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Abstract

Background: Individuals with bacteriologically confirmed pulmonary tuberculosis (TB) disease 

who do not report symptoms (subclinical TB) represent around half of all prevalent cases of TB, 

yet their contribution to Mycobacterium tuberculosis (Mtb) transmission is unknown, especially 

compared to individuals who report symptoms at the time of diagnosis (clinical TB). Relative infec-

tiousness can be approximated by cumulative infections in household contacts, but such data are 

rare.

Methods: We reviewed the literature to identify studies where surveys of Mtb infection were linked 

to population surveys of TB disease. We collated individual- level data on representative populations 

for analysis and used literature on the relative durations of subclinical and clinical TB to estimate 

relative infectiousness through a cumulative hazard model, accounting for sputum- smear status. 
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Relative prevalence of subclinical and clinical disease in high- burden settings was used to estimate 

the contribution of subclinical TB to global Mtb transmission.

Results: We collated data on 414 index cases and 789 household contacts from three prevalence 

surveys (Bangladesh, the Philippines, and Viet Nam) and one case- finding trial in Viet Nam. The odds 

ratio for infection in a household with a clinical versus subclinical index case (irrespective of sputum 

smear status) was 1.2 (0.6–2.3, 95% confidence interval). Adjusting for duration of disease, we found 

a per- unit- time infectiousness of subclinical TB relative to clinical TB of 1.93 (0.62–6.18, 95% predic-

tion interval [PrI]). Fourteen countries across Asia and Africa provided data on relative prevalence of 

subclinical and clinical TB, suggesting an estimated 68% (27–92%, 95% PrI) of global transmission is 

from subclinical TB.

Conclusions: Our results suggest that subclinical TB contributes substantially to transmission and 

needs to be diagnosed and treated for effective progress towards TB elimination.

Funding: JCE, KCH, ASR, NS, and RH have received funding from the European Research Council 

(ERC) under the Horizon 2020 research and innovation programme (ERC Starting Grant No. 757699) 

KCH is also supported by UK FCDO (Leaving no- one behind: transforming gendered pathways 

to health for TB). This research has been partially funded by UK aid from the UK government (to 

KCH); however, the views expressed do not necessarily reflect the UK government’s official poli-

cies. PJD was supported by a fellowship from the UK Medical Research Council (MR/P022081/1); 

this UK- funded award is part of the EDCTP2 programme supported by the European Union. RGW 

is funded by the Wellcome Trust (218261/Z/19/Z), NIH (1R01AI147321- 01), EDTCP (RIA208D- 

2505B), UK MRC (CCF17- 7779 via SET Bloomsbury), ESRC (ES/P008011/1), BMGF (OPP1084276, 

OPP1135288 and INV- 001754), and the WHO (2020/985800- 0).

Editor's evaluation
This important study estimates the amount of tuberculosis transmission attributable to subclinical 

(asymptomatic) cases at the population level. The authors rely on existing survey data on household 

contacts of index cases with tuberculosis, and their respective symptomatic and bacteriological 

status. A solid, novel approach is proposed to incorporate this existing data to produce meaningful 

indicators of the relative importance of subclinical tuberculosis in sustaining the global tuberculosis 

epidemic. In addition to being of interest to tuberculosis epidemiologists, these results will be an 

important resource for policymakers in the ongoing debate about tuberculosis case finding and the 

role of symptom screening algorithms.

Introduction
An estimated 1.5 million people died from tuberculosis (TB) disease in 2020, and TB is on course to 

retake its position as the largest cause of death by a single infectious agent (World Health Organ-

isation, 2021). Fuelled by ongoing transmission through exhaled or expectorated Mycobacterium 

tuberculosis (Mtb) bacteria, TB incidence is declining at a rate of 1–2% per annum, which is too slow 

given the risk and scale of mortality (World Health Organisation, 2021; Ragonnet et al., 2021), 

lifelong impairment (Dodd et al., 2021; Alene et al., 2021), poverty (Pedrazzoli et al., 2021), and 

macroeconomic consequences (Silva et al., 2021). Problematically, most Mtb transmission in high- 

incidence settings remains unaccounted for (Dodd et al., 2021), with less than 1- in- 10 occurrences of 

TB explained by transmission from a known contact (Glynn et al., 2015).

In recent decades the prevailing paradigm in TB policy held that symptoms and infectiousness 

commence simultaneously as part of ‘active disease’ (World Health Organization, 2020; World 

Health Organisation, 1974; Houben et al., 2019). As a consequence, a policy of passive case- finding 

(Golub et al., 2005), in which individuals are expected to attend a health facility with TB- related symp-

toms before receiving diagnosis and treatment, was relied upon to prevent deaths from TB, which it 

has (World Health Organisation, 2021; Mandal et al., 2017), and reduce incidence by interrupting 

transmission, which it has not (World Health Organisation, 2021).

Over the last decade, this classic paradigm of TB has been increasingly challenged (Barry et al., 

2009; Drain et al., 2018; Behr et al., 2018). One important advance has been the finding in popu-

lation surveys that not all individuals identified with bacteriologically confirmed TB report having 
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symptoms such as cough at the time of screening for TB (Onozaki et al., 2015; Law et al., 2020). As 

such we can make a distinction between clinical and subclinical TB, where subclinical TB (sometimes 

referred to as ‘asymptomatic’ [Frascella et al., 2021] or ‘early’ TB [Kendall et al., 2021]) refers to 

individuals who have detectable Mtb bacteria in their sputum but do not experience, are not aware 

of, or do not report symptoms (Houben et al., 2019). In contrast, individuals with clinical TB disease 

report symptoms. We distinguish both disease states from Mtb infection, whereby individuals may 

test positive on a tuberculin skin test (TST) or interferon- gamma release assay (IGRA) but do not have 

bacteriologically confirmed disease.

Empirical data have shown that bacteriological state (i.e. whether Mtb is detectable in pulmonary 

secretions) is a strong predictor of the potential for transmission. For example, molecular epidemi-

ological studies show that sputum smear- positive individuals (i.e. Mtb detected via microscopy) are 

3–6 times more likely to be sources for TB disease in contacts compared to smear- negative individ-

uals (Behr et al., 1999; Hernández- Garduño et al., 2004; Tostmann et al., 2008). Surveys of Mtb 

infection prevalence in household contacts provide similar values (Grzybowski et al., 1975). These 

studies focussed on passively diagnosed individuals with clinical disease. It is, however, increasingly 

clear that the presence of respiratory symptoms, such as a persistent cough, is not required for the 

exhalation of potentially Mtb- containing aerosols (Patterson and Wood, 2019; Asadi et al., 2019; 

Leung et al., 2020; Dinkele et al., 2022). Indeed, whilst recent empirical studies have suggested that 

tidal breathing may contribute significantly to Mtb transmission (Dinkele et al., 2022), exhalation of 

infectious aerosols appears unrelated to the presence of symptoms (Theron et al., 2020) or cough 

frequency (Williams et al., 2020) in TB patients. This supports the hypothesis that subclinical disease 

can contribute, potentially substantially, to transmission (Houben et al., 2019; Kendall et al., 2021; 

Dowdy et al., 2013).

A recent review found that about half of prevalent bacteriologically confirmed pulmonary TB 

disease is subclinical (Frascella et al., 2021) and it is becoming increasingly apparent that subclinical 

TB can persist for a long period without progressing to clinical disease (Richards et al., 2021; Ku 

et al., 2021). As individuals with subclinical TB will not be identified by current passive case- finding 

strategies, they will continue to contact susceptible individuals and, if infectious, transmit throughout 

their subclinical phase. It is therefore possible that those with subclinical TB may be a major contrib-

utor to ongoing, and unaccounted for, Mtb transmission. If this is the case, and if the ambitious goal to 

end TB as a global health problem by 2035 is to be met (World Health Organisation, 2022), TB policy 

needs to shift away from solely focussing on symptom- dependent case- finding (e.g. patient- initiated 

passive case- finding) towards strategies that are symptom- independent.

To motivate and inform such a shift in research and policy priorities, two key questions that to 

date remain unanswered must be addressed. Firstly, how infectious are individuals with subclinical TB 

compared to those with clinical TB per unit time, and, secondly, what is their contribution to overall 

transmission in the current TB epidemic?

In TB, data sources on the transmission potential from sputum smear- negative individuals relative 

to smear- positive (e.g. molecular epidemiological studies; Behr et al., 1999; Hernández- Garduño 

et al., 2004; Tostmann et al., 2008) have often been directly interpreted as relative infectiousness, 

which is incorrect (Kendall, 2021). Instead of representing the metric of interest, which is the potential 

for transmission per unit time for a particular group relative to a reference group (i.e. relative infec-

tiousness), these data actually provided a relative estimate of cumulative exposure (as acknowledged 

by these studies’ authors; Behr et  al., 1999; Hernández- Garduño et  al., 2004; Tostmann et  al., 

2008). Cumulative exposure is a composite of relative infectiousness per unit time and disease dura-

tion (technically duration of infectiousness), which until now have been unavailable and can be hard to 

disentangle from each other (Kendall, 2021).

In this work we look to overcome these challenges by harnessing increased understanding of the 

natural history and prevalence of subclinical TB and re- analysing data from existing population studies.

Methods
Data
To estimate the infectiousness of subclinical TB relative to clinical TB, we considered studies in which 

Mtb infection surveys were performed amongst household contacts of culture and/or nucleic acid 
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amplification test (NAAT) confirmed cases where data on their symptom and sputum smear status at 

the time of diagnosis was available. We considered only studies in which households with no index 

case were also surveyed for Mtb infection as a measure of the background rate of infection.

Such studies identified index cases using symptom- independent screening either via a TB prev-

alence survey (in which all individuals are screened with a chest X- ray; World Health Organisation, 

2011) or community- wide active case- finding amongst a representative sample of a target popu-

lation. Subclinical and clinical index cases were defined as being culture and/or NAAT- positive and 

responding negatively or positively to an initial symptom screening, respectively. Households with 

a single subclinical or clinical index case were defined as subclinical and clinical households, respec-

tively. Such households were then stratified by the sputum smear status of the index case at the time 

of diagnosis. Background households were defined as having no index case. Finally, Mtb infection 

surveys were performed amongst all households, providing the prevalence of infection amongst each 

household type.

We reviewed the literature for household contact studies that measure Mtb infection via TST 

or IGRA as an outcome and provide sufficient information to stratify households by symptom and 

sputum smear status, including households with no index case (see Appendix 1 for the detailed search 

strategy). Individual, patient- level data from each of these studies were analysed to provide the prev-

alence of infection amongst each household type (see Appendix 1 for detailed data analysis). These 

data are presented in Appendix 1—table 1. Odds ratios (ORs) for infection in members of a house-

hold with a sputum smear- positive versus a smear- negative index case (irrespective of symptoms) and 

in members of a household with a clinical versus subclinical index case (irrespective of sputum smear 

status) were also calculated for purposes of illustration.

Cumulative hazard model
To estimate the infectiousness of subclinical TB per unit time relative to clinical TB, we fitted a cumu-

lative hazard model of infection to the prevalence of infection amongst each household type for each 

study separately using the data described above.

For each study, household contacts were pooled into five cohorts: background; subclinical and 

sputum smear- negative; subclinical and sputum smear- positive; clinical and sputum smear- negative; 

clinical and sputum smear- positive. It was assumed that each cohort is exposed to the same back-

ground hazard, reflecting the force of infection from outside the household. It was then assumed 

that all cohorts except the background were exposed to an additional hazard, reflecting the force of 

infection from the cohort’s respective index cases.

The final prevalence of infection in each cohort will then depend on the background cumulative 

hazard ΛB and an additional cumulative hazard ΛI specific to each household type I (see Appendix 1 

for model equations). We use the cumulative hazard from clinical (C), smear- positive (+) index cases 

as a benchmark with which to define the cumulative hazards from the remaining index case types. We 

assume that being subclinical (S) or smear- negative (-) have separate, multiplicative effects, such that

 ΛC− = r
−
ΛC+, ΛS+ = rsΛC+, ΛS− = r

−
rsΛC+,  

where rs and r- are the subclinical and sputum smear- negative relative cumulative hazards, respectively.

Model fitting
The model described above was fitted to the prevalence of infection in each of the five household 

types for each study separately. Fitting was performed in a Bayesian framework using Markov- Chain 

Monte Carlo methods (see Appendix 1 for further details of model fitting). We report median and 95% 

equal- tailed posterior intervals (PoIs).

Relative infectiousness of subclinical TB
To infer the infectiousness of subclinical TB per unit time relative to clinical TB from our posterior 

estimate for the subclinical relative cumulative hazard rs, we note that, assuming constant hazards, the 

relative cumulative hazards from index cases will depend on the product of the relative per unit time 

infectiousness and relative durations of infectiousness. We assume that per unit time infectiousness 

depends on symptom status and sputum smear status, whilst durations of infectiousness depend on 

symptom status only. It follows then that:
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 rs = αsγs,  
 r

−
= α

−
,  

where αs and α- are the per unit time infectiousness of subclinical relative to clinical index cases and 

sputum smear- negative relative to smear- positive index cases, respectively, and γs is the duration of 

infectiousness for subclinical relative to clinical index cases.

To provide a value for the duration of infectiousness of subclinical relative to clinical index cases, 

we used the results from a recent study that estimated the durations of subclinical and clinical TB 

using a Bayesian analysis of prevalence and notification data (Ku et al., 2021). With the result that 

the subclinical phase represented between 27% and 63% of the time as a prevalent case, we used a 

duration of subclinical TB relative to clinical TB of 0.8 (0.4–1.7, 95% PoI). We assumed that there was 

no difference in duration for sputum smear- negative versus smear- positive TB.

Finally, we sampled from the posterior estimate for the subclinical relative cumulative hazard and 

an assumed duration of disease for subclinical index cases relative to clinical index cases, providing 

a median and 95% equal- tailed posterior estimate for the relative infectiousness of subclinical index 

cases relative to clinical index cases for each study separately. Thereafter we provide a summary esti-

mate by mixed- effects meta- analysing the individual estimates across the separate studies. Analogous 

results are presented for the relative infectiousness per unit time of sputum smear- negative TB relative 

to smear- positive TB.

Subclinical versus clinical TB: Prevalence and bacteriological indicators
To estimate the proportion of overall transmission from subclinical TB, we first estimated the propor-

tion of prevalent TB that is subclinical as well as the proportion of prevalent subclinical and clinical TB 

that is smear- positive.

We began with a recent review of TB prevalence surveys in Asia and Africa (Frascella et  al., 

2021) (see Appendix 1 for details of the search strategy). Such surveys generally performed an initial 

screening using both a questionnaire, which includes questions about recent symptoms typical of TB, 

as well a chest radiograph. Those screening positive from either method were then tested via culture 

and/or NAAT. A sputum smear test was often additionally performed.

We reviewed the surveys in Frascella et al., 2021 and, for each survey where sufficient informa-

tion was available, extracted the number of culture and/or NAAT confirmed cases of TB, stratified 

by both symptom status at initial screening and sputum smear status (see Appendix 1 for detailed 

data analysis). Extracted data can be found in Appendix  1—table 2. We defined subclinical and 

clinical TB as being culture and/or NAAT- positive and responding negatively or positively to an initial 

symptom screen, respectively, consistent with the definitions for subclinical and clinical index cases in 

the previous section. The most common screening question was a productive cough of greater than 

2- week duration, although other diagnostic algorithms were included.

For each survey, we calculated the proportion of prevalent TB that is subclinical (PS
TB) as well as 

the proportion of prevalent subclinical and clinical TB that is smear- positive (P+
S and P+

C, respectively).

We performed univariate, random- effects meta- analyses on PS
TB, P

+
S and P+

C. We meta- analysed 

the inverse logit transformed variables, before transforming the results back to proportions and 

presenting a central estimate and 95% prediction interval for each variable.

The contribution of subclinical TB to transmission
To estimate the contribution of subclinical TB to transmission, we applied our estimates of relative 

infectiousness to the prevalence surveys that reported the required data by symptom and smear 

status (see Appendix 1 for further details).

All analyses were conducted using R version 4.0.3 (R Development Core Team, 2014). Bayesian 

fitting was performed in Stan version 2.21.0 (Stan Development Team, 2021) using RStan (Stan 

Development Team, 2020) as an interface.

No new human subject data was collected for this work, which re- analysed individual patient data 

collected during four observational studies in three countries. Procedures, including consent where 

available, are described in the original publications. Local and institutional Ethics Approval was in 

place for each survey, through the Department of Health (the Philippines survey; Tupasi et al., 1999), 

Institutional Review Board of the Viet Nam National Lung Hospital (Viet Nam survey; Hoa et al., 2010), 

the Ministry of Health and Family Welfare of Bangladesh as well as the Research Review Committee 
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and Ethics Review Committee of the iccdr,b (Bangladesh survey; Zaman et al., 2012), and Institutional 

Review Board of the Viet Nam National Lung Hospital as well as Human Research Ethics Committee 

of the University of Sydney (ACT3 survey; Marks et al., 2019). The ethics committee of the London 

School of Hygiene and Tropical Medicine gave ethical approval for this project (#16396).

Sensitivity analyses
Sensitivity analysis 1
Given the different designs of the Bangladesh (2007) prevalence survey (Zaman et al., 2012) (which 

provided only sputum smear- positive index cases) and the active case- finding trial in Viet Nam (2017) 

(Marks et al., 2019) (which provided index cases via repeated case- finding- related screening and 

prevalence surveys), the above analysis was repeated omitting these studies.

Sensitivity analysis 2
As a sensitivity the above analysis was repeated with an alternative estimate for the relative duration of 

subclinical TB versus clinical TB using instead data from a recent systematic review and data synthesis 

study (Richards et al., 2021) and a simple competing risk model (see Appendix 1 for further details).

Sensitivity analysis 3
To explore the impact of a differential background risk of infection amongst households with and 

without index cases, the analysis was repeated assuming a 50% increase in the background risk of 

infection for those households with an index case.

Sensitivity analysis 4
Instead of assuming equal durations for sputum smear- positive and smear- negative TB, the above 

analysis was repeated assuming that sputum smear- positive TB has twice the duration of smear- 

negative TB.

Figure 1. Odds ratios for infection in members of a household with a clinical versus a subclinical index case (irrespective of sputum smear- status) (A) and 

in members of a household with a sputum smear- positive versus a smear- negative index case (irrespective of symptoms) (B). Illustrated are central 

estimates and 95% confidence intervals for each study separately and the results of a mixed- effects meta- analysis. Results for sputum smear status are 

omitted for Bangladesh as the survey considered only sputum smear- positive individuals.
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Sensitivity analysis 5
In the main analysis, each study was modelled separately, with the results combined using meta- 

analyses. As a sensitivity we model all studies simultaneously, assuming local background risks of 

infection for each study and global values across all studies for the remaining cumulative hazards.

Results
Data
Four studies were included for analysis: three prevalence surveys of TB disease with associated Mtb 

infection surveys in Viet Nam (2007) (Hoa et al., 2010), Bangladesh (2007) (Zaman et al., 2012), and 

the Philippines (1997) (Tupasi et al., 1999) and a community- wide active case- finding trial in Viet Nam 

(2017) (Marks et al., 2019).

ORs for infection in members of a household with a clinical versus subclinical index case (irrespec-

tive of sputum smear status), based on the result of their symptom screen at the time of diagnosis, 

are shown in Figure 1A. A mixed- effects meta- analysis across studies provides OR = 1.2 (0.6–2.3, 

95% confidence interval [CI]). Figure 1B shows the OR for infection in members of a household with 

a sputum smear- positive versus a smear- negative index case (irrespective of symptoms), where the 

Bangladesh prevalence survey is omitted as this study only included smear- positive individuals. In 

contrast to the analysis by symptom status, evidence for a difference in cumulative infection was found 

by smear status, with OR = 2.3 (1.3–3.9, 95% CI), which is in line with previous estimates (Grzybowski 

et al., 1975).

Estimating the relative infectiousness of subclinical TB
The estimated infectiousness of subclinical TB per unit time relative to clinical TB is shown in Figure 2A, 

both for each study separately as well as the mixed- effects meta- analysed result across studies of 1.93 

(0.62–6.18, 95% prediction interval [PrI]). Figure 2B shows the analogous results for the infectious-

ness per unit time of sputum smear- negative versus smear- positive TB, with a summary value of 0.26 

(0.03–2.47, 95% PrI). Detailed model results are shown in Appendix 1—table 4 and Appendix 1—

figures 2–5.

Prevalence and bacteriological indicators for subclinical and clinical TB
Data from 15 prevalence surveys where the proportion of subclinical and clinical TB was reported by 

sputum smear status were included, detailed in Appendix 1—table 2. These represented a range 

of high TB burden countries in Africa (n = 5) and Asia (n = 9, with two surveys in Viet Nam). In this 

subset, the overall proportion of prevalent TB that is subclinical was 58% (29–82%, 95% PrI), whilst the 

proportion smear- positive was 33% (18–52%, 95% PrI) for subclinical TB and 53% (25–80%, 95% PrI) 

for clinical TB. Detailed results for each variable are shown in Figure 3A–C.

Figure 2. The estimated infectiousness of subclinical tuberculosis (TB) per unit time relative to clinical TB (A) and sputum smear- negative TB relative 

to smear- positive TB (B). Illustrated are the median and 95% confidence intervals for each study separately and the median and 95% prediction interval 

results from mixed- effects meta- analyses across studies with an associated measure of heterogeneity (I2).
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The contribution of subclinical TB to transmission: Global and country 
levels
We quantified the contribution of subclinical TB to ongoing Mtb transmission by combining the esti-

mates for the infectiousness of subclinical TB per unit time relative to clinical TB (Figure 2A), the 

Figure 3. The proportion of prevalent tuberculosis (TB) that is subclinical (A), the proportion of subclinical TB that is smear- positive (B), and the 

proportion of clinical TB that is smear- positive (C) using data from prevalence surveys in Africa (red) and Asia (teal). Illustrated are median and 95% 

confidence intervals for each study separately and the median and 95% prediction intervals from mixed- effects meta- analyses across studies with an 

associated measure of heterogeneity (I2). Also shown is the estimated proportion of transmission from subclinical TB at the time of and in the location 

of each of the prevalence surveys in Africa and Asia (D). Illustrated is the median and 95% prediction intervals for each study separately as well as the 

global value. DPR = Democratic People’s Republic; PDR = People’s Democratic Republic.
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infectiousness of sputum smear- negative TB relative to smear- positive TB (Figure 2B), and the propor-

tion of prevalent TB that is subclinical and the proportion of subclinical and clinical TB that is sputum 

smear- positive (Figure 3A–C). The 14 included countries are a reasonable reflection of the geography 

and epidemiological characteristics of high TB burden countries in the WHO African, South- East Asia, 

and Western Pacific regions, which together represent around 85% of current global TB incidence 

(World Health Organisation, 2021). As such we used a summary value for the included surveys as a 

global estimate.

Figure 3D shows the results by country and globally, where 68% (27–92%, 95% PrI) of global Mtb 

transmission is estimated to come from prevalent subclinical TB, ranging from 45% (19–76%, 95% PrI) 

in Nigeria to 84% (60–95%, 95% PrI) in Mongolia.

Sensitivity analyses
Sensitivity analysis 1
The above analysis was repeated excluding two studies with methodologies that differed from the 

remaining two: the Bangladesh (2007) prevalence survey (Zaman et  al., 2012) (which provided 

sputum smear- positive index cases only) and the active case- finding trial in Viet Nam (ACT3 [2017]) 

(Marks et al., 2019) (which provided index cases via repeated screening related to case- finding as 

well as prevalence surveys). Affected results are shown in Appendix 1—figure 6. The infectiousness of 

subclinical TB per unit time relative to clinical TB decreased to 1.39 (0.17–11.2, 95% PrI), and the infec-

tiousness of sputum smear- negative TB relative to smear- positive TB decreased to 0.12 (0.03–0.53, 

95% PrI), with corresponding values of 57% (10–94%, 95% PrI) of global transmission from subclinical 

TB, ranging from 34% (6–81%, 95% PrI) in Nigeria to 76% (28–97%, 95% PrI) in Mongolia.

Sensitivity analysis 2
The above analysis was repeated using an alternative estimate for the relative duration of subclinical 

TB versus clinical TB of 0.72 (0.60–0.89, 95% PoI), from Richards et al., 2021. Affected results are 

shown in Appendix 1—figure 7. The infectiousness of subclinical TB per unit time relative to clin-

ical TB increased to 2.19 (0.91–5.26, 95% PrI), with corresponding values of 71% (32–92%, 95% PrI) 

of global transmission from subclinical TB, ranging from 48% (25–74%, 95% PrI) in Nigeria to 86% 

(68–95%, 95% PrI) in Mongolia.

Sensitivity analysis 3
The above analysis was repeated assuming that households with an index case have a 50% greater 

background risk of infection than households with no index case. Affected results are shown 

in Appendix 1—figure 8. The infectiousness of subclinical TB per unit time relative to clinical TB 

increased to 2.44 (0.60–10.06, 95% PrI) whilst the infectiousness of sputum smear- negative TB rela-

tive to smear- positive TB increased to 0.36 (0.03–4.51, 95% PrI), with corresponding values of 74% 

(29–95%, 95% PrI) of global transmission from subclinical TB, ranging from 53% (20–85%, 95% PrI) in 

Nigeria to 88% (61–97%, 95% PrI) in Mongolia.

Sensitivity analysis 4
The above analysis was repeated assuming sputum smear- positive TB has twice the duration of smear- 

negative TB. Affected results are shown in Appendix 1—figure 9. The infectiousness of subclinical TB 

per unit time relative to clinical TB was largely unchanged at 1.94 (0.63–6.16, 95% PrI) whilst the infec-

tiousness of sputum smear- negative TB relative to smear- positive TB increased to 0.51 (0.06–4.39, 

95% PrI), with corresponding values of 70% (29–93%, 95% PrI) of global transmission from subclinical 

TB, ranging from 49% (21–79%, 95% PrI) in Nigeria to 86% (63–96%, 95% PrI) in Mongolia.

Sensitivity analysis 5
The above analysis was repeated with all studies modelled simultaneously, assuming local background 

risks of infection for each study and global values across all studies for the remaining cumulative 

hazards. Affected results are shown in Appendix 1—figure 10. The infectiousness of subclinical TB 

per unit time relative to clinical TB decreased to 1.39 (0.50–4.02, 95% PrI) whilst the infectiousness of 

sputum smear- negative TB relative to smear- positive TB decreased to 0.11 (0.02–0.68, 95% PrI), with 
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corresponding values of 58% (20–88%, 95% PrI) of global transmission from subclinical TB, ranging 

from 34% (15–62%, 95% PrI) in Nigeria to 76% (52–91%, 95% PrI) in Mongolia.

Discussion
By fitting a cumulative hazard model of infection to prevalence data amongst household contacts 

of subclinical and clinical index cases, we were able to provide quantitative estimates for the rela-

tive infectiousness per unit time of subclinical TB and its contribution to ongoing Mtb transmission. 

Despite wide uncertainty intervals, the raw data, as well as the results of our analysis, do not suggest 

subclinical TB is substantially less infectious than clinical TB. Given the high prevalence of subclin-

ical TB found in surveys (Frascella et al., 2021), it is therefore likely that subclinical TB contributes 

substantially to ongoing Mtb transmission in high- burden settings.

Our results were relatively robust to the sensitivities that were performed. In two cases, that is, the 

removal of two studies (sensitivity analysis 1) and the use of a single model to account for all studies 

(sensitivity analysis 5), our estimates for the relative infectiousness of subclinical TB relative to clinical 

TB and the proportion of transmission from subclinical TB were lower than in the primary analysis. 

Our qualitative results and conclusions remain unchanged however. All other sensitivities resulted in 

higher estimates.

There are no other estimates for the infectiousness of subclinical TB relative to clinical TB in the 

literature with which to compare our results. Using data from the 2007 Viet Nam prevalence survey, 

however, Nguyen et al., 2023 find that among children aged 6–10 years, those living with clinical, 

smear- positive TB, and those living with subclinical, smear- positive TB had similarly increased risks of 

TST positivity compared with those living without TB. Moreover, a recent small study from Uganda 

found no evidence of a difference in cumulative infection rates in household contacts of patients who 

did or did not report symptoms (Baik et al., 2021). Our results are also in keeping with recent results 

from whole- genome sequencing (Xu et al., 2019) in which 36% of individuals likely transmitted Mtb 

before symptom onset, assuming a linear SNP mutation rate. We also note that previous hypothetical 

modelling of subclinical TB used assumed values for relative infectiousness that are in keeping with 

our estimated range (Dowdy et al., 2013; Arinaminpathy and Dowdy, 2015). More broadly, recent 

work on SARS- CoV- 2 and malaria has similarly shown how ‘asymptomatic’ or ‘subpatent’ infections 

can be important drivers of transmission (Slater et al., 2019; Emery et al., 2020; Johansson et al., 

2021), meaning a role for asymptomatic transmission would not be unique to TB.

Whilst we have presented a novel approach to investigating transmission from individuals with 

subclinical TB using pre- existing data, limitations in our methodology remain. Identifying relative 

infectiousness is challenging. Our estimates rely on studies which screened a minimum of 252,000 

individuals for bacteriologically confirmed TB disease and 63,000 individuals for Mtb infection. Even at 

this scale, the small number of studies and diagnosed cases of TB still leads to substantial uncertainty, 

highlighting the challenge faced by single studies to estimate such values (Marks et al., 2019; Baik 

et al., 2021). Indeed, the paucity of the data provides an estimate that is consistent with subclinical 

TB being more infectious than clinical TB. Whilst we consider this to be implausible, we have avoided 

introducing priors that rule out this possibility. Instead we would emphasise that our results reflect the 

uncertainty of the data. The lower bound of our estimate precludes subclinical TB being significantly 

less infectious than clinical TB, while there is no evidence against subclinical TB being as infectious as 

clinical TB. Despite such uncertainty, this study brings together the best currently available epidemi-

ological data which, combined with appropriate analysis techniques, provides a data- driven estimate 

for this important question.

Although infection studies in household contacts have provided a novel window into transmis-

sion from subclinical individuals, it is not possible to establish a transmission link between presumed 

index cases and infections amongst household contacts using molecular methods (Kendall, 2021). 

Such household contact studies are therefore liable to biases and our study necessarily inherits such 

limitations. For example, whilst our model does use a background rate of infection as a baseline from 

which to estimate the additional force of infection from presumed index cases within the household, 

there remains the residual risk that certain household types may systematically contain more or less 

infections from transmission outside the household than on average.

An important limitation of our cumulative hazard model is the assumption that index cases only 

ever had the disease type they were diagnosed with during screening (e.g. sputum smear- positive, 
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subclinical). Instead, it is more likely that individuals will fluctuate between being, for example, subclin-

ical and clinical (Richards et al., 2021). The impact such additional dynamics would have on our results 

remains uncertain since they would depend on the detailed model of tuberculosis natural history 

assumed. Such a model would require additional data to prevent the need for additional assumptions.

We estimated the contribution of subclinical TB to transmission at the population level, including 

transmission outside the household, using information on relative infectiousness inferred from house-

hold contact studies. A more refined estimate may need to take additional factors into account. For 

example, it is likely that, whilst inside the household the contact rates for subclinical and clinical indi-

viduals are likely to be similar, contact with individuals outside the household may differ (Glynn et al., 

2020).

We defined subclinical and clinical TB as being culture and/or NAAT- positive and responding nega-

tively or positively to an initial symptom screen, respectively. In practice subclinical and clinical TB 

are part of a continuous spectrum and alternative definitions could be defined according to different 

criteria. Here we have used the definition most closely aligned with the methodology of the majority 

of prevalence surveys, which is consistent with other studies of subclinical TB (Frascella et al., 2021) 

and pragmatic for inclusion of future surveys.

Meta- analyses were used to provide ranges for several quantities of interest. Whilst the hetero-

geneity for the relative infectiousness of subclinical and smear- negative TB were low (I2 = 0% and I2 

= 36%, respectively), the heterogeneity for the proportion of prevalent TB that is subclinical and the 

proportions of subclinical and clinical TB that are smear- positive were high (I2 = 95%, I2 = 81% and I2 

= 89%, respectively). As such, we have used the more conservative prediction interval (as opposed 

to credible interval) to reflect this heterogeneity in the final results (Riley et al., 2011; Deeks et al., 

2021).

Finally, our data are from populations with a low prevalence of HIV co- infection and the HIV status 

of individuals with TB was mostly unavailable, making a sub- analysis by HIV and antiretroviral (ART) 

status impossible. Whilst the subclinical TB presentation is likely affected by HIV in terms of duration 

and prevalence, it is unknown whether or by how much the relative differences in duration and prev-

alence between subclinical and clinical TB also change (Frascella et al., 2021; National Department 

of Health - South Africa, 2021). If they exist, any such differences by HIV- coinfection status are likely 

to be reduced by effective viral suppression, which an estimated two- thirds of people living with HIV 

have achieved (UNAIDS, 2021). So while it remains highly valuable to accumulate additional relevant 

data (Baik et al., 2021), we feel our main findings are broadly robust to this limitation.

Our observation that reported symptoms are a poor proxy for infectiousness fits with historical 

and contemporary observations that symptom- independent TB screening and treatment policies can 

reduce TB burden at higher rates than usually seen under DOTS (Marks et al., 2019; Krivinka et al., 

1974). This is in keeping with increasing data showing that symptoms, in particular the classic TB 

symptom of cough, are not closely correlated to the amount of Mtb exhaled (Williams et al., 2020) 

and observations of other pathogens, including SARS- CoV- 2 infection (Emery et al., 2020; Johansson 

et al., 2021; Liu et al., 2020).

Whilst earlier diagnosis (i.e. before symptom onset) will likely bring individual- level benefits in 

terms of mortality and extent of post- TB sequelae (Allwood et al., 2019), the question of potential 

population benefits has hampered decisions from policymakers and funders on whether to invest 

resources in technologies and strategies that can identify subclinical TB. Our results suggest that a 

non- trivial proportion of all transmission would likely be unaffected by strategies that are insensitive 

to subclinical TB.

As our results show that subclinical TB likely contributes substantially to transmission, an increased 

emphasis on symptom agnostic screening in, for example, the TB screening guidelines (World Health 

Organization, 2021) should be considered, as should the inclusion of subclinical TB in the planned 

update of WHO case definitions. Target Product Profiles for diagnostic tools should consider all 

infectious TB, regardless of whether individuals are experiencing or aware of symptoms, and inter-

ventions using such tools should be critically evaluated for their impact on Mtb transmission and 

cost- effectiveness. While symptom- independent tools exist for screening (Williams et  al., 2020; 

Marks et al., 2019; Yoon et al., 2017; Madhani et al., 2020; Scriba et al., 2021; Williams et al., 

2014), specificity, costs, and logistics remain an obstacle. In addition, individuals are usually required 

to produce sputum as part of a confirmatory test, which around half of eligible adults in the general 
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population are unable to do (Marks et  al., 2019). Screening or diagnostic technologies that are 

symptom- as well as sputum- independent, while remaining low- tech and low- cost, remain the goal. 

Indeed, the advent of bio- aerosol measurements in TB may uncover additional infectious individ-

uals whose sputum- based bacteriological test is negative, although these tools require validation in 

larger populations (Williams et al., 2020; Williams et al., 2014; Nathavitharana et al., 2022). Any 

bio- aerosol- positive, sputum- negative individuals are more likely to be subclinical and as such would 

mean we underestimated the contribution of subclinical TB to global Mtb transmission, even if their 

relative infectiousness may be lower than sputum- positive TB. As new diagnostic approaches are 

developed to capture the spectrum of TB disease, policymakers will need to decide on how to treat 

subclinical TB. In treatment, as in diagnosis, it is key that more tailored approaches are developed 

and tested so as to prevent over- or undertreatment of individuals with subclinical TB (Esmail et al., 

2022).

Conclusion
Subclinical TB likely contributes substantially to transmission in high- burden settings. If we are to meet 

EndTB targets for TB elimination, the TB community needs to develop technologies and strategies 

beyond passive case finding to address subclinical TB.
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Appendix 1

Supplementary methods

Search strategy
We sought studies in which Mtb infection surveys were performed amongst household contacts of 
bacteriologically confirmed index cases, where data on their symptom and sputum smear status at 
the time of diagnosis was available.

We began with a recent systematic review of population- based TB prevalence surveys completed 

since 1990, with reports or articles publicly available through August 2019 (Frascella et al., 2021). 

Surveys were included if both a symptom screening interview and X- ray were performed on all eligible 

participants and if surveys reported the proportion of bacteriologically confirmed cases by screening 

modality as well as the proportion of bacteriologically confirmed cases that were negative on symptom 

screening (see Frascella et al., 2021 for full details of the review process). We then reviewed the 

reports of the 28 national and subnational TB prevalence surveys included for quantitative analysis in 

Frascella et al., 2021 and identified three such studies that were conducted alongside Mtb infection 

surveys amongst household contacts: Viet Nam (2007) (Hoa et al., 2010), Bangladesh (2007) (Zaman 

et al., 2012), and the Philippines (1997) (Tupasi et al., 1999). Authors of these studies and affiliated 

institutions were then invited to collaborate using original, individual- level data and all accepted.

In addition to prevalence surveys, we also considered active case- finding studies with associated 

household infection surveys with which to measure any resultant impact on transmission. A non- 

systematic review of the literature identified one such study in Viet Nam: ACT3 (2017) (Marks et al., 

2019). Again the authors of this study and affiliated institutions were invited to collaborate with 

original, individual- level data and accepted.

Data analysis
Index cases were identified in the three prevalence surveys (Viet Nam [2007] [Hoa et al., 2010], 
Bangladesh [2007] [Zaman et al., 2012], and the Philippines [1997] [Tupasi et al., 1999]) via culture 
and/or NAAT and defined as subclinical or clinical depending on whether they responded negatively 
or positively to an initial symptom screening, respectively. Index cases were further stratified by their 
sputum smear status at the time of diagnosis.

Households with multiple co- prevalent index cases were excluded from the analysis to retain the 

premise of the analysis which links infections above the community level to the characteristics of 

the single index case. Co- prevalent cases were absent in one study (ACT3; Marks et al., 2019) and 

below 10% in other studies, limiting the impact on power or introduction of bias.

Linked records were then used to stratify participants of the associated Mtb infection survey into 

different household types depending on the status of the index case: background (no index case); 

subclinical and sputum smear- negative; subclinical and sputum smear- positive; clinical and sputum 

smear- negative; clinical and sputum smear- positive. For each household type the total number of 

contacts and number of TST or IGRA- positive contacts was extracted, shown in Appendix 1—table 

1.

Index cases were identified in ACT3 (Marks et al., 2019) either through routine passive case- 

finding, in any of the TB screening rounds as part of active case- finding, or in the TB prevalence 

surveys used to measure the impact of such screening. Those identified through passive case- 

finding were designated clinical, whilst those identified either through screening or the prevalence 

surveys were stratified as subclinical or clinical depending on whether they responded negatively or 

positively to an initial symptom screening, respectively. Index cases were further stratified by their 

sputum smear status at the time of diagnosis.

The same approach to that described above was then used to find the total number of household 

contacts and the number of TST or IGRA- positive contacts for each household type, also shown in 

Appendix 1—table 1.

Appendix 1—table 1. Summary of the relevant data from studies in which Mtb infection surveys 

were performed amongst household contacts of culture and/or nucleic acid amplification ttest 
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(NAAT) confirmed cases where information on their symptom and sputum smear status at the time 

of diagnosis was available.

A negative/positive response to ‘symptoms’ defines subclinical/clinical tuberculosis (TB) in the 

corresponding study. Infected = number of tuberculin skin test (TST) or interferon- gamma release 

assay (IGRA)- positive household contacts; Contacts = number of household contacts with a TST or 

IGRA result; NA = not applicable

Study

Background

Subclinical Clinical

Symptoms

Smear- negative Smear- positive Smear- negative Smear- positive

Infected Contacts Infected Contacts Infected Contacts Infected Contacts Infected Contacts

ACT3
2017 (Marks et al., 2019) 128 2893 2 8 2 10 1 16 4 27 Cough >2 wk

Bangladesh 2007 (Zaman et al., 2012) 702 17,566 NA NA 1 5 NA NA 3 9 Any cough

Philippines 1997 (Tupasi et al., 1999) 3823 20,259 48 227 32 82 23 108 34 109 Cough >2 wk

Vietnam 2007 (Hoa et al., 2010) 1556 21,298 3 59 5 28 4 42 16 59 Cough >2 wk

Cumulative hazard model
Model equations
The prevalence of infection in background households (i.e. with no index case) is given by

 PB = 1 − e−ΛB  

where ΛB is the cumulative hazard from the background, representing transmission outside the 
household. The prevalence of infection in households with an index case is given by

 PI = 1 − e−ΛB e−ΛI  

where ΛI is the cumulative hazard from index case type I = subclinical  and smear- negative (S-); 
subclinical and smear- positive (S+); clinical and smear- negative (C-); clinical and smear- positive (C).

The cumulative hazard from clinical and smear- positive index cases is used as a benchmark to 

define the cumulative hazards from the remaining index case types. We assume that being subclinical 

or smear- negative have separate, multiplicative effects, such that

 ΛC− = r
−
ΛC+, ΛS+ = rsΛC+, ΛS− = r

−
rsΛC+,  

where rs and r- are the subclinical and sputum smear- negative relative cumulative hazards, respectively.

Model fitting
The model was fitted to the prevalence of infection in each of the five household types for each 
study separately. Fitting was performed in a Bayesian framework using Markov- Chain Monte Carlo 
methods. We use binomial distributions for the prevalence in the likelihood and estimate the 
following parameters: the background cumulative hazard (ΛB); the cumulative hazard from clinical, 
smear- positive index cases (ΛC+), the subclinical relative cumulative hazard (rs), and the sputum 
smear- negative relative cumulative hazard (r-). We use truncated gamma and normal distributions 
as weak priors:

 

ΛB ∼ gamma(alpha = 2, beta = 20),
ΛC+ ∼ normal(alpha = 2, beta = 20),
rs ∼ normal(mu = 1, sigma = 20),
r
−

∼ normal(mu = 0.2, sigma = 20)   

A total of 50,000 iterations were performed for each study, the first 25,000 of which were 

discarded as burn- in. Model fit, trace, correlation, and autocorrelation plots were used to ensure 

model suitability and convergence. We report median and 95% equal- tailed posterior intervals (PoIs).
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Subclinical versus clinical TB: Prevalence and bacteriological indicators
Search strategy
We sought TB prevalence surveys where data on the symptom and sputum smear status at the 
time of diagnosis was available for those identified in the survey. We began again with the recent 
systematic review of population- based TB prevalence surveys (Frascella et al., 2021), all of which 
included information on the symptom status at the time of diagnosis of those identified in the survey. 
We again reviewed the reports of the 28 national and subnational TB prevalence surveys included 
for quantitative analysis in Frascella et al., 2021 and identified 14 such studies that also included 
information on the sputum smear status at the time of diagnosis of those identified in the survey. 
Data from the second TB prevalence survey in Viet Nam in 2018 (Nguyen et al., 2020), which was 
not included in Frascella et al., 2021, were additionally included.

Data analysis
From the respective survey reports, we extracted the symptom threshold used for initial symptom 
screening, the total number of individuals screened and the number of identified cases that were 
subclinical and sputum smear- negative; subclinical and sputum smear- positive; clinical and sputum 
smear- negative; clinical and sputum smear- positive. Results of the data extraction are shown in 
Appendix 1—table 2.

Appendix 1—table 2. Data extracted from 15 prevalence where sufficient information on sputum smear status at the time of 

diagnosis was available.

The ‘symptom threshold’ used for initial symptom screening is the metric used here to define subclinical (negative) and clinical 

(positive). Neg = negative, Pos = positive.

Survey setting (ref) Year
Subclinical
smear neg.

Subclinical
smear pos.

Clinical 
smear neg.

Clinical
smear pos.

Number 
screened Symptom threshold

Viet Nam (Nguyen et al., 2020) 2018 67 17 22 21 61,763 Cough >2 wk

Viet Nam (Ministry of Health - Vietnam, 
2008) 2007 87 76 33 36 94,179 Productive cough >2 wk

Myanmar (Ministry of Health - Myanmar, 
2010) 2009 164 81 24 42 51,367 Any symptom

Lao PDR (Law et al., 2015) 2011 83 36 47 71 39,212 Cough >2 wk and/or other

Cambodia (Ministry of Health - Cambodia, 
2011) 2011 163 58 48 45 37,417 Cough >2 wk and/or other

Gambia (Ministry of Health and Social 
Welfare - The Gambia, 2011) 2012 18 9 25 18 43,100 Cough >2 wk and/or other

Rwanda (Ministry of Health - Rwanda, 
2014) 2012 11 9 5 13 43,128 Any symptom

Nigeria (Federal Republic of Nigeria, 2012) 2012 25 27 12 80 44,186 Cough >2 wk

Indonesia (Ministry of Health, Republic of 
Indonesia, 2015) 2014 132 49 129 116 67,944 Cough >2 wk and/or other

Uganda (The Republic of Uganda, 2015) 2014 51 30 43 36 41,154 Cough >2 wk

Zimbabwe (Ministry of Health and Child 
Care – Zimbabwe, 2014) 2014 58 9 25 14 33,736 Any symptom

Bangladesh (DGHS Ministry of Health and 
Family Welfare - Bangladesh, 2015) 2015 116 56 54 52 98,710 Cough >2 wk and/or other

Mongolia (Ministry of Health - Mongolia, 
2016) 2015 139 56 21 30 50,309 Cough >2 wk

DPR Korea (Democratic People’s Republic 
of Korea, 2016) 2016 82 64 71 123 60,683 Cough >2 wk and/or other

Philippines (Department of Health - 
Philippines, 2016) 2016 231 85 212 88 46,689 Cough >2 wk and/or other
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The contribution of subclinical TB to transmission
We combined our estimates for the relative infectiousness of subclinical TB per unit time relative to 
clinical TB (αS), the relative infectiousness of sputum smear- negative TB relative to smear- positive 
TB (α-), the meta- analysed proportion of prevalent TB that is subclinical (PS

TB), and the proportion of 
prevalent subclinical and clinical TB that is smear- positive (P+

S and P+
C, respectively) to estimate the 

per unit time contribution of subclinical TB to overall transmission ( P
S
Tx ):

 
PS

Tx = (P+
S αs + (1 − P+

S )αsα−
)PS

TB
(P+

S αs + (1 − P+
S )αsα−

)PS
TB + (P+

C + (1 − P+
C)α

−
)(1 − PS

TB)  

To this end, we used the posterior distributions for αS and α- from the earlier model fitting. We 

also modelled P+
S, P

+
C and PS

TB as normal distributions with means and variances taken from the 

univariate meta- analysis described above. The expression for the contribution of subclinical TB to 

overall transmission was then evaluated using 107 samples where we report the median and equal- 

tailed 95% prediction intervals.

The above was then re- performed on a survey- by- survey basis. Here, P+
S, P+

C and PS
TB were 

modelled separately for each survey and assumed to be distributed binomially. The distributions 

used for αS and α- remained unchanged.

Sensitivity analyses
Sensitivity analysis 2
We calculate the duration of infectiousness for subclinical relative to clinical index cases using the 
model and transition values from Richards et al., 2021. The model is shown in Appendix 1—figure 
1A with associated transition values, which are also detailed in Appendix  1—table 3. Disease 
durations are given by the inverse sum of all transitions out of subclinical (regression or progression) 
or clinical disease (regression, diagnosis, and treatment or death). We find durations of 5.4  mo 
(4.6–6.7 mo, 95% PoI) and 7.5 mo (7.0–8.2 mo, 95% PoI) for subclinical and clinical TB, respectively 
(Appendix 1—figure 1B), giving a relative duration of subclinical versus clinical TB of 0.72 (0.60–
0.89, 95% PoI).

Appendix 1—figure 1. Competing risk model (A) with transition rates from Richards et al., 2021 used to 

estimate the durations of subclinical and clinical tuberculosis (TB) (B).

Appendix 1—table 3. Progression and regression parameter values taken from (Richards et al., 

2021) used to estimate the durations of subclinical and clinical tuberculosis (TB) using the competing 

risk method detailed in the main text.

See Richards et al., 2021 for data sources and methods for estimating the above parameters.

Parameter Value (95% posterior interval) Units

Regression from subclinical 1.54 (1.23–1.90) Per year

Progression from subclinical 0.67 (0.54–0.86) Per year

Regression from clinical 0.57 (0.47–0.69) Per year

Treatment from clinical 0.70 Per year

Death from clinical 0.32 (0.27–0.37) Per year
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Supplementary results
Estimating the relative infectiousness of subclinical TB
Detailed model results

Appendix 1—table 4. Posterior summary statistics for each model.

Shown are the effective sample size (n_eff); the ‘R hat’ statistic (Rhat); sample mean (mean); Monte 

Carlo standard error (mcse); sample standard deviation (sd); and sample quantiles (2.5%, 50%, 

97.5%).

n_eff Rhat Mean mcse sd 2.5% 50% 97.5%

Viet Nam

lambda_B 16,683 1 0.076 0.000 0.002 0.072 0.076 0.080

lambda_Cp 14,000 1 0.222 0.001 0.078 0.089 0.216 0.393

r_s 11,465 1 0.653 0.006 0.610 0.050 0.524 1.988

r_n 15,677 1 0.195 0.002 0.197 0.006 0.140 0.682

Philippines

lambda_B 12,836 1 0.209 0.000 0.003 0.203 0.209 0.216

lambda_Cp 8107 1 0.145 0.001 0.065 0.028 0.142 0.281

r_s 4532 1 2.644 0.044 2.940 0.683 1.910 9.700

r_n 15,022 1 0.172 0.001 0.131 0.010 0.145 0.484

ACT3

lambda_B 13,924 1 0.046 0.000 0.004 0.038 0.046 0.054

lambda_Cp 10,476 1 0.058 0.001 0.055 0.002 0.042 0.203

r_s 9133 1 6.843 0.074 7.052 0.612 4.406 27.192

r_n 7628 1 2.696 0.049 4.273 0.143 1.337 15.314

Bangladesh

lambda_B 10,804 1 0.041 0.000 0.002 0.038 0.041 0.044

lambda_Cp 11,415 1 0.349 0.002 0.240 0.037 0.297 0.944

r_s 7640 1 2.101 0.036 3.174 0.076 1.113 10.723



 Research article      Epidemiology and Global Health | Microbiology and Infectious Disease

Emery et al. eLife 2023;12:e82469. DOI: https://doi.org/10.7554/eLife.82469  23 of 31

Appendix 1—figure 2. Model fits for each model. Shown are prevalence of infection in members of households 

with different index case types (background, subclinical and smear- negative, subclinical and smear- positive, clinical 

and smear- negative, clinical and smear- positive). Error bars show median and 95% credible intervals. Shaded 

regions show posterior median and 95% posterior intervals. +ve = positive, -ve = negative.
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Appendix 1—figure 3. Trace plots for each model.
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Appendix 1—figure 4. Correlation plots for each model.
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Appendix 1—figure 5. Autocorrelation plots for each model.



 Research article      Epidemiology and Global Health | Microbiology and Infectious Disease

Emery et al. eLife 2023;12:e82469. DOI: https://doi.org/10.7554/eLife.82469  27 of 31

Sensitivity analyses
Sensitivity analysis 1
Omitting Bangladesh (2007) (Zaman et al., 2012) and ACT3 (2017) (Marks et al., 2019) from the 
analysis.

Appendix 1—figure 6. Affected results for sensitivity analysis 1. Figure details for A, B and C are as per 

Figures 2A, B and 3D in the main text, respectively.
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Sensitivity analysis 2
Using an alternative duration of subclinical TB relative to clinical TB from Richards et al., 2021.

Appendix 1—figure 7. Affected results for sensitivity analysis 2. Figure details for A, B and C are as per 

Figures 2A, B and 3D in the main text, respectively.
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Sensitivity analysis 3
Assuming infected households have a 50% greater background risk of infection than non- infected 
households.

Appendix 1—figure 8. Affected results for sensitivity analysis 3. Figure details for A, B and C are as per 

Figures 2A, B and 3D in the main text, respectively.
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Sensitivity analysis 4
Assuming sputum smear- positive TB has twice the duration of smear- negative TB.

Appendix 1—figure 9. Affected results for sensitivity analysis 4. Figure details for A, B and C are as per 

Figures 2A, B and 3D in the main text, respectively.
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Sensitivity analysis 5
Modelling all studies simultaneously, assuming local background risks of infection for each study and 
global values across all studies for the remaining cumulative hazards.

Appendix 1—figure 10. Affected results for sensitivity analysis 5. Figure details for A, B and C are as per 

Figures 2A, B and 3D in the main text, respectively.
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