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Abstract—Federated Learning (FL) has emerged as a promis-
ing approach for privacy preservation, allowing sharing of the
model parameters between users and the cloud server rather
than the raw local data. FL approaches have been adopted as a
cornerstone of distributed machine learning (ML) to solve several
complex use cases. FL presents an interesting interplay between
communication and ML performance when implemented over
distributed wireless nodes. Both the dynamics of networking and
learning play an important role. In this article, we investigate
the performance of FL on an application that might be used
to improve a remote healthcare system over ad hoc networks
which employ CSMA/CA to schedule its transmissions. Our FL
over CSMA/CA (FLCC) model is designed to eliminate untrusted
devices and harness frequency reuse and spatial clustering
techniques to improve the throughput required for coordinating
a distributed implementation of FL in the wireless network.

In our proposed model, frequency allocation is performed
on the basis of spatial clustering performed using virtual cells.
Each cell assigns an FL server and dedicated carrier frequencies
to exchange the updated model’s parameters within the cell.
We present two metrics to evaluate the network performance:
1) probability of successful transmission while minimizing the
interference, and 2) performance of distributed FL model in
terms of accuracy and loss while considering the networking
dynamics.

We benchmark the proposed approach using a well-known
MNIST dataset for performance evaluation. We demonstrate that
the proposed approach outperforms the baseline FL algorithms
in terms of explicitly defining the chosen users’ criteria and
achieving high accuracy in a robust network.

Index Terms—Federated Learning, CSMA/CA, IoT Privacy.

I. INTRODUCTION

Many more gadgets and edge devices are online nowadays,

including smartwatches, house assistants, security systems,

and even remote healthcare to improve the quality of life for

people such as the elderly and individual patients in their

houses. The data generated by these devices has become

important for driving innovative solutions through Machine

Learning (ML) applications. Several applications, such as

autonomous vehicles and healthcare systems, are rapidly de-

ploying IoT solutions [1]. However, because the data is often

large in quantity and contains private information, applicants

will often be prevented from logging into a data centre.

Consequently, any collaborative IoT solutions without proper

measures for privacy preservation will suffer low uptake.

Therefore, Google launched Federated Learning (FL) in 2017

[2] as a promising approach to train AI models on personal

data dispersed over billions of devices while mitigating privacy

leakage risks and improving collaboration between users.

A. Motivation

FL has proven to be an effective solution for reducing the

workload on the server and the amount of data that needs to

be transmitted. Moreover, FL addresses the privacy problem

and provides capabilities to train ML models on local data,

which can then be shared globally to accelerate learning

processes. The shared models are often combined by a central

server, and aggregated models are shared back with the end

devices. The performance of FL algorithms is also dictated by

the communication between the participating devices and the

centralized server.

Now when FL is implemented on wireless nodes, propaga-

tion, topology and medium access dynamics all dictate the FL

performance. While centralized FL can be implemented easily

in cellular IoT deployments, ad-hoc wireless networks warrant

distributed FL algorithms. In distributed FL implementation,

models are just shared in a defined neighbourhood so that the

learning of the desired ML task can be accelerated through

collaborations locally. Such a model presents an additional

challenge as the simultaneous uplink transmissions from de-

vices may generate additional interference or collision at the

application layer. These will in turn increase the convergence

time for ML algorithms.

In order to address the above-mentioned challenge, a co-

design of communication medium access control (MAC) pro-

tocols (e.g., CSMA/CA) with the distributed FL task must

be considered. For such a system, an optimal configuration

of design space could yield significant performance gains.

CSMA/CA is the primary MAC protocol employed by 802.11

network deployments [3]. However, in such networks, the FL

model transmission may suffer from interference when servers

are within the transmission range of different devices utilising

the channel simultaneously which can negatively impact the

learning process in real-environment applications.

This paper proposes a distributed FL model to improve

IoT solutions applied to healthcare, which is most commonly

known as the Internet of Medical Things (IoMT) [4]. The FL

model can perform training locally on different IoMT devices

(i.e., mobile, wearable devices and MRI devices) where a

server collects only the traffic model parameters from these

massively distributed IoMT devices in a large-scale network.

These IoMT devices could be implemented to monitor people,

such as diabetes patients and the elderly and then advise the

recommended nutrition and care according to an intelligent



collaborative FL model, which can lead to better human health

outcomes. FL can provide the following significant benefits

for IoMT applications in various medical areas according to

its innovative operational concept.

1) Preserving Privacy: Building resilient and secure IoMT

systems requires the ability to protect user information, es-

pecially in the context of the increasingly strict data privacy

protection laws. The FL system addresses the data privacy

leakage issue because only the local updates are needed by

the central server for cooperative ML training, while the local

data never leaves the device.

2) Minimize Latency: FL can considerably lower commu-

nication costs in intelligent IoMT networks, such as latency.

These IoMT networks are constrained by huge amounts of raw

data transfer, and by using FL we can avoid offloading large

volumes of data to a server. As a result, FL contributes to

the reduction of network spectrum resources needed for data

training.

3) Improved Learning Quality: FL benefits from sig-

nificant dataset resources from many IoMT devices over a

large-scale IoMT network to collaborate in solving an ML

problem. This collaboration can speed up the overall training

process and convergence rate and improve learning accuracy

that centralized traditional ML approaches might not be able

to achieve.

B. Key Contribution

Our proposal considers the optimal parametric configu-

ration for CSMA/CA protocols to eliminate the collision

and minimize the interference rate while considering the

implementation of distributed FL for IoMT and healthcare

systems. We demonstrate that by optimally dimensioning the

systems through spatial clustering and frequency allocation

mechanisms, where distributed FL mechanisms can outper-

form baseline approaches and precisely evaluate the wireless

communication in the network during the learning process.

Overall, the core contribution of this paper is to present a

study of distributed FL over 802.11 networks for the IoMT

and healthcare systems.

C. Paper Organization

The rest of this paper is organised as follows. In Sec-

tion II, we introduce the FL based on CSMA/CA MAC

and algorithm architecture system. Section III includes the

simulation environments and criteria used to simulate the FL

over CSMA/CA (FLCC) model. We then evaluate the outputs

metrics in comparison with an FL model over a traditional

CSMA/CA scheme (i.e., baseline models) applying different

network intensities. And finally, conclusions are presented in

Section IV.

II. SYSTEM MODEL

A. Topological Considerations

We consider that wireless nodes (i.e., IoMT devices) are

randomly scattered in a 2-D plane. Their location can be

modelled as a homogeneous Poisson point process (PPP).

: Terminal server 

: Participant node

: Uplink frequencyf
Cloud Central 

Server

Figure 1: Node distribution and hexagonal cell layout for the

FLCC network.

The density of the PPP is assumed to be λ. We assume

these devices share the model’s parameters with central FL

servers. For analytical tractability, we assume that the 2-D

plane is tessellated using hexagonal lattices. This hexagonal

tessellation allows more efficient resource allocation and man-

agement, enabling seamless communication between the FL

central server and the devices in its assigned lattice. Each

hexagonal lattice is assigned an FL central server, which is

placed in the centre and allocated its own frequency range as

shown in Figure 1.

The key motivation behind clustering the network, dividing

the area into subareas (cells), and adopting a frequency reuse

approach is to minimize interference [5]. We assume that the

network has an FL server in the central of each cell and the

nodes (i.e., IoMT participants) distribute in a PPP [6] of the

server of intensity (λ) over uniform areas as shown in Figure

1. The transmitter’s nodes adopt the Request to Send/Clear

to Send CSMA/CA approach where the node can only share

parameters with the server when no one of the neighbours

within the same cell is transmitting. Otherwise, it must wait

and attempt to transmit again in a random backoff-time.

Furthermore, the server is assumed to have a multi-input multi-

out antenna. Hence it can receive parameters from different

participants simultaneously up to the maximum number of

sub-channels in the designed network and broadcast the global

model update on predefined channels.

In this work, we consider a typical receiver that is connected

to the desired transmitter. For the small-scale path-loss model,

a Rayleigh fading channel is chosen and complemented with

a single slope large-scale path-loss. Thus, the received signal

from the desired transmitter at the FL server (i.e., typical

receiver) is (Pkhkod
−α
ko ) [7], where Pk is the power for

the transmitted signal from the desired transmitter device k;

(α ≥ 2) is the path-loss exponent and finally, dk0 and hko

denote the distance and the fading coefficient for the channel

between device k to the target FL server, respectively.

In order to examine the real environment scenario in terms

of interference within the network and explicitly define the

number of IoMT devices that successfully transmitted, we

implement a physical interference model using the well-known



Signal-to-Interference-and-Noise Ratio (SINR) and express the

successful transmission probability (Ps) of parameters for the

transmitter k in the FL training process as follows:

Ps = P (SINR ≥ T ) = P

(

Pkhk0d
−α
k0

∑

i∈ϕ Ii +N0
≥ T

)

(1)

where T is a predefined threshold, Ii is the interference from

the device i in the network (i.e., Ii = Pihi0d
−α
i0 ai), with

i = 1, 2, ..., A; A is the total number of active IoMT devices

within the desired coverage area and i ∈ φ where φ shows

the number of all IoMT devices within the whole target area.

Now bi is a binary random variable that defines the state of

the device, whether in transmitting mode or ready to receive,

such that PA = Probability{bi = 1} shows the IoMT device

is in transmitting mode and 1 − PA = Probability{bi = 0}
represents the device is ready to receive and is not transmitting.

For an FL network over CSMA/CA simulation, we obvi-

ously need models that define not only whether a participant’s

parameters reach a server once the channel is available (i.e.,

carrier sense indicates no traffic on the channel), but also

whether the quality of service and proper capacity are satisfied

or not. For that matter, maximum network capacity (CCSMA)
and SINR [8] with predefined threshold (T ) condition needs

to be addressed as follows:

CCSMA = log2(1 + T )P (SINR ≥ T ) (2)

where P (SINR ≥ T ) is the probability that SINR at a typical

receiver (k) (i.e., FL central server) is higher than a certain

threshold T . In our proposed FL network, T is assumed to

be a variable that affects the maximum transmission capacity

that the network can achieve. The derivation of maximum

transmission capacity per cell in bits/s/Hz/participant has been

addressed in [7].

From (2), the intuition is obtained as to what extent

the parameters of network T and SINR affect the maximum

achievable transmission capacity of the FL based on the

CSMA/CA network, where a trade-off between the probability

of successful transmission and the SINR threshold is required.

The centralized FL approach is designed to work in a

centralized environment where there is a centralized server

handle to the aggregated models’ updates in the network so

as to build an efficient global model. Consequently, the FL

network needs to be designed with respect to minimizing

interference which is an important task that leads to having

a reliable and efficient FL algorithm performance.

B. Performance Metrics

There are several performance metrics that can be used to

evaluate the performance of an FL system. In this work, we use

the two most common performance metrics in ML to evaluate

our classification FL model which is as follows:

(a) Categorical cross-entropy loss which is a loss function

commonly used for classification tasks with more than two

classes. It is often used in conjunction with softmax activation

in the output layer of a neural network [9]

(b) Accuracy which is a metric commonly used to evaluate

the performance of an ML model. It is the fraction of correctly

classified instances (true positives and true negatives) out of all

instances in the dataset. In federated learning, accuracy can be

used to improve the performance of the system by helping to

identify and address any issues with the model’s predictions.

To calculate accuracy, the model’s predictions are compared

to the true labels for a given dataset. The number of correct

predictions is then divided by the total number of instances in

the dataset to produce the accuracy score.

C. FL Network and Algorithm Formulation

The principle concept of the FL learning process is a

distributed ML approach that preserves the privacy of the

terminal nodes where the local data never leave the terminal

and shares only the local model parameters with others through

a central server. The designed network considers a set of

individual nodes (φ ) in which φ = 1, . . . ,K is randomly

distributed as a spatial point process following a stationary

PPP [6]. The server is allocated in a certain central cell

surrounded by a group of cells distributed uniformly where

each neighbour’s cell to the central cell assign a dedicated

frequency to exploit by the users within the spatial location of

the cell for sharing the local models as shown in Figure 1.

The communication of multiple participants with a central-

ized server is controlled by the CSMA/CA MAC protocol. In

the FLCC network, we propose having a number of uplink

channels (N ) and a uniform distribution of cells over a

particular area subject to the condition that the sensing range of

each participant reaches the other participants within the same

cell. This will play an essential role in minimising the collision

from hidden nodes and then have an improvement in the

training process. Consequently, N participants from different

N cells (i.e., the server’s cell and the surrounding cells) can

share their parameters simultaneously using the N dedicated

uplink carrier frequencies, and the server can broadcast the

global model update on a certain downlink channel to the

participants within the network.

At the steady state, each participant trains his local model

using the local dataset and then has a matrix of updated

parameters to send to the server at a random time slot.

The central server aggregates the available local models to

build a global model. In this work, the aggregated parameters

are not treated equally as the network segmentation will

divide the users within the network into subgroups. Each user

(i) has a weighted probability (pi) between 0 to 1, where

0 represents the unwanted devices that will be eliminated

from updating the global model (e.g., discovered hackers and

militia devices) at this iteration, and closest to 1 represents

the most efficient devices for the learning process in the

network (e.g., well-trusted devices) whereas the summation

of the devices’ weighted probabilities at each iteration must

be 1 (i.e.,
∑

i pi = 1). Nevertheless, the device’s weight

probability within the network will be evaluated regularly

via the server using rewards and penalties in reinforcement

learning approaches (e.g., Q-learning algorithm) to update



their assigned weighted probability based on their updated

behaviour. In other words, every action the IoMT participants

take in the learning process is recorded as an "action," and

each action advances the IoMT participant to the next state.

This operation is noted and rated as a "reward" if it improves

the learning metrics or a "penalty" if it is not [10].

Afterwards, each server aggregates the parameters and av-

erages them with the cloud central server model (i.e., the

latest cloud central server model results from averaging the

aggregated global models from the cooperative servers in the

previous iteration) to update the global model at each server

within the large-scale network and then broadcasts it to both

the cloud central server and the participants to improve the

local models’ performance for the next iteration. This process

continues updating for several sequence iterations according to

cooperation between the participants, each cell server and the

cloud central server until achieving the predefined convergence

condition in the network.

D. FL over CSMA/CA learning criteria

In the learning process, each node i ∈ φ has its local dataset

Oi which is heterogeneous or homogeneous datasets that fol-

low an unknown probability distribution p(x, y) and possibly

has non-empty interaction for different samples datasets (i.e.,

Oi and Oj where i ̸= j). The samples consist of n instance-

label pairs of samples(Xn
i , Y

n
i ), where Xn

i and Y n
i represent

the labelled sample input and output respectively for a specific

learning objective in the device i, and n = 1, ...., k where

k is the total length of i participant’s dataset. Each instance

Xn
i ∈ Xi ⊆ X , where Xi denotes the local instance space

of participant i and X denotes a global instance space, which

satisfies X ⊆
⋃ϕ

i=1 Xi (i.e., the total datasets for all devices

in the network).

Consequently, there are X
(1)
i , X

(2)
i , ....., X

(k)
i i.i.d samples

at each participant node in the proposed network, and the total

number of examples k is a variable depending on the size of

the local datasets for each one.

All participant devices have to have the same machine-

learning model (e.g., a CNN), which has a common weights

parameters matrix (W). One of the main aims of the designed

model is to minimize the mean cross-entropy loss between

the expected (actual) output and the predicted output for all

participants:

arg min
W

F (W) ≜
1

A

∑

(i∈ϕ)

fi(W) (3)

where F (W) denotes the global loss function, fi(W) repre-

sents the local loss for the device i and A represents the length

of active devices that succeed to transmit to the server at each

iteration in the training process where:

i = 1, 2, . . . .., A, ∀ SINR ≥ T. (4)

During the learning process, each participant i finds the

local model loss function based on the local training dataset

as follows:

fi(W) =
1

M

M
∑

m=1

l

(

hW(Xm
i ), ymi

)

, (5)

i ∈ φ

where M =
|O(i)|

Bi

, ymi is the actual output and hW (Xm
i ) is the

hypotheses output of the model based on the parameters matrix

(W) for instance inputs X(i) of m subset of the sample training

Oi for the participant i and Bi is a hyperparameters batch size,

and l(.) denotes the loss in the model at each sample (e.g.,

categorical cross-entropy loss function [9]).

Afterwards, each participant i finds the gradient matrix

∇fi(W
t
i) based on local training to update the local models’

weights via a local optimizer such as stochastic gradient

descent (SGD) which is shown as follows:

∇f i(W
t
i) =

1

M

M
∑

m=1

∇l

(

h(Wt

i
)(X

m
i ), ymi

)

, (6)

Wt
i := Wt

i − ηi∇fi(W
t
i). (7)

Hence, ∇fi(W
t
i) is obtained at each iteration t from the ith

participant and updates the weights matrix using the predefined

hyperparameters of SGD (i.e., learning rate (η) and batch

size Bi) on the participant local data after a number of local

training. Subsequently, the gradient ∇fi(W
t
i) in the learning

represents the changing rate of fi with respect to the model

parameters Wi at iteration t, and the same update rule is

applied to every participant in the network simultaneously.

Afterwards, the global model is processed by aggregating the

local models from the participants. In our design, the server

will be able to receive multiple model parameter updates

from many participants simultaneously as described in the

subsection II-C. The total number of participants (A) at each

iteration is defined as a summation of devices that satisfy the

communication constraints and their SINR is higher than the

predefined threshold (T ).

For a global optimization and collaboration between IoMT

devices within the network, our global model (Ŵ) will be

updated using the Federated Averaging algorithm (FedAvg)

[2] which is efficient and simple to apply, and in our proposal

we consider each participant’ weighted probability pi in the

learning process at each iteration, and thus the global model

update can be summarized as follows:

Ŵ
t
=

( A
∑

i=1

pi ∗Wt
i

)

(8)

Ŵ
t
= W(t+1). (9)

At the next iteration, the participants receive the new global

model to update their local models and validate the perfor-

mance on the local data and then the server will decide whether

the network achieves the predefined convergence condition (ϵ)



Algorithm 1 FL over clustering CSMA/CA network

1: N participants can uplink update simultaneously

2: All participants have initial weights with W(0)
3: for each iteration t = 1, 2, 3, . . . ..R do

4: for each device i = 1, 2, 3, . . . ..A do

5: for m = 1, 2, 3, . . .M , where M =
|O(i)|

Bi

(Local

training steps)

6: ∇fi(W
t
i) =

1
M

∑M
m=1∇l(h(Wt

i
)(X

m
i , ymi ))

7: Wt
(i) ←−Wt

(i) − ηti∇fi(W
t
i;Bi)

8: end

9: FL Server receive Wt
i,∇fi(W

t
i), from A ≤ K devices

10: If 1
A
(
∑A

i=1∇fi(W
t
i)) |A > 1 ] ≤ εk

11: Yes: end process (Gradient Convergence)

12: No: continue

13: Ŵ
t

i ←− (
∑A

i=1(piW
t
i))

14: W
(t+1)
i ←− Ŵ

t

i

15: FL Server broadcast Ŵ
t

i, go back to 3

16: end

17: end

or less to end the learning process or not by averaging the latest

aggregated gradient (∇̂F (Ŵ
t
)) from the participants within

the network as follows:

∇̂F (Ŵ
t
) =

1

A

A
∑

i=1

∇f i(W
t
i) ≤ ϵ (10)

The summary of the implemented algorithm is given in

Algorithm (1).

III. SIMULATION RESULTS AND DISCUSSION

In the proposed network, a cellular frequency reuse tech-

nique (i.e., N frequencies for the whole network) is used over

a large-scale network of uniform cells in order to increase the

capacity without increasing its allocated bandwidth during the

learning process. The simulated network consists of random

participants of both IoMT devices and untrusted devices (i.e,

militia and hacker devices) that have a Poisson distribution

within the target areas. Initially, the interference during the

learning process in our large-scale network is evaluated in our

simulation based on different values for λ of the network.

The results are shown in Figure 2 for the proposed wire-

less communication model for different network intensities

confirms the conclusions drawn from the theoretical analysis,

where to achieve the desired capacity and accommodate the

number of users in the FL network during the learning process,

a trade-off between the probability of successful transmission

and the SINR threshold is necessary. Furthermore, the results

demonstrate that the proposed wireless communication model

provides a feasible and effective solution for large-scale FL

networks, which can achieve the desired capacity while main-

taining a reasonable probability of successful transmission and

SINR threshold.

In comparison, the physical interference model and the

performance model are evaluated where the same range of
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Figure 2: The theoretical (solid lines) and simulation (dashed

with markers) successful transmission probability as a function

in T in dB.
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Figure 3: Accuracy and loss for FLCC and baselines networks

over CSMA/CA protocol.

frequencies N is used for the proposed network area, but the

FL network in the baseline is presented without considering

both (a) the untrusted devices that can diverge the learning

process, and (b) the interference within the target area where

the participants can use any of the available carrier frequencies

randomly following the CSMA/CA protocol to uplink the

model update.

Similar to healthcare classification problems, our model is

trained on the well-known MNIST dataset for benchmarking

the proposed model, which contains 60K images samples

of handwritten digits where each node within the network

is assigned random samples in the range between (100-

200) samples instance for training and validation using the

Convolution Neural Network algorithm (CNN) [11] as a local

classified model. The performance metrics (i.e., the accuracy



and loss) are evaluated for the proposed FLCC network and

baselines at different network intensities for 300 iterations.

Furthermore, the communication system model illustrates the

relationship between the SINR threshold (T ) and the prob-

ability of successful transmission to define the number of

successfully connected devices during the learning process.

The FLCC model outcomes significantly improve performance

in terms of accuracy and loss at variant λ compared with the

baselines model. In 300 iterations, the FLCC model achieved

98% accuracy and less than 0.05 loss for different intensities.

In contrast, the baselines (i.e., FL models over CSMA/CA but

without eliminating and solving either the untrusted devices

attack and the frequency interference issues) had a low per-

formance due to the untrusted devices and the interference

in the network which are recorded a high loss and achieved

only 75% and 85% model accuracy for 0.1 and 0.001 network

intensities, respectively.

Figure 3 demonstrates that our proposed approach leads

to a rapid improvement in the performance of the FLCC

model. By minimizing the negative impact of less trusted and

untrusted devices, such as hacker devices, and increasing the

probability of successful transmission of IoMT nodes through

the use of frequency reuse techniques, we can significantly

reduce interference. This results in more efficient utilization

of available frequency channels by both servers and devices

within the network, thereby enhancing the overall performance

of the FLCC model through improved network throughput and

model accuracy and reduced model loss.

IV. CONCLUSION

In summary, this study proposes a novel approach for

implementing an FL model over CSMA/CA to preserve the

privacy of IoMT users while addressing interference issues

that can negatively impact on the FL model’s performance

during the learning process. Our study proposes a clustered

network layout design that provides two major benefits for the

FL network outcomes. Firstly, the design minimizes collisions,

allowing for an efficient exchange of parameters between

nodes and the server. Secondly, it enhances performance,

enabling the model to achieve high accuracy and low loss

within a few iterations. Additionally, our proposed frequency

reuse scheme further improves the model’s performance, re-

sulting in a comprehensive enhancement that is reflected in

the FLCC outcomes. Our results demonstrate a significantly

lower collision rate when compared to traditional FL over

CSMA/CA models, emphasizing the effectiveness of our pro-

posed approach.

To sum up, simulating an efficient FL over CSMA/CA

network and exchanging parameters during the distributed

learning process should not only consider a fixed estimated

number of users, which is traditionally used in simulation but

also the untrusted devices elimination, the user received sig-

nal strength, network intensity and communication protocols

compatible with the existing networks.

In future work, a network segmentation technique can be

integrated into the system and used to improve the overall FL

network performance.
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