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ABSTRACT

The eigenvalues and eigenvectors of the Fisher Information Matrix (FIM) can reveal the most and least
sensitive directions of a system and it has wide application across science and engineering. We present
a symplectic variant of the eigenvalue decomposition for the FIM and extract the sensitivity information
with respect to two-parameter conjugate pairs. The symplectic approach decomposes the FIM onto an
even-dimensional symplectic basis. This symplectic structure can reveal additional sensitivity information
between two-parameter pairs, otherwise concealed in the orthogonal basis from the standard eigenvalue
decomposition. The proposed sensitivity approach can be applied to naturally paired two-parameter
distribution parameters, or a decision-oriented pairing via regrouping or re-parameterization of the FIM.
It can be used in tandemwith the standard eigenvalue decomposition and offer additional insights into the
sensitivity analysis at negligible extra cost. Supplementary materials for this article are available online.
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1. Introduction

1.1. Background

Sensitivity analysis is an integral part ofmathematicalmodeling,
and in particular a crucial element of decision-making in pres-
ence of uncertainties. The Fisher information, first introduced
by Fisher and Russell (1922) and is widely used for parameter
estimation and statistical inference, has found increasing appli-
cation inmany areas of science and engineering for probabilistic
sensitivity analysis. For example, the Fisher Information Matrix
(FIM) has been applied to the parametric sensitivity study of
stochastic biological systems (Gunawan et al. 2005); the FIM
is used to study sensitivity, robustness, and parameter identi-
fiability in stochastic chemical kinetics models (Komorowski
et al. 2011); through the link with relative entropy, the Fisher
information is used to assess the most sensitive directions for
climate change given amodel for the present climate (Majda and
Gershgorin 2010); used in conjunctionwith the principle ofMax
Entropy, the FIM is used to identify the pivotal voters that could
perturb the collective voting outcomes in social systems (Lee
et al. 2020); and more recently in Yang, Langley, and Andrade
(2022) the Fisher information have been proposed as one of
the process-tailored sensitivity metrics for engineering design.
Despite the wide scope, the applications mentioned above all
use the spectral analysis of the FIM, that is, the eigenvalues
and eigenvectors of the FIM reveal the most and least sensitive
directions of the system.

In this article, we apply a symplectic spectral analysis of
the FIM, and demonstrate that the resulting symplectic eigen-
values and eigenvectors are oriented toward better decision
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support by extracting sensitivity information with respect to
two-parameter pairs (e.g., the mean and standard deviation of a
Normal distribution). As to be demonstrated, the proposed sym-
plectic decomposition can be used in tandem with the standard
eigenvalue decomposition and offer additional insights into the
sensitivity analysis at negligible extra cost. An overview is given
in Figure 1.

Consider a general nonlinear function y = h(x) : Rn →

Rm, the probabilistic sensitivity analysis characterizes the uncer-
tainties of the output y that is induced by the random input x
(Oakley and O’Hagan 2004; Oakley 2009). It is noted in passing
that although the sensitivity analysis in this article is derivative-
based, the functionh(·)needs not to be differentiable, and can be
treated as black-box models when a sampling approach is used.

When the inputs can be described by parametric probability
distributions (including statistically correlated inputs), that is,
x ∼ p(x|b), the FIM can then be estimated as the covariance
matrix of the random gradient vector ∂ ln p(y|b)/∂b, with the
jkth entry of the FIM as (e.g., Yang, Langley, and Andrade 2022):

Fjk =

∫

∂p(y|b)

∂bj

∂p(y|b)

∂bk

1

p
dy = EY

[

∂ ln p

∂bj

∂ ln p(y|b)

∂bk

]

(1)

where p(y|b) is the joint Probability Density Function (PDF)
of the outputs. The eigenvalues of the FIM represent the mag-
nitudes of the sensitivities with respect to (wrt) simultaneous
variations of the parameters b, and the relative magnitudes
and directions of the variations are given by the corresponding
eigenvectors (Yang, Langley, and Andrade 2022). See Figure 1
for an overview.
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Figure 1. Overview of the sensitivity analysis based on the eigenvalues/
eigenvectors of symmetric FIM (F). The proposed symplectic decomposition looks
at the sensitivities with respect to two-parameter pairs, and it can be used in
tandem with the standard approach to provide additional insights.

The FIM depends on the parameterization used. Suppose
bj = gj(θi), i = 1, 2, . . . , s, then the FIM with respect to the
parameter θ is (Lehmann and Casella 1998):

F(θ) = J
TF(b)J (2)

where J is the Jacobian matrix with Jji = ∂bj/∂θi. Equation (2)
can be used to transform the FIM-based sensitivity analysis from
a general set of distribution parameters to a re-parameterization
wrt the means and standard deviations of the inputs. For exam-
ple, in Section 4, an example is given for converting the sensitiv-
ities wrt the scale/shape parameters of Gamma distributions to
the mean/standard deviation values of the uncertain inputs.

It should be noted that the sensitivity analysis based on FIM
is fundamentally different from the commonly used variance-
based analysis (Saltelli 2008). The Fisher sensitivity examines the
perturbation of the entire joint PDF of the outputs, more specifi-
cally, the entropy of output uncertainty.Moreover, the sensitivity
measures from the Fisher analysis are the eigenvectors, which
can be regarded as the principal directions for a simultaneous
variation of the input parameters. This is in contrast to variance-
based ranking where it is assumed that the uncertainty of the
input factors can be completely reduced to zero (Oakley and
O’Hagan 2004). As pointed out in Yang (2023), using principal
sensitivity directions is based on a pragmatic view that given a
finite budget to change the parameters, maximizing the impact
on the outputs follows the principal sensitivity directions, which
tend to be a simultaneous variation of the parameters because
their effects on the output are likely to be correlated. The con-
strained maximization view also leads to the symplectic eigen-
vectors in a symplectic basis as discussed in Section 2.1.

The FIM uses the information from the joint PDF of the
outputs p(y) and its gradient vector, as can be seen in (1).
This is different from many of the distribution-based sensi-
tivity analysis methods, where a distance metric is defined to
measure the discrepancy between the conditional and uncon-
ditional output PDFs. For example, Borgonovo (2007) pro-
posed a moment independent δ-indicator that looks at the
entire input/output distribution. The definition of δ-indicator
examines the expected total shift between the conditional and
unconditional output PDFs, where the shift is conditional on
one or more of the random input variables. Other distance
measures have also been used for sensitivity analysis, including
the mutual information (Critchfield and Willard 1986), relative
entropy and the Hellinger distance (Jia and Taflanidis 2014). A
review of distribution-based sensitivitymethods can be found in
Borgonovo and Plischke (2016).

Note that the FIM is closely linked to the relative entropy (see
Section 2.2) between the jPDF of the outputs and its perturba-
tion due to an infinitesimal variation of the input distributions.
Sensitivity indices based on the modification of the input PDFs
have been proposed in Lemaître et al. (2015) for reliability
sensitivity analysis, where the input perturbation is derived from
minimizing the probability divergence under constraints. In
contrast, we consider parametric uncertain inputs in this article
to form the FIM and the resulting eigenvectors provide the
principal directions for the input perturbation.

The Fisher sensitivity is based on partial derivatives, but it
is different from the derivative-based global sensitivity measure
(Sobol’ and Kucherenko 2009) which is defined as the integral
of the squared derivatives of the function output. The Fisher
information, on the other hand, is defined as the variance of
the partial derivatives of the log probability of the uncertain
function output, as seen in (1). And this differentiation is wrt
the distribution parameters of the uncertain input, not wrt the
uncertain variables themselves. Therefore, the Fisher sensitivity
examines the impact of the perturbation of the input probability
distribution, and as the input distributions are often estimated
from data, it is equivalent to assessing which uncertain datasets
to be focused on.

Many widely applied parametric distributions are in the
two-parameter families, for example, the location-scale families
including the Normal distribution and Gamma distribution.
Although the Fisher sensitivity is with respect to these distribu-
tion parameters b, the quantities of interest for decision-making
are ultimately the uncertain variables x themselves, for example,
to rank the relative importance of x. We will demonstrate in this
article that the symplectic decomposition of the FIM identifies
the influential two-parameter pairs, or equivalently the corre-
sponding variables, and can be used in tandemwith the standard
eigenvalue decomposition for better decision supports.

1.2. AMotivating Example

As a motivating example, we consider an engineering design
problem under uncertainties. Consider a simple cantilever beam
where theYoung’smodulusE and the lengthL are uncertain, that
is, x = (E, L), and the uncertainties can be described by Normal
distributions with E ∼ N (μ1 = 69e9, σ 2

1 = 11.5e92) and L ∼

N (μ2 = 0.45, σ 2
2 = 0.0452). To keep it analytically tractable for

this motivating example, we assume a trivial function y = x (a
random vibration problem considered in Section 4). Assuming
the two random variables are independent, the FIM in this case
is diagonal (Cover and Thomas 2006):

F(μ1, σ1,μ2, σ2) = diag
(

σ−2
1 , 2σ−2

1 , σ−2
2 , 2σ−2

2

)

. (3)

The eigenvalues, the diagonal entries of the FIM in (3) in
this case, and the corresponding eigenvectors then provide the
sensitivity information of the uncertain output y wrt the input
parameter vector b = (μ1, σ1,μ2, σ2). More specifically, they
correspond to the sensitivities of the relative entropy of the
random outputs as to be discussed in Section 2 (Yang, Langley,
and Andrade 2022).

For practical use of the Fisher sensitivity information, two
issues need to be addressed and that motivates our research in
this article. First, the FIM needs to be normalized. On one hand,
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the un-normalized FIM given in (3) tends to be ill-conditioned.
For example, the condition number is in the order of 1022 given
that σ1 = 11.5e9 and σ2 = 0.045. On the other hand, as the
Young’s modulus E and the length L are of different units, the
FIM needs to be normalized so that the sensitivities wrt the
different parameters are comparable. One option is to consider
sensitivity wrt a percentage change of the parameter and this is
called proportional (Yang, Langley, and Andrade 2022) or log-
arithmic (Pantazis, Katsoulakis, and Vlachos 2013) normalized
FIM. Normalization is equivalent to a re-parameterization. In
the case of proportional normalization, the change of parameter
is bj = b̄jθj with b̄j the nominal value for normalization, and the

Jacobian matrix in (2) is just a diagonal matrix with b̄j on the
diagonal.

However, proportional normalization might provide unreal-
istic sensitivity information for practical applications. For exam-
ple, unless the probability distribution of the input variables is far
from the real distribution, it is most likely that the change of the
mean should be within one or two standard deviations. The FIM
can instead be normalized by the standard deviations, which
implies that the allowable ranges of the mean values are limited
to a local region and it is quantified by the standard deviations.
Normalizing the FIM from (3) by the standard deviations, that is,
b̄j equal to the corresponding σ , we have the normalized FIM as

Fnor = diag(σ 2
1 σ−2

1 , 2σ 2
1 σ−2

1 , σ 2
2 σ−2

2 , 2σ 2
1 σ−2

2 )

= diag(1, 2, 1, 2) (4)

where it is evident the condition number of the normalized FIM
is much smaller. However, the Fnor in (4) has repeated eigen-
values, and as a result, the corresponding eigenvectors are not
unique. Although the situation with repeated eigenvalues might
seem extreme, as to be seen withmore examples, the eigenvalues
of the normalized FIM tend to be of similar magnitudes. In
other words, the sensitivity information has been compressed
by normalization (in exchange for better conditioning). As we
shall see, the symplectic decomposition of the FIM has a unique
symplectic structure, and that tends to mitigate this issue by
making the sensitivity information for different variables more
distinctive (by pairing the parameters).

The second issue with the Fisher sensitivity with respect to
the distribution parameters is the gap to decision-making. The
purpose of the sensitivity analysis is to identify the influential
variables so that informed decisions can be made. Although it
is possible to make changes to the means and standard devi-
ations independently, the quantities of interest are ultimately
the variables themselves, that is, E and L in this case. As to
be demonstrated, the symplectic approach would naturally put
parameters in pairs, for example, (μ, σ) as a conjugate pair for
random inputs with Normal distributions, and provide more
direct support for decision-making.

It is noted in passing that even if the true distribution of
the uncertain input is not Normal, a common practice is still
to use mean and standard deviation as the summary statistic
for the dataset at hand. As a result, the two-parameter pair
sensitivity proposed in this article still applies. For example, in
Section 4, the sensitivities wrt the distribution parameters of
Gamma random variables are re-parameterized to the means
and stand deviations of the input data using (2).

1.3. Summary and Paper Outline

In summary, the use of the Fisher information as a sensitivity
measure has wide applications across science and engineering.
Nevertheless, practical issues can hinder the translation of sen-
sitivity information into actionable decisions. In this article, we
propose a new approach using the symplectic decomposition
to extract the Fisher sensitivity information. The symplectic
decomposition uses Williamson’s theorem (Williamson 1936;
Nicacio 2021) which is a key theorem in Gaussian quantum
information theory (Pereira, Banchi, and Pirandola 2021). Orig-
inating from Hamiltonian mechanics, the symplectic transfor-
mations preserve Hamilton’s equations in phase space (Arnol’d
1989). In analogy to the conjugate coordinates for the phase
space, that is, position and momentum, we regard the input
parameters as conjugate pairs and use a symplecticmatrix for the
decomposition of the FIM. The resulting symplectic eigenvalues
of large magnitudes, and the corresponding symplectic eigen-
vectors of the FIM, then reveal themost sensitive two-parameter
pairs.

It should be noted that the proposed symplectic decomposi-
tion is only applicable for parameter space of even dimensions,
that is, b ∈ R2n, and the requirement that the parameters can be
regarded as two-parameter pairs. For the two-parameter family
of probability distributions, such as the widely used location-
scale families, there is a natural pairing of the parameters.
For other cases, a decision-oriented pairing might be needed.
For example, a re-parameterization wrt the mean and standard
deviation, or two moments of the random variables, using (2)
would transform the FIM into even dimensions. Once the FIM
is obtained wrt parameters of even dimensions, it is envisaged
that the proposed symplectic decomposition is best used in tan-
dem with the standard eigenvalue decomposition for sensitivity
analysis using the FIM. This offers additional insight into the
sensitivity analysis, and as the main computational burden is
often at estimating the FIM, at negligible extra cost.

In what follows, we will first review the approach of symplec-
tic decomposition using the Williamson’s theorem in Section 2.
The details of finding the symplectic eigenvalues and eigen-
vectors are given in Section C of the supplementary material
together with the corresponding Matlab script. We then give a
theoretical comparison between the symplectic decomposition
and the standard eigenvalue decomposition, in terms of the
sensitivity of entropy and also from an optimization point of
viewusing tracemaximization.A benchmark study is conducted
in Section 3, where the similarity and difference between the
Fisher sensitivity and the main-effect indices used in variance-
based analysis are discussed. In Section 4, a numerical example
using a simple cantilever beam is used to demonstrate the effect
of symplectic decomposition. Concluding remarks are given in
Section 5.

2. Symplectic Sensitivity of Entropy

2.1. Symplectic Decomposition

From elementary linear algebra, we know that a real symmetric
matrix F can be diagonalized by orthogonal matrices:

Q−1FQ = � (5)
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where Q is the orthogonal eigenvector matrix, that is, QT =

Q−1, and � = diag(λ1, λ2, . . . ) contains the real eigenvalues.
And the solution to (5) can be solved using the standard eigen-
value equation:

FQ = Q�, with det(F − λI) = 0. (6)

TheWilliamson’s theorem provides us with a symplectic variant
of the results above. Let F ∈ R2n×2n be a symmetric and positive
definite matrix, the Williamson’s theorem says that F can be
diagonalized using symplectic matrices (Gosson 2006; Nicacio
2021):

STFS = D̂ =

[

D

D

]

(7)

where D = diag(d1, d2, . . . , dn) is a diagonal matrix with
positive entries (dj maybe zero if F is semidefinite). The dj, j =

1, 2, . . . , n are said to be the symplectic eigenvalues of matrix F
(Bhatia and Jain 2015) and are in general not equal to the eigen-
values given in (5). The matrix S = [u1, . . . ,un, v1, . . . , vn] is a
real symplecticmatrix, and it is called the symplectic eigenvector
matrix of F. Each symplectic eigenvalue dj corresponds to a pair
of eigenvectors uj, vj ∈ R2n:

Fuj = djJvj; Fvj = −djJuj. (8)

These eigenvector pairs can be normalized so that they form an
orthonormal basis for the symplectic vector space:

uTi Jvj = δij, for i, j = 1, 2, . . . , n. (9)

Details of the symplectic decomposition and some important
properties of the symplectic eigenvector matrix are given in
Section A of the supplementary material.

2.2. Sensitivity of Entropy

The procedure given in the previous section tells us that there
exist symplectic matrices that can decompose the FIM. As
shown in Section B of the supplementary material, the stan-
dard and the symplectic eigenvectors provide the directions to
maximize the matrix trace in an orthogonal and a symplectic
basis, respectively, and the corresponding eigenvalues indicate
the sensitivities. A special case with the FIM links its eigenvalues
to the sensitivities of the Kullback-Leibler (K-L) divergence, aka
relative entropy, and that is discussed in this section.

As mentioned in the introduction, consider a general func-
tion y = h(x), the probabilistic sensitivity analysis characterize
the uncertainties of the output y that is induced by the random
input x. When the joint probability distribution of the output
is known, the entropy of the uncertainty can be estimated as
(Cover and Thomas 2006):

H = −

∫

p(y|b) ln p(y|b)dy. (10)

The perturbation of the entropy, defined as a relative entropy
quantified using the K-L divergence, can be approximated by
a quadratic form using the FIM (Yang, Langley, and Andrade
2022):

�H ≡ KL
[

p(y|b)||p(y|b + �b)
]

(11)

=

∫

p(y|b) ln
p(y|b)

p(y|b + �b)
dy ≈

1

2
�bTF�b

where the perturbed probability is approximated using its sec-
ond order Taylor expansion (e.g., see the appendix of Yang
2022). It is noted in passing that, even without the quadratic
approximation to entropy, the Fisher information can be used to
quantify the distribution perturbation in its own right (Gauchy
et al. 2022).

Consider the standard eigenvalue decomposition of the FIM
and substitute (5) into the expression for the relative entropy
in (11):

2�H = �bTF�b = (Q−1�b)T�(Q−1�b) (12)

=

2n
∑

j

λjξ
2
j =

n
∑

j

λjξ
2
j + λn+jξ

2
n+j

where ξj = (Q−1�b)j and it is clear that the eigenvalues λj
indicate the magnitude of the entropy sensitivity.

It can be seen from (12) that the relative entropy in this
quadratic form can be regarded as an ellipsoid geometrically,
that is,

∑

λjξ
2
j = 1 . This is a consequence of the semi-

positive definiteness of the FIM and the ellipsoid is proper
when the FIM is positive-definite. The eigenvectors of the FIM
define the principal axes and the inverse of the square roots of
the corresponding eigenvalues, that is, 1/

√

λj, are the principal
radii of the ellipse. Since the principal axes are orthogonal to
each other, there is no direct relationship between any pair of
coordinates, say (ξj, ξn+j), even they are dominated by the two-
parameter pairs for the same variable of interest as discussed in
the introduction.

Similarly, the relative entropy in the symplectic basis can be
expressed as

2�H = �bTF�b = (S−1�b)TD̂(S−1�b) (13)

=
[

αT βT
]

[

D

D

] [

α

β

]

=

n
∑

j

dj(α
2
j + β2

j )

where αj = (S−1�b))j and βj = (S−1�b))j+n. In contrast to
(12), it can be seen that the coordinate pair (αj, βj) is now forced

to form a circle with radius 1/
√

dj. The consequence is that if
(αj, βj) corresponds to the two-parameter pairs of interest, they
are symplectically equivalent, in analogy to the conjugate pair,
position and momentum, in Hamiltonian mechanics.

3. Benchmark Study

The Fisher information has been introduced in Yang, Langley,
and Andrade (2022) for sensitivity analysis with respect to dis-
tribution parameters. A benchmark study for Fisher sensitiv-
ity, using a linear function with decreasing coefficients and a
product function with constant coefficients, has been conducted
in Yang (2023). In this section, we apply the Fisher sensitivity
analysis, using both standard eigenvalue decomposition and
the proposed symplectic decomposition, to a high-dimensional
function:

f (x) = aT1x + aT2 sin(x) + aT3 cos(x) + xTMx. (14)

This function has a 15-dimensional input vector x and has
been used in Oakley and O’Hagan (2004) for variance-based
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Figure 2. The standard eigenvalue and the symplectic eigenvalue (S-Eig) spectra of the FIM , for the sensitivity of the benchmark function in (14). Note that the dimension
of symplectic spectrum is 15, which is half of the size of the standard eigenvalue spectrum. Results are from 50 repetitions of MC simulations, with 20,000 samples for each
run. “+”and “o” indicate the outliers.

Figure 3. The first eigenvector of the FIM for the benchmark function in (14) with respect to the mean and standard deviation (Std Dev) of the 15 Gaussian inputs.

sensitivity analysis. This function’s coefficients, a1, a2, and a3,
are chosen so that the first five input variables have almost no
effect on the output variance, x6 to x10 have a much larger
effect, and the remaining five contribute significantly to the
output variance. All input variables are assumed to be inde-
pendent and from a standard Gaussian distribution, that is,
x ∼ N(0, 1).

To estimate the FIM in (1), an efficient numerical method
based onMonte Carlo sampling and the Likelihood Ratio/Score
Function (LR/SF) method is used here (Rubinstein and Kroese
2016). The LR/SF method obtains a gradient estimation of a
performance measure wrt continuous parameters in a single
simulation run. More details of the method for FIM estimation
can be found in Yang, Langley, and Andrade (2022) and Yang
(2023). As the numerical computation is based on the LR/SF
method, the sensitivity estimation is independent of the dimen-
sion of the input parameters (Rubinstein and Kroese 2016). This
is in contrast to the variance-based methods where the com-
putational cost is proportional to the input dimension (Saltelli
2008).

The results from the standard eigenvalue analysis of the FIM
are shown in Figures 2 and 3. The eigenvalue spectrum has been
computed using 20,000 Monte Carlo samples, and repeated 50
times. The bottom and top of each box in Figure 2 are the 25th
and 75th percentiles of the 50 samples, respectively. Outliers, as
marked as “+ and “o,” are values that are more than 1.5 times the
interquartile range away from the bottom or top of the box.

Only the first standard eigenvector is shown in Figure 3 as the
eigenvalues corresponding to the rest of the eigenvectors are of
much smaller amplitudes as seen in Figure 2. The sensitivity to
the mean parameters of the input variables in Figure 3 indicates
that there are three groups of importance, x11 to x15 being
the most important and x1 to x5 being the least important.
This is in good agreement with Oakley and O’Hagan (2004)
from a variance-based sensitivity analysis. The sensitivity to the
standard deviations, on the other hand, does not show a clear
clustered trend, although it is clear that the first few variables
have almost no effect.

Different from the variance-based analysis where only the
amplitudes of the importance are measured, the Fisher sensitiv-
ity vectors also provide the relative phases of the sensitivity to
the distribution parameters. For example, in Figure 3, it is clear
that the effects of the input mean parameters on the output PDF
uncertainty are in opposite directions to the effects due to the
perturbation of the standard deviations. Note that the absolute
sign of the eigenvector is arbitrary.

The symplectic sensitivity results are also shown in Fig-
ures 2 and 4. Different from the standard eigenvalue results,
the symplectic eigenvalue spectrum has a dimension half of the
standard one but the symplectic eigenvectors always come in
pairs.

The symplectic sensitivity results in Figure 4 present a sim-
ilar picture as the standard results, especially that the sensi-
tivity to the standard deviations for u1 vector indicates clear
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Figure 4. Same as Figure 3, but for the first pair of symplectic eigenvectors (S-EigVector) of the FIM. Note that symplectic eigenvectors come in pairs.

group importance as discussed above. However, in this case,
the symplectic results do not provide any new insights. This is
because the FIM is dominated by its first eigenvector in this case.
For this benchmark function, there is no normalization required
for the sensitivity analysis as all input variables are equivalent. As
a result, there is no compression of the sensitivity information
as discussed in the motivating example and the engineering
example to be studied in Section 4.

The sensitivity vectors from the FIM provide the principal
directions for a simultaneous variation of the input parameters.
To look at the effect of individual parameters, (12) and (13) can
be used. For example, assuming only parameter bk is varied,
from (12) and (13):

2�H(�bk) =

2n
∑

j

λj(qkj�bk)
2 =

⎡

⎣

2n
∑

j

λjq
2
kj

⎤

⎦�b2k (15a)

2�H(�bk) =

n
∑

j

dj(ukj�bk)
2 + dj(vkj�bk)

2

=

⎡

⎣

n
∑

j

dj

(

u2kj + v2kj

)

⎤

⎦�b2k (15b)

where qkj is the kth element of the standard eigenvector qj,
while (uj, vj) are the symplectic eigenvectors. The term inside
the square bracket can be regarded as the contribution to the
entropy change due to the perturbation of the parameter bk
alone.

The contributions from the mean and the standard deviation
parameters of the same variables can be further aggregated for
the corresponding variables, assuming the perturbations are
independent. For example, if (bj, bk) are the mean and standard
deviation of the variable xm, then the sensitivity to the variable
xm can be obtained by adding the contributions of the parame-
ters bj and bk.

The resulting relative importance of the variables from the
Fisher analysis, using the dominant first eigenvector (Fisher Eig)
and the first pair of symplectic eigenvector (Fisher S-Eig), can
then be compared to the variance based main effects (Oakley

and O’Hagan 2004) and the comparison is shown in Figure 5.
Although there are small deviations, the relative importance
of the three groups of variables and the order of difference
are clearly identified from the Fisher sensitivity analysis. Fur-
thermore, the ratio of the first eigenvalue to the sum of all
eigenvalues, as seen in Figure 2, is about 0.75 in this case and
that can be regarded as the contribution of the first eigenvector
to the entropy change. Although not directly comparable, 0.75
is similar to the 72% main effects contribution to the output
variance as reported in Oakley and O’Hagan (2004). This offers
a plausible suggestion that, in this case, the dominant first eigen-
vector of the FIM corresponds to the main effect from variance
based sensitivity analysis.

It should be noted although the contributions from the per-
turbation of individual parameters are useful for benchmark-
ing against variance-based main effects, the purpose of the
Fisher sensitivity analysis is to look at the simultaneous vari-
ations of the input parameters. In contrast to variance-based
analysis, the eigenvectors and symplectic eigenvectors of FIM
provide principal sensitivity directions based on the impact on
the joint PDF of the outputs. Not only do the eigenvectors
indicate the relative amplitude, they also provide the relative
phase information of the input parameter variations as discussed
earlier.

In addition to the results based on 20,000 samples, Fig-
ure 5 also present the variable ranking using 1000, 5000, and
10,000 samples. Although the variability of the estimation is
relatively large for smaller number of samples, the three groups
of importance for the input variables are clearly identified from
the FIM based indices, even with only 1000 samples for this
15-dimension problem. Note that the results in Figure 5 are
normalized for comparision, and the raw data are provided in
Section D of the supplementary material.

In the next section, we will consider an engineering example
where the input variables are typically of different units. As their
values tend to be of different orders of magnitude, normaliza-
tion is required for the Fisher sensitivity analysis. In addition,
different from the scalar output from this benchmark function,
engineering problems tend to have multiple outputs as in the
example given below.
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Figure 5. Variable importance ranking using three different indices: (a) the first standard eigenvector (Eig); (b) the first set of symplectic eigenvectors (S-Eig); and the true
main-effect indices given in Oakley and O’Hagan (2004). The results are normalized by the largest value, where N indicates the number of samples used. The error bars
indicate the standard deviations of the estimated Fisher indices (± one standard deviation from the mean), from repetition of 50 simulation runs.

Figure 6. A cantilever beam subject towhite noise excitation of unit amplitude; the
responses consist of peak r.m.s displacement and strain responses.

4. Application to An Engineering Example

In this section, we consider an engineering design example
where the Fisher information is used for parametric sensitivity
analysis of a cantilever beam. The beam is subject to a white
noise excitation at the tip, see Figure 6, where the excitation
is band-limited and only the first three modes are excited. In
this case, the quantities of interest are the peak r.m.s responses,
that is, the maximum response along the beam, for both dis-
placement and strain (output y in (1) is two-dimensional). The
frequency response functions for both displacement and strain
responses, at different positions along the beam, are obtained via
modal summation and the modal damping is assumed to be 0.1
for all modes, see Section E of the supplementary material for
more details.

It is assumed that the five input variables are random, x =

(E, ρ, L,w, t), and the sensitivities of interest are wrt their means
and standard deviations, that is, b = (μm, σm), m = 1, 2, . . . , 5,
as listed in Table 1. While the proposed method applies to
correlated inputs, for simplicity, the inputs are independently
sampled for the numerical examples considered.

Two different cases are considered. Case-1 considers Nor-
mally distributed inputs with with small variances, while Case-2
has the input variables described by Gamma distributions with
larger variances. The mean values are the same for both cases.

Table 1. Mean (μ) and Coefficient of Variation (CoV) for the random variables.

Young’s Modulus Density Length Width Thickness

E[Pa] ρ[kg/m3] L[m] w[m] t[m]

μ (mean) 69e9 2700 0.45 2e-2 2e-3

Case-1: Normal distribution

σ/μ (CoV) 1/200 1/80 1/100 1/60 1/80

Case-2: Gamma distribution

σ/μ (CoV) 1/5 1/4 1/10 1/6 1/8

NOTE: Case-1 assumes Normal distribution with small CoVs, while Gamma distribu-
tions with large CoVs are considered in Case-2.

For Normally distributed inputs, the means and standard
deviations are the distribution parameters. For the inputs with
Gamma distributions in Case-2, a reparameterization using (2)
is required. As the mean values of our engineering example are
positive, the scale (θ) and shape (k) parameters can be expressed
as functions of the means and standard deviations: k = μ2/σ 2

and θ = σ 2/μ. The partial derivatives of (θ , k) wrt (μ,σ ) are:

∂θ

∂μ
= −

σ 2

μ2
,

∂θ

∂σ
=

2σ

μ
,

∂k

∂μ
=

2μ

σ
,

∂k

∂σ
= −

2μ2

σ 3

(16)
and these derivatives can be used to form the Jacobian matrix
in (2) to re-parameterize the FIM wrt the means and standard
deviations of the inputs with Gamma distributions.

It is noted in passing that it is possible to look at directly
the symplectic sensitivities to the scale/shape parameters of the
Gamma inputs, as they are already two-dimensional. However,
we re-parameterize the FIM to demonstrate the possibility of
applying the proposed symplectic approach to the mean and
standard deviation parameters of non-Gaussian distributions.

For the numerical results below, the FIM is normalized by the
standard deviations:

Fnor = σmσnFjk (17)
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Figure 7. Eigenvalues (Eig) and Symplectic eigenvalues (S-Eig) of the FIM for (1) Case-1 ; (2) Case-2

Figure 8. Overall variable ranking using the FIM for (1) Case-1 ; (2) Case-2. Error bars indicate the standard deviation from repetitions of the FIM estimation.

where j, k = 1, 2, . . . , 10 and m = j/2, n = k/2 when j, k are
even, and m = (j + 1)/2, n = (k + 1)/2 when j, k are odd
numbers. As discussed in the introduction, the normalization
is necessary for practical applications as the input variables
are of different units and often differ by orders of magnitude.
Moreover, it largely improves the condition number of the FIM.
For example, in this case study, the condition number of the FIM
in the order of 1027 ∼ 1031 for both Case-1 and Case-2, and it
reduces to the order of 102 for both cases after normalization.

Once the FIM is estimated and normalized, the standard
approach is to compute the eigenvalues and eigenvectors of the
FIM for sensitivity analysis as in Yang, Langley, and Andrade
(2022) and Yang (2023). As discussed, the eigenvalues of the
FIM represent the magnitudes of the sensitivities with respect
to simultaneous parameter variations, and the most sensitive
directions are given by the eigenvectors corresponding to the
largest eigenvalues.

The standard eigenvalues and eigenvectors are denoted as
“EigValue” and “EigVector” and are shown in Figures 7, 9(a),
10(a). The aggregated indices using (15) are also displayed in
Figure 8, using the first four dominant eigenvectors (Fisher Eig),
corresponding to those shown in Figures 9 and 10. The over-
all variable rankings between the standard and the symplectic
approaches, as shown in Figure 8, are almost the same. This

is as expected as they are from the same FIM. However, as to
be seen, the symplectically decomposed eigenvectors can reveal
additional insights into the parameter sensitivities.

The results shown in this section are based on repeated
estimations of the FIMwith 20,000 samples for each run. Case-1
results are obtained from 30 repeated runs, while 50 repetitions
are conducted for Case-2. The eigenvectors shown in this sec-
tion, as in Figures 9–11, are based on the averaged FIM. The
variations of the eigenvectors are not shown as the eigenvec-
tors can have arbitrary signs. More importantly, the symplectic
eigenvectors come in pairs, which makes it difficult to compare
individual vectors. Nevertheless, from Figures 7 and 8, it can be
seen that the variability of the results presented in this section is
reasonably low.

In Figure 7, the eigenvalues are ordered from large to small,
with the first four larger than the rest, especially for Case-1. Note
that the spectrum here is quite different from the benchmark
case shown in Figure 2 where only one eigenvalue dominates.
The corresponding first four eigenvectors are displayed in Fig-
ures 9 and 10.

As the main purpose is to compare the symplectic analysis
against the standard decompositions, we will not go into details
of the relative importance of the parameters. From the eigenvec-
tor results in Figures 9(a) and 10(a), an important feature is that,
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Figure 9. Eigenvectors (EigVector) and symplectic eigenvectors (S-EigVector) of the FIM for Case-1. The symplectic eigenvectors come in pairs, u1 , v1 and u2 , v2 , and each
pair corresponds to the same symplectic eigenvalue

Figure 10. Case-2, same key as Figure 9.

it seems that there is a split phenomenon between the means
and standard deviations of the same variables. For example,
in Figure 9 (a), the first and second eigenvectors point us to
the standard deviations of the variables L and t, while it is the
mean values of the two variables that are important for the third
and fourth eigenvectors. Similarly, in Figure 10(a) for case-2,
σL and μL, the mean and standard deviation of the variable L,
dominate the second and the fourth eigenvector, respectively,
while the means and standard deviations of the rest are the
influential parameters for the first and third eigenvectors. In
other words, the dominance of the sensitivity to the mean and
the standard deviation of the same variable splits into different

eigenvectors, for example, σL dominates the first eigenvector
while μL dominates the fourth.

This split phenomenon can be understood as a consequence
of the normalization as mentioned for the motivating exam-
ple in Section 1.2. The normalization compresses the relative
magnitudes between the eigenvalues so that the FIM is better
conditioned. This makes the ellipsoid for the relative entropy
(see Section 2.2) closer to a sphere. The orthogonality of the
principal axes could then result in a split between the mean
and standard deviation parameters of the same variable as their
influences are similar. As a result, it is difficult to identify
the most influential variables. On the contrary, the symplectic
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Figure 11. Symplectic eigenvectors (S-EigVector) of the FIM for Case-1, for two different pairing decisions. (a) (μL ,μt ) and (σL ,σt ) in pairs; (b) (μL ,μρ ) and (σL ,σρ ) in pairs.
The rest of the pairs are the same as Figure 9.

decomposition enforces a symplectic structure that tends to
mitigate this issue by making the sensitivity information more
distinctive by pairing the parameters of the same variable.

As described in Section 2, the same FIM can also be decom-
posed onto a symplectic basis. The symplectic eigenvalues
and eigenvectors are named as “S-EigValue” and “S-EigVector”
and are shown in Figures 7, 8, 9(b), and 10(b). The dimen-
sion of the symplectic eigenvalue spectrum, 5 in this case, is
half of the standard eigenvalues. The symplectic eigenvectors
come in pairs, (u1, v1) and (u2, v2), as shown in Figures 9(b)
and 10(b), and each pair corresponds to the same symplectic
eigenvalue.

As compared to the standard eigenvectors, the split param-
eters are grouped together in the symplectic eigenvectors. For
example, for Case-1 results in Figure 9(b), the first symplectic
eigenvector pairs identify L as the influential variable, with its
mean and standard deviation dominating u1 and v1, respec-
tively. The same can be found for the variable t for the second
pair of symplectic eigenvectors (u2, v2) in Figure 9(b). Similar
conclusions can be found for the Case-2 results in Figure 10(b).
The grouping of the parameters is a consequence of the symplec-
tic structure, where parameters are regarded as two-parameter
pairs, for example, (μ, σ) in this case. This is pertinent in
sensitivity analysis as it makes the influential variables, or two-
parameter pairs, very distinctive.

It is interesting to note that in both cases, the square of the
first symplectic eigenvalue is almost the same as the product of
the two standard eigenvalues that split. For example, for Case-1,
d21 = 1.382 = 1.91 and that is about the same as the product
λ1 × λ3 = 1.94 × 0.98 = 1.90, which corresponds to the
first and fourth eigenvectors that are dominated by σL and μL,
respectively.

This is a consequence of the conservation of the total sen-
sitivity volume for symplectic decomposition as discussed in
Section 2, where when two of the standard eigenvectors splits,

the product of their eigenvalues tends to be conserved in the
corresponding symplectic decomposition. This also occurs for
decision-oriented pairings to be presented in Figure 11. For
Case-1, the first and second eigenvectors are dominated by
σL and σt . When these two parameters are paired together,
as to be seen in Figure 11(a), d21 = 2.55 is very similar to
the product λ1 × λ2 = 2.5 in Figure 9(a). Although in this
simple example, the parameter split found from the standard
eigenvalue analysis can be easily identified, it will get more
difficult with a larger number of parameters. On the contrary,
the parameter pairing structure is enforced by the symplectic
decomposition. In addition, contrary to the standard eigenvalue
decomposition where the sensitivity information is fixed for a
given FIM, the symplectic variant takes account of user inputs
for the pairing decisions. As an example, two different pairing
decisions are considered for the same FIM from Case-1 pre-
sented in Figure 9. The symplectic eigenvectors are shown in
Figure 11, with the rows and columns of the FIM rearranged
as per the pairing requirement. It should be noted that while
the standard eigenvalue analysis is invariant with respect to the
row/column operation, the symplectic spectra are different as
shown in Figure 11.

Instead of using the means and stand deviations as natural
pairs for the same variables, we consider pairing the mean and
standard deviation parameters for two different variables. In
Figure 11(a), we pair L and t, that is, (μL, μt) and (σL, σt) in
pairs, while in Figure 11(b), we pair L and ρ, that is, (μL, μρ)
and (σL, σρ) in pairs.

It is noted in passing that although mainly for demonstrating
purposes, these pairing decisions can arise in practice where the
actions to reduce the uncertainties of two independent variables
can impact both. For example, modifying of the production line
can have the same effect on the uncertainties of the length L
and the thickness t, and this would prompt a decision-oriented
sensitivity analysis wrt the parameter pairs.
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It is clear from Figure 11 that the sensitivity to the paired
parameters are grouped together as before. For example, the
sensitivity to the pair (σL, σt) dominates the first group of
the symplectic eigenvectors in Figure 11(a), and (σL, σρ) are
grouped together in the second symplectic eigenvector pair in
Figure 11(b).

It is interesting to note that the symplectic results in Fig-
ure 11(a) are very similar to the standard eigenvector results in
Figure 9(a), although the strengths of these vectors, as indicated
by the amplitudes of the eigenvalues, are different. For L and ρ

pairing in Figure 11(b), the dominance of L seen in Figure 9
disappears, due to its pairing with ρ which is of low impor-
tance. This demonstrates that the symplectic decomposition is
decision-oriented, as even for the same FIM, it extracts different
sensitivity information according to different pairing strategies.

While only an engineering design example is considered
here, the benefits of the symplectic decomposition are expected
for general decision problems, whenever the spectral analysis
of the FIM is used for sensitivity analysis. As the additional
computation cost is negligible once the FIM is obtained, the
symplectic decomposition can be used in tandem with the stan-
dard eigenvalue decomposition to extractmore useful sensitivity
information.

5. Conclusions

A new probabilistic sensitivity metric has been proposed based
on the symplectic spectral analysis of the FIM.Contrasting to the
standard eigenvalue decomposition, the symplectic decomposi-
tion of the FIM naturally identifies the sensitivity information
with respect to two-parameter pairs, for example, mean and
standard deviation of a random input. The resulting symplectic
eigenvalues of large magnitudes, and the corresponding sym-
plectic eigenvectors of the FIM, then reveal the most sensitive
two-parameter pairs.

Through an engineering design example using a simple can-
tilever beam, it is observed that the normalization of the FIM
tends to compress the relative magnitudes between the eigen-
values. Geometrically the relative entropy ellipsoid becomes
near-spherical (see Section 2.2) due to the normalization, and
this can result in a split phenomenon of different distribution
parameters of the same variable. It is demonstrated that the
proposed symplectic decomposition can reveal the concealed
sensitivity information between the parameter pairs. Contrary
to the standard eigenvalue decomposition where the sensitivity
information is fixed for a given FIM, the symplectic variant takes
account of user inputs for the pairing decisions.As the additional
computation cost is negligible once the FIM is obtained, the
symplectic decomposition can thus be used in tandem with the
standard eigenvalue decomposition to gain more insight into
the sensitivity information, and orient toward better decision
support under uncertainties.

The proposed symplectic decomposition is only applicable
for parameter space of even dimensions. For distribution param-
eters that belong to the two-parameter family of probability
distributions, such as the widely used location-scale families,
there is a natural pairing of the parameters. For more general
cases, a decision-oriented two-parameter re-parameterization of

the FIM is necessary and that is one of the future research to be
explored.

Supplementary Materials

The supplementary materials contain details of symplectic decomposition
and its computation, proofs that the symplectic egienvectors provides max-
imization in a symplectic basis, and codes to reproduce Figure 5.
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