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ABSTRACT Federated Learning (FL) presents a mechanism to allow decentralized training for machine
learning (ML) models inherently enabling privacy preservation. The classical FL is implemented as a client-
server system, which is known as Centralised Federated Learning (CFL). There are challenges inherent
in CFL since all participants need to interact with a central server resulting in a potential communication
bottleneck and a single point of failure. In addition, it is difficult to have a central server in some scenarios
due to the implementation cost and complexity. This study aims to use Decentralized Federated learning
(DFL) without a central server through one-hop neighbours. Such collaboration depends on the dynamics
of communication networks, e.g., the topology of the network, the MAC protocol, and both large-scale
and small-scale fading on links. In this paper, we employ stochastic geometry to model these dynamics
explicitly, allowing us to quantify the performance of the DFL. The core objective is to achieve better
classification without sacrificing privacy while accommodating for networking dynamics. In this paper,
we are interested in how such topologies impact the performance of ML when deployed in practice. The
proposed system is trained on a well-known MINST dataset for benchmarking, which contains labelled data
samples of 60K images each with a size 28 × 28 pixels, and 1000 random samples of this MNIST dataset
are assigned for each participant’ device. The participants’ devices implement a CNN model as a classifier
model. To evaluate the performance of the model, a number of participants are randomly selected from
the network. Due to randomness in the communication process, these participants interact with the random
number of nodes in the neighbourhood to exchange model parameters which are subsequently used to update
the participants’ individual models. These participants connected successfully with a varying number of
neighbours to exchange parameters and update their global models. The results show that the classification
prediction system was able to achieve higher than 95% accuracy using the three different model optimizers
in the training settings (i.e., SGD, ADAM, and RMSprop optimizers). Consequently, the DFL over mesh
networking shows more flexibility in IoT systems, which reduces the communication cost and increases the
convergence speed which can outperform CFL.

INDEX TERMS Simplicity, privacy, federated learning, decentralization learning.

The associate editor coordinating the review of this manuscript and

approving it for publication was Jose Saldana .

I. INTRODUCTION
In recent years, the number of Internet of Things (IoT)
and smart wearable devices have witnessed an increased
proliferation in several vertical domains (e.g., wearables,
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home automation systems, smart glasses, health monitors,
health-fitness trackers, smart grids, etc). These devices use
a variety of wireless technologies and thus manifest dif-
ferent topological properties. For instance, LoRa deploy-
ment support one hop connection to the gateway with a
distance-dependent spreading factor manifesting star topol-
ogy. In contrast, Thread, Zigbee, and BLEMesh manifest the
mesh topology. The Mesh deployment for local connectivity
is gaining extra momentum with the rapid evolution of stan-
dards.

The huge amount of data that sensors and edge devices
collect is critical. It can be gathered and analyzed using
modern ML techniques to build a classification model that
can learn, predict, and meet the end user’s requirements opti-
mally. ML algorithms can enable various applications. These
include controlling and monitoring the home appliance, con-
trolling autonomous vehicles, and monitoring various health
parameters of the elderly such as heart rate, fall detection,
etc. However, the data from an edge device may carry very
personal information. Thus, data privacy and security are
significant challenges as users usually do not allow sharing of
sensitive information and data by putting it all in one central
location.

Now, Federated Learning (FL) [1] has recently emerged to
address this issue and solve participants’ essential require-
ments and concerns to preserve privacy and data security.
FL has developed as a new paradigm in building models from
distributed ML setups that can offer the opportunity to learn
a model from multiple disjoint sensitive local datasets while
keeping the user data private through distributed training [1]
and [2].

FL has attracted much attention because of its ability to
preserve the privacy of the client’s data by sharing only
the locally trained model parameters instead of the local
data itself. Figure 1 shows a reference deployment scenario
for a healthcare application. This example shows how the
Community Hospital, the Research Medical Centre, and the
Cancer Treatment Centre all train their local models using
their local private data and share only the model parameters
to create a global model in order to improve the system
performance.

Thus, FL performs the aggregation and analysis of the local
models and updates the models on the participants’ devices
or servers without sharing any devices’ data with others,
thus keeping the private data protected. So, each participating
device will train a model exploiting its local data usually
using classification or regression algorithms (i.e., employing
a Deep Neural Network (DNN)), and only share the model
parameters with a central server. Afterwards, the FL central
server will aggregate the parameters of these local models to
process and create a global model. The FL server broadcasts
the global model to update the local models. The system
will iterate the same procedure until the system achieves a
convergence state [3]. This paradigm of FL is also known as
Centralized Federated Learning (CFL).

FIGURE 1. A Federated learning approach.

A. MOTIVATION
The data generated by IoT devices and smartphone terminals
has become essential for driving intelligent services through
applications ofMachine Learning (ML). Various applications
ranging from healthcare to autonomous vehicles are rapidly
deploying IoT solutions. It is thought that FL can offer more
secure and shared security services for a wider range of appli-
cations, helping to support the steady growth of distributed
ML applications [4]. Although the CFL systems are indeed
promising, they face several limitations and challenges as
they require a central FL server. Efficient communication
is a critical challenge that needs to be addressed in FL to
ensure that all participating devices are connected and that
performance is not compromised [5]. Furthermore, in par-
ticular, it is hard to implement in some scenarios where a
reliable and robust central server is difficult to find (e.g.,
a fully self-driving and autonomous network). Moreover, the
CFL network faces the limitation of a single point of failure
(communication bottleneck) at the central server. Therefore,
this research will study a Decentralized Federated Learning
(DFL) approach to overcome these challenges. In the DFL
model, all neighbouring devices share their model param-
eters directly in a peer-to-peer manner. In this case, each
device acts as a server by aggregating the parameters from
neighbours and then averaging them to update a sub-global
model that can be shared with others within one hop of a
communication link.
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The aim of this paper is to evaluate the feasibility of the
implementation of the DFL approach under spatio-temporal
dynamics. DFL algorithms are implemented using clusters of
mesh networking groups located in different environments.
Our systemmodel can be translated into two practical deploy-
ment modalities: 1) Autonomous and Decentralized IoT net-
works: these are the networks formed by limited capability
IoT and edge devices where decentralized FL is required
intrinsically. For instance, networks formed by wearable IoT
devices in battlefields or remote hospitals. 2) Edge/Fog-
Assisted IoT networks: these are the hierarchical networks
where the data from IoT devices is collected and processed
by the edge/fog gateways [6]. These gateways then form a
mesh network where DFL must be implemented. A typical
example of such deployment is in agricultural IoT setup [7] or
other smart city IoT applications. Both cases can be translated
into the system model considered in this paper. In addition,
this study will implement an FL network based on the slotted
ALOHA protocol as a sub-optimal MAC protocol to evaluate
the performance of the network and optimal configuration
under the proposed setup.

The combination of the DFL with the slotted ALOHA
mesh networking protocol is proposed to satisfy the users’
privacy preservation, increase the protection for confidential
data, increase the prediction accuracy of the implemented
algorithms and build a robust system. This system can help
us exploit a greater percentage of the users’ data that will be
trained to create a global model that can improve the local
models in each participating device without sharing any data
with other participants except the local model parameters.

B. KEYCONTRIBUTIONS
Limited studieswere conducted using FLwith a central server
to achieve better results. The objectives of this study are
to introduce and simulate the Centralized and Decentralized
FL’s wireless communication stage between the devices in
the learning process based on qualitative examinations of the
CFL approach with a central server and the DFL approach
over a Wireless Mesh Networking (WMN) without a central
server. Furthermore, this study aims to simulate the commu-
nication network for the CFL and DFL models to design a
robust wireless communication network during the training
process, which helps to evaluate how the model can perform
in different network conditions, such as congestion and inter-
ference.

C. PAPER ORGANIZATION
The rest of the paper is organized as follows. In Section II, the
related work on the FL approach is provided. Background and
challenges for DFL over WMN are presented in Section III.
Section IV, introduces the system model in terms of theo-
retical analysis of device communication in the network and
learningmetrics for DFL overWMN. The learning criteria for
DFL are demonstrated in SectionV. The proposed framework
simulation and results are summarized in Section VI. Finally,

a summary of this research and future work is presented in
Section VII.

II. RELATED WORK
Many recent papers have investigated the fundamentals of
CFL algorithms [8], [9], [10], [11], and [12]. CFL and its
central server algorithm are called the Federated averaging
(FedAvg) algorithm were first proposed and implemented
in [1]. The FedAvg algorithm is implemented to create a
global model by averaging the aggregated parameters from
the participants [1].

In [8], comprehensive research of CFL for mobile-edge
networks was presented. The authors examined the critical
implementation issues with existing solutions and poten-
tial applications of CFL in IoT and mobile edge networks.
In addition, some existing limitations and challenges in CFL
are highlighted, such as the difficulty of aggregating suffi-
cient data, real applications’ heterogeneous data distribution,
and theoretical analysis of device communication and con-
vergence. The work [9] reviewed the challenges in imple-
menting CFL, future research directions and the existing
CFL approaches. In [10] and [12] the authors surveyed the
CFL implementations, devised a taxonomy, and overviewed
the currently proposed solutions and their challenges in the
CFL framework. They presented the essentials of preserving
privacy and checking fairness in CFL.

The study in [13] conducted a thorough and comprehensive
examination of the architecture, design, and deployment of
FL, comparing it to centralized and distributed on-site ML-
based systems. Furthermore, the challenges and potential
future directions for research in FL were discussed, where
some classification problems of FL topics and research fields
were also presented, based on a thorough literature review,
including taxonomies for its important technical and emerg-
ing aspects, such as the core system model and design, appli-
cation areas, privacy and security, and resource management.

The authors in [11] examined the “In-Edge-AI” model for
edge networks to allow for efficient collaboration between
terminal devices and terminal servers to exchange learning
model parameter updates. They explored two use scenar-
ios: edge caching and compute offloading. Toefficiently sup-
port these scenarios, they trained a double deep Q-learning
(DDQN) model via CFL. Lastly, the authors in [8], [9], [10],
[11], and [12] addressed several existing issues in CFL for
actual applications, such as the ability of mobile devices to
handle a high computation process and the power consump-
tion and battery life to keep connected to a central server.
Furthermore, CFL raises concerns about flexibility because it
may cease to function due to the aggregation server’s failure
(i.e., due to a malicious assault or physical flaw). Moreover,
training CFL models via IoT networks necessitates many
communication resources to allow participants to communi-
cate with a central server [14].

Most existing DFL systems are based on gossiping
schemes, and the number of neighbours in the learning pro-
cess are chosen regardless of communication challenges,
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end-user capability and network capacity. For instance, the
works in [15] and [16] implement a classic DFL algo-
rithm that allows a user to aggregate the model parameters
from an estimated number of multiple neighbouring devices,
and Ramanan and Nakayama [17] propose an alternative
approach that uses a blockchain-based FL scheme to aggre-
gate updates for the participants’ devices. However, these
approaches suffer from several limitations related to the com-
munication constraints in the real environment applications,
the data size and the terminal capability (i.e., energy con-
sumption and computation cost) of blockchain-based transac-
tions. In summary, we list some existing works on FL-related
topics with our paper’s contribution in Table 1.

III. BACKGROUND AND CHALLENGES FOR DFL OVER
WMN
The implementation of the DFL approach over a WMN is
supposed to reduce communication costs, cope with the sin-
gle point of failure issue in CFL, and provide innovative capa-
bilities in a range of aspects, including healthcare systems
(e.g., monitoring physiological data like heart-rate variabil-
ity [18] to classify various cardiac pathologies), industry, and
smart homes [19], [20], [21].

In addition, the combination of DFL and WMN using
mesh protocols will likely be helpful in preserving privacy,
guaranteeing a robust network, and improving the battery
life of the devices by reducing communication costs. Instead
of transferring data from the device to the central server
provider, which will need large bandwidth and consume high
power on the edge device, the decentralized approach can be
applied to minimize these back-and-forth journeys of data.
This decentralized fashion is implemented by processing the
data into the edge device and communicating with the other
neighbours using the mesh networking links to exchange and
update the model parameters.

This paper will simulate and implement the DFL model
over WMN system protocols. The model and the system
performance will be evaluated by training the model using
a dataset divided into training data, validation data, and test
data. The performance metrics of the algorithms will be pre-
diction accuracy, communication cost, and latency. Both DFL
and WMN protocols are implemented in some applications
separately and individually.

This research proposes integrating DFL and WMN into
one intelligent system to optimize for robust communication
networks that could be applied in many IoT applications
to ensure participant privacy preservation and data security.
AlthoughDFL andWMNhave impressive characteristics and
features, they reveal several challenges and problems faced
by engineers that can influence the model’s accuracy. The
following is a short summary of those limitations:

I. The network will be designed for low-power IoT
devices under IEEE 802.15.4-2006 and WMN would
need to be designed to coexist in IoT systemswith other
technologies, and not to replace them [32].

II. Convergence speed: DFL algorithms usually adopt a
peer-to-peer one-layer architecture. Each participant
collects and aggregates all the local model updates
of one-hop neighbours in a CFL architecture. With
such multi-hop architecture, the wireless routing paths
between participants can be easily saturated, resulting
in a slower convergence speed [33].

III. Unbalance: the amount of data varies at each partici-
pant resulting in different local training data quality.

IV. Lack of stability and flexibility in communication net-
works of a massive number of devices in real-time
applications.

The communication stage is one of four main steps in
the learning process that cannot be neglected, and most
researchers do not consider it analytically in their research.
In this paper, this stage will be addressed in detail. We pro-
pose using mesh networking to maximize the communica-
tion stage’s flexibility and the channel’s capacity during the
learning process. The motivation for this is the fact that the
DFL algorithms can efficiently update the terminal edge with
the parameters through the Thread protocol or any other
mesh networking protocols (e.g., ZigBee or Bluetooth). This
will allow us to design and develop a global model that can
precisely analyze the end-users data without sharing the data
with a central server or any other devices within the network.
In other words, the data stays protected locally and never
leaves the device itself and this will achieve personalization
and guarantee high Quality of Service (QoS) as well as
enhance the performance of devices in IoT applications.

To the best of our knowledge, this research is the first work
that combines DFL and WMN using the slotted ALOHA
protocol. The model results verify the intuition, showing
that implementing DFL over mesh networks can offer more
flexibility as no central server is required and promises more
communication channels available to communicate. More
participants can be involved in the learning process in the
form of neighbour groups. The rest of this paper will intro-
duce the wireless communication characteristics for the mesh
networking and DFL criteria. The wireless communication
constraints will be considered and CFL and DFL models will
be implemented by simulations.

A. TRADITIONAL MACHINE LEARNING (ML) ON EDGE
DEVICES
There are different kinds of ML and deep learning algorithms
used in various proposals. For instance, Convolution Neural
Network (CNN) algorithms are powerful tools widely used
in image classification processing and other classification
problems [34] since CNN has a proven ability to achieve
higher accuracy, and can efficiently learn from thousands
of image datasets. To implement CFL and DFL algorithms,
the local ML algorithms are required to be embedded in the
terminal devices (participants) to train the algorithm on the
local data before sharing the parameters with the server in
a CFL approach or with the neighbours in a DFL approach.
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TABLE 1. Existing works on FL-related topics with our paper’s contribution.

Details on ML-enabled edge devices challenges and oppor-
tunities have been addressed in many research papers in
the recent past [35], [36] and they are out of the scope of
this paper. In this research, the CFL and DFL models will
be implemented for a classification problem, and the CNN
algorithm will be the main algorithm that is used to train the
local models on the proposed system.

B. CENTRALIZED FEDERATED LEARNING (CFL)
Themain objective of CFL systems is to train, in coordination
with a central server for model aggregation, a shared global
model from participating devices that act as local learners.
Figure 2 shows the fundamental CFL architecture and the
main four steps to train a CFL network, where these steps
are iterated until reaching the convergence status [12]:

I. Local learning where each edge device uses its local
dataset to train the model locally and update the param-
eters of theMLmodel (e.g., neural biases and weights).

II. Upload model parameters to the central server: partic-
ipants upload (transmit) their parameters to the central
server via communication channels.

III. Global aggregation: the central server aggregates the
local models’ parameters from those successfully
received to update a new version of the global model
on the server.

IV. Download (broadcast) and synchronize the devices
with the latest global model updates [14], and then back
to step 1 and repeat until system convergences.

In the CFL process, each device’s local algorithm has an
optimization technique to update the model iteratively, such

FIGURE 2. CFL framework over an IoT network.

as Stochastic Gradient Descent (SGD). Afterwards, the global
model emerges from aggregating the local parameters from
participants’ devices, which can then be weighted according
to the perceived quality of the updates of the devices [34].
One crucial property of CFL is that the participant user data
never transfers between devices and the server, which reduces
communication costs and data sharing privacy concerns.
However, due to the central server node, the CFL system
will run into scalability issues. Even if the server node’s
hardware and software capabilities have been optimized, the
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FIGURE 3. DFL framework over an IoT WMN.

server node’s performance will not improve when thousands
of client nodes join [37]. Communication bottlenecks may
appear due to the amount of traffic that is increasing exponen-
tially, and the system becomes overburdened. Furthermore,
accessing a central node cannot be possible in some scenarios,
for instance, self-driving vehicles and high mobility sensor
systems. Decentralized architectures have recently been pro-
posed to avoid communication bottlenecks and protect data
privacy [38], [39]. Remove the centralized server, and each
participant only communicates with its one-hop neighbours
in its local area and exchanges their local models and updates
parameters [40].

C. DECENTRALIZED FEDERATED LEARNING (DFL)
As shown in Figure 3, the DFL framework does not need a
central server to coordinate the training tasks and contains
only terminal participants (nodes) [37]. The idea is that each
participant exchanges parameter updates with neighbours in
a peer-to-peer manner. Besides the local model algorithm,
the FedAvg algorithm is employed on each terminal partic-
ipant to create its global models in the DFL approach with
no central server. Each participant trains on its local data
and averages it within the aggregated models’ parameters
from the selected neighbours using the FedAvg algorithm to
broadcast an updated global model to the neighbours again at
each iteration. Afterwards, the same procedure is applied to
all other participants until the system converges.

In [41], the Combo algorithm proposed an approach in
which the participants send and average a segment of the
models’ parameters to reduce the required communication
bandwidth without affecting the system performance and
convergence rate. Even though the proposed DFL algorithms
overcome some of the problems associated with general FL
systems that require a central server, they use model averages

to fuse models at the local clients, which is not always very
efficient in heterogeneous data scenarios. For each, local
model parameters are updated toward the local optimum, and
averaging the model parameters from different clients leads
to the averaged outcome of each client’s local optimum being
used. The optimum of each participant’s loss function may
be quite far from the others, which is also far from the global
optimum due to different participants owning different sets
of training data. Thus, those datasets typically have different
distributions or even no overlap, which is defined as data
heterogeneity [42], [43], [44].

Furthermore, most prior works do not consider the wireless
environment in the communication network, so they do not
account for wireless impairments caused by channel fading,
link blockages, and wireless interference. Most researchers
choose the number of participants by estimation without
concerning the communication medium constraints, which is
not always very efficient in terms of reliability and flexibility
for real-time applications (e.g., AV and UAV networks).

Therefore, this studywill focus on designing amodel based
on the gossipy method [45] that can deal with decentralized
approaches and heterogeneous datasets, and it will precisely
analyze the communication process between the participants
in the network, considering the interference and the noise
in the transmission medium to simulate a real scenario of
the communication connection between the terminal devices
through the learning process.

D. WIRELESS MESH NETWORKING (WMN)
Nowadays, many access points have overlapping areas, and
almost each traditional wireless network has to be connected
to the wired network. In this scenario, the cost of installing
IoT devices is costly and extremely difficult. Thus, a WMN
will benefit from its flexibility to connect the devices within
the network and offer a different perspective than non-mesh
networks. The connectivity needs in wireless mesh networks
are reduced mainly because the devices within the network
have a multi-route capability to send and receive packets.
In addition, the WMN also has a range of advantages such as
self-healing and self-organizing, attracting a vast number of
investigations and research developments [46]. Furthermore,
WMN can reduce the networking cost for innovative home
applications using low-profile hardware.

The routing protocols significantly contribute to WMNs
as they help find the best path between multi-hop networks
in unreliable wireless media. The WMN protocols have
been widely investigated to achieve higher throughput, low
latency and low power consumption [46], [47]. According to
some related research, ZigBee, Bluetooth Low Energy BLE,
Z-wave and Thread protocols are the most common proto-
cols used in many wireless mesh-networking applications.
Each protocol has its own unique specification for particu-
lar implementation depending on the user requirement. For
instance, the Z-wave protocol is advantageous for long-range
coverage because of its low-frequency band (900 MHz)
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compared to others with a 2.4 GHz band (i.e., Bluetooth
and Thread). According to [48], all protocols achieve similar
performance (i.e., latency and throughput) for small networks
and small payloads. By contrast, for largemesh networkswith
multi-hop nodes between the transmitter and the receiver, the
Thread protocol achieves better performance metrics in terms
of latency and efficiency.

IV. SYSTEM MODEL
A. COMMUNICATION IN WMN
In this paper, a typical receiver is considered that is con-
nected to a corresponding desired transmitter. A Rayleigh
fading channel is adopted for the small-scale path-loss model
and complemented with a single slope large-scale path-loss.
Hence, the received power at the typical receiver from the
desired transmitter is (Pkhkod

−α
ko ) [49], where Pk is the signal

transmit power from the desired transmitter device k , hko is
the fading coefficient for the channel between device k to
the target destination, dk0 is the distance between the desired
transmitter k and the corresponding receiver and (α ≥ 2) is
the path-loss exponent.

The signal can be correctly decoded at the typical receiver
if the corresponding SINR (Signal to Interference plus Noise
Ratio) is higher than a certain threshold Tk . Therefore, the
probability that SINR ≥ Tk is defined as:

P(SINR ≥ Tk ) = P
(

Pkhk0d
−α
k0∑

i∈ϕ Ii+N0
≥ Tk

)
(1)

where Ii is the interference from the device i in the network
(Ii = Pihi0d

−α
i0 ai), with i = 1, 2, . . . ,M , M is the total

number of active devices within the desired receiver coverage
area, and i ∈ ϕ where ϕ represents the number of all partici-
pant devices within the whole target area. Now ai is a binary
random variable that defines the state of the device, whether
in a transmitting state or ready to receive such that PA =
Probability{ai = 1} represents the device is in transmitting
state and 1− PA = Probability{ai = 0} represents the device
is ready to receive and is not transmitting.

The proposed IoT network is assumed to have a small
thermal noise power variance N0 in comparison with the
cumulative interference power (i.e., interference-limited net-
work). Therefore, the noise effect in the network is negligible,
and so (1) can be re-written as:

P(SIR ≥ Tk ) ∼= P

(
Pkhk0d

−α
k0∑

i∈ϕ Ii
≥ Tk

)
(2)

∼= P

(
hk0 ≥

Tkdα
k0
∑

i∈ϕ Ii
Pk

)
. (3)

Since the proposed IoT device network has Rayleigh fad-
ing channels, and for the sake of simplicity, the hk0 term is
assumed to be an exponentially distributed random variable
with a unit mean. The probability distribution function (PDF)
of an exponential random variable X with unit mean can be
expressed in the form of fX (x) = exp(−x), and thus, (3) can

be reformulated as:

P(SIR ≥ Tk ) ∼= Eai

(
Ehi0

(ˆ +∞
(Tk d

α
k0
∑

(i∈ϕ) Ii)
Pk

(e−xdx)
))

(4)

∼= Eai

(
Ehi0

(
exp(−

Tkdα
k0
∑

(i∈ϕ) Ii
Pk

)
))

(5)

∼=Eai

(
Ehi0

(∏
(i∈ϕ)

exp(
Tkdα

k0Ii
Pk

)
))

(6)

∼=Eai

(
Ehi0

(∏
(i∈ϕ)

exp(
−Tkdα

k0Pihiod
−α
k0 ai

Pk
)
))
(7)

where Eai is the expectation with respect to the random
variable ai and Ehi0 denotes the expectation of the fading
coefficients from the devices i to the desired receiver.

The Bernoulli distribution property can be used to simplify
(7), Eaiexp(aix) = (1 − PA + PA × exp(x)), and according
to [49] Ehi0 (exp(−hi0 × y)) ∼= 1/(1+ y).
Consequently, the probability of successful transmission

for the participant devices within the network area can be
explicitly obtained as:

P(SIR ≥ Tk ) ∼=
∏

(i∈ϕ)

(
1− PA +

PA

(1+Tk (
dα
k0
di0

)(γki))

)
(8)

where γki = Pi/Pk is the power ratio.

B. ACHIEVABLE TRANSMISSION CAPACITY OVER
SLOTTED-ALOHA
The ALOHA protocol is a class of fully decentralized MAC
protocols [50] that does not perform carrier sensing and
attempts to avoid packet collision. The slotted-ALOHA pro-
tocol was introduced to enhance the utilization of the shared
communication medium and reduce the chances of collisions
for multiple transmitting devices by synchronizing the trans-
mission of devices at the beginning of discrete timeslots.

In the WMN, the probability for each device sending a
packet to neighbours is PA and the probability of being ready
to receive a packet is (1−PA), and therefore, the probability of
every mesh node getting a packet from one of its neighbours
is PA(1 − PA)P(SIR ≥ Tk ) where Tk is the predefined
SINR threshold and P(SIR ≥ Tk ) represents the successful
transmission probability. Based on Shannon’s Theorem, the
achievable transmission capacity increases when the transmit
power increases, and the packet can carry up to log(1 +
SIR) (bits/second/hertz) data [49]. Thus, the capacity CALOHA
for the mesh network can be written as:

CALOHA = PA(1− PA)log(1+ SIR)P(SIR ≥ Tk ). (9)

From (8), the outage probability (θk ) constraints concern-
ing PA,TK and γki can be obtained as follows:

1−
∏

i∈ϕ

1− PA +
PA

(1+ Tk (
dα
k0
dα
i0
)( PiPk )

 ≤ θk . (10)
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To simplify (9), a natural logarithm is applied to com-
pute the maximum achievable transmission capacity with
respect to PA. Hence, we use an auxiliary function f (PA) =
ln (CALOHA(PA)) to simplify the search of the optimal value
PA that maximizes CALOHA. Then, the problem formulation
can be written as:

argmax
PA

f (PA) = argmax
(
ln(PA)+ ln(1− PA)

+ ln(log(1+ Tk ))

+

∑
(i∈ϕ)

ln
(
1− PA +

PA

(1+ Tk (
dα
k0
dα
i0
)γki)

))
(11)

s.t. εk ≤
∑
(i∈ϕ)

ln

1− PA +
PA

(1+ Tk (
dα
k0
dα
i0
)γki)

 .

(12)

With a Taylor series expansion, which is ln(1−x) = −x−
x2/2− x3/3− . . . ∼= −x, (|x| < 1), so (12) can be simplified
to:

εk ≤
∑
(i∈ϕ)

−PA(1− 1

(1+ Tk (
dα
k0
dα
i0
)γki

) . (13)

Thus, (11) can be reformulated as:

argmax
PA

f (PA) = argmax
PA

(ln(PA)+ ln(1− PA)

+ ln(log(1+ Tk )))

+

∑
(i∈ϕ)

−PA + PA

(1+ Tk (
dα
k0
dα
i0
)γki)

 .

(14)

Hence, (14) can be written as:

argmax
PA

f (PA) =argmax
PA

(ln(PA)+ ln(1− PA)

+ ln (log(1+ Tk ))− PAf2) (15)

where f2 =
∑

(i∈ϕ)[1−
1

(1+Tk (
dα
k0
dα
i0
)γki)

], and therefore a partial

derivative of f (PA) will be taken to findPA that will maximize
the function f (PA) in (15):

∂f (PA)
∂PA

=

(
1
PA
−

1
(1−PA)

− f2
)

.

The probability of being in transmitting mode using the
slotted ALOHA protocol at ∂f (PA)

∂PA
= 0 is defined as PA(0)

and obtained as:

PA(0) =
f2+2−

√
f 22 +4

2f2

so, ∂f (PA)
∂PA

> 0, when 0 ≤ PA < PA(0) and
∂f (PA)
∂PA

<

0 when PA(0) < PA < 1. Consequently, if the system is
assumed to have a constant threshold Tk and power ratio
γki, then f (PA) will increase when PA is increased within the

range of 0 to PA(0), and by contrast, it will decrease when
PA > PA(0).

A special case has been adopted by setting the system’s
outage probabilities equal to its SINR threshold values to
find the maximum transmission capacity based on the slot-
ted ALOHA protocol for the wireless mesh networks. Then
(9) can be reformulated to restate the maximum achievable
transmission capacity is as follows:

max(CALOHA) = PA(1− PA)log(1+ Tk )(1− θk ),

=

(
PA(1− PA)log(1+ Tk )

×

∏
(i∈ϕ)

(
1− PA

+
PA

(1+ Tk (dα
k0/d

α
i0)

(γki)
))

. (16)

From this analysis, the intuition is provided as to
what extent the network parameters Tk ,PA and γki effect
the maximum achievable transmission capacity of the
slotted-ALOHA mesh network.

C. LATENCY
The required time to achieve a convergence state in any FL
model plays a key role in evaluating the system performance.
Therefore, the average learning latency for the participants
will be one of the performance metrics. Latency in the pro-
posed centralized and decentralized FL will be defined as the
expected time duration (in seconds) required for the model to
complete learning in a typical one-hop mesh communication
network. Let R denotes the smallest number of iterations to
meet the convergence criterion. The expected learning latency
(Ttotal) is a function in the computation time (Tcomputation)
which is the required time for the device to run and update
the local model, the server to devices (participants) broadcast
communication time (Tbroadcast ) and the device to server
communication time (Tcmm) over a number of iterations R
for the number of successful transmit participants Ai in the
learning process:

Ttotal = R
Ai∑

(si=1)

(
T (si)
cmm

)
+ R(Tcomputation + Tbroadcast ). (17)

The summation of the communication process timeTcmm in
real applications is slightly variable depending on the number
of participants in each iteration. In order to simplify the
calculation, it will be assumed that the network has a fixed
average number of successful transmission participants Ai for
the whole process in centralized and decentralized FL.

D. ACCURACY AND LOSS
Accuracy and loss functions are the two main model metrics
that are mainly applied to adjust the model weights during the
training process and to measure the system performance in
order to optimize a model (e.g., a convolution neural network
model) and solve for example, a face recognition problem.
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Accuracy is calculated as follows:

Accuracy = Number of Correct Predictions
Total Number of Predictions . (18)

Loss is a measure of the difference between the actual
output value and the predicted output value by the imple-
mented model. In the classification models whose output
values are an array of probability values between 0 and 1,
the most common loss function applied is the cross-entropy
loss function. The cross-entropy loss function is also known
as logistic loss, log loss or logarithmic loss. The probability
of each predicted value is weighed against the actual desired
output 0 or 1, and a loss is measured based on how far it is
from the actual expected value for each sample. A larger loss
for significant differences close to 1 and more, and a slight
loss for minor differences tending to 0, and therefore, the
overall cross-entropy loss of 0 means the model is perfect.
The cross-entropy loss function is defined as:

Loss = −
∑m

j=1
∑n

i=1 y(i,j)log(p(i,j)), (19)

for n classes and m samples

where y(i,j) is the actual output and p(i,j) is the softmax proba-
bility of the model output for the ith class in the classification
problems and jth instance sample.
Therefore, the objective is almost always to increase the

accuracy and minimize the loss of the FL models or any other
implemented models.

V. THE LEARNING CRITERION FOR DFL
The designed system considers a group of ϕ individual par-
ticipants nodes (i.e., edge devices) in which set ϕ = 1, . . . ,K
is randomly located as a spatial point process following a
stationary Poisson Point Process PPP [51] with intensity
(λ) in disk cells with uniformly distributed over a large-
scale network. In supervised learning, each node i ∈ ϕ has
access to a dataset O(i) consisting of n instance-label pairs
of samples(Xni ,Y ni ), where X

n
i and Y ni represent the labelled

sample input and output for the device i, respectively and
n = 1, . . . ., k . The samples are a subset of heterogeneous
or homogeneous datasets that follow an unknown probability
distribution p(x, y) and possibly have non-empty interaction
for different sets (i.e., O(i) and O(j) where i ̸= j). Each
instance Xni ∈ Xi ⊆ X , where Xi denotes the local instance
space of node i and X denotes a global instance space, which
satisfies X ⊆

⋃ϕ
i=1 Xi.

Similarly, let y denote the set of all possible labels over
all the nodes. Some examples include y = 0, 1 for binary
classification learning and y = R for regression learning.
There are X (1)

i ,X (2)
i , . . . ..,X (k)

i i.i.d samples at each partic-
ipant node, and the total number of examples k is a variable
depending on the size of the local datasets for each one.

All participants’ devices have to have the same
machine-learning model (e.g., a CNN), which have a com-
mon weight parameters matrix (W ). The main aim of the
designed model is to minimize the cross-entropy loss func-
tion between the expected (actual) output and the predicted

output:

argmin
W

F(W ) ≜ 1
Ai

∑
(i∈ϕ) fi(W ) (20)

where F(W ) denote the global loss function, fi(W ) represents
the local loss for the device i, si represents the set of active
devices that succeed in transmitting to the ith participant at
each iteration in the training process and Ai is the length of
the si set as:

si = 1, 2, . . . ..,Ai, ∀ SINR ≥ Tk .

The local loss function for the ith device is calculated by the
model cross-entropy loss for the local training dataset O(i) as
follows:

fi(W ) =
1
M

M∑
(m=o)

l(hW (Xmi ), y
m
i ),

m = 0, 1, 2, . . . ,M (21)

wherem ⊆ n is the subset of the total number of local training
datasets and M is equivalent to the length of the participant
datasets divided by the batch size as follows ( |O(i)|

Bi
), and

l(hW (X (m)
i ), y(m)i ) denotes the cost function for the weights

matrix W evaluated on a hypothesis hW (Xmi ) With data sam-
ples Xmi . For instance, the hypothesis for the simple linear
regression is defined as hW (X ) = W0 +W1X .
At the t th iteration of the DFL process, each device i ∈ ϕ

has a local parameters weights matrix W (t)
i that is updated

to maximize the model accuracy and to find an optimum
solution to the target problem.

In the CFL models, there will be two optimizers’ levels.
First is the local model level; the local optimizer in each
device to update the local parameters based on the local
dataset can use a common machine learning optimizer called
Stochastic Gradient Descent algorithm SGD. Second is the
global model level; a global model optimiser uses the aggre-
gated parameters from neighbours (i.e., Federated Averaging
algorithm (FedAvg)) to create and update the global model.

Each participant i makes M training passes over its local
datasetsO(i) to update its local model weights simultaneously
via SGD with learning rate (η) and batch Bi which is shown
as follows:

∇f i(W
t
i ) =

1
M

M∑
(m=0)

∇l(h(W t
i )
(Xmi , ymi ), (22)

∀m = 1, . . . ,M and i ∈ ϕ

W t
i := W t

i − ηi∇fi(W t
i ). (23)

Here ∇fi(W t
i ) denotes the gradient matrix obtained from

the batch Bi of the device i′s local samples after M local
training on the local data at each iteration t . The gradient
∇fi(W t

i ) expresses the rate of change of fi with respect to the
model parametersW at the iteration t .

The total number of local training M is equivalent to the
participant datasets length divided by the batch size (M =
|O(i)|/Bi) in order to train the model locally on its datasets
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before sharing the parameters with neighbours. After a certain
number of iterations for each participant device trained a
model on its local dataset with sufficient hyper-parameters,
the models’ parameters are shared with other neighbours
via a one-hop communication process following the mesh
topology.

For all participants, the updates are simultaneously done
where each participant receives the other neighbours’ weights
and gradients and averages them with the local weights and
gradients.

In the next step, each participant in the network success-
fully aggregates the local parameters W t

i from the trusted
neighbours who satisfied the wireless communication con-
straints to execute the Federated Averaging (FedAvg) algo-
rithm in order to obtain a new global model at each t th

iteration. Then, each authorized participant sends a broadcast
containing the latest global model weightsmatrix to all partic-
ipants located within a one-hop mesh network and starts the
next iteration. Figure 3 illustrates the proposal DFL network
architecture and the learning process steps. The global model
which can be denoted as Ŵ t

i is executed by averaging the
local model with the aggregated model weights from the
neighbours si (the set of active devices whose received their
weights successfully) at the iteration t .
These weights are then applied on the local model using

the device dataset O(i) and batch size Bi to create an updated
weights matrix W (t+1)

i and broadcast it to the neighbours in
the next iteration as follow:

Ŵ t
i =

1
Ai + 1

(
W t
i +

Ai∑
(si=1)

Ŵ t
si

)
(24)

∇̂f (Ŵ t
i ) =

1
M

M∑
(m=1)

∇̂l
(
h(Ŵ t

i )
(Xmi , ymi )

)
; (25)

Ŵ t
i = W (t+1)

i . (26)

Then these new parameters W (t+1)
i at the device i will be

used to train the local model in the next iteration and also
share W (t+1)

i with all participants within one-hop commu-
nication range to repeat the same procedure at each device
until achieving the predefined convergence bound εk of the
implemented model. The convergence is determined by mea-
suring the average loss function of all active device (si =
1, . . . ,Ai) whose successful transmission to the ith device at
each iteration as follows:

argmin
W
∇Fi(W ) ≜

[( 1
(Ai + 1)

(∇̂fi(Ŵ t
i )

+

Ai∑
si=1

∇̂fsi (Ŵ
t
si )
)∣∣∣Ai ≥ 1

]
≤ εk . (27)

The participants will communicate and exchange the
parameters and the system loss function’s values over a wire-
less mesh network via a peer-to-peer manner. The number of
successful transmit devices (participants) is subject to wire-
less communication constraints. Consequently, it is possible

to show that every device i in the network after receiving
the latest global model update can train its model using the
latest update and then evaluate how the model performance
improved in terms of the loss functions and accuracy.

To sum up, the DFL process is divided into t iterations.
At each iteration, each ith participant performs local learning
and exchanges their parameters Ŵ t

i in parallel with other
cooperative neighbours si to create global models at each
device in a central server-free manner. The R symbol in
pseudocode represents the total number of iterations the sys-
tem needs to achieve the consensus and meet the gradient
divergence condition in (27). Finally, the DFL learning steps
are presented in Algorithm 1.

VI. SIMULATIONS AND RESULTS
A. THE SIMULATION OF THE NETWORK
COMMUNICATION
The proposal network for the CFL and DFL approaches
will have many participants were distributed on a
two-dimensional bounded space. A large-scale circular area
with radius R > 0 is proposed for notational simplicity, but
a hexagonal one can also be applied, as the outcomes will
differ slightly by a very small constant. The number of partic-
ipants is distributed according to the Poisson distribution with
network intensity λ and area A. In other words, the number
of participants within A can be defined as a Poisson random
variable with mean λA, where λ > 0 is the network intensity,
and A is the network circular area (A = 2πR2).
On the one hand, the central point in a two-dimensional

bounded space will be the position for the central server of the
network in the CFL model as illustrated in Figure 4 (a), and
the participants will be randomly distributed within the target
area. However, the successful transmission and participation
in the learning process will be subject to wireless commu-
nication constraints (see section IV) to approximate the real
situation applications.

On the other hand, in DFL, each point (participant) i will
define each neighbour based on a one-hop communication
link within the device signal coverage that will be a smaller
circle with a radius ri < R. For instance, the wireless mesh
connections for threeDFL participants with a Rayleigh fading
are illustrated in Figure 4 (b).
The positions of the participants are independently and

randomly distributed within the network area (circular area),
where the distance for each participant i to the centre point
(central server) is dk0 ≤ R. In the simulation, the relationship
between the SINR threshold Tk and the probability of success-
ful transmission P(SINR ≥ Tk ) of the network, participants
will be found based on this study analysis as in (1) from IV
and the total number of participants is a randomvariable in the
network space radius R = 1000 m and the intensity λ = 0.1.
The participants are assumed to have equal transmit power

(0.8 Watts). Only a finite number of participants can simul-
taneously exchange and update their parameters based on
the slotted ALOHA protocol. When the given parameters
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Algorithm 1 Decentralized Federated Learning
1:

1) All participants have initial weights withW (0)
2) for each iteration t = 1, 2, 3, . . . ..R do
3) for each device i = 1, 2, 3, . . . ..K do {in parallel}
4) for m = 1, 2, 3, . . .M , where M = |O(i)|

Bi
(Local training steps)

5) ∇fi(W t
i ) =

1
M

∑M
(m=1) ∇l(h(W t

i )
(Xmi , ymi ))

6) W t
(i)←− W t

(i) − ηti∇fi(W
t
i ;Bi)

7) end
8) from the ith device’s neighbours si = 1, 2, . . . ..Ai do {in parallel}
9) receive Ŵ t

si , ∇̂fsi (Ŵ
t
si ),

10) Ŵ t
i ←−

1
(Ai+1)

(W t
i +

∑Ai
si=1

(Ŵ t
si ))

11) ∇̂fi(Ŵ t
i ) =

1
M

∑M
(m=1) ∇̂l(h(Ŵ t

i )
(Xmi , ymi ))

12) If 1
(k+1) (∇̂fi(Ŵ

t
i )+

∑Ai
si=1
∇̂fsi (Ŵ

t
si )) |Ai ≥ 1 ] ≤ εk

13) Yes: end process (Gradient Convergence)
14) No: continue
15) W (t+1)

i ←− Ŵ t
i

16) end
17) end

(i.e., signal power, distance, and interference) were applied
in the SINR equation 8, the theoretical results matched the
simulation results, and both proved that the number of suc-
cessful transmitter devices decreased when the SINR thresh-
old increased for different intensity of users in the network,
as shown in Figure 5.

In contrast, reducing the SINR threshold allows more par-
ticipants to involve in the learning process, but the required
bandwidth and the system’s latency will also increase. There-
fore, there is a need to examine the trade-off between the
probability of success and the SINR threshold to achieve
higher throughput and capacity and acceptable latency.

Consequently, the proposed wireless communication
model outcomes in Figure 5 confirm the conclusions of the
theoretical analysis in (8) and (16) where a trade-off between
the probability of success transmit and the SINR threshold
is required to satisfy the FL network target in term of the
capacity and the number of users (participants) within the
network during the learning process.

B. CFL SETUP AND SIMULATION
The simulation settings are proposed for implementing an FL
with a central server deployed in the centre of the target disk
area with a radius R. It has been assumed that the network has
a large-scalemassive IoT and edge devices network following
the PPP with intensity λ and the total number of participants
is N, the distance from any participant i to the server is ri < R.
To simplify the simulation, all participants are assumed to

have the same transmit power and are all randomly distributed
around the centre within the network area. The system will
be trained using Python and Tensorflow APIs frameworks,
the well-known MNIST dataset and a local algorithm on
the edge devices to perform digit number recognition from

handwritten images. And while this is a simple problem and
well-understood problem, it is being used here to illustrate the
principle. The MNIST dataset contains labelled data samples
of 60K images, each with a size of 28 × 28 pixels. This
dataset was shuffled to distribute randomly for the partici-
pants, where each participant had 200 random samples. The
edge devices will implement a CNN algorithm as a classifier
model to evaluate the outcome results and the system perfor-
mance metrics. Large-scale massive IoT networks are used to
validate the algorithm, and thus the network has two cases:

I. Low mobility scenarios where the number of partic-
ipants’ success transmitted in the system can be the
same for all iterations until the system convergences.

II. High mobility scenarios where participants move in a
wide geometric area and many participants are IN and
OUT of the network during the learning processes, such
as autonomous vehicles and Unmanned Aerial Vehicle
(UAV) networks. Thus, the number of successful trans-
mits is usually different in each learning iteration.

This simulation will implement the first case, low mobility
scenarios, and we will leave the second case for subsequent
works. In both cases, the number of successful transmit
participants in the system is subject to the communication
network constraints (described in section IV) and the effect
of network parameters in terms of the devices’ intensity and
participants’ distribution.

Based on the proposed wireless communication model in
VI-A, the system will be allocated the target SINR threshold
(−10 dB) in order to achieve a higher transmission capac-
ity, the probability of the participant to be in a transmit
mode PA = 0.5 and the intensity of users’ devices λ =

0.1 to increase the number of participants. This results in
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FIGURE 4. (a) The distribution for random participants around the CFL centre server. (b) Example of three participants communicating with
neighbours in DFL approach.

FIGURE 5. The simulation (markers) and theoretical results (solid lines)
of the relationship between the SINR threshold and the probability of
success for the participants within different network intensities.

having around 80% probability of successful transmit devices
(P(SINR ≥ Tk )) in the network as shown in Figure 5.
Consequently, the total number of participants within the

target area is 80 devices, but the number of successful trans-
mit participants in the CFL process was 65 participants.

In this study, the CFL with a central server is designed
by using the FedAvg algorithm as a global model optimizer.
The main function of the server algorithm is to aggregate and
average the participants’ parameters to update the new global
model at each iteration and then measure the accuracy and the
loss of the model outcomes.

The system evaluation for the CFL network optimiza-
tion regarding the accuracy and loss used the cost function
Cross-Entropy. The simulated system in subsection VI-A has
65 successful transmit participants as regards the communi-
cation constraints in subsection IV.

It can be noted from Figure 6 that the procedure moved
progressively towards the global minimum dramatically in
the first 50 epochs, where the accuracy increased from 17%
to 90%. After 200 iterations, the model moved progressively
and achieved the convergence state with the accuracy and
loss of 98.1% and 0.15, respectively. The latency of the
model was 1850 seconds, which was the required time to
achieve the predefined convergence bound. Despite having
applied constraints for the proposed CFL model to build
a robust CFL network by considering the communication
constraints and real environment scenarios in the simulation,
the model was capable of converging faster and achieving
slightly higher accuracy and lower loss than the FL base-
lines that have not considered the communication constraints
in practice. In other words, the baselines estimate a fixed
number of participants in the learning process without con-
sidering the network challenges, which cannot be reliable
in real applications. In contrast, our proposed CFL model
defines the participants based on the communication model
and considers the real applications environment’s constraints
to obtain a trustworthy and robust network while achieving
high accuracy and low loss.

Although the system achieved high accuracy and reached
convergence after around 200 iterations in the designed sim-
ulation, there is potentially a single point of failure at the
central server. The system, in reality, could be completely
down if any failure occurs in the central server or the link
to the server is blocked (communication bottleneck).

C. DFL SETUP AND SIMULATION
The set-up simulation uses Python and Tensorflow APIs
frameworks to implement and evaluate the design of the DFL
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system over a WMN for IoT devices. In order to make an
accurate comparison, we concentrate on the same previous
CFL design in terms of the communication links constraints
and the parameters model optimizers, low mobility (fixed)
and the same total number of participants in the learning
process but without a central server. The system was eval-
uated based on performance metrics; the validation accuracy,
the latency and the convergence speed rate. The simulation
settings are listed as follows:
• Training settings
The participants trained a classification CNN model on

the MNIST datasets. As in CFL, each participant will have
1000 random samples to train the local models, but the
parameters in this DFL approach will be shared directly with
neighbours to create and update the global models at each
device without needing a central server.

The local models of each participant were trained and
updated using a stochastic gradient descent (SGD) optimizer
with the same learning rate of 0.01 and batch size 32 (hyper-
parameters) in CFL simulation.

Furthermore, the designed system also used another
two different local models optimizers’ algorithms, the
Adam algorithm [52] and Root Mean Square Propagation
(RMSProp) optimizer [53], to observe how the performance
of the DFL model gets affected by implementing different
optimizers’ methods.
• Network Settings

In the simulation, the network is designed to simulate the
communication stage between the participants’ devices in a
peer-to-peer manner over wireless mesh networking, avoid-
ing the communication bottleneck challenge in the central
server in the CFL scenario. Each participant will successfully
communicate and exchange the parameters with neighbours
if the desired transmitters have an SINR over the target
threshold and no collision occurs. The number of successful
transmits participants is configured to be variable between the
participants in an asymmetric manner. For instance, there are
two participants A and B within the network, and participant
A can receive parameter updates from participant B. In con-
trast, participant B does not have to successfully obtain the
parameters update from participant A unless he satisfies the
network communication constraints.
• Comparison Setting
The DFL system outcomes will be compared with the CFL

outcomes in terms of system performance. Both DFL and
CFL were implemented to train their models on the same fac-
tors (i.e., the dataset, the total number of participants within
the network and the network geographic area) in order to
make them comparable. Thus, the accuracy, loss and latency
and convergence speed were measured.
• Simulation Results
Based on the successful transmit conditions and the net-

work capacity, every device within the network created its
one-hop neighbours’ group to exchange parameters and per-
formed the CFL model training. The model results have been

FIGURE 6. The accuracy and loss for the CFL network.

recorded for some random participants in the DFL simulation
as an example to evaluate the system behaviour.

The designed network shows that these random recorded
participants are connected successfully with a variant number
of neighbours (who meet the communication constraints and
they are able to exchange parameters and update their global
models).

The DFL’s simulated system has shown that the classifi-
cation prediction achieved about 90% accuracy in the first
20 iterations for all these recorded participants with any of
the three different model optimizers mentioned in the training
settings (SGD, ADAM and RMSprop optimizers).

The results and statistics of some participants within the
network are illustrated in Figure 7, and Table 2. The results
for the DFL approach without a central server show high
accuracy and low cross-entropy loss in predicting the digit
number from the handwritten samples after 135 iterations.

In this study, the wireless mesh networking model in the
section (VI-A) is integrated with the DFL model to verify
the number of successful participants during the learning
process. The system shows that each participant will be able
to communicate with particular neighbours depending on the
neighbours’ locations, the desired participant transmit power
and other devices’ power interference.

The latency for each participant varies slightly depending
mainly on the number of iterations that each participant is
required to achieve the system convergence status. In this
study, the results have shown that the average latency for
the participants was 420 seconds with the assumption the
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FIGURE 7. The DFL model outcomes (Accuracy and Loss) for four random participants.

TABLE 2. Simulation results for some random participants of the designed DFL model.

computation and broadcast time are equal for all participants.
The expected system convergence in theDFLmodel is around
130 iterations on average.

As shown in Figure 7, the system achieved sufficiently
high accuracy and low loss in the data predictions. The
random chosen participants’ records show that the partici-
pants can learn in parallel and follow similar progress toward
convergence in terms of accuracy and loss. The designed
system offers the benefits of utilizing the DFL framework,
where the data never leaves the participants’ devices, and
privacy restrictions exist. In comparison with the centralized
model, the decentralized model achieved competitive results

without needing a central server. For instance, participant
1 reached 98.2% accuracy and 0.088 cross-entropy loss after
only 135 iterations.

In contrast, after more than 200 iterations, the centralized
model achieved the convergence state with the accuracy and
loss of 98.1% and 0.15, respectively. Based on the latency
criteria in the subsection IV-C, CFL has higher latency than
DFL as the system outcomes find that the communication
cost and the number of iterations of CFL were higher than
the DFL approach.

Thus, DFL can reduce the latency and loss and increase the
convergence speed in which they can outperform CFL.
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From these results, we can conclude that the DFL models
over WMN produced significant developments in classifica-
tion prediction using sufficient datasets. In this study, theDFL
framework is combined with the wireless mesh networking
using the Slotted-ALOHA protocol to improve communica-
tion between the participants during the learning process.

The DFL approach over WMN using the slotted-ALOHA
protocol could be very competitive to the CFL. The simulated
models prove that the designed DFL system can achieve
better latency, more flexibility, and similar accuracy without
installing a central server in the network.

VII. CONCLUSION
To sum up, DFL reduced the communication cost compared
to CFL as the participants’ devices communicate directly and
send the packets of their parameters and updates with only
one-hop neighbours using slotted-ALOHA as the devices’
MAC protocol. The network topology was a mesh network
topology. In this study, the network communication model
simulated the real scenario of the mesh networking topol-
ogy considering the frequency interference in the network
environment and then combined it with the DFL model to
train the network efficiently and reliably. The effectiveness
of combining the DFL framework and the mesh network-
ing protocol results in a comprehensive improvement in the
model performance, and the DFL approach is becoming very
competitive compared to CFL.

The following is a summary of this research and future
work:

1) Analysis of the wireless communication stage between
the participants during the learning process in order
to simulate the real scenarios of interaction between
the IoT devices, reducing the communication resources
and increasing the system flexibility.

2) Implementing the DFL system using the FedAvg algo-
rithm to enforce consensus techniques by sharing local
model updates; established gossip methods are also
extended by consensus.

3) Emphasis on an experimental IoT setup, considering
convergence speed, complexity, communication cost,
and average prediction accuracy on the DFL embedded
devices.

4) The CFL and DFL algorithms were implemented by
considering the communication stage challenges in the
simulation to calibrate the real environment scenarios
and the real applications.

5) In the future, DFL models need to be designed for
high-mobility sensors and devices in the wireless mesh
networking system to build a robust system, increase
the system flexibility and scalability and enhance the
performance for some applications, such as aDriverless
Transport System.
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