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Abstract

Materials modeling technologies are fundamental to explore, understand, and ultimately predict materials behavior. They 

are essential to solve challenges posed by the need to reduce human impact on the environment. Modeling and simulation of 

materials behavior have been recognized over the years as fundamental as an asset in industrial R & D, guiding the decision-

making process regarding the design or optimization of new products and manufacturing processes. At the same time, it 

reduces product cost and development time. However, highlighting the revenue brought by using such tools is not trivial, 

especially because they mainly affect the complex activities such as the innovation process, whose return only becomes 

available in the long run and it is difficult to measure. This means that the materials modeling field is often overlooked in 

an industry setting, where it is not integrated in the company workflow. In some cases, modeling provides the potential to 

capture tacit knowledge preventing the loss of capability in an aging specialist community, that why its industrial integra-

tion is important. This paper explores the reason behind this dichotomy, presenting first what it is intended for the modeling 

process, and the main types used in materials application. The current industrial adoption is reviewed by outlining success 

stories, economic impact, business uptake, and barriers. Past and current approaches and strategies are also presented and dis-

cussed. In prospective, materials modeling plays a key role in developing material-centric industry for sustainable economy, 

providing physical understating (physics-based models) and fast approaches (data-driven solutions). Digitalization is the 

mean for the green economy and it needs to push for a more integration at the core of the business of materials modeling.

Keywords Materials modeling · Digitization · Industrial adoption · Modeling process

Introduction

Over the last few decades, Modeling and Simulations (M 

& S) have become familiar assets used in different sectors 

from weather forecasting to medicine. From an engineering 

and science point of view, these technologies are nowadays 

ubiquitous tools, including the understanding and predic-

tion of materials behavior. Modeling techniques have in fact 

accelerated materials development, leading to discovery of 

new materials and applications, reducing expensive and 

time-consuming physical tests [1]. The Integrated Compu-

tational Materials Engineering (ICME) [2] paradigm has 

demonstrated to be a great success in promoting progress in 

the aerospace industry for example. Materials models and 

simulations are today exploited to effectively and efficiently 

design new products and/or optimize processes by reducing 

the need and time of prototyping and testing [3]. Materials 

modeling has driven the acceleration of the better-perform-

ing product design, with a corresponding reduction in the 

production costs and time-to-market. For sectors that are 

typically characterized by highly volatile and competitive 

markets, materials modeling plays a key role for the innova-

tion and competitiveness.
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However, technological and cultural barriers still remain, 

and the full potential of these methods has been not achieved 

[4]. Materials modeling is often not considered as an essen-

tial component of commercial and business processes, and 

is not well integrated with other tools such as Business 

Decision System, stopping it to become a decisive rather 

than supportive tool in the material design and selection [5]. 

Modeling tools are often regarded as too complicated to use, 

inaccurate, and/or time consuming. Their development and 

maintenance require specific expertise (mathematics, phys-

ics, materials science, computer science, and engineering), 

infrastructure (high performance computing (HPC)), and 

trusted databases. There are different stakeholders (scien-

tists, modelers, and end-users) involved in the development 

and application of modeling tools. They often do not share 

common language, backgrounds, goals or methods, therefore 

making communication and project delivery difficult.

Today, sustainability policies and increasing market com-

petition have put materials in the center of the product and 

process design, with materials modeling as a key part of the 

design process. Actions are needed to facilitate the use and 

development of mature models and simulation tools across 

various industries and application areas.

There are national and international projects that try to 

assess these challenges, including the Materials Genome 

Initiative (MGI) [1], NASA Vision 2040 [4], European 

Materials Modeling Council (EMMC) [6], and in both aca-

demia and industry materials science communities. The aim 

of the MGI project is to facilitate materials development 

by exploiting computational techniques, use of standards, 

and data management by all stakeholders in the materials 

development community: academic institutions, small busi-

nesses, large industrial enterprises, professional societies, 

and government. The NASA roadmap identifies the techni-

cal and cultural challenges, deficiencies, and the technical 

work areas required to build a collaborative digital environ-

ment for the aerospace industry. Similarly, the EMMC mis-

sion is to improve collaboration and integration between all 

the stakeholders involved in modeling and digitalization of 

materials, by increasing awareness of the materials modeling 

industry, supporting the software development industry, and 

creating collaborative partnerships between academia and 

industry.

The purpose of this paper aligns with aims of these 

activities to create awareness of the materials modeling 

sector outside the community, to review the challenges that 

obstruct industrial adoption, and to analyze the promotion 

methods that have been pursued over the years in the UK 

and internationally. For this reason, the paper is divided 

in to three main sections. The first presents the modeling 

background, introducing the terminology behind the model 

design process, from real world problems to the verification 

and validation process, including a general categorization 

of models. Multiscale materials modeling approaches are 

then illustrated. The uncertainties affecting the model output 

and their quantification is also discussed. The current state 

of industrial adoption is then examined in the second part 

of the paper. The methodology used to asses the maturity 

level of the technology is presented, followed by a review of 

application and economic revenue in industry. This section 

closes with discussion on the current industrial integration 

of materials modeling and the barriers and challenges that 

impede industrial adoption. The final parts regards a review 

of initiatives adopted by the community to overcome these 

barriers and the needs for materials modeling integration 

via digitalization to promote a more sustainable business.

Background

Modeling Process

The aim of any scientific research is to investigate, under-

stand, and ultimately predict the evolution of the system 

under study. Given a real problem situation, the first step in 

research study is defining a so called problem entity which 

identifies the system and process to be investigated [7] (see 

Fig. 1). The conceptual model is then defined to represent 

the physical system that is appropriate to solve the problem 

entity [7]. Due to the physical world complexity, conceptual 

models are hardly an exhaustive description of the system, 

and need to be regarded as an accurate approximation of the 

reality, where only the most-effecting physics phenomena 

are considered. For this reason, conceptual models need to 

be validated by executing a series of investigations, either 

experimentally and computationally, to establish the accu-

racy and precision of the conceptual model.

In the computational modeling route, the conceptual 

model is translated into a computerized model. The com-

puterized model consists in a numerical formulation of the 

conceptual model and its implementation in computational 

formthrough an appropriate algorithm using a chosen com-

puter language. It is important to ensure that the code solves 

correctly the mathematical model. This step is called model 

verification. It consists of two parts: the code verification 

and the solution verification. Code verification compares the 

simulation results with a known solution in order to deter-

mine if the computerized model is a good representation 

of the conceptual model. The known solution used to test 

the code can be an analytical approach or assumed a priori 

(Method of Manufactured Solutions [8]). Solution verifi-

cation is applied to minimize the numerical errors without 

excessively increasing the computational expenses. Simi-

larly, to the code verification, the numerical error is evalu-

ated by comparing the results with a known solution, either 

analytically or arbitrarily. Once the verification process is 
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concluded, the validation process can begin. The validation 

process requires the comparison of simulation results with 

real physical data. The set of simulations and experiments to 

be performed need to be carefully designed accounting for 

the accessibility of methodologies, facilities, and data (e.g., 

characterization techniques, computational time on HPC), 

operability of selected conditions (e.g., high temperature, 

boundary conditions, input parameter availability), ability 

to perform measurement with an acceptable degree of con-

fidence (e.g., 95% confidence interval is usually accepted in 

industrial settings). This process is called experiment design, 

and it requires the formulation of a physical model to repro-

duce the conceptual model. During the experiment design, a 

set of variable values that can be obtained from both experi-

ments and simulations for comparison. These variables are 

called Quantities of Interest (QoI).

Both modeling and experiment QoIs are affected by 

uncertainty due to the variability of physical parameters 

within the system itself, and simplification within the model. 

Model uncertainties can be only partially reduced, so it is 

important to estimate how much they affect the results. 

Similarly, the blocking process of arranging experimental 

units into homogenous groups aims to reduce the variabil-

ity of experiment results. The experimental and simulation 

outcomes are then compared during validation to understand 

how accurately the simulations reproduce the experiments. 

If the agreement is acceptable the model is validated, oth-

erwise the model and experiments are revised. This process 

is called Verification and Validation (V & V) of the model. 

V & V assesses the accuracy of the computational and con-

ceptual model to assure researchers that they well represent 

the problem entity to solve. This process is not trivial and 

requires expertise in model development, software develop-

ment, simulation analysis, and experimental methodology. 

Figure 2 summarizes the flowchart of the V & V process as 

presented in the American Society of Mechanical Engineers 

(ASME) standard for verification and validation of modeling 

[9].

Model Types and Definition

Computational models can be divided in two main catego-

ries: physics-based and empirical models, which can include 

data-driven. Physics-based modeling translates our under-

standing of the physical system into a mathematical form 

[10]. These models are less biased with respect to unveri-

fied assumptions or spurious correlations, because they fol-

low the underlying principles governing the behavior of the 

material. Biases can be still introduced by the choice of the 

laws, but it remains a transparent choice. These models can 

be applied to different systems with the same underlying 

physics, and not restricted to the application they were cre-

ated for. However, spatial and temporal resolution required 

by this models to simulate physical phenomena can impose 

high computational times, limiting their use to the design 

stage. Outputs are affected by errors and uncertainties in 

parameter values as well as lack of understanding of the 

system.

While physics-based models are extensively used in 

research and academia, they struggle to be widely accepted 

in industry. The main objection is that they are slow com-

pared to the empirical methods and experimental trials [11]. 

However, they provide a wide range of data that would 

take a considerable amount of time and money to generate 

experimentally. For example, in addition to simulation of 

processes, simulation datasets can include microstructure 

and defect distributions as well as variations in property 

scatter. The underline problem is that this is not always well 

perceived.

For empirical models, the opposite is true, with the input/

output relationship extrapolated from observed data. This 

may be done by the researchers directly, using experimental 

data to find correlations, or by using Data-driven modeling 

like Artificial Intelligence (AI) and Machine Learning (ML) 

approaches. Data-driven modeling is becoming popular 

especially in the “digital twin” context, due to the avail-

ability of vast quantities of digital data and the increasing 

Fig. 1  Modeling process from the definition of a problem entity 

based on real word situation problem, to formulation of conceptual 

model and its implementation into a computerized model
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availability of low-cost, high-performance computer hard-

ware. For example, in the image-recognition field, digital 

capture of images is the norm, effectively automating the 

data capture process and readily creating libraries of images 

to process. This results in a rise of open-source platform for 

AI/ML such as TensorFlow [12] and scikit-learn [13].

Compared to physical-based models, empirical-based 

models suffer less of instability issues. They take into 

account long-term historical data and experiences. They are 

significantly cheaper in terms of time and computational 

resource in comparison to a physical-based model. However, 

they cannot be easily generalized and the choice of the train-

ing data is subject to bias, which can influence the results. 

The validity of their outputs generates debate, especially in 

the materials field. The output behavior is controlled by a 

large number of variables and obtaining a reliable dataset 

is a non-trivial process, due to the complexity associated 

with the effect of composition, microstructures, and process 

parameters. However, some argue that since each manifesta-

tion of the system is a result of both known and unknown 

physics, data-driven models can account for the full physics 

and potentially help to uncover the unknown phenomena 

[10]. However, for any set of data an arbitrary relationship 

can be always drawn. Traditionally in industry, empirical 

models are preferred over physics-based models, because 

in many cases, the computational resources and skills 

necessary are not available [11]. The empirical models used/

developed rely on data availability, and their applicability is 

restricted to the particular condition modeled. They require 

the calibration of a number of parameters, often obtained 

through extensive experimental trials [11, 14]. They repre-

sent are computationally fast and once calibrated can provide 

readily solutions for a specific system, but the extrapola-

tion, such as to another alloy, can result in severe drop in 

accuracy of the prediction [11, 15]. Accounting for some 

physical knowledge in the building of the data sample and in 

design of the model relations can increase the chance these 

models can capture the full physics. For example, physical-

based models can be used to inform data-driven methods, 

providing the relevant physics to guide training of these the 

algorithms, by adding physics-based constraints in the opti-

mization process [16], or by a physics-based architecture 

of neural network [17]. These types of hybrid methods are 

known as Reduced Order Models (ROMs), Surrogate Mod-

els, or Metamodels, and they aim to reduce the complexity 

of a fully physics-based model and maintain the fundamental 

physics and features. They provide a balance between fidel-

ity and required computational power. In materials science, 

the Hall–Petch relationship [18] is an example of a ROM, 

quantitatively describes the grain size strengthening effect 

due to dislocation pile-up mechanisms.

Fig. 2  Verification and Valida-

tion framework of modeling 

technology showing the fun-

damental passages in blue 

boxes: code verification, design 

of validation experiments 

and preliminary calculations, 

calculation/solution verification, 

uncertainty quantification on the 

model and on the experiments, 

and validation. The green boxes 

define the fundamental entities 

in V & V process: conceptual 

model, mathematical and physi-

cal model, computational model 

and experiment design, simula-

tion and experimental results, 

and experimental and model 

results [9]
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Big Data are also gaining attention as tools to estimate 

the QoIs. Big data are very large structured and unstruc-

tured sets of information that can not be handled in a tradi-

tional way. Data Assimilation is a type of hybrid technique, 

where the model predictions of a physics-based model are 

improved by using Big Data. This approach is mainly used 

in weather forecasting [19]. The major challenges are the 

quality, standardization and processing the data [20]. A part 

from the Materials Genome Initiative in the US [21], which 

has substantially funded Open Science, Big Data, and AI 

initiative, Big Data applications in materials has been met 

with resistance especially from industry, due to the lack of 

specialized skills, knowledge, and resources in this field to 

transform industries into data-driven organizations [22]. 

Calibration of the Master Curve transition toughness model 

through Bayesian analysis is an example of this approach in 

materials science [23]. Data-driven models are also applied 

in the context of Big Data to establish trends. This type of 

modeling capability is referred to as Non-intrusive data-

driven model. They are defined as Non-intrusive, because 

they are based solemnly on data, and there is no interven-

tion or modification of the algorithm. A new field called 

Big Data Cybernetics or Hybrid Analysis and Modeling is 

arising, where the combination of data-driven and physical-

based models with Big Data allows the inclusion of more 

complex physics to solve the problem under study. Digital 

twins are an example of hybrid analysis, where the archi-

tecture combines different types of modeling to inform a 

decision-making process. Figure 3 summarized all the dif-

ferent types of modeling.

Multi‑scale Materials Modeling

Materials are highly complex systems, whose performances 

are governed by convoluted physical and chemical mech-

anisms occurring at different spatial and time scales. For 

example, atomic-scale defects like dislocations and grain 

boundaries are well known to have an impact on the macro-

scale mechanical behavior [24]. Macrosegregation during 

casting is micro-scale segregation during solidification [25]. 

Experimental characterization of these phenomena are dif-

ficult or impossible to perform as real-time observations 

cannot be readily made. Nevertheless, understanding these 

mechanisms is fundamental to predict materials behavior 

during each phase of the product life, from design to ser-

vice. Application of modeling tools plays a significant role 

to accelerate discoveries in materials science. However, the 

complexity of the material system is such that one mon-

olithic approach to model all aspects of the physical sys-

tem across different length and time scales is not presently 

feasible.

Fig. 3  Diagram of the three 

main modeling areas, physic-

based, data-driven and Big 

Data, and their hybrid methods 

[10]



402 Integrating Materials and Manufacturing Innovation (2023) 12:397–420

1 3

Multi-scale approaches, instead, use the “divide and con-

quer” concept: the problem is solved by using a framework 

of simulations, each one describing a mechanism happening 

at the nanoscale, microscale or macroscale, which are then 

connected together like in a jigsaw puzzle. While models 

at each scale have their own limitations and difficulties, the 

greater, more central challenge in multi-scale modeling is 

the parsing and integration of information between scales. 

This methodology is called Scale bridging, and the approach 

can be divided into hierarchical and concurrent techniques 

[26].

The hierarchical method involves separating the differ-

ent scales, and connecting them in an sequential manner 

through, for example, volume averaging of a field variable or 

simple parameter identification from one model to another. 

Each model in a hierarchical framework runs independently 

from the others. A homogenization technique using a Rep-

resentative Volume Element (RVE) is an example of the 

hierarchical method [27]. A fine-scale model is run on a 

series of RVEs, each with a given microstructure to calcu-

late the QoIs, usually the mechanical properties [28]. This 

process generates a distribution of microstructure-informed 

QoIs which are then input in the higher scale model. Another 

hierarchical approach consists of developing scaling laws 

to describe the lower level mechanisms, and incorporating 

them in a higher-scale model: e.g., a constitutive model [29].

Alternatively, in the concurrent approach, the domain is 

divided in two or more subdomains that are treated with dif-

ferent scale approaches within the same code and time step. 

This approach is useful in fracture mechanics, where the 

crack nucleation and propagation at the macro-scale result 

from a series of underlying atomistic processes, such as dis-

location kinetics and/or nano-void formation, which in turn 

are affected by the stress field at the continuum level [30]. 

Quasicontinuum Modeling is another example of the concur-

rent approach where the atomistic calculation replaces the 

constitutive law in the continuum framework [31].

The multi-scale approach is an especially powerful tech-

nique in the industrial sector, by increasing product develop-

ment efficiency, developing new materials, and improving 

materials quality [32]. However, there are still challenges to 

resolve. Coupling different scales requires the generation of 

usable and transferable information. In some cases, informa-

tion transferability is limited by the different assumptions, 

physics-based mathematical equations, and parameters, 

which may not be valid at each level [33, 34]. Determin-

ing the link between the various scales is important but not 

trivial to do. In other cases, the assumption of scale separa-

tion cannot be applied [33]. Transferibility is also limited by 

the output form of each model, such as deterministic to sto-

chastic, or discrete to continuous descriptions. Defining the 

output form is necessary to develop bridging techniques to 

link the multi-scale information together [35, 36]. The set-up 

of the architecture to integrate the modeling framework is 

also challenging. The architecture needs to be appropriate to 

handle the information transfer output, long simulation time, 

pre- and post-processing, capturing and managing data [36].

There is also a need for balance between predictability 

and computational cost of modeling tools. The choice of the 

model to use at a specific scale is not trivial and it should 

consider the system under consideration. Smaller-scale 

models have higher accuracy in describing the physical sys-

tem but running these models for large domains becomes 

unfeasible. In order to reduce the computational cost, the 

appropriate number of physical phenomena should be mod-

eled. From an engineering point of view, this is achieved 

by inductive goal-mean or top-down approach where the 

problem is solved from the component level going down 

in scale. However, materials scientists use a bottom-up 

approach, aiming to defined a cause-effect relation [37]. 

The level of details in modeling tools should be chosen in 

a way to reduce execution time guaranteeing the appropri-

ate accuracy, since a grade of uncertainty is associated with 

any simulation. Therefore, uncertainty quantification of the 

model output is important to make appropriate use of them. 

It is also beneficial to identify the validity range of the model 

itself. In multiscale modeling frameworks, it is also essential 

understand how the uncertainty propagates from one scale 

to another and for it to remain acceptable. The uncertainty 

quantification process can also identify the most influential 

model on the overall error, so action can be taken to improve 

its accuracy.

Multi‑scale Materials Model Classification

There are different modeling techniques used to study mate-

rials behavior, many of which overlap different length and 

time scales. Therefore, it is difficult to identify each mode-

ling technique based only on the spacial and temporal scales. 

Classification based on four fundamental entities has been 

suggested to be more appropriate: electrons, atoms, mes-

oscale entities (e.g., particles, grains and molecules), and 

continuum (see Fig. 4) [38].

Electron models simulate the evolution of molecules and 

atomic systems by describing their electronic interactions. 

They resolve systems at atomic to nanometer length scales 

and their evolution between pico to nanosecond time frames. 

The position, momentum, and spin of electrons in the sys-

tem are described as an electronic wave function, whose 

Hamiltonian operator represents the total energy. In most of 

cases, the Schrödinger equation [39] is the physical model, 

while the Hamiltonian can be approximated by the Kohn-

Sham theory [40] or the impurity model [41], to name a few, 

to solve many-particle problems. The equations are com-

monly solved using plane-wave basis because it allows an 

easier implementation of the total energy expressions and 
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the Hamiltonian, and the use of Fourier transforms [42]. 

The plane-wave basis allows to compute the electrostatic 

interaction, however they are limited to small systems 

with period boundaries that restricted their applications 

to bulk properties of perfect materials [42, 43]. Orbital-

free approaches have recently gained attention thanks to a 

reduced computational complexity that allows application to 

systems with larger number of electrons and their implemen-

tation in concurrent scheme with finite-element approaches 

[43, 44]. Green’s functions can also be applied to solve the 

Schrödinger equation [45]. These models are used to provide 

input parameters for atomistic, mesoscopic and continuum 

simulations, such as activation energies [46], or giving an 

insight on phenomena such as thermodynamic stability [47], 

kinetics of atomic defects [48], and reaction pathways [49]. 

Their applications include the evaluation of electronic, con-

ductive, and optical properties too, as well as being used to 

calibrate the inter-atomic potentials or partial atomic charge 

distributions used for atomistic simulations [50].

Atomistic models describe the behavior of atoms and 

molecules using molecular or classic mechanics. The 

atomic interactions (e.g., force fields or inter-atomic poten-

tials) are used instead of the electronic field. This allows 

simulation of a larger system, spanning from nanometer to 

micronmeter, and nano to microsecond, with respect to the 

electronic based methods. The atomic system can be treated 

statistically or by deterministic methods. The most com-

mon statistical methods are Monte Carlo (MC) [51] based 

approaches like Markovian Chain or kinetic Monte Carlo 

[52]. Molecular Dynamic (MD) methods [53] are instead 

deterministic as they solve the classical dynamic equations 

to determine the atom motions. Some applications of these 

model methods include diffusion mechanisms [54], phase 

transformations (evaporation [55], melting and solidifica-

tion [56]), evaluation of surface [57] and interface energies 

[58], characterization of fundamental dislocation properties, 

such as core energies [59], or grain boundary evolution [60].

Mesoscale models focus on the behavior of nano-

particles, grains or molecules in a length scale that spans 

from 10
−9 to 10

−3 m, from 10
−6

s to seconds. They do not 

resolve the atomic motions, instead, these are averaged out 

or replaced by stochastic terms. They comprise methods 

to predict microstructural evolution such as Phase Fields 

(PF) [61] and Cellular Automaton (CA) [62], and material 

mechanics behavioral methods, such as Discrete Dislocation 

Dynamics (DDD) methods [63]. These three types of mod-

els are all Discrete models, meaning the state variables of 

the system change only with a countable number of points, 

while Continuum models treat the system as a continuum, 

where the space is occupied by the substance of the object 

in the domain. The continuum volume is divided either into 

finite volumes, cells or elements. They can be applied to a 

Fig. 4  Diagram shows the four 

typologies of modeling used 

in materials science based on 

the described entity: electrons, 

atoms, mesoscale entities such 

as particles, and continuum [38]
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large range of processes, from nano to macro level, and they 

are commonly sorted by their applications. Solid mechan-

ics modeling, for example, studies the behavior in terms of 

deformation and motion of solid matter under one or more 

external influences including thermal and/or mechanical 

loading, or electrochemical reactions. Fluid mechanics mod-

eling regards the motion of fluids, such as liquids, gases or 

dense plasma. Thermodynamics models are used to study 

energy conservation. Chemistry reaction models and elec-

tromagnetism investigate chemical reactions and electrically 

charged particles, respectively. These models are based on 

a set of equations that describe the process under investiga-

tion and constitutive laws describing the material behavior. 

For example, fluid mechanics theory is based on solving the 

conservation laws of energy, momentum and mass to pre-

dict velocity, temperature, pressure and density fields. Linear 

elasticity is an example of a constitutive law that describes 

the material strain response as directly proportional to the 

stress applied.

Model Uncertainties

Computational models are powerful tools and have acceler-

ated scientific progress in many fields; however, they can be 

subject to errors. There are four types of error: implementa-

tion mistake, numerical error, parameter uncertainty, and 

model form error.

Implementation mistakes are the errors made during the 

implementation of the conceptual model. The code verifi-

cation is the practical process to correct these errors and 

make sure the model solution is what is expected. Along 

with techniques presented in previous sections, practices 

like cross-check and visualization of the output are good 

methods to find and eliminate this type of error. It is also a 

good practice to write the code in distinct modules that can 

be independently reviewed.

Numerical errors arise from the computational approxi-

mations that are introduced to practically solve the equa-

tions. For example, each number is represented by computer 

with a finite number of digits, known as finite precision, 

that round-off its value. In addition, most of the equations 

cannot be solved analytically, but they are solved in an 

iterative way. This introduces an error called convergence 

error, which is the difference between the exact value and 

the iterative solution. The exact solution is defined as the 

solution to the equations with zero residual. This error can 

be reduce by imposing a smaller residual tolerance. Another 

type of numerical error is the simplification introduced in 

the equations so that they can be handled by the machine, for 

example, the truncation of an infinite series expansion. Like-

wise, continuum variables, and their function, are treated 

as discrete quantities by computer leading to discretization 

error. Discretization errors are reduced by increasing the 

mesh resolution. The reduction in numerical errors com-

prises higher computational cost. The solution verification 

process should provide a balance between accuracy and 

computational power requirements.

Parameter uncertainty concerns the errors deriving from 

input parameters. The uncertainty is due to the natural vari-

ability of the system such as microstructure variability in 

a component. It can also arise from the ability to measure 

the QoI in an accurate way. By nature, this last error can be 

reduced by advances in characterization techniques, there-

fore obtaining higher quality data. On the other hand, the 

natural randomness of the system is not reducible, but it can 

be quantified usually as a probability distribution.

Finally, model form error is due to the disparity between 

the real system and the conceptual model. This error 

depends on a lack of knowledge on the physics governing 

the system, and model simplifications assumed to reduce the 

computational expense. It is the most difficult error to quan-

tify, because it requires comparisons with true experimental 

values that also contain uncertainties, and may not be easy 

to obtain. The uncertainties in experimental data are due to 

human errors (e.g., misreading instrument scale), systematic 

errors (e.g., faulty calibration, poor maintenance), and ran-

dom errors (e.g., reading fluctuations).

Uncertainty Quantification

The quantifying of uncertainties is very important during the 

validation process of a model, which ideally involves com-

paring the amount of scatter in values from the model and 

experiment. The scientific approach to measure the uncer-

tainty in modeling and experimental is called Uncertainty 

Quantification (UQ). UQ methods are classified as forward 

or inverse analysis (see Fig. 5). The UQ forward problems 

focus on the analysis on the uncertainty of the model out-

comes, and they are conducted to assess the uncertainties of 

the QoIs (i.e., computed volume mechanical properties) as 

a function of small scale-features (i.e., microstructure fea-

tures). Forward studies can be applied to both experimental 

and computational researches. In materials science, a typi-

cal example of a forward problem is the investigation and 

determination of process-structure–property relationships. 

Fig. 5  Forward and inverse uncertainty quantification approaches
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Conversely, UQ of an inverse problem aims to optimize 

the distribution of the stochastic inputs to obtain the target 

features. Materials design and calibration are examples of 

inverse problems. The evaluation of uncertainty in an inverse 

problem is more difficult than a forward analysis, because of 

the larger number of variables and the possibility of multiple 

solutions.

Forward and inverse UQ methods are then subdivided in 

non-intrusive and intrusive methods. Non-intrusive meth-

ods treat the model as a black box, as they are implemented 

along side the conceptual model. MC approaches are an 

example of non-intrusive methods, largely applied to study 

the uncertainty in forward problems. They are robust tech-

niques but require a large number of samples for each input, 

becoming costly quickly both in terms of physical measure-

ments and computation. The efficiency can be improved by 

using design sampling techniques such as Latin Hypercube 

Sampling [64, 65] to better cover the input space, or Impor-

tance Sampling [66] to reduce the sample size. The input 

sample can be built by statistical methods such as Karhunen-

Loeve expansion [67, 68] or Auto-regressive moving average 

[69].

Alternative to MC, surrogates models are less expensive. 

They use outcomes of a physic-based model as training 

points for the calibration. The selection of these data points 

needs to be made in a sensible way, balancing accuracy 

without excessively increasing the number of simulations. 

Surrogate models speed up the process, however, they are 

prone to oversimplification, and they can be unreliable in the 

case of complex systems. Examples of surrogate models are 

Polynomial Chaos Expansion [70], Singular Value Decom-

position [71], which are forward analyses, or the Bayesian 

method [72], and Gaussian Process regression [73], which 

can be used for both forward and inverse problems. If the 

UQ approaches are implemented directly in the original 

model to take into account the uncertainty internally, they 

are called intrusive methods. Polynomial Chaos Expansion 

can be used as a non-intrusive or intrusive surrogate model 

[74, 75].

The identification of the source of uncertainty reduces the 

risk of an incorrect outcome in pass-fail decision making. 

Where possible, these errors can be reduced by improving 

our knowledge (more accurate models of the system, and/

or model parameter) or by increasing the accuracy of the 

calculation (higher resolution, lower tolerance). When the 

errors cannot be reduced (usually due to computational con-

straints and/or to physical measurement limitations), their 

quantification indicates the level of trust one can put in the 

predictions. The sources of uncertainty can vary from model 

to model; here, a summary of the most common in multi-

scale materials modeling is presented.

In electronic models, uncertainties are mainly derived 

from the approximation of the electronic wave functions. In 

density functional theory (DFT) [40], the electrons interac-

tions are approximated by fitted exchange-correlation func-

tions introducing a model-form type of error in the outputs. 

Another model error is the use of pseudopotentials to reduce 

the computational cost. Pseudopotentials consider only the 

effect of valence electrons, while the core electrons are 

considered frozen. This approximation can affect the cal-

culated properties. The choice of the exchange-correlation 

functionals and pseudopotentials is fundamental and there 

are a considerable number of publications addressing the 

fidelity of the results of these simulations. There are also 

numerical errors due to the threshold on the energy and force 

convergence calculations, and the size of the simulations 

domains. In this case, convergence studies are needed to 

reduce these errors.

In atomistic models like MD, the interatomic potential 

function introduces model-form type and parameter errors 

in the results. Other model form errors are the choice of 

the boundary conditions that can introduce artifacts, and the 

deviation of the constructed model from the real process. 

Numerical errors are caused by the picked cut-off distance, 

round-offs in floating-point, task distribution and sequenc-

ing in parallel computation. In kinetic Monte Carlo simula-

tions, the incomplete list of events or wrong event rates are 

model-form and parameters uncertainties. Another source 

of model-form uncertainty are the unknown correlations 

between the events.

In mesoscale modeling, model-form type of errors are 

introduced by using an empirical model for the stress field 

and dislocation interactions in DDD simulations or energy 

functionals in the PF model. Uncertainties also come from 

the numerical treatment to solve the ordinary or partial 

differential equations. At the continuum level, sources of 

model-form errors are wrong or incomplete constitutive 

laws, and the assumptions made to reduce the computational 

cost of the simulation. Uncertainties are introduced by the 

mesh size and numerical calculation to solve the set of dif-

ferential equations.

Materials Modeling in Industry

Modeling and simulation are valuable assets for industry. 

Industrial interests on these methodologies are several, from 

a better insight of materials behavior to cost efficiency in 

materials and process designs. These tools are used to find 

Process-Structure–Property-Performance (PSPP) relation-

ships in a material system [37]; a key link between composi-

tion, process parameters, microstructure features, and final 

material properties. This enables the forecast of the behavior 

of materials during production and service, optimizing the 

manufacturing process, and accelerating the design of new 

alloys. Modeling outcomes can also guide experimental 
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trials, by scaling down to the elements or features that affect 

the final results. They are suitable tools to reduce time, cost, 

and risks associated with the materials design processes, by 

minimizing expensive or dangerous experiments. A well-

documented model additionally formalizes knowledge that 

could be easily lost over time in order to avoid mistakes and 

repetition. They are also useful to scale up production and 

reduce time-to-market through process design.

Model Quality Levels

As with any other new technology, models lead to improved 

performance and advance understanding but also introduce 

a great deal of uncertainty and risk in terms of capabilities, 

limitations, and development trajectory. It is very impor-

tant to assess the quality and maturity of any technology, 

including modeling tools, to ensure they are integrated into 

engineering projects.

The widely used methodology to assess the maturity level 

is the Technology Readiness Level (TRL) scale developed 

by NASA in the 1970s [76] to assure safety, and define 

emergency strategies before commencing missions. The 

TRL scale comprises nine levels as summarized in Table 1. 

There is an initial research phase consisting of levels one to 

four. In this phase the scientific knowledge (observations) is 

translated into applied research by the formulation of practi-

cal concepts (level 1) into an actual technology or applica-

tions (level 2). Level 3 concerns the proof-of concept of 

the technology through analytical and experimental studies. 

Low-fidelity laboratory-scale validation of the component 

assembly is performed at level 4. Following this level, it 

starts a second phase of fidelity tests conducted in relevant 

ambient conditions and more representative of service con-

ditions. The component assembly is validated in the relevant 

environment (TRL 5), then a prototype is created and tested 

in the relevant ambient conditions (TRL 6) and in an opera-

tional system (TRL 7). After level 7, the realize phase starts, 

where the technology is in its final form and a series of final 

tests and demonstrations are performed (TRL 8), following 

by adoption and application of the technology (TRL 9).

In case of modeling, the TRL maturity levels can be trans-

lated, as summarized in Fig. 6. There are three milestones 

defining the three phases earlier described. The research 

phase corresponds to the V & V process that starts with the 

formulation of a conceptual model (TRL 1) and its transla-

tion to a mathematical form (TRL 2). The computational 

code is implemented and verified (code and solution verifi-

cation) at the TRL 3 of the chart. This stage also includes the 

design of the experiment for the validation. The validation 

process (TRL 4) concludes this phase together with the UQ 

on the experimental and model data. After V & V, a so-

called black-box testing phase starts, where end-users, who 

have no knowledge of the implementation, test the code. 

The code is initially tested by few selected end-users, who 

can be from outside or inside the company (TRL 5). The 

testing is then enlarged to invited end-users, both internal 

and external (TRL 6). At the last stage, the testing is open 

to any end-users who sign up (TRL 7). The fulfillment of 

the testing phase corresponds to the second milestone. After 

the black box testing phase, the first version of the software 

can be realized in the market (TRL 8), and its updated ver-

sions are realized over time until it satisfies the application 

requirements or it becomes obsolete (TRL 9). In recently 

years, the Air Force Research Laboratory (AFRL) in the 

United States sponsored a Technical Interchange Meeting 

aiming to develop strategies for V & V within integrated 

computational materials engineering, in order to upraise 

computational tools to more fundamental role in design and 

decision-making [77]. The principal outcome was the draft 

of guidelines for software evaluation called Tool Maturity 

Levels (TML) [78]. The guidelines consider six categories: 

model basis and definition, complexity and documentation, 

supporting data, model verification, rules of applicability, 

uncertainty quantification, and validation. The maturity of 

a models is assessed using 5 levels. The first level required 

definition of the model, inputs and outputs, its applica-

tion, and its flow diagram. The supporting data are identi-

fied. The code, verification and uncertainty quantification 

plans need to be developed. Level two is reached when the 

sub-models are also defined with their inputs and outputs, 

with definition of ranges of model inputs and outputs as 

Table 1  Technology readiness 

levels developed by NASA [76]
TRL 9 Actual system “flight proven” through successful mission operation

TRL 8 Actual system completed and “flight qualified” through test and demonstration (ground or space)

TRL 7 System prototype demonstration in a space environment

TRL 6 System/subsystem model or prototype demonstration in a relevant environment (ground or space)

TRL 5 Component and/or breadboard validation in relevant ambient

TRL 4 Component and/or breadboard validation in laboratory ambient

TRL 3 Analytical and experimental critical function and/or characteristic proof-of concept

TRL 2 Technology concept and/or application formulated

TRL 1 Basic principles observed and reported
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well as the sequential or interdependent computations. The 

supporting data is documented and archived and used to 

verified the model computations. The code verification is 

also completed. A range of applications is defined with the 

inputs required. The sensitivity analysis is completed and the 

results trends are consistent with known data. A validation 

plan is drawn out with risks assessment. Level three consists 

of finalization of the user guide, definition of dependence of 

inputs data from other analytical tools, implementation and 

documentation of version control. The model is verified for 

range of applications with definition of the supporting data 

and limitations for each of the applications. Risks assess-

ment is performed for each application. Validation is carried 

out for sub-models and selected cases. The user guide is 

updated with reference to the supporting data, uncertainty 

quantification and validated cases at level four. The model 

and its accuracy is validated for a range of cases. In the last 

level, benchmarking cases are carried out and validated with 

UQ. This assessment was developed for ICME applications 

and it is thought to be flexible allowing tailoring for the spe-

cific case. A model is assessed with gated process meaning it 

moves to the next level only if it meets all the TML criteria 

of the current level.

In terms of technology development from R & D to 

commercialization, these three milestones correspond to 

failure points, as commonly referred to in the Technology-

to-market flow as valley of death as shown in see Fig. 7. 

The diagram indicates the involvement level of academia 

(green area), industry (blue area), investment (red area), 

and bank loan (purple area), in the Technology-to-market 

flow. Initially, the maximum involvement is represented 

by university research with a relatively small amount of 

support from industry. The first valley of death is the tech-

nological one that occurs at TRLs 3 and 4. In the case of 

computational modeling, it corresponds to the failure of 

the V & V process. Gated reviews are performed to assess 

the commercial risk of pursuing further into product devel-

opment. Evidence needs to be provided that the technol-

ogy could be successful. At this stage, the modeling tools 

review processes correspond to proof of concept and V 

& V. The second block corresponds to the testing pro-

cedure. In this case, the university drives this process at 

the beginning, but industry takes slowly over from TRL 

6 onward. During this process, there is the second valley 

of death: commercialization. Another series of reviews is 

conducted between level 6 and 7 to assess the economic 

impact of the technology development. If the review is 

successful, further investments are made to deploy the 

commercial software in TRLs 8 and 9. Industry leads over 

the commercialization of the technology with little-to-no 

effort from academia. The final failure point, preventing 

the distribution in the market (e.g., constant improvement, 

standardization), is the profitability valley of death. This 

failure is driven by the small revenue at market entry of a 

new technology. As shown in Fig. 7, loans and/or invest-

ments are required to overcome this last valley.

Fig. 6  The chart shows the 

nine TRLs used to assess the 

maturity level of a model. Three 

Mile stone can be identified cor-

responding to the completion of 

the V & V, testing and diploid 

processes
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Application Cases and Economic Revenue

There are few examples of successful industrial applications 

of multi-scale materials modeling within industry in the lit-

erature. The Virtual Aluminum Castings (VAC) software 

package [79] was developed, for example, in 2006 by Ford 

Motor Company to simulate casting and heat treatment. The 

framework predicts microstructure and residual stress, and 

it forecasts virtual performance of the service life of the 

component. It consists of an integrated multi-scale modeling 

framework including atomic to component level models. It 

is the result of a deep understanding of physical phenom-

ena involved through theoretical, experimental and compu-

tational studies. It has enabled a 15–25% reduction in the 

development time of a component, such as a cylinder head 

[79]. More recently, Rolls-Royce has developed precipita-

tion modeling tools in collaboration with the University 

of Birmingham [80]. This model allows simulation of the 

precipitation kinetics as a function of their position in the 

matrix to optimize the heat treatment and component life of 

the alloys developed [81]. The tool was successfully used to 

predict a quantitative trend of the manufacturing process, 

and accelerate the design of new alloys for gas turbine appli-

cation within five years [81].

In terms of economic revenue, a survey conducted by 

Goldeck Consulting Ltd in 2015 reports that the adop-

tion of material modeling resulted in improved innovation 

accomplishment of 80% and revenue increase for 30% of 

interviewed companies [82]. The average investment in 

material modeling was £ 1 M, with an average cost saving 

due to materials modeling equal to £ 12 M [82]. Continuum 

Materials models are the most ubiquitous in industry with 

an estimated 75% of the materials software market [83]. The 

total market size of Computer Aided Engineering (CAE) 

modeling is estimated to be in a range of $5–8bn [83], where 

the software development for materials applications is 

5–10% of the market [82]. The discrete modeling (electronic, 

atomistic and mesoscale) softwares started to be developed 

in the 1970s concomitantly with the spread of HPC in the 

life science industries. In the 1990s, HPC was adopted by 

other industrial sectors such as chemistry and materials engi-

neering. Since then, the market of discrete modeling outside 

the pharmaceutical field has increased, reaching a value of 

∼ $50 M in 2012 [84].

Company Values

These are valid examples of how materials modeling is a 

credible tool for industry, in terms of cost and time saving, 

and technological and scientific advancement. However, like 

other technologies, a consistent advantage through time can 

only be achieved if materials modeling is valued through 

the core of the industrial business. A protocol to monitor 

the level of materials modeling adoption in industry from a 

business point of view has been suggested by Goldbeck and 

Simperler [85]. The method is based on Capability Maturity 

Model Integration (CMMI) [86] and it assesses the impact 

of material modeling on four factors: People, Process, Tool 

and Data. The People factor includes all the relevant person-

nel within the organization to materials modeling, from the 

expert modelers to occasional end-user. The Process factor 

regards not only the modeling workflow itself but also the 

workflow within the whole organization. The Tool factor 

comprehends the selection and application of software and 

hardware within an organization IT infrastructure. The Data 

factor concerns the storage, handling and management of the 

information obtained within the organization.

Fig. 7  This chart shows the 

development stages of a new 

technology from initial research 

(TRLs 1–4) to commercialisa-

tion (TRLs 8–9) indicating the 

effort from University (green 

area), industry (blue area), 

investment (red area), and bank 

loan (purple area)
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For each of these factors, a five-level scale (see Fig. 8) 

was set to measure the exploitation of modeling tech-

niques in the company. In the initial stage, the knowledge 

is restricted to individual people, and the tool choice is 

subjective to the modeler. At this stage, the workflow 

is not established and inefficient, and there are insuffi-

cient data management policies to reliably record param-

eters and simulation outputs. The next level is called 

defined, the knowledge is shared within a larger group 

of interested subject matter experts (a research group 

or specialized department). The workflows inside this 

materials modeling group is consistent but not shared 

outside the group with the extended organization. The 

individual tools have been validated internally, but they 

are not yet integrated into an automated system to share 

information. Data policies have been established but they 

are not consistently applied across the organization. At 

the next step (integrated level), the research strategy is 

consolidated at the business level, resulting in the inte-

gration of policies and objectives for materials modeling. 

The process workflow is well-documented, assimilated, 

and straightforward to follow. The selection and appli-

cation of modeling tools is standardized and integrated 

on a synthetic level. The data are managed at an organi-

zation level through an integrated information architec-

ture defined by uniform data policies. At the managed 

level, the evaluation performance and objectives of the 

modeling teams performance is standardized. The mod-

eling process is integrated in the business workflow, and 

all data and metadata are traceable. The modeling tools 

Fig. 8  Capability maturity model integration protocol measures the integration of modeling tools in an industrial setting in relevant four factors: 

people, process, tools and data [85, 86]
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acquisition is now centrally managed, and the models are 

inter-operable across domains and cross-functional across 

the workflow. The company has data-dedicated personnel, 

provenance, and security, allowing data sharing along the 

value chain. The highest level of adoption, the optimized 

level, requires full integration of the modeling process in 

the business plan, and the highest level data-infrastructure 

management where all data are available, prompt and rel-

evant across the entire organization. The modeling team 

is part of the enterprise level viewpoint, and resources are 

spent toward continuous improvement of modeling tools 

and data infrastructure. The tools are fully integrated with 

semantic data flows.

In 2018, this protocol was used by Goldbeck and Sim-

perler to assess the adoption of materials modeling in 

industry [85]. They interviewed 120 materials modelers 

across 16 companies, from pharmaceutical through spe-

cial chemical and materials fields, to the manufacturing 

industry [85]. Their study showed that the majority of 

companies reached the integrated level in regards of peo-

ple and tool factors, while process and data factors lag 

behind between defined and integrated levels. Overall the 

average CMMI level was 3.2 in manufacturing industries 

and 2.5 in chemical and materials industries [85]. These 

data show that materials modeling technologies are recog-

nized as valuable tools mainly by specialized personnel. 

Each modeling group reaches an advanced level of knowl-

edge and standardization. However, this is not translated 

at the management and business levels. The materials 

modeling development and evaluation are not considered 

as part of the business values. The know-how acquired 

is not immediately traceable, readable, transferable, or 

retainable. The Goldbeck and Simperler study concluded 

that, although there remain barriers for their complete 

endorsement, modeling tools have demonstrated them-

selves to be technologically invaluable and successful.

Barriers

The report of Goldbeck and Simperler [85] shows that mate-

rials modeling is not considered as a core indutry value and 

barriers to full adoption still exist. In general, the main 

obstacles to the adoption of materials modeling can be sum-

marized in a lack of communication and governance, high 

complexity, and difficulties with data management (see sum-

mery in Fig. 9). The trust in integrated modeling tools is 

severely effected by these problems, and in some cases the 

loss of confidence can completely undermine developments 

in industry and discourage final users from embracing these 

technologies.

Various actors are involved in the development and use of 

these technologies: modelers, software developer and end-

user who work as researchers in academia, research technol-

ogy organization, or R & D intensive industry. The variety 

of understanding of the technology between these groups 

can be stark, leading to potentially contrasting goals. Com-

munication between these roles can be complicated due to 

the different backgrounds, motivations, and terminologies, 

and it is recognized as one of the main barriers to adop-

tion. Academics, for example, are interested in solving very 

complicated problems, and looking in depth at the phys-

ics and chemistry that govern the phenomena involved. 

They sometimes underestimate the problems that occur in 

an industrial setting, or find them unengaging [87]. Their 

research interests are also not static but they evolve mov-

ing from one subject to another. They do not concentrate 

on one aspect, but they like to keep exploring and pushing 

the boundaries of their knowledge Moreover, this commu-

nity tends to be more motivated by exploration and pushing 

the boundaries of the state of the art, rather than long-term 

continuous focus on a particular solution or improved user-

experience. These aspects may conflict with the industrial 

point of view. Industry organizations tend to push for simple 

solutions that are fast and easy to implement. This is clearly 

Fig. 9  Summary of the barriers 

that stop materials modeling 

integration
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at odds with the university experts who tend to push for 

more complicated solutions. In the academia-industry rela-

tionship, these cultural barriers limit the creation of strong 

collaborations, and the communication can be difficult in 

both directions. Industry partners sometimes fail on synthe-

sizing and communicating the problem they want to solve. 

As discussed earlier, defining the problem entity is an impor-

tant step for the development of modeling tools. With a vast 

community like materials modeling, where research groups 

tend to focus on a specific methodology and/or materials 

application, a well-defined question assists with identify-

ing the appropriate technologies and expertise. At the same 

time, academics and modelers may struggle to transfer effi-

ciently the technologies to people that are not highly-trained 

across an industrial organization. Alternatively, end-users 

frequently apply modeling tools as black boxes, which can 

lead to improper, potentially dangerous, results. Academics 

can also over-estimate the scope of applicability of modeling 

capabilities in more complex settings, reducing the confi-

dence of the industrial partner in case of large errors and/or 

failure. Strong communication is also needed between mod-

elers and experimentalists. As already said, experiments are 

essential to provide data for validation of the modeling tools 

and to provide model parameters. The experiment design is, 

in fact, a fundamental step during the V & V process, and 

it requires a mutual understanding of problem system and 

conceptual model. Modelers need to explain how the model 

works, and what inputs and outputs are required. Experi-

mentalists need to make clear what the type of experiment 

can be conducted to validate the model. It is important to 

know what can be measured, monitored, the limitations of 

technologies used, and how to quantify the uncertainties. A 

mutual understanding from the beginning is important for 

the success of the V & V process and can require the dedica-

tion of time and resources to ensure it is is done correctly. 

Like the academic experts, the experimentalists can also 

overestimate their in-house capabilities, undermining the V 

& V process. Modelers may struggle to provide a complete 

description of their work, impairing the communication of 

the advantages of these technologies. Often, their work is not 

recognized, either because it requires specific knowledge, or 

because of skepticism in the accuracy/ability of the model 

[85]. The skepticism with regard to modeling tools arises as 

a result of a lack of awareness or complete description of the 

quantitative accuracy of a solution for a specific problem. 

Models can provide, instead, direction and/or reasonable 

range (output that includes uncertainties) to decision-mak-

ing direction. Providing realistic and transparent information 

from the start of the process would assist the integration 

of materials modeling in industry. In addition,there is an 

evident gap between modelers and other important figures 

such as design engineers and business managers who are not 

be able to recognize the potential benefits gleaned from R 

& D, product development, process optimizations, and cost 

effectiveness of materials modeling. In general, outside of 

the modeling community, modeling is not well understood, 

defined, or well-established within industrial organizations 

[85]. This impedes the integration of materials modeling in 

the vertical value chain of the company process [85]. The 

materials modeling position is not consolidated or, worse, 

not accounted for in the business processes, policies, and 

standardization of the organization. In many cases, materi-

als modelers are only involved in a problem as a last resort, 

while to fully exploit their potential, modelers should be 

involved as early as is practical for a given project.

Related to poor communication links, the lack of work-

flows and standardization in the organization can signifi-

cantly affect the governance of materials data and informa-

tion [22]. The first barrier in the workflow is between the 

university and industry during the TRLs 1–4 as shown in the 

technology development chart (see Fig. 7). The V & V pro-

cess and software development are demanding and require 

skills across multiple disciplines. Academic research groups, 

for example, alone do not have the capability to deliver user-

friendly software. The adequate standard to produce docu-

mentation and software, and perform a V & V process that 

can be easily translated to industry may not be followed by 

university researchers. In particular, the ability to create a 

user-friendly code that has been verified across several use-

cases is out of scope for most of the academics [88]. Even 

when modeling tools are successfully developed, there are 

barriers inside the industrial organization that stop modeling 

tools from being effectively used. Modeling tools available 

are not well integrated with other tools in multidisciplinary 

design and optimization architecture [5]. This makes it dif-

ficult to access these technologies, especially for end-users. 

Developed codes can be archived even if they are successful 

as they are created to solve a specific problem. The absence 

of standards also leads to bias in the choice of which tool 

to be used. The materials modeling field is populated by a 

vast heterogeneity of codes and software to chose from. As 

already discussed, the choice of modeling tool to be used 

is a difficult one, and it needs to be addressed in relation to 

the problem to be solved. The lack of standardization and 

policies can lead to an arbitrary choice of the modeler who 

may favor one technique over another depending on their 

background. The lack of governance is frequently due to the 

fact that materials modeling is not well enough established 

as an asset to business, which is often connected to insuf-

ficient ability of modelers of shining a light on the business 

advantages in terms of spending and time. This affects the 

recruiting process, making it difficult to attract and retain a 

valuable workforce.

Complexity is also a major barrier to the adoption of 

these techniques and it affects mainly Small and Medium 

Enterprises (SMEs), which do not undertake a dedicated 
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research activity or have access to HPC facilities [85]. 

Establishing a hardware ecosystem from scratch is nei-

ther trivial nor cheap, and it requires a costly process that 

involves putting in place specialized tools, processes, data 

management, and a trained workforce. Making materials 

modeling technologies more accessible to all industries 

including SMEs is a requirement for their integration 

across the supply chain. Nonetheless, problems can arise 

from over-simplification. The naive use of desktop soft-

ware can, in fact, lead to misleading results if used with 

the wrong set-up for the simulation (e.g., boundary con-

ditions, mesh size), effecting the reliability of the output. 

The expertise of end-users required for model develop-

ment (mathematical methods, physics, materials science, 

and computing) may not be at an appropriate level to pre-

vent escapes of inaccurate outputs. However, these chal-

lenges existed equally in other modeling domains, such 

as finite element analysis (FEA) and computational fluid 

dynamics (CFD), and have been overcome and matured for 

wide-scale industrial adoption and standardization.

Another obstacle to modling is the absence of extensive 

and reliable materials data. In fact, modeling activity needs 

data as input parameters, boundary conditions, and output 

for validations. Data availability needs to be considered in 

the building of a model and their capital investment should 

be evaluated early on [87]. The difficulties to gather data 

both for inputs and outputs leads to technical issues and cost 

effecting even more accepted methods such FEA and CFD. 

Another problem that affects data is the presence of differ-

ent types of format, which makes it difficult in the handling 

and storage [85]. The variety of data formats is driven by 

the prevalence of proprietary data formats used in scientific 

instrumentation and modeling technologies. This variation 

makes it difficult to extract, establish, and support metadata 

for the the creation and implementation of a Materials Data 

Infrastructure (MDI) [89].

Initiatives

Materials modeling is recognized as fundamental for the 

discovery and development of new materials and processes 

[90]. Many initiatives have been proposed over the years 

to tackle the barriers discussed in the previous section [3, 

4, 21, 83, 87]. The main areas recognized to be essential 

to advocate for materials modeling in industry are collabo-

ration, disclosure, education, accessibility, integration and 

data [3, 4, 21, 85, 87]. Collaboration, disclosure and edu-

cation directly effect the people factor. The governance is 

affected by the integration, and complexity by accessibility 

(see Fig. 10).

Collaboration

In term of collaboration, it has been recognized that coop-

erative work between academic model developers, industrial 

stakeholders, and across industrial departments and research 

modeling groups, is not only beneficial but essential to the 

development of tools and frameworks ready for industrial 

applications [87]. Materials modeling does require differ-

ent skills, involving relatively large research groups (up to 

20 or more people). Alternatively, collaboration between 

smaller groups can achieve the same outcomes. Promotion 

of collaborative work between modeling groups can help the 

creation of a framework that can span across length scales 

and purposes. In order to promote it, cooperation between 

universities is now a prerequisite to apply for funding. Other 

activities to support partnerships between universities are the 

Fig. 10  The main area of initia-

tive are summarized in relation 

of the four factors: people 

(collaboration. disclosure, and 

education), governance (integra-

tion), complexity (accessibility), 

and data
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organization of workshops and seminars, possibly extended 

to a wider group of researchers and industry. These can 

also help to find new applications for existing techniques, 

especially for the physics-based models, in other fields [87]. 

Research centers can have an important role on encouraging 

collaboration. It has been proposed that a one-day meeting 

between modeling and non-modeling experts (experimental-

ists and industrial users) organized by the Engineering and 

Physical Sciences Research Council (EPSRC) or a center of 

excellence would be beneficial to bridge this gap [87]. They 

can play a key role by creating international relationships 

with universities and organizations outside the UK. Col-

laboration is promoted by communities such as nanoHUB 

[91] which aims to gather together students, researchers and 

instructors working and teaching in the nanotechnology field 

around the world. The sharing of tools and teaching materi-

als are encouraged in exchange of benefits including wider 

visibility, automatic data usage, possibility to discover new 

applications in other fields, the usage of HPC resources, cita-

tion tracking, and control of reuse and assets via licensing.

Conflict of Interest

The modeling community needs to put major effort on dis-

closure and reaching out. Activities such as training, show-

cases, software benchmarking and consultancy can speed up 

the adoption of these technologies. Centers of excellence are 

points of aggregation for academics and industry, therefore, 

ideally placed to run these activities. At a European level, 

the European Materials Modelling Council [6] was created 

in 2019 aiming to overcome the barriers to industrial inte-

gration of materials modeling. The EMMC focus is divided 

into six areas: Model development, interoperability, digitali-

zation, software, impact of industry, and policy. They pro-

duce survey studies, whitepapers, roadmaps, and run work-

shops to identify the barriers and suggest strategies. Another 

example is the Interdisciplinary Centre for Advanced Mate-

rials Simulation (ICAMS), in Germany, which is a research 

center at the Ruhr-Universität Bochum [92] focusing on the 

development and application of simulation tools for multi-

scale materials modeling [92]. They actively contribute 

to simulation software development that can be found in 

their GitHub repositories [93]. The knowledge and know-

how was transferred to two new enterprises, one of which 

offers support for microstructure modeling. They are active 

in industrial research, and they organize showcases of three 

of the six project groups every two years, to show the last 

development and get input from the industrial stakeholders. 

In France, the French National Centre for Scientific Research 

(Centre national de la Recherche Scientifique, CNRS) [94] 

is a state research organization, which coordinates different 

institutes. Each institute promotes cooperation between dis-

ciplines and oversees the research activities of laboratories 

in the country such as the Institut Jean Lamour (IJL) [95], 

which focuses on materials science research including the 

use and development of in-house software. Five companies 

have been established as spin-outs from this research labo-

ratory, two of which are modeling and simulation focused. 

The activities of benchmark exercises are also a good way 

to showcase the state-of-the-art technology and disclose the 

latest achievement in the community. The Additive Manu-

facturing Benchmark Test Series (AM-Bench) activities pro-

moted by the American National Institute of Standards and 

Technology (NIST) [96] is a good example of benchmark 

exercises for additive manufacturing applications. A first 

benchmark exercise was run in 2018, the results of which 

were disclosed in a series of articles and at the conference 

organized by The Minerals, Metals & Materials Society 

(TMS), which saw the participation of academics; software 

companies such as Dassault Systèmes SIMULIA [97] and 

QuesTek Innovations LLC [98]; research centers such as the 

Advanced Manufacturing Research Center (AMRC) [99]; 

and industry such as Rolls-Royce [100] and Siemens [101]. 

The French national research agency (Agence Nationale de 

la Recherce, ANR) [102] also promotes benchmark exer-

cises, for example on macrosegregation simulations during 

solidification run in 2010 [103], which involved different 

research centers in France including IJL. The aim of the 

project was to refine the processes of macrosegregation in 

the final product. At the time of publishing this review, there 

is no existing research center that specializes in materials 

modeling, because the decision was to create research cent-

ers focusing on specific processes [87]. Nowadays, most of 

these centers have materials modeling departments as they 

conduct projects involving modeling and simulations. In 

terms of SME engagement, there are projects founded by the 

European Regional Development Fund (EDRF) that aim to 

facilitate the access to materials modeling technologies for 

SMEs [104]. Other fundamental actors for materials mod-

eling disclosure are communities such as nanoHUB [91] or 

the International Association for the Engineering Modeling, 

Analysis and Simulation Community (NAFEMS) [105]. 

They offer a vast selection of resources including software 

that can be run in the cloud, and learning materials such as 

videos of lectures and courses.

Education

It is clear that industrial adoption of materials modeling 

requires the formation of a new generation of modelers, 

engineers, and materials scientists in this discipline. The 

importance of education in materials modeling was already 

recognized by Sheriff [87]. He recommended to develop 

appropriate degrees both at undergraduate and postgradu-

ate levels, which foster an open-minded approach, ability 

to work in a team, and the clear idea that models are not the 
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final goal but useful tools to accomplish the aims of research, 

design or monitoring activities. In his final remarks, he indi-

cated the EPSRC as the main actor in promoting and devel-

oping materials modeling education. Most undergraduate 

studies in materials science in the UK university offer some 

materials modeling course in their curricula. Most of these 

courses focus on continuum techniques, but with very few 

on discrete modeling tools. In terms of higher education, two 

Centers of Doctoral Training (CDT) have been founded by 

EPSRC, Theory and Simulation of Materials (CDT-TSM) at 

Oxford [106] and Computational Methods for Materials Sci-

ence (CDT-CMMS) [107] in Cambridge. Both courses aim 

to generate materials scientists and researchers in the state-

of-the-art of materials modeling, helping them to develop 

and select the right modeling tools for their research. The 

state of materials modeling in university teaching in the USA 

seems similar to the UK, as reported surveys conducted by 

Thorton et al. [108] and by Enrique et al. [109]. The surveys 

were conducted nine years apart between 2009 and 2018, 

proposing the same questions to a select group of American 

academics [110]. The comparison between answers show 

an increment of Computational Materials Science and Engi-

neering (CMSE) courses and a clear support for including 

them in the core curriculum. In nine years, the number of 

universities offering one or two CMSE undergrad courses 

almost doubled, and 96% of institutions interviewed has at 

least one CMSE module in their graduate courses while it 

was 41% in 2009. The surveys also show that there is no 

strong preference for standalone courses or the introduction 

of specific modules in the existing materials science courses. 

Some interviewees indicated that barriers stopping further 

development were the lack of teaching resources such as 

graphics-based operating system interface (GUI) software, 

and preparation of the students in mathematics, physics, 

and computer science fundamentals. In Europe, the teach-

ing includes some complete courses in materials modeling 

for graduate students [111, 112]. In addition, short training 

courses and seminars for industry are organized by universi-

ties [113], software companies [97] and associations [105]. 

Online resources are also available such as the nanoHUB 

catalog of courses [91] or other sources [114]. These are 

fundamental activities for promoting a wider use of materi-

als modeling tools outside the modeling community.

Accessibility

The complexity characterizing these technologies is also a 

technical barrier that prevents users from taking advantage 

continuously and efficiently applying these tools. Most of the 

people working in industry today do not have a very strong 

background in modeling, especially in discrete techniques, 

program languages and operating systems. The EMMC sug-

gested that the community of modeling experts, the software 

developers, and the funding agencies should focus on trans-

forming a promising tool into a technology that can be eas-

ily adopted throughout the industrial stakeholders [3]. The 

development of GUI-based or browser software is a funda-

mental process in the industrial distribution of these meth-

odologies. According to the EMMC, the technology transfer 

and software development do not need to be performed by 

university, actually small companies and research institu-

tions are better intermediate entities between university and 

industry [87]. While user friendly software should not be 

one of the objectives of academic work, more effort should 

be dedicated to write clear documentation of the code devel-

oped, to make the conversion easier for software developers, 

and help to set the training of users [3]. Different university 

spin-out companies have created web-based interfaces that 

simplify the use of techniques such as CALPHAD [115] 

and MD [3]. The use of an open source web app framework, 

such as the Django project [116], Flask [117], and Pyramid 

[118] that allows running remote applications using a web 

interface should be also investigated.

Integration

Even when the technology is accessible to industry, it is still 

not widely used. As shown in the surveys of Goldbeck and 

Simperler [85] materials modeling is not well integrated in 

the industrial processes or workflows. The authors believe 

that this is a sign of the fact that materials modeling is not 

de facto recognized as value in the organization. Work 

should be done in promoting these technologies, empha-

sizing the benefits, efficiency and effectiveness. As already 

mentioned, benchmark activities, showcases, seminars and 

workshops organized by research centers can help show 

evidence of the benefits coming from the use of materials 

modeling. Internally to the organization, activities such as 

Business Processes analysis and Quantitative Benchmark 

for Time to Market framework (QBTM) [119] should be 

performed to show the impact of materials modeling [85]. 

Materials modeling and simulation need to be part of Busi-

ness Process Integration (BPI) Paradigm. BPI aim is to con-

nect systems and information efficiently allowing the auto-

mation of business processes, integration of systems and 

services, and the secure sharing of data across numerous 

applications internally and externally [120]. Belouettar and 

co-workers [5] have proposed an integrated multi-discipli-

nary, multi-model and multi-field approach. The tool devel-

oped integrates materials modeling with business tools and 

database in a single open platform, connecting a rich materi-

als modeling layer with industry standard business process 

models. In terms of modeling governance, the non-govern-

ment organization, Modelica Association, aims to develop 

and promote a standard language for modeling, simulation 

and programming of physical and technical systems and 
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processes [121]. The standards include an object-oriented, 

equation based language (Modelica Language) to describe 

cyber-physical systems, zip-file (Functional Mock-Up Inter-

face) container for the description, exchange and storage of 

simulation input and outputs, a workflow (System Structure 

and Parameterization) that describes the logical connec-

tions between the different models and how data are stored 

and exchanged, and a communication protocol (Distributed 

Co-Simulation Protocol) for the integration of models and 

real-time system into simulation environments. This organi-

zation includes members from around the world, from aca-

demia, industry, and software developer companies. This 

project started in 1996, and it has promoted the developing 

of a series of open source and commercial tools such as 

simulation environments, developer, and data visualization, 

managing and storage. In industry, the Modelica language 

and libraries are used in automotive industries and by plant 

power providers.

Data

The availability and sharing of data are crucial to accelerate 

the development of new materials, optimize manufacturing 

processes, and validate theory, but also assists to identify 

gaps and avoid redundancy [21]. The creation of a MDI is 

explicitly indicated as a strategic challenge in a Materials 

Genome Initiative white paper [122]. The MDI should be 

easy to access and use, with high-quality standardized data-

sets [4, 21]. Quick and easy access should be guaranteed by 

online accessibility so the materials science and engineering 

community can take advantage of these data. Standards need 

to be developed for format, metadata, data types, data quality 

criteria, data management, data stewardship, and protocols 

necessary for interoperability and seamless data transfer. The 

goal is to extract the maximum benefit from a set of data by 

reusing them for different applications and research. This, 

however, requires a data quality metric to be defined. Four 

principles have been recognized as fundamental to guide 

toward a good-quality and open data: Findability, Acces-

sibility, Interoperability, and Reusability (FAIR) [123]. 

Findability principally concerns the fact that data should be 

associated with a globally unique and persistent identifier, 

contain accurate and relevant attributes (metadata), and be 

registered in a searchable resource. Accessibility concerns 

an open, free, and universal communication protocol for 

identification authentication and authorization procedures 

enabling access to metadata. Interoperability regards the 

language for knowledge representation of the data and meta-

data. Reusability aims to assure that the relevant attributes 

are described in the metadata in order to specify the data 

usage license, detailed data provenance, and that they meet 

the domain-relevant community standards. These four prin-

ciples were recognized and indicated by a G20 statement, 

"G20 2016 Innovation Action Plan," as a guideline to pro-

mote open science and facilitate appropriate access to pub-

licly funded research results [124]. The NASA Vision 2040 

also indicates FAIR principles as important emerging para-

digm for the management of technical data [4] and in the 

creation of MDIs [89].

Three fundamental digital components are recognized 

at the core of MDI: repositories, tools, and e-collaboration 

platforms [125]. Repositories are not simple databases but 

they need to provide an Application Programming Interface 

(API) to facilitate query and data extraction [89]. The mate-

rials science and engineering community should in primis 

try to define policies for capturing data, and how to incor-

porate them into existing workflows, or develop a new one 

[21]. It has been identified that national agencies such as 

NASA in the USA should coordinate these efforts, and 

promote the production, maintenance and dissemination of 

high-quality datasets by establishing clear incentives for the 

community [4]. The Thermodynamics Research Center by 

NIST [126] and MatNAVI [127] by the Japanese National 

Institute of Materials Science (NIMS) [128] are good exam-

ples of materials databases created and maintained by gov-

ernment entities. Other examples outside the government 

institutions are the Cambridge Crystallographic Data Centre 

(CCDC) database for organic and metal-organic compounds 

studied by X-ray and neutron diffraction [129], and ASMI 

Online Databases [130]. These databases were available for 

decades and they collect a small volume of high-quality data 

in each submission, which can be hand-curated. Although 

these have been a valuable source of information, in order to 

respond to FAIR principles, new repository infrastructures 

are required to be able to manage a higher volume of data, 

be more accessible to both expert and non-expert users, have 

APIs, searchable tools, and allow easy tracking of data [89]. 

There are different initiatives supported by government insti-

tutions such as Materials Commons [131], and independent 

ones such as Zenodo [132] that offer these capabilities. In 

terms of tools, NIST has developed the Materials Resource 

Registry (MRR) [133] that allows an organization to make 

their resource findable by registering metadata of data col-

lections, application programming interfaces, informational 

sites, and materials software, like the Virtual Observatory 

(VO) does for astronomy data. However, it is better to under-

line that materials are characterized by variability and their 

data are, therefore, very specific, while astronomic informa-

tion are obtained pointing the telescope at the same object 

in space. Therefore, a VO solution in materials may not be 

achievable without considering the intrinsic uncertain nature 

of the materials. In terms of accessibility, interoperability, 

and reusability, tools may be needed to be developed for 

specific sub-fields of materials science such as the Crystal-

lographic Information File (CIF) format [134] used by the 

crystallographic community. The Materials Data Curation 
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System (MDCS) [135] by NIST aims to provide a more gen-

eral tool to manage and share data that uses one structured 

format: Extensible Markup Language (XML). The main 

issue with materials data remains the formulation of stand-

ards for sharing data. To mitigate this, the Office for Data 

and Informatics was created by NIST in 2014 to provide 

leadership and expertise from other communities to meet the 

challenge in modern data-driven research [136]. Ultimately, 

e-collaboration platforms serve as generation of data. These 

platforms use web-based technologies to manage materials 

data by implementing the FAIR principles. The nanoHUB 

[91] is an example of such platforms. These, however, do 

not solve the problem of the prevalence of proprietary data 

formats used in scientific instrumentation that makes extract-

ing experimental data and the corresponding metadata chal-

lenging [89].

Outlook: Material Informatics Approach 
for More Sustainable Manufacturing

The today task is to achieve a green economy, putting mate-

rials in the center of manufacturing processes and life prod-

uct cycle. Recent introduction of new regulation to tackle 

climate change [137], depletion of critical natural resources 

[138], and social pressure are pushing industry to reduce 

their environment impact focusing on reducing CO2 emis-

sions while increasing energy efficiency of manufacturing 

process, producing sustainable products with responsible 

sourcing of raw materials [139]. Identification of innova-

tive materials for clean energy generation, optimization of 

processes to improve efficiency, and establishing recycling 

route are the key strategies for the transition to green econ-

omy. The demand of more environmentally-friendly solu-

tions is not new [140], but the adoption of digital solutions 

for materials selection, process optimization and control 

can be critical to accelerate the transition. With the clas-

sical approaches, material discovery and optimization can 

take three to four times the time-to-market of a new product 

[141]. New technologies such as Internet of Things (IoT), 

artificial intelligence (AI), Big Data, blockchain, digital 

twins, and digital threads are going to change the product 

life within supply chain, production, service and end-of life 

to satisfy the need for more sustainability not just in terms of 

environment but also from economic and social perspectives. 

The need for a material-centric industry requires these tools 

to be supported by material models. In particular, the com-

bination of the three typologies - physic-based, data driven 

and Big Data - offer the creation of digital instruments to 

rapidly explore materials and manufacturing technologies 

with an understating of the structure-process–property rela-

tionship [142]. Digital twins with integrated physic-based 

models will enable exploration of what-if scenarios with 

behavior prediction. Data-driven methods trained using 

enriched datasets that comprises experimental data and 

modeling predictions can be used in digital threading tools 

that connect sensor data from the machine and digital data to 

perform machine control during production to assure quality 

regardless the uncertainty of the process conditions. Mate-

rials informatics technologies will also allow a better inte-

gration of material modeling with other technology such as 

business modeling tools and engineering design. However, 

it is fundamental that these tools are robust, necessitating 

the application of rigorous processes, such as V & V [9] 

and TML [78].

Conclusions

In summary, modeling techniques and digitalization still 

struggle to be accepted as valuable resources for industry 

applications by all stakeholders and not just by modelers and 

theoretical scientists. The barriers are technology, cultural 

and infrastructural. The complexity of these methods and the 

absence of processes prevents overcoming the first techno-

logical gap between developer (usually academic) and indus-

trial users, usually only interacting reactively to an urgent 

issue. Reluctance and cultural barriers have a significant 

impact on embracing modeling and digitalization as a busi-

ness value. This results in difficulty to find and retain skilled 

labor, and stops the integration of this technology in the 

workflow and standardization in the industrial setting. The 

absence of infrastructure such as access to HPC and appro-

priate databases also stops a full and systematic acquisition 

of models for SMEs as well as for large companies. How-

ever, the drive to a green economy requires industry to put 

materials at the center of their process and product designs 

to assure clean energy, recycling, efficiency and responsible 

sourcing. Digitalization and materials informatics are going 

to play a key role in the transition, and they will heavily 

depend on material modeling technologies that comprise 

physics knowledge and fast computing. This requires using 

physics-based simulation to train data-driven modeling. In 

addition, digital threading will enable integrated material 

modeling in Model based Engineering frameworks, in order 

to share data from and to the physical world, but also from/to 

other model technology, i.e., business modeling tools.

In terms of perspectives, six actions areas were identi-

fied and discussed having the major impact on enhancing 

industrial awareness: collaboration, disclosure, education, 

accessibility, integration, and data.

• Collaboration is vital for the development of modeling 

tools but also to increase their visibility by sharing tools 

and materials.



417Integrating Materials and Manufacturing Innovation (2023) 12:397–420 

1 3

• Conflict of interest activities such as show cases, bench-

mark and consultancy also are important to expand mod-

eling awareness.

• Education plays a key role in changing the cultural 

approach of the next generation of scientists and  

engineers.

• On the technical side, the adoption of modeling requires 

an increase in the accessibility by reducing the com-

plexity of these methods working on the development of 

GUI-based or browser software, and the integration in 

the industrial process.

• Data availability is important not only for modeling 

exploitation but to accelerate materials developing, and 

assure industrial competitiveness.

Materials modeling is a well-developed research area that 

has shown great benefit when applied reactively to industrial 

challenges. By introducing modeling proactively into the 

design process, real benefit in the quality, cost, and time of 

manufacturing can be realized.
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