study, using two commonly
used functions for sensitivity analysis, is conducted in Section 4 for the
Fisher sensitivity. Three different examples are considered in Section 5,
ranging from a simple cantilever beam to an offshore marine riser,
to demonstrate the potential applications of the proposed sensitivity
framework. Concluding remarks are given in Section 6.

2. Sensitivity framework

Consider a general function 𝐲 = 𝐡(𝐱), the probabilistic sensitivity
analysis characterises the uncertainties of the outputs 𝐲 that are induced
by the random inputs 𝐱. It is assumed that the uncertainties of 𝐱 can
be described by parametric probability distributions, i.e., 𝑥 ∼ 𝑝(𝐱|𝐛),
where 𝐛 are the distribution parameters.

One commonly used summary statistic is the (central) moment
function of the uncertain output, such as the mean and variance. More
generally, the moment function is taken with respect to a function of
the uncertain output 𝑔(𝐲). This might arise when there is a stochastic
process present, such as the random forces considered in some of the
examples in Section 5, and the 𝑔(⋅) function could represent max, min
or root mean square (r.m.s). In this setting, the 𝑞th moment function
and its partial derivative w.r.t the input distribution parameters can be
expressed as:

𝑚𝑞 = E𝑋

[
𝑔𝑞(𝐡(𝐱))

]
= ∫ 𝑔𝑞(𝐡(𝐱))𝑝(𝐱|𝐛)d𝐱 (1a)

𝜕𝑚𝑞

𝜕𝐛
= ∫ 𝑔𝑞(𝐡(𝐱))

𝜕𝑝(𝐱|𝐛)
𝜕𝐛

d𝐱 (1b)

where it has been assumed that the differential and integral operators
are commutative, i.e. the order of the two operations can be exchanged
under regularity conditions of continuous and bounded functions.

Another metric is the probability of failure and its gradient:

𝑃𝑓 = E𝑋 [H [𝑔 (𝐡(𝐱)) − 𝑧]] = ∫ H [𝑔 (𝐡(𝐱)) − 𝑧] 𝑝(𝐱|𝐛)d𝐱 (2a)

𝜕𝑃𝑓

𝜕𝐛
= ∫ H [𝑔 (𝐡(𝐱)) − 𝑧]

𝜕𝑝(𝐱|𝐛)
𝜕𝐛

d𝐱 (2b)

where H(⋅) is the Heaviside step function and 𝑧 represents the failure
threshold. It is noted in passing that the application of failure probabil-
ity is not limited to reliability engineering. For example, the probability
of cost-effectiveness in health economics [18] and the probability of

2



J. Yang Probabilistic Engineering Mechanics 72 (2023) 103433

acceptability in design [19] can both be formulated in the same way as
Eq. (2a).

When the quantity of interest is the underlying distribution function
of the uncertain outputs, the density function and its gradient w.r.t the
distribution parameters can be expressed as [12]:

𝑝(𝐲) = E𝑋

[∏
𝑛

𝛿
[
𝑦𝑛 − ℎ𝑛(𝐱)

]]
= ∫

∏
𝑛

𝛿
[
𝑦𝑛 − ℎ𝑛(𝐱)

]
𝑝(𝐱|𝐛)d𝐱 (3a)

𝜕𝑝(𝐲)

𝜕𝐛
= ∫

∏
𝑛

𝛿
[
𝑦𝑛 − ℎ𝑛(𝐱)

] 𝜕𝑝(𝐱|𝐛)
𝜕𝐛

d𝐱 (3b)

where 𝛿(⋅) is the Dirac delta function.
Although the aforementioned diverse metrics measure different as-

pects of the uncertain output, it is clear that all of them can be more
compactly described using a general utility function:

𝑈 = E𝑋 [𝑢 (𝐱)] = ∫ 𝑢 (𝐱) 𝑝(𝐱|𝐛)d𝐱 (4a)

𝜕𝑈

𝜕𝐛
= ∫ 𝑢 (𝐱)

𝜕𝑝(𝐱|𝐛)
𝜕𝐛

d𝐱 (4b)

where the utility function 𝑢(𝐱) represents the 𝑔𝑞(⋅) in Eq. (1), H(⋅) in
Eq. (2) and 𝛿(⋅) in Eq. (3). It should be noted that the utility function
could also depend on other variables, such as the failure threshold 𝑧 for
the case of failure probability. However, 𝑢(𝐱) is not directly dependent
on the parameters 𝐛, as 𝐛 → 𝐱 → 𝑢(𝐱) forms a Markov chain. As a
result, it is possible to differentiate the joint PDF 𝑝(𝐱|𝐛) within the
integral in Eq. (4b). And that is the same for Eqs. (1)–(3). As mentioned
in the introduction, this approach is sometimes called the likelihood
ratio/score function method (LR/SF). An advantage of this approach
is that, if used together with a sampling method such as the Monte
Carlo method, the uncertainty quantification and sensitivity analysis
can be conducted in a single simulation run and more details are given
in Section 3.4.

The purpose of our sensitivity analysis is to identify the most
important uncertain parameters, i.e., which set of parameters would
perturb the output of interest the most. This perturbation can be quan-
tified as 𝛺 = (𝛥𝑈∕𝑈 )2, where the normalisation leads to percentage
perturbation and the square operation quantifies the absolute value. If
a first-order perturbation is assumed, a general form of the normalised
perturbation is:

𝛺 = E

[∑
𝑘

(
𝛥𝑈𝑘

𝑈𝑘

)2
]

= E

[∑
𝑘

(
1

𝑈𝑘

𝜕𝑈𝑘

𝜕𝐛
𝛥𝐛

)2
]

=
∑
𝑖

∑
𝑗

𝛥𝑏𝑖𝛥𝑏𝑗E

[∑
𝑘

𝑟𝑖𝑘𝑟𝑗𝑘

]

= 𝛥𝐛TE
[
𝐫𝐫T

]
𝛥𝐛

(5)

where the 𝑗𝑘th entry of the matrix 𝐫 is defined accordingly as:

𝑟𝑗𝑘 =
1

𝑈𝑘

𝜕𝑈𝑘

𝜕𝑏𝑗
(6)

The matrix 𝐫 can be seen as a counterpart of the deterministic sensi-
tivity matrix (Jacobian matrix) and therefore called sensitivity matrix
in this paper. It is interesting to note that the 2nd moment of the sen-
sitivity matrix, E

[
𝐫𝐫T

]
, arises naturally from the perturbation analysis.

As it is in the form of a Gram matrix, E
[
𝐫𝐫T

]
is symmetric positive

semi-definite (also evident from the quadratic form of Eq. (5)).
The general form of the perturbation in Eq. (5) considers the com-

bined effect of multiple utilities. For example, there could be multiple
failure modes where 𝑈𝑘 = 𝑃

(𝑘)

𝑓
denotes the 𝑘th failure mode; it is

also often of interest to consider the combined sensitivity of multiple
responses or moments of the same uncertain output where 𝑈𝑘 = 𝑚𝑘

denotes the 𝑘th moment. It is noted in passing that a weighting could
be added to each 𝑈𝑘 and that would result in a weighting of 𝑟𝑗𝑘 in
Eq. (6). The weighted scenario is not considered further in this paper as

the weighting is strongly case-dependent but will not alter the general
form of Eq. (5). The expectation operation E[⋅] in Eq. (5) takes account
of any additional uncertainties that might arise in different cases. For
example, the failure threshold 𝑧 could be uncertain in Eq. (2); for the
case of the joint density function, where 𝑈 = 𝑝(𝐲), the gradient of the
log utility described in Eq. (6) is uncertain due to randomness of the
output 𝐲.

Using the general perturbation function described in Eq. (5), the
sensitivity analysis can be formulated as a constrained optimisation
problem:

max
1

2
𝛺 =

1

2
𝛥𝐛TE

[
𝐫𝐫T

]
𝛥𝐛

s.t. 𝛥𝐛T𝛥𝐛 = 𝜖

(7)

where the method of Lagrange Multiplier can be used:

𝐿 = 𝛥𝐛TE
[
𝐫𝐫T

]
𝛥𝐛 − 𝜆(𝛥𝐛T𝛥𝐛 − 𝜖) (8a)

𝜕𝐿

𝜕𝛥𝐛
= E

[
𝐫𝐫T

]
𝛥𝐛 − 𝜆𝛥𝐛 (8b)

where 𝜆 is the Lagrange multiplier. Setting the first order optimality
condition for the Lagrangian, Eq. (8b) then leads to the following
standard eigenvalue problem:

E
[
𝐫𝐫T

]
𝐪 = 𝜆𝐪 (9)

The eigenvalues represent the magnitudes of the sensitivities with
respect to (w.r.t) simultaneous variations of the parameters 𝐛, and the
relative magnitudes and directions of the variations are given by the
corresponding eigenvectors. As the solution to a maximisation problem,
the eigenvectors corresponding to the largest eigenvalues then provide
the most perturbation of 𝛺 in Eq. (5).

3. Discussion

3.1. Information theoretical metrics as a special case

When the utility 𝑈 corresponds to a probablity or probability den-
sity, the expression for 𝐫 in Eq. (6) can be more compactly written as:

𝑟𝑗𝑘 =
𝜕 log𝑈𝑘

𝜕𝑏𝑗
(10)

As the log probability can be seen as the information content of a
random event in information theory, the expression in Eq. (10) reveals
the information link of the sensitivity framework.

More concretely, for the case described in Eq. (3), the utility corre-
sponds to 𝑝(𝐲) and the resulted perturbation is (using Eqs. (5) and (6)):

𝛺 = E𝑌

[(
𝛥𝑝(𝐲)

𝑝(𝐲)

)2
]

= 𝛥𝐛TE𝑌

[
𝜕 log 𝑝(𝐲)

𝜕𝐛

𝜕 log 𝑝(𝐲)

𝜕𝐛

T]
𝛥𝐛

(11)

where the expectation part in the right hand side of the equation can
be more explicitly written as:

E𝑌

[
𝜕 log 𝑝(𝐲)

𝜕𝐛

𝜕 log 𝑝(𝐲)

𝜕𝐛

T]
= ∫

𝜕 log 𝑝(𝐲)

𝜕𝐛

𝜕 log 𝑝(𝐲)

𝜕𝐛

T

𝑝(𝐲)d𝐲

= ∫
𝜕𝑝(𝐲)

𝜕𝐛

𝜕𝑝(𝐲)

𝜕𝐛

T
1

𝑝(𝐲)
d𝐲

(12)

and this is the Fisher information matrix (FIM) [2] and is denoted as
𝐅. Therefore, the perturbation in Eq. (11) can be rewritten as:

𝛺 = 𝛥𝐛T𝐅𝛥𝐛 ≈ 2KL
[
𝑝(𝐲|𝐛) ∥ 𝑝(𝐲|𝐛 + 𝛥𝐛)

]
(13)

where KL[⋅] indicates Kullback–Leibler (K-L) divergence and it is also
called relative entropy [2]. The approximation in Eq. (13) can be found
via a Taylor expansion of the perturbed PDF 𝑝(𝐲|𝐛+𝛥𝐛) from the relative

3
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entropy expression, with the third and higher order terms ignored. It
should be noted that Eq. (13) has been derived in [12] to link the
relative entropy and the FIM. However, in this paper, we have extended
that link to a general perturbation metric 𝛺 which unifies several other
metrics as well.

In Section 4, a benchmark study is conducted for the Fisher sensi-
tivity. As mentioned in the introduction, the application of the Fisher
information for sensitivity analysis can be found in many areas of
science and engineering. In the numerical examples given in Section 5,
we will demonstrate that the FIM can be utilised in different ways using
the proposed framework.

3.2. Extension to generalised eigenvalue problems

The constraint in Eq. (7) controls the potential change of the pa-
rameters. This limit can be seen as a result of the finiteness of resources
which is true for all physical systems. A more general decision-oriented
constraint can be written as:

𝛥𝐛T𝐖𝛥𝐛 = 𝜖 (14)

where 𝐖 is a weighting matrix which is symmetric. Instead of the
standard eigenvalue equation in Eq. (9), the weighted constraint from
Eq. (14) leads to a generalised eigenvalue problem:

E
[
𝐫𝐫T

]
𝐪 = 𝜆𝐖𝐪 (15)

Consider a scenario where the interest is to understand the sensitivity of
the failure probability. Eq. (9) then leads us to the standard eigenvalue
analysis of the following matrix:

E
[
𝐫𝐫T

]
= E

[
𝜕 log𝑃𝑓

𝜕𝐛

𝜕 log𝑃𝑓

𝜕𝐛

T
]

(16)

where the expectation is w.r.t the potential uncertain failure threshold.
Eq. (16) is rank-1 for a deterministic threshold. However, the resulting
sensitivity directions for 𝛥𝐛 might impact both the safe and failure
regions. One way to mitigate the unwanted perturbation is to set an
uncertainty constraint using the relative entropy:

max
1

2
𝛺 =

1

2
𝛥𝐛TE

[
𝜕 log𝑃𝑓

𝜕𝐛

𝜕 log𝑃𝑓

𝜕𝐛

T
]
𝛥𝐛

s.t. KL
[
𝑝(𝐲|𝐛) ∥ 𝑝(𝐲|𝐛 + 𝛥𝐛)

]
= 𝜖

(17)

and this leads to the following generalised eigenvalue problem (with
the substitution of Eq. (13) for the approximation of the relative
entropy):

E

[
𝜕 log𝑃𝑓

𝜕𝐛

𝜕 log𝑃𝑓

𝜕𝐛

T
]
𝐪 = 𝜆𝐅𝐪 (18)

where the Fisher information matrix 𝐅 now takes the position of 𝐖 in
Eq. (15). Eq. (18) will be utilised in one of the numerical examples to
demonstrate the application for constrained perturbation of a failure
probability.

3.3. Reparameterisation and normalisation

The matrix E
[
𝐫𝐫T

]
depends on the parameterisation used. Suppose

𝑏𝑗 = 𝜙𝑗 (𝜃𝑖), 𝑖 = 1, 2,… , 𝑠, then the 𝑘th column of the sensitivity matrix
𝐫 with respect to θ is:

𝐫𝑘 =
1

𝑈𝑘

𝜕𝑈𝑘

𝜕θ
= J

T 1

𝑈𝑘

𝜕𝑈𝑘

𝜕𝐛
(19)

where J is the Jacobian matrix with J𝑗𝑖 = 𝜕𝑏𝑗∕𝜕𝜃𝑖. As a result, the matrix
E
[
𝐫𝐫T

]
w.r.t the parameters θ can be found via a reparameterisation:

E
[
𝐫𝐫T

]
θ
= J

T
E
[
𝐫𝐫T

]
𝐛
J (20)

Normalisation w.r.t the parameters 𝐛 is equivalent to a reparameteri-
sation. In the case of proportional normalisation, where the sensitivity

matrix becomes dimensionless, the change of parameter is 𝑏𝑗 = 𝑏̄𝑗𝜃𝑗
with 𝑏̄𝑗 the nominal value for normalisation, and the Jacobian matrix
in Eq. (20) is just a diagonal matrix with 𝑏̄𝑗 on the diagonal. Due to its
simplicity for sensitivity analysis, proportional normalisation is applied
to the numerical cases considered in Section 5.

3.4. Numerical considerations

A general function 𝐲 = 𝐡(𝐱) can rarely be solved analytically. The
unique mathematical form of Eqs. (1)–(3), and more generally Eq. (4),
allows efficient computation of the gradient if a sampling method such
as Monte Carlo (MC) method is used. The Monte Carlo approximation
of the integrals in Eq. (4) results:

𝑈 = ∫ 𝑢 (𝐱) 𝑝(𝐱|𝐛)d𝐱

≈
1

𝑁

∑
𝑖

𝑢
(
𝐱𝑖
) (21a)

𝜕𝑈

𝜕𝐛
= ∫ 𝑢 (𝐱)

𝜕 log 𝑝(𝐱|𝐛)
𝜕𝐛

𝑝(𝐱|𝐛)d𝐱

≈
1

𝑁

∑
𝑖

𝑢
(
𝐱𝑖
) 𝜕 log 𝑝(𝐱𝑖|𝐛)

𝜕𝐛

(21b)

where 𝐱𝑖 is a MC realisation of the random variable 𝐱 and𝑁 MC simula-
tions are considered. For many commonly used distributions, analytical
closed-form expressions can be obtained for the partial derivatives with
respect to (w.r.t) a distribution parameter. For example, for a Gaussian
distribution:

𝜕 log 𝑝(𝑥|𝜇, 𝜎)
𝜕𝜇

=
𝑥 − 𝜇

𝜎
(22a)

𝜕 log 𝑝(𝑥|𝜇, 𝜎)
𝜕𝜎

=
(𝑥 − 𝜇)2 − 𝜎2

𝜎3
(22b)

where 𝜇 and 𝜎 are the mean and standard deviation of the Gaussian
PDF. Therefore, with the analytical expressions available, the utility
of interest and its gradient in Eq. (21) can be obtained in a single
computational run. This is one of the main numerical advantages of the
adopted likelihood ratio/score function method (LR/SF) as described in
the introduction. The application of Eq. (21) has been validated in [13]
for a failure probability sensitivity, where the perturbation approxi-
mated using Eq. (21b) agrees well with the exact results from a direct
perturbation. In [12], the Fisher information estimated from Eq. (21)
also identifies the influential parameters for a marine riser as expected.
Not only is it efficient, but it is also clear that Eq. (21) is independent
of the parameter dimensions and thus the sensitivity approach is not
limited by the dimension of the input variables. It should be noted that
although the sensitivity framework introduced applies to dependent
inputs, it is assumed for simplicity in the numerical implementation
below that the components of 𝐱 are independent.

As the numerical computation is based on the LR/SF method, the
sensitivity estimation is independent of the dimension of the input
parameters [4]. This is in contrast to the variance-based methods where
the computational cost is proportional to the input dimension [16].
However, a large number of sampling points might be required to
maintain a low variance from the LR/SF estimation. As our main
purpose is to present the new sensitivity framework, only the standard
Monte Carlo (MC) method is used. Advanced simulation methods, such
as importance sampling and subset simulation, can be used to improve
the sampling efficiency.

Based on the LR/SF method estimation, the proposed framework
requires an eigen-decomposition of the E

[
𝐫𝐫T

]
matrix. As the size of the

2nd moment matrix depends on the dimension of the input parameters,
for high dimension problems, an iterative approach might be needed to
solve the eigenvalue decomposition. Nevertheless, as the 2nd moment
matrix is symmetric and it is often the first few largest eigenvalues that
are of interest for sensitivity analysis, additional cost for the eigenvalue
problem should be minimal compared to the MC sampling. As a result,
the computational cost of our method is similar to the LR/SF method
in general.
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Fig. 1. Fisher sensitivity results for the decreasing coefficient function described in Eq. (23).

Fig. 2. The eigenvalue spectrum of the Fisher information matrix, for the decreasing
coefficient function described in Eq. (23).

4. Benchmark study

The Fisher information has been introduced in [12] for sensitivity
analysis with respect to the input distribution parameters. The exam-
ples given in [12] have focused on the demonstration for engineering
design applications, but lack benchmarking against commonly used
functions for sensitivity analysis. As the Fisher sensitivity will be used
throughout the examples in Section 5, in this section, we present bench-
mark studies against two of the commonly used variable screening
benchmark functions. For screening purposes, the input variables for
both functions are assumed to be from a standard Gaussian distribution,
i.e., 𝑥 ∼ N(0, 1).

4.1. Decreasing coefficient function

The first benchmark function is a linear function with decreasing
coefficients:

𝑓 (𝐱) = 0.2𝑥1+
0.2

2
𝑥2+

0.2

4
𝑥3+

0.2

8
𝑥4+

0.2

16
𝑥5+

0.2

32
𝑥6+

0.2

64
𝑥7+

0.2

128
𝑥8+ 𝑒

(23)

where 𝑒 ∼ N(0, 0.052) is a small error term. This function has been used
for input variable screening in [20], where it concluded that the first
three variables, 𝑥1, 𝑥2, and 𝑥3, are more important than the rest.

The sensitivity analysis using the Fisher information matrix (FIM)
from Eq. (12) is applied to the function above and the results are
presented in Fig. 1. In contrast to variance-based sensitivity approaches,

as explained in the introduction, the proposed framework provides
the principal sensitivity directions w.r.t the distribution parameters,
e.g., the mean and standard deviation (Std Dev) in Fig. 1.

The sensitivity results in Fig. 1 display the first two eigenvectors of
the FIM, as the rest of the eigenvalues have negligible amplitudes as
shown in Fig. 2. The results in Fig. 1 clearly show that the importance
of the variables decreases as the subscript index increases. It is clear
that the first three variables are more important than the rest as seen
from the 1st eigenvector, and that agrees with the conclusion from [20].
Moreover, for the 1st eigenvector shown in Fig. 1(a), the ratio between
the sensitivities to the standard deviations of the first three variables are
[𝑥1:𝑥2:𝑥3] = [1:0.236:0.065]. This ratio is very close to the ratio of the
square of the coefficients, i.e., [1:1/4:1/16]. Similarly, the dominant
sensitivities to the mean of the first three variables, as given in Fig. 1(b),
have the ratio of [1:0.496:0.260]. This suggests that not only does the
FIM sensitivity index give the correct ranking of the variables, but it has
also accurately captured the relative strength of the linear coefficients
of Eq. (23).

In Fig. 2, the spectrum of the FIM eigenvalues is given, for different
numbers of Monte Carlo samples (c.f. Section 3.4). This serves as a
convergence test for the FIM estimation. The same type of convergence
tests has also been performed for the numerical examples in Section 5
but not presented for conciseness.

4.2. Roos & Arnold function

The second benchmark function is a product function:

𝑓 (𝐱) =

𝑑∏
𝑖=1

|4𝑥𝑖 − 2| (24)

This function occurs as an integrand multiple times in the literature. It
has been classified as a Type C function in [21], meaning that it has
dominant high-order interaction terms. It is clear from Eq. (24) that
there is no difference between the input variables. The results from
the FIM, similar to the previous example, are shown in Fig. 3 with
five input variables. In this case, the first eigenvalue is much bigger
than the rest as shown in Fig. 4 (which also shows the convergence
results as previous example). The sensitivity results in Fig. 3 agree well
with expectations that the input variables are of similar importance. It
should be noted that the amplitudes of the five variables shown in Fig. 3
are not exactly the same from the Fisher sensitivity. This is because
the FIM is based on a sampling approach and the samples for the five
input variables will not be exactly the same as they are independently
sampled.

5
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Table 1
Mean (𝜇) and Coefficient of Variation (CoV) for the random variables.

Young’s Modulus Density Length Width Thickness

E [Pa] 𝜌 [kg∕m3] L [m] w [m] t [m]
Mean 69e9 2700 0.45 2e−2 2e−3
Scenario-A Normal distribution with CoV = 0.1
Scenario-B Gamma distribution with CoV = 0.5

Fig. 3. Fisher sensitivity results for the Roos & Arnold function described in Eq. (24).

Fig. 4. The eigenvalue spectrum of the Fisher information matrix, for the Roos &
Arnold function described in Eq. (24).

5. Application examples

5.1. Combined sensitivity for multiple responses

In this section, we use a simple cantilever beam as an example to
demonstrate the combined sensitivity analysis for multiple responses
using the proposed sensitivity framework. The cantilever beam, case
1 in Fig. 5, is subject to a white noise excitation of unit amplitude.
The frequency response functions for both acceleration and strain
responses, at different positions along the beam, are obtained via modal
summation. To keep it simple, only the first mode is considered with
a constant modal damping of 0.1. The linear vibration equation of a
cantilever beam can be found in many vibration/mechanics textbooks,
see e.g., [22], and it is therefore not repeated here for conciseness. The
code for this example study can be found in the address given in Data
availability statement.

The quantities of interest for our sensitivity analysis are the peak
r.m.s acceleration and strain responses. ‘peak’ indicates the maximum
response along the beam for each sample of the random inputs. The 𝑔(⋅)
function in Eq. (1) is thus the composition of the r.m.s and maximum
functions in this case. The two types of response are normalised by the
maximum values across the ensemble of the random samples, i.e., the
peak r.m.s results are between 0 and 1.

The parameters for the random variable are listed in Table 1. Two
scenarios are considered with the same mean value but different types
of distributions, one with Normal (Gaussian) distribution and the other
one with Gamma distribution, of which the coefficients of variation

(CoV) are different. The sensitivity results are shown in Fig. 6 for the
relative ranking of the five input random variables. One measure for
the relative importance of the 𝑗th variable can be obtained as:

𝑠2
𝑗
=
∑
𝑖

𝜆𝑖𝑞
2
𝑗𝑖

(25)

where 𝜆 and 𝐪 are the eigenvalue and eigenvector of the sensitivity
matrix from Eq. (9).

Eq. (25) takes a Pythagorean view to estimate the contributions, in
analogy to principal component analysis, within each eigenvector and
across different eigenvectors using the eigenvalue amplitudes. How-
ever, this summary index from Eq. (25) assumes that different principal
sensitivity directions, represented by the eigenvectors, can be varied at
the same time for the parameters. This aggregated view of importance
measure essentially only considers the diagonal entries of the moment
matrix E

[
𝐫𝐫T

]
, as shown in Appendix A. It therefore ignores the inter-

actions between the parameters (off-diagonal terms). Furthermore, the
phase information of the sensitivity vectors, i.e., increase or decrease,
are also lost using this summary index from Eq. (25). This summary
sensitivity index is used only in this case to give a better indication
that the proposed sensitivity metric does account for the combined
effect, as a direct comparison between eigenvectors is difficult between
two different metrics. As the purpose of the sensitivity framework is to
find the influential set of distribution parameters, as discussed in the
introduction, sensitivity results from the eigenvectors will be used for
the next two examples.

In this case study, the utility function to form 𝐫 in Eq. (6) is the
mean value of the uncertain response (the peak r.m.s response for each
sample of the random input), i.e., 𝑈1 and 𝑈2 are the averaged peak
r.m.s acceleration and strain responses respectively. 𝐫1 and 𝐫2 are the
normalised LR/SF sensitivity vectors of the two corresponding utility
functions as in Eq. (6).

In Fig. 6, the combined sensitivity result is indicated by 𝛺. This
is computed using Eq. (25) with the eigenvalues/eigenvectors of the
E
[
𝐫𝐫T

]
matrix from Eq. (9), where 𝐫1 and 𝐫2 are the intermediate results

for forming the E
[
𝐫𝐫T

]
matrix in this case.

In comparison, the sensitivity results using the Fisher information
matrix (FIM) form Eq. (12) is also presented in Fig. 6. It can be seen in
Fig. 6 that 𝐫1 ranks 𝐿 as more important than 𝑡, while 𝜌 and 𝐿 are of
little importance from 𝐫2. In contrast, although the absolute agreement
varies, the resulting relative ranking of the random variables are very
similar between the combined analysis (𝛺) and the FIM. The conclusion
is similar between scenario-A and scenario-B.

The FIM results are based on the joint probability density function
of the acceleration and strain responses. This is in contrast to the
combined sensitivity analysis where the two types of responses are
assumed to be independent. Nevertheless, the comparison in Fig. 6
demonstrates that the combined analysis takes account of the combined
perturbation of multiple responses, as indicated by the derivation in
Eq. (5). This is in line with the findings in [13] for multiple correlated
failure modes, which can be seen as a special case of the proposed
sensitivity framework in this paper.

5.2. Robust failure sensitivity

In this section, the generalised eigenvalue problem introduced in
Section 3.2 is considered. In particular, we use Eq. (18) to demonstrate
the possibility to perturb a failure probability with an entropic con-
straint. This might arise in practice to avoid unwanted perturbation of
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Fig. 5. Three demonstrating examples. (a) Case 1, a cantilever beam with white noise excitation; (b) Case 2, an offshore marine riser subject to random wave loading; (c) Case
3, a model floating column in a wave tank.

Fig. 6. Variable ranking for multiple responses of the cantilever beam in Fig. 5(a). 𝐫𝟏, 𝐫𝟐 indicate the sensitivity of the 𝑈1 (acceleration) and 𝑈2 (strain) respectively. 𝛺 is for the
combined sensitivity results for 𝑈1 and 𝑈2 using the metric proposed in this paper, and ‘Fisher’ denotes the sensitivity results from the FIM using the jPDF of the responses. Error
bars indicate the standard deviation from 10 repetitions of estimation with 20000 samples for each run. (a) Scenario-A with Normal random input; (b) Scenario-B with Gamma
random input.

the system responses, e.g., no perturbation of the response in the safe
region, and it can be regarded as a robust failure sensitivity analysis.
The example system considered is an offshore marine rise shown in
Fig. 5(b) (Case 2) that is subject to a random wave excitation and
the nonlinear wave structure interaction is included in the model. The
simulation model for this case study, and Case 3 below, has been
developed using the CHAOS hydrodynamic code [23] which uses the
semi-empirical Morison’s equation [24] to estimate wave forces. This
case study is taken from [12] where the details of this model and
its sensitivities can be found. Different from [12] where the failure
sensitivity is compared to the Fisher sensitivity results, an entropic
constraint is applied to the failure sensitivity in this paper. The code

for this example study can be found in the address given in Data
availability statement.

The parameters for the uncertain variables of Case 2 are listed in
Table 2 and the corresponding failure sensitivity results are given in
Fig. 7. The results marked as ‘Constrained’ are obtained from solving
the generalised eigenvalue equation in Eq. (18). The corresponding
results of the standard failure sensitivity vector, which is equivalent to
substituting an identity matrix for the matrix 𝐅 in Eq. (18), is shown in
comparison and is denoted as ‘Standard’. Note that the standard results
are the same as in [12].

As can be seen in Fig. 7, the entropy-constrained sensitivity is
completely dominated by the S-N coefficients 𝛼 and 𝛿. This is because

7
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Fig. 7. Constrained sensitivity of the failure probability due to fatigue for Case 2. In comparison, the standard sensitivity results of the fatigue failure is also shown.

Table 2
Mean (𝜇) and Coefficient of Variation (CoV) for the random variables of Case 2.

Morison’s added
mass coefficient

Morison’s
drag coefficient

Riser
material density

Young’s
modulus

Oil
density

Top
tension

Material S-N
curve coefficients

𝐶𝑎 [-] 𝐶𝑑 [-] 𝜌 [kg/m3] 𝐸 [GPa] 𝜌0 [kg/m3] 𝑇0 [kN] 𝛼 [GPa] 𝛿 [-]
Mean 1.5 1.1 7840 200 920 4905 199 3
CoV 0.20 0.20 0.05 0.05 0.10 0.10 0.10 0.10

Table 3
Mean (𝜇) and Coefficient of Variation (CoV) for the random variables of Case 3.

Material
density

Water
density

Column
length

Tether
length

Ballast
position

Column
radius

Column
thickness

Ballast
mass

Mass
coefficient

𝜌 [kg/m3] 𝜌𝑓 [kg/m3] 𝐿 [m] 𝐿𝑆 [m] 𝐿𝑏 [m] 𝑟 [m] 𝑡 [m] 𝑚𝑏 [kg] 𝐶𝑎 [-]
Mean 1180 1025 1 0.2 0.15 4.5e−2 3.5e−3 3 1
CoV 1e−4 (𝛿-approximation with a small CoV)

the FIM is not dependent on the S-N coefficients that are specific to
the fatigue failure analysis. Although a relatively extreme example,
this case study demonstrates the potential application of the entropy-
constrained sensitivity analysis. It also shows the general applicability
of the proposed sensitivity framework once formulated as a generalised
eigenvalue problem.

5.3. Limiting approximation for deterministic inputs

In this section, we demonstrate the potential application of the
proposed sensitivity framework for deterministic inputs, where a 𝛿-
type distribution is assumed for approximation. In this example, the
natural frequency sensitivity of a model floating column in a wave tank
environment is analysed. This two-degrees-of-freedom floating system,
as seen in Fig. 5(c), is tethered to the bottom of the wave tank and
a ballast mass is added to adjust the centre of gravity. This example is
chosen here mainly to represent the commonly encountered natural fre-
quency design problem. Furthermore, a closed-form sensitivity analysis
for the natural frequencies, as given in Appendix B, can be obtained
straightforwardly as a benchmark. The example has been modelled
using this hydrodynamic code [23] where the added inertia effect of
the water is considered. The partial derivatives of the mass and stiffness
matrices, which are required for the analytical sensitivity results as seen
in Appendix B, are obtained using the symbolic differentiation module
within Matlab. The code for this example study can be found in the
address given in Data availability statement.

The sensitivity results for the two natural frequencies, namely 𝜔1

and 𝜔2, are displayed in Fig. 8 for the parameters listed in Table 3.

The ‘Deterministic sensitivity’ shows the results from the analytical
analysis, as given in Appendix B, using the mean values of the input
variables as the evaluation values. To use the proposed sensitivity
framework, the input variables are assumed to be uncertain with a
Gaussian distribution and the mean and CoV listed in Table 3. The
Fisher information matrix (FIM), based on Eq. (12), is formed for the
two natural frequencies and the eigenvectors of the FIM with large
eigenvalues then provide us with the sensitivity information. It should
be emphasized that in order to compare with the analytical deter-
ministic sensitivities, the FIM is calculated for each natural frequency
separately, i.e., one-dimensional PDF of each natural frequency rather
than the joint PDF. In this case, only the 1st eigenvectors of FIM are
shown as only the 1st eigenvalue dominates. Very good agreement can
be observed between the FIM results and the analytical sensitivities. In
particular, the relative phase of the parameter 𝐿𝑏 is captured by the
FIM despite its relatively low sensitivity.

6. Conclusions

A sensitivity matrix 𝐫 is proposed as a new probabilistic sensitivity
metric with respect to the input distribution parameters. The sensitivity
of a wide range of commonly used uncertainty metrics, from mo-
ments of the uncertain output to the entropy of the entire distribution,
can be formulated as an eigenvalue problem of the 2nd moment of
the proposed sensitivity matrix. The resulting framework has a solid
mathematical underpinning, is numerically efficient, and unifies the
sensitivity analysis in a general but conceptually simple framework.
And that is the main contribution of the present work.
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Fig. 8. Sensitivity of the two natural frequencies, with a comparison between the dominant Fisher eigenvector and the sensitivity obtained from the analytical approach. The
nominal values of the input parameters are used for the deterministic case, and as the mean values for the random case. (a) 1st natural frequency 𝜔1; (b) 2nd natural frequency
𝜔2.

The proposed framework is derived analytically via a constrained
maximisation of the perturbation of the output uncertainties. On top
of this mathematical foundation is the framework’s conceptual sim-
plicity, where its implementation only consists of two main steps, a
Monte Carlo type sampling followed by solving an eigenvalue equation.
Through the numerical examples, it is demonstrated that the sensi-
tivity framework can be applied for the combined sensitivity analysis
of multiple responses, even if the degree of correlation between the
responses is unknown. This is in line with the findings for multiple
correlated failure modes studied in [13]. In addition, using the failure
sensitivity as an example, it is shown that a robust sensitivity analysis
can be formed using entropy as a constraint and solved as a generalised
eigenvalue problem. Furthermore, the Fisher information matrix, a
special case of the proposed sensitivity metric, is shown to approximate
deterministic sensitivities very closely using 𝛿-type distribution inputs.

A key element of the framework is the sensitivity matrix 𝐫. As its
elements are the normalised partial derivatives of the expected utility of
interest, the resulting eigenvectors based on the sensitivity matrix have
direct sensitivity interpretations. Utilising the likelihood ratio/score
function method, when a sampling approach is used, the expected
utility and its derivatives can be obtained in a single simulation run.
This allows efficient computation of the sensitivity matrix 𝐫 and the
corresponding E

[
𝐫𝐫T

]
matrix.

The stochastic aspects of the output of interest have been considered
implicitly in this study. For example, the stochastic responses along the
beam in case 1 have been considered by setting the 𝑔(⋅) function as
the r.m.s operation. Future work will consider a stochastic variant of
the proposed framework, including sensitivities with respect to time-
dependent inputs and treating the expected utility as stochastic by
updating the expectation operation in Eq. (5).
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Appendix A. The summary sensitivity index

The eigenvalue equation from Eq. (9) can be rewritten as a matrix
decomposition (as E

[
𝐫𝐫T

]
is symmetric):

E
[
𝐫𝐫T

]
=𝐐𝛬𝐐T (A.1)

where 𝐐 is the eigenvector matrix with 𝐪𝑖 as its 𝑖𝑡ℎ column and 𝛬 is the
diagonal eigenvalue matrix.

Eq. (A.1) can be further expressed as a summation over the eigen-
values:

E
[
𝐫𝐫T

]
=
∑
𝑖

𝜆𝑖𝐪𝑖𝐪
T
𝑖

=
∑
𝑖

𝜆𝑖

⎡
⎢⎢⎢⎢⎣

𝑞2
1𝑖

… 𝑞1𝑖𝑞𝑗𝑖 …

⋱

sym 𝑞2
𝑗𝑖

⋱

⎤
⎥⎥⎥⎥⎦

(A.2)

Therefore, the sensitivity summary index in Eq. (25), where 𝑠2
𝑗

=∑
𝑖 𝜆𝑖𝑞

2
𝑗𝑖
, is essentially the diagonal entries of the moment matrix.

Appendix B. Analytical derivation for natural frequency sensitiv-
ity

The natural frequency 𝜔 of a linear discrete vibration system can be
found from the following eigenvalue equation:

𝐊φ = 𝜔2𝐌φ (B.1)
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where 𝐊 and𝐌 are the stiffness and mass matrices, φ is the eigenvector
and 𝜔2 is the corresponding eigenvalue. Without loss of generality,
the eigenvectors are assumed to be mass normalised, i.e., φT𝐌φ = 1.
Therefore, the partial derivatives of the squared natural frequency with
respect to the parameters are:

𝜕𝜔2

𝜕𝑏𝑗
=

𝜕

𝜕𝑏𝑗

(
φT𝐊φ

)

= 𝜔2
(
φT

𝑏𝑗
𝐌φ +φT𝐌φ𝑏𝑗

)
+φT𝐊𝑏𝑗

φ

= 𝜔2
(
−φT𝐌𝑏𝑗

φ
)
+φT𝐊𝑏𝑗

φ

= φT
(
𝐊𝑏𝑗

− 𝜔2𝐌𝑏𝑗

)
φ

(B.2)

where the subscript 𝑏𝑗 denotes the partial derivative with respect to
the parameter 𝑏𝑗 . In our case study with random input variables, the
parameter 𝑏𝑗 is taken as the mean value of the 𝑗𝑡ℎ variable. The 2nd to
3rd step of Eq. (B.2) makes use of the fact that 𝜕

𝜕𝑏𝑗

(
φT𝐌φ

)
= 0. The

partial derivatives of the natural frequency are then:

𝜕𝜔

𝜕𝑏𝑗
=

1

2𝜔
φT

[
𝜕𝐊

𝜕𝑏𝑗
− 𝜔2 𝜕𝐌

𝜕𝑏𝑗

]
φ (B.3)

and the normalised sensitivity is:

𝑟𝑗
𝜔
=

𝜕𝜔

𝜕𝑏𝑗

𝑏𝑗

𝜔
(B.4)
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