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Abstract: In order to effectively balance enforced guidance/regulation during a pandemic and
limit infection transmission, with the necessity for public transportation services to remain safe
and operational, it is imperative to understand and monitor environmental conditions and typical
behavioural patterns within such spaces. Social distancing ability on public transport as well as the
use of advanced computer vision techniques to accurately measure this are explored in this paper.
A low-cost depth-sensing system is deployed on a public bus as a means to approximate social
distancing measures and study passenger habits in relation to social distancing. The results indicate
that social distancing on this form of public transport is unlikely for an individual beyond a 28%
occupancy threshold, with an 89% chance of being within 1–2 m from at least one other passenger
and a 57% chance of being within less than one metre from another passenger at any one point in
time. Passenger preference for seating is also analysed, which clearly demonstrates that for typical
passengers, ease of access and comfort, as well as seats having a view, are preferred over maximising
social-distancing measures. With a highly detailed and comprehensive set of acquired data and
accurate measurement capability, the employed equipment and processing methodology also prove
to be a robust approach for the application.

Keywords: social distancing; computer vision; stereo camera; pose estimation; RaspberryPi; public
transport; Quantitative Microbial Risk Assessment (QMRA); Transport Risk Assessment for COVID
Knowledge (TRACK)

1. Introduction
1.1. Background

With the worldwide onset of SARS-CoV-2 virus in early 2020, one of the key questions
posed by policy makers was what the relative risk of different activities was. This became
particularly pertinent as society emerged from lockdowns, and economies were struggling.
Early on, the UK government funded a programme of research to understand the (relative)
risk of exposure to SARS-CoV-2 on public transport and assess the efficacy of policy
measures such as mask wearing, social distancing and limiting occupancy. The transmission
of any viral load depends on a multitude of factors, such as how the virus is transmitted
(airborne, fomite, etc.). Exposure to pathogens in indoor environments, and in particular in
public transport settings, can be modelled using Quantitative Microbial Risk Assessment
techniques [1]. These models rely heavily on assumptions around environmental conditions
(e.g., temperature, humidity, ventilation) and human behaviour patterns, which were
initially poorly understood or backed up by empirical evidence. These included how
and where people sat, whether social distancing was possible and how far apart people
were from others during the journey, what surfaces they touched and how often they
touched their faces and mucous membranes, or how likely passengers would sanitise their
hands or wear facemasks. Initial studies using onboard CCTV from transport operators,
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collected for operational and security purposes, clearly demonstrated that due to camera
and image quality and camera placement, they were less than ideal for all but the coarsest
measures. This study addresses some of the quality issues with onboard cameras through
the deployment of specialist, low-cost cameras in public transport.

One way to monitor passenger activity is with the use of CCTV. CCTV systems
on public transport have long remained an effective approach for increasing safety and
security for passengers and operators alike. It is for this reason that many vehicles come
pre-installed with CCTV systems as standard, directly from the manufacturer. Despite this,
in order to minimise data storage expenditure and device costs, camera quality typically
remains low in terms of pixel and temporal resolutions. Furthermore, in order to capture
as much of the surrounding environment as possible, pre-installed camera devices can
employ heavily distorting lenses. The number of camera devices and positioning can
also be very unpredictable—not always reducing ‘blind spots’ when other vehicle design
constraints and maintenance ability take precedence. Lastly, as existing CCTV systems
employ standalone monocular camera devices, any spatial information within the object
space is difficult to be accurately reconstructed. Therefore, when advanced analysis of
footage is concerned, such as understanding detailed passenger behaviour in respect to
social distancing, surface contact, and hand-to-face actions, existing CCTV systems are
generally unsatisfactory for purpose.

The presented research suggests a novel approach for capturing data on public trans-
port for the purpose of social distancing understanding. With use of a single stereo depth
camera (Intel RealSense D435i, Intel®, Bangkok, Thailand) for spatial data capture, and the
subsequent application of computer vision techniques, the precise passenger positioning in-
formation which is required for social distancing analytics can be extracted. In doing so, the
work aims to bridge the gap between low-cost computer-vision applications in transporta-
tion, and computer vision applications for the purpose of social distancing understanding.

1.2. Aim

The aim of this study is to investigate the state of social distancing on public transport
during the latter stages of UK public lockdown restrictions. While doing so, the efficacy
of stereo depth cameras for the purpose of social distancing analytics on public transport
will also be assessed. Outcomes will provide insight into technical measurement capability,
standard passenger conduct, and social distancing capacity with respect to both individual
and group contexts—aiding in the development of infection transmission modelling as
well as providing a potential solution for future social distance measurement.

2. Related Work
2.1. Computer Vision in Transportation

A common use of computer vision (CV) analysis on public transport is for passenger
counting [2]. This is often motivated by aiming to understand and ameliorate conges-
tion, enforce safety, and improve route and capacity planning within public transport
networks [3]. Where ticketing information is unavailable on free-to-ride bus services, one
study [4] installed a RaspberryPi3 computer with low-cost camera device in a vehicle
doorway. Here, the MOG2 algorithm was used for foreground estimation, whilst Haar
Cascade and HOG algorithms were used for object detection. The use of such classic
computer-vision approaches has been found to be much more efficient for passenger de-
tection when employed within public transport environments on low-cost devices [5]. In
another method [6], used Artificial Neural Networks (ANNs) across a bus doorway to de-
termine passenger detections and trajectories with the aim of improving safety on alighting
and disembarking. The utilised algorithm here is capable of estimating passenger density
by number of detections within the confined space and limited camera view, despite the fo-
cus of the paper not relating to social distancing. Again, as ANN/CNN processing is more
computationally expensive than traditional CV approaches, a more expensive and power-
hungry compute device is required to perform person detection in situ. To understand if
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a passenger is boarding or alighting from a single camera, passenger motion trajectories
can be tracked following detection, using such methods as Kanade-Lucas-Tomasi (KLT)
algorithm [7] and fuzzy logic controllers [8].

2.2. Computer Vision in Social Distancing

Various computer vision techniques can be employed to aid in infection transmission
modelling in public transport settings, including person detection for social distance moni-
toring, facial recognition for mask wearing compliance, and pose estimation for symptom
detection [9]. To measure social distancing in the real world, it is necessary to restore depth
and scale dimensions, which are lost in image capture. Within a monocular camera setup,
this can be achieved by inverse perspective mapping (IPM), where a translation matrix is
found between the image plain and real-world by corresponding coordinates [10]. By la-
belling each person’s position on the ground plane as the IPM transformed midpoint of the
bottom edge of detections, real-world Euclidean distances between people can then be mea-
sured [11]. Alternatively, this has been achieved with the addition of pose estimation and
pedestrian tracking (with low-resolution footage), for improved measurement ability [12].
With knowledge of extrinsic camera parameters such as height, and internal parameters
such as focal length, a person’s distance to the camera device can be determined and con-
verted to real-world distances before person-to-person distances are determined [13]. Pose
estimation can also be utilised to enhance scene restoration with this approach, allowing
for auto-calibration techniques before social distance measurement [14]. Several method-
ologies are successful in detecting people but fail to perform any mapping between the
image plane and object world—instead relying on apparent arbitrary threshold values [15],
simple Euclidean distances between two image pixel points [16], or scale based on highly
unreliable detected bounding box sizes in relation to expected human dimensions [17,18].

Despite existing published literature on the monitoring of people using computer
vision, both on public transportation and for social distancing, studies in which these
purposes intersect appear largely unexplored. A system has been proposed in which IoT
sensors (GNSS-obtained vehicle location, thermal infrared cameras, and microphones) on-
board public transport are utilised to gather and process information on general passenger
well-being before aiding passengers in making informed decisions on their journey based
on real-time data [19].

3. Data Acquisition

The bus used in the study was a Wright StreetLite Door Forward (DF) model (a
single decker vehicle with 41 passenger seats). At the time of the study, there were
two typical service routes, having approximate journey times of 1 h 30 min and 40 min
one-way, respectively.

An Intel RealSense D435i depth camera was positioned in a location that could best
maximise information capture, both in terms of micro and macro detail (Figure 1). This
relatively small (90 × 25 × 25 mm) and low-powered device is capable of capturing depth
information up to 20 m, with a calibrated accuracy of <2% at 2 m. By calculating depths
on-board and in real-time from both stereo vision imagers and class 1 Infrared (IR) projector
techniques, the RealSense device is robust in terms of capture frequency, precision, and
redundancy, should one capture method fail. This also allows for ease of deployment and
reduced processing load on the external compute device.

To allow for stereo camera and infrared depth alignment, resolution was limited to
VGA format (4:3 aspect ratio at 640 × 480 pixels). Therefore, the optimal position for the
depth camera was estimated at approximately halfway along the length and width of the
vehicle, looking towards the back where the most seats are visible in a single frame at short
range. The camera was placed within a protective custom shield before being securely
attached upside-down to a horizontal ceiling panel. Wiring was then strung above ceiling
coves directly from the D435i device to the RaspberryPi4 (RPi) compute device (placed
within a cabinet above the driver’s cab) using an active USB cable.
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Figure 1. Wright StreetLite DF plan with camera position (red) and viewing orientation (green).

The RPi performed several functions: supplying power to the D435i device, initialising
the D435i device at start-up, recording progress logs, data processing, and data storage
to an external thumb drive in compressed and encrypted formats. Additionally, the RPi
controlled the D435i device by specifying capture rate (once every five seconds), as well
as instructions to align image and depth data according to the intrinsic camera model.
All other imaging tasks were handled by the OpenCV library—compiled on the RPi from
source code. As the study did not demand real-time processing of social distancing metrics,
computationally heavy tasks, such as passenger pose estimation, were intentionally omitted
from the edge computation.

The RPi itself was powered via a 12 v automobile auxiliary power outlet to 5 v USB
adaptor and would activate whenever sufficient power was supplied to it—i.e., whenever
the vehicle engine and/or battery were engaged and consistently running. A Real Time
Clock (RTC) module was preinstalled on the RPi to enable timestamping in data collection,
as on-board bus internet connectivity was unavailable.

4. Methodology
4.1. Pre-Processing and Sorting

As the Intel RealSense D435i device installation was inverted, images and depth
matrices were firstly rotated by 180 degrees. Next, MD5 image hashes were generated and
compared with one another in order to remove any exact image error duplicates. Both left
and right imagers of RealSense D435i have horizontal, vertical, and diagonal depth field of
view (FOV) of 74, 62, and 88 degrees, respectively in VGA format, resulting in an invalid
depth band around the depth map where there is a non-overlap of data. To eliminate
this area, as well as reduce the number of partially visible passengers in view, all images
and corresponding depth arrays were cropped to exclude any possible detections within a
30-pixel radius from the image border. In addition to these steps, masks were drawn over
the image in specific areas to also exclude any possible detections found to intersect these
regions. For example, handrails were masked to prevent any inferred detections behind a
handrail, giving a false depth reading. Areas susceptible to fooling the detection model into
giving false-positive results were also masked (Figure 2). Furthermore, areas between some
handrails (where distances were difficult to measure due to depth shadows, obstructions,
and camera depth range), were also masked.

4.2. Passenger-to-Passenger Distances

Detections were carried out utilising R-CNN R50-FPN 3× algorithm within De-
tectron2 framework [20]. A notable benefit of this algorithm is the inclusion of pose
estimation—image Keypoint coordinates of 17 body part locations to allow imposed stick-
man reconstruction (Figure 3). Keypoints were found for each passenger within each image
by running all colour images through the Detectron2 predictor.
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showing eye, ear, nose, shoulder, elbow, and wrist Keypoints as blue dots, and pink lines connect-
ing Keypoints.

Following pose estimation, each image was then analysed to extract nose-to-nose
distance measurements between every possible combination of passengers (providing
the image included more than one passenger detection). As this study focuses on social
distancing as a risk factor for airborne pathogen transmission, nose Keypoints were selected
as the most appropriate location for which to measure distances between individuals.
Measuring a distance m between individuals consists of several stages:

1. Nose Keypoint image coordinates u0, v0 and u1, v1 are taken of passengers P0, P1 on
the colour image to locate depth values d0, d1 on the corresponding depth array;

2. To scale depths appropriately in finding passenger nose distance D0, D1 to the left
camera sensor, depth values d0, d1 are multiplied by scale value S (intrinsic value
determined during capture);

3. Distances D0, D1 along with positions u0, v0 and u1, v1 undergo deprojection to
compute the corresponding points P0(X,Y,Z) and P1(X,Y,Z) in 3D space relative to
the camera. This computation requires known camera intrinsic model: distortion
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model, distortion coefficients, focal lengths of the image plane, height, and width of
the image in pixels, and principle point coordinates;

4. Pythagorean formula was used to determine distance measurement m between
P0(X,Y,Z) and P1(X,Y,Z).

For the purpose of analysis, measured nose-to-nose distances were then separated
into three risk categories depending on their value: less than 1 m (increased risk), between
1 and 2 m (moderate risk), and greater than 2 m (lower risk). The 1 m and 2 m thresh-
olds to describe increased transmission risk have been suggested in numerous modelling
approaches [1,21] as well as experimental studies [22] and are broadly in line with the
definitions of a contact (e.g., for the purposes of contact tracing) that have been used during
the COVID-19 pandemic by the WHO [23], the ECDC [24] and the CDC [25]. Furthermore,
a systematic review and meta-analysis concluded that these thresholds are also appropriate
for specific application to the transmission risks associated with COVID-19 [26].

Analyses were conducted across all available data to examine several metrics against
bus occupation levels: number of detections, total number of risk category instances,
typical number of risk category instances per image, as well as individual likelihood of
falling into any of the risk categories. Excluding standing areas, the camera covered an
area suitable for occupying up to 25 passengers, which for the purpose of passenger-
to-passenger distance analysis, would be considered maximum capacity. Finding the
approximate risk for individuals was conducted by calculating the mean proportion of
times each type of risk occurred per level of occupation, over all images (containing at least
2 people). No distinction was recognised regarding the number of times an individual
belonged to a particular risk category, with one such occurrence being enough to qualify
an individual to a category. Furthermore, an individual could belong to multiple risk
categories simultaneously, providing there were more than two people occupying the bus
at varying distances from one another.

4.3. Seating Positions

Quantitative Microbial Risk Assessment (QMRA) techniques which have been recently
used to estimate exposure to SARS-CoV-2 in public transport settings [1] consider different
scenarios with varying levels of bus occupancy and make specific assumptions on seating
position choices by passengers throughout a journey. In order to improve the realism of
these models, the prior methodology of measuring nose-to-nose distances was expanded
to analyse occupied seating positions over time:

1. Map distance plane to bus plan (Figure 4):

a. A total of 15 corresponding reference points were located on the image plane
and a plan diagram of the bus model. Features such as the back of seat rests
and handrail points were among reference points used;

b. A distance plane was generated by reducing reference point distances and
angles to a horizontal plane, before converting these polar positions to the
Cartesian system. Corresponding depths were identified for reference points
on the image plane, and polar distances D0, D1 determined to the camera (as in
Section 4.2). Polar angles θ were found by:

θ = u·HFOV/w (1)

c. Perspective transformation relationship H was determined between correspond-
ing points on distance and bus plan planes. Least median of squares robust
estimation algorithm was employed [27].

2. Passenger polar distances D0, D1 and angles θ are converted to Cartesian system and
are plotted onto bus plan with a perspective transformation utilising H.

3. Determine which seat (or aisle) positions are occupied based on if a point is contained
within its boundary on the bus plan. Visible rows are labelled A-F from front to back,
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and columns labelled 1–4 from offside to nearside, with M as notation for middle seat
in row F (Figure 4).
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depth and image quality towards the back of the vehicle.

5. Results
5.1. Acquired Dataset

Of the 56 days during which the devices remained on the bus, data were collected
on 32 of the days when the bus was operational, and storage on the USB thumb drive
remained below maximum capacity. Recording at up to five frames per second (when
power delivery was stable), the total number of colour images (with corresponding depths)
after post-processing totalled 173,044 (Table 1).

Table 1. Acquired data: Collected Data. From the 406,764 detections achieved, a total of 918,075 dis-
tance measurements were taken, and 395,693 seat positions were successfully allocated (97%
of detections).

Category Number

Days 32
Images/depth arrays 173,044

RCNN R 50 detections 406,764
Passenger–passenger distance measurements 918,075

Seat/aisle allocations 395,693

5.2. Passenger-to-Passenger Distances

Out of the total number of images collected, 97,948 images contained at least two
people that could be used for social distance measurements. Counting the number of
passenger detections in each image reveals that (from what is visible to the camera) the bus
typically has few people occupying it. As depicted in Figure 5a, there are 25,770 images
of the bus at 8% occupation, 21,254 images at 12% occupation, and 16,107 images at
16% occupation. As the level of occupation increases, the number of available images
continues to decline—until only seven images are available at 56% occupation. Following
this point, no further samples were successfully captured, leaving higher occupations
unexplored. Consequentially, an occupation of at and below 12% accounts for almost half
of the available dataset.

Figure 5b shows the total number of distance measurements taken per occupation
level, for each risk category. For example, at 24% bus occupancy there are 17,507 less
than 1m readings collected over all days. Despite the number of possible measurements
increasing for each additional passenger according to a triangular number sequence, the
lack of available images for higher levels of occupation counteracts this to produce a steady
decrease in measurements taken for all categories beyond 24% capacity. Figure 5c shows
the typical number of measurements taken in each risk category per image, all of which
increase in number along with the total number of possible measurements per level of
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occupation. For example, at 36% occupation, there are a total of 36 measurements taken
between nine passengers, 12.8 of which are typically between 1 and 2 m, 4.6 are at less than
1 m, and the remaining 18.6 are in the greater than 2 m category.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 16 
 

 

  

(a) (b) 

  
(c) (d) 

Figure 5. Passenger to passenger distance analysis: (a) Sample Image Distribution. As occupation 
increases, the number of available sample images (containing the corresponding number of detec-
tions) decrease. No samples were captured above 56% occupancy; (b) Risk Instances per Distance 
Category. The number of achieved distance measurements increase with greater occupancy but 
taper off towards higher occupancy due to lack of available samples; (c) Typical Number of Risk 
Instances per Image, reveals the distribution of risk categories over an increasing number of total 
measurements (as occupation increases); (d) Likelihoods of Individual Falling into a Risk Cate-
gory. As occupancy increases, the risk of an individual being 1–2 m or <1 m from at least one other 
passenger greatly increases. 

Figure 5b shows the total number of distance measurements taken per occupation 
level, for each risk category. For example, at 24% bus occupancy there are 17,507 less than 
1m readings collected over all days. Despite the number of possible measurements in-
creasing for each additional passenger according to a triangular number sequence, the 
lack of available images for higher levels of occupation counteracts this to produce a 
steady decrease in measurements taken for all categories beyond 24% capacity. Figure 5c 
shows the typical number of measurements taken in each risk category per image, all of 
which increase in number along with the total number of possible measurements per level 
of occupation. For example, at 36% occupation, there are a total of 36 measurements taken 
between nine passengers, 12.8 of which are typically between 1 and 2 m, 4.6 are at less 
than 1 m, and the remaining 18.6 are in the greater than 2 m category. 

Figure 5d depicts the likelihood of an individual falling into any of the risk categories, 
from at least one other person on the bus, per level of bus occupation, at any one point in 
time. For example, at 36% occupancy, there is roughly a 67% chance an individual will be 
within 1 m of at least one other person. Furthermore, it is very likely (>92%), an individual 

Figure 5. Passenger to passenger distance analysis: (a) Sample Image Distribution. As occupation
increases, the number of available sample images (containing the corresponding number of detec-
tions) decrease. No samples were captured above 56% occupancy; (b) Risk Instances per Distance
Category. The number of achieved distance measurements increase with greater occupancy but
taper off towards higher occupancy due to lack of available samples; (c) Typical Number of Risk
Instances per Image, reveals the distribution of risk categories over an increasing number of total mea-
surements (as occupation increases); (d) Likelihoods of Individual Falling into a Risk Category. As
occupancy increases, the risk of an individual being 1–2 m or <1 m from at least one other passenger
greatly increases.

Figure 5d depicts the likelihood of an individual falling into any of the risk categories,
from at least one other person on the bus, per level of bus occupation, at any one point in
time. For example, at 36% occupancy, there is roughly a 67% chance an individual will be
within 1 m of at least one other person. Furthermore, it is very likely (>92%), an individual
at this occupancy will also be within 1–2 m from at least one other person. As expected,
categories tend toward 100% likelihood as occupation increases—in particularly those
greater than 2 m and 1–2 m categories, as there is little chance of avoiding these distances
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well before the bus reaches maximum capacity. The less than 1 m category follows a similar
trajectory but does not reach beyond a 78% likelihood, even at occupancies above 50%.
Around this mark, the less than 1 m category also appears to level off, and also decreases
slightly (by 1.5%) at the highest recorded level of occupancy. This was unanticipated, with
any levelling off expected only toward nearing a 100% likelihood—as clearly demonstrated
in the greater than 2 m category—and most probably stems from limitations of the used
method, in both accurately detecting and measuring distances between passengers in a
crowded environment. The less than 1 m category does not increase as dramatically as the
other two categories, which is evidence that passengers generally try to space themselves
from one another. In addition, the greater than 2 m category does not immediately reach
100% likelihood at lower occupancies, indicating individuals possibly choose to sit within
closer proximity to one another and in groups, even when there are few people on the
bus. When there are only two individuals within view, there is a 15% chance they will
choose to sit closely/next to one another, and a 29% chance they will be within 1–2 m from
one another. Risk category calculations are independent, meaning the chosen individual
can fall into multiple categories should there be more than one other passenger present.
Consequently, these results should be interpreted as a very best-case scenario, with the
reality being several simultaneous exposures of varying distance for a passenger.

5.3. Seating Positions

Figure 6 shows the number of passenger counts over all days. In total, 395,693 detec-
tions were allocated to seats from a collection of 126,584 images containing one or more
passengers. Furthermore, Figure 7 represents these values in terms of percent of time
occupied. Percent of time occupied ranges widely, from only 3.52% in labelled position C3,
to 50.10% in adjoining seat C4. It is evident that window-seats on both sides are generally
the most popular, with four instances (A4, B1, C1, and C4) counting in excess of 40,000 in-
stances each—being occupied greater than 32% of the time. Conversely, aisle-seats are less
popular, being occupied at most, only 17% of the time at C2. As passengers only use the
aisle area when travelling to and from their chosen seat, time spent here is relatively low
at 5.19%. The only visible seat on the back row (FM) falls somewhere in the middle of the
pack, being occupied 12.98% of the time.
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Using the seating position information, event plots were drawn per day representing
which seating positions were occupied over time. Figure 8 demonstrates seating occupation
over four consecutive days. In these, bus downtimes can be identified by large gaps in the
graph for every seat, as well as rush hour periods by more seats being occupied during
particular periods.
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Figure 8. Event Plot for a single day, depicting which seats were occupied over the course of a day.
Colours uniquely representative of each seating position. From such graphs and supporting data,
choice seating patterns can be analysed for better transmission modelling.

6. Discussion
6.1. Depth Quality

The point cloud model depicted in Figure 9 can be used to understand the quality
of depth modelling and accuracy. In this visualisation, seats, handrails, and the aisle can
clearly be identified, as well as some surrounding vehicle structure such as coving and
aisle steps. Due to the opacity of windows failing to reflect enough IR information back
to the D435i device, much of the detail in these sections are lost, distorted, or heavily
elongated as exterior features are detected. However, such points do not pose an issue
for conducting analyses within the bus interior and have therefore mostly been removed
from the visualisation. As expected, the D435i device performs best in X and Y dimensions
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(Figure 9b), but somewhat reduces in quality in the Z (depth) dimension. Despite appearing
typical in Figure 9b, some artifacts can be examined in side-looking plots Figure 9a,c, where
handrails appear to merge with seats. Passenger measurements taken on the edge of
masked handrails may have been subject to the effects of this. In side profiles, the closest,
nearside handrail can also be seen to take on a waved form in the Z dimension—potentially
from the effects of IR interacting with a specular surface material. Moving towards the
back of the vehicle, points in the Z dimension continue to degrade with increased objects,
noise and blind spots.

Collecting depth information in such a confined space will always pose a challenge.
However, to improve overall visibility and reinforce all point positioning, several synchro-
nised and calibrated devices can be employed in different positions and orientations—made
feasible by the low-cost, low-power, simple installation, and scalable design of the em-
ployed system.
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colourmap, with blue representing closer distances and red representing further distances from the
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(a) Perspective from front-nearside towards back-offside; (b) Camera perspective—centre position
looking down aisle; (c) Perspective from front-offside towards back-nearside.

6.2. Experimental Outcomes

The rapid decrease in and unavailability of detections in higher levels of occupation is
likely a combination of several factors—detection accuracy/limitations, passenger footfall,
and passenger awareness. In an increasingly busy and obstructed scene, detections are
made more difficult for the algorithm. Furthermore, the relatively low sensor resolution
(standard VGA) further exacerbates this issue, especially in detecting passengers towards
the back of the vehicle. It may also be the case that there are fewer instances of the
bus being busy simply because it is it not typically a busy service. At the time of study
lockdown restrictions were in the process of being eased, with non-essential businesses and
public spaces being reopened. This gives reasonable assumption that public confidence in
travelling on public transport may have remained low, therefore reducing occupancy. The
Department for Transport statistics confirm this, suggesting weekday bus usage (outside of
London) was at around 75% of pre-COVID levels during the period [28]. Finally, it may
also be the case that, being aware of the camera, some passengers may have chosen to avoid
seating/standing positions within view. In any case, the number of distance measurements
peaked at 24% capacity.

As the number of passengers increase, at a greater rate so does the number of possible
distance measurements which can be taken. Moreover, as the 1–2 m category has a valid
area three times that of the less than 1 m category, increasingly more measurements will
likely be taken in the 1–2 m range as capacity increases. Results reflect this, with the total
number of 1–2 m instances accounting for 35% of all measurements taken, in comparison
to that of 13% for the less than 1 m category. The remaining 52% of measurements taken
can be attributed to the greater than 2 m category. However, these physical constraints
only have limited effect in reducing individual likelihood of sharing in one of these groups.
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Despite best efforts of individual passengers to space themselves from one another (with
some evidence this is possible), results indicate that with an increasing level of occupation
it is very difficult to not be within 2 m of another passenger within the captured dataset.
Given the confined space within the bus, at higher levels of occupancy it is obvious that
this trend should continue in spite of the apparent trajectories of the 1–2 m and, more so,
the less than 1 m categories derived from the captured dataset. Given these chances over
the timeline of a journey, rather than at a single point in time, makes social distancing for a
sustained period incredibly difficult, even at relatively low capacities.

By analysing seating positions, some evidence is revealed on how passengers naturally
space themselves from one another. With window seats being more popular than aisle
seats, passengers are typically at either side of the bus, with the combined width of two seat
columns and aisle as available distancing space. However, it is not evident whether any
such trend also exists when considering choice seating positions between rows, which could
also have an impact on infection transmission risk depending on ventilation, windows
opening and the specific airflow dynamics within the bus during the journey. Choice
seating between rows could also have an impact on fomite transmission, with passengers
seating in the final rows possibly contacting more surfaces on their way in and out of
the bus. As well as being by the window, the most popular seat is found to have several
other special characteristics which may explain why it is chosen so frequently. It is on
the nearside of the vehicle, away from oncoming traffic and on the same side as the
passenger doorway. The most popular seat is also on the first row which is raised above
all previous rows—giving the passenger an unobstructed view of the front of the vehicle.
Lastly, a handrail is conveniently placed for right-handed passengers to pull themselves
into this seat and the seat adjacent when finding a position. All analyses here point towards
convenience, comfort, and experience as being the most valued concerns of bus passengers,
at least in the lower levels of occupations where most of the detection data resides. For
reasons also pertaining to personal comfort and safety, prior research suggests the primary
concern of many passengers is to avoid sitting directly beside another individual when
travelling [29]. Subsequently, any achieved social distancing (or lack of), is most likely a
by-product of these collective choices. It may be that having accepted the inevitable social
distancing risks that come with being in a confined space, passengers instead prioritise
other factors which will better improve their journey, and which can be better controlled.
Conversely, at greater capacities, and with a decreased choice in seating positions, the
importance of social distancing could again increase above that of accessibility, comfort,
and enjoyability.

6.3. Employed Approach

The most challenging aspect of the employed method was in data acquisition. Most
notably, installing the required packages and software to the RPi device in order to correctly
interface with the camera and to consistently extract, process, and store resulting data.
As the devices were installed remotely with no form of wireless/web communication for
transfer of data, metadata, or logs, a high level of robustness was critical. The system
was stress tested beforehand to ensure long periods of accurate data collection, as well
as restart reliability following a loss of power or software crash. Nevertheless, on first
inspection of the data post installation, it was found an issue had arisen with saving data to
the external drive. The formatting type of the external drive, in conjunction with the long
naming convention used in saving files, meant disk space was utilised inefficiently and had
filled much quicker than expected. Having the ability to connect to the RPi over a wireless
network would ensure much more accessible monitoring, maintenance, quality assurance,
and accurate time-keeping ability, as well as potential data transfer for backup redundancy.
Heavy computational tasks (e.g., detection) and following processes, were conducted after
the data acquisition stage, and therefore proved relatively simple to develop and execute.
In the interest of combining all processing stages to enable for real-time monitoring and
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analytics on the edge, this could be achieved by improving processing efficiency whilst
employing more powerful hardware, along with prior mentioned remote accessibility.

Using nose Keypoint positions to determine passenger location in the depth scene,
proved as a suitable technique for measuring the distances between passengers and deter-
mining occupied seating positions. Other computer vision techniques for measuring social
distancing rely upon bounding boxes for person detection [10,11,13], and inverse projection
mapping/level floor surfaces for spatial reconstruction [10–12,14]. As opposed to these, the
employed method in the presented research excels in that multiple positions of a person
can be identified without any prior spatial knowledge or required surface conditions in
the object space—allowing for immediate and detailed social distancing analysis to be
performed. Scene complexity, the quality of capture, and the detection algorithm used
have the most significant impact on the ability to accurately identify and precisely locate
Keypoint positions within the image space. By further training the Detectron2 R-CNN
R50-FPN 3x algorithm for the scene of capture and camera image quality, an increase in
true positive observations and a decrease in false positive and false negative observations
may be observed.

The Wrightbus StreetLite DF model was selected due to its availability by the service
provider. In 2020, the number of new Wrightbus bus registrations in the UK only accounted
for 1.3% of the total number of new bus registrations [30]—of which, not all may have been
the model used in this study. If the statistics of 2020 represent the wider use of buses in the
UK, then it can be assumed relatively few services operate with use of a StreetLite DF model.
Despite this, the sample data and results collected can still be considered representative
of the typical conditions found on many other bus models. The four-seat rows, separated
by an aisleway, within the studied proportion of the vehicle is characteristic of layouts
found in many single-decker models in use around the UK. This includes an increase in
elevation towards the rear of the vehicle for engine placement. Models which do not follow
this setup may influence results somewhat, based on number of seating positions, vehicle
size, and service popularity. However, with limitations on vehicle size and the need to
maximise passenger capacity, any variation in results is not expected to vary greatly. In
terms of application, the techniques explored in this study can be utilised in any other
bus model with minimal setup, providing the camera can be positioned with an adequate,
unobstructed view of seating areas.

7. Conclusions

In this paper, related work was first explored for the use of computer vision techniques
in both public transportation and social distancing. Machine learning techniques were a
prominent method for first detecting people before additional algorithms were applied
for accurate counting, tracking, and geometric restoration. However, published work that
combines both CV in transportation and CV in social distancing is so far limited in number.

The procedures taken in data acquisition were outlined. This includes choice of
hardware, onboard capture, and processing tasks, as well as installation steps. The em-
ployed system proved to be low-cost, low-power, highly robust, scalable, and capable
of capturing suitable information for passenger pose estimation, passenger-to-passenger
distance estimation, and seat occupation, despite the physical constraints of the bus. This
approach can be recommended in the future, both within and outside of a public transport
setting. In either case, maximising visible view space for the camera device(s) should be
emphasised—likely providing even greater acquired spatial accuracy and person detection
capability—to reduce a skewed set of data over all levels of bus capacity.

Methodological approaches were explained, outlining the use of the Detectron2 detec-
tion framework for pose estimation and subsequent Keypoint transformation to 3D space
using associated depth information gathered from the Intel RealSense D435i camera device.
From this, passenger-to-passenger distances and seating potions were then determined,
along with statistical analysis for understanding group and individual social distancing
risks in three categories—less than 1 m, between 1 and 2 m, and greater than 2 m.



Sensors 2023, 23, 9665 14 of 16

As expected with being in a confined space, the results proved social distancing is
difficult to achieve even at low vehicle occupancy—with a 93% chance of being within
1–2 m from at least one other passenger and a 77% chance of being within less than 1 m
from another passenger at 50% occupancy. A limitation of this study is that the duration
of contact was not considered. It is very likely that infection transmission risks would
further increase when factoring in contact duration. An analysis of passenger seating
positions revealed that factors such as comfort, ability to access, and enjoyment of the ride
potentially had a greater influence on choice than social distancing, especially at lower
levels of occupancy. Further research and data capture are required to understand if this
is also the case at greater levels of vehicle occupancy or if passenger values change with
increased risk.

The outcomes gained in this work reveal the state of social distancing within a slice
of public transport journeys during semi-lockdown conditions in the UK—providing
valuable results and analyses for the enhancement of infection transmission modelling.
Furthermore, a method for the acquisition and processing of social distancing data has
been explored, building upon available solutions for future pandemic responses within the
transportation sector.
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18. Gündüz, M.Ş.; Işık, G. A New YOLO-Based Method for Social Distancing from Real-Time Videos. Neural Comput. Appl. 2023, 35,
15261–15271. [CrossRef] [PubMed]

19. Alamri, A.; Alamri, S. Live Data Analytics with IoT Intelligence-Sensing System in Public Transportation for COVID-19 Pandemic.
Intell. Autom. Soft Comput. 2021, 27, 441–452. [CrossRef]

20. Wu, Y.; Kirillov, A.; Massa, F.; Lo, W.-Y.; Girshick, R. Detectron2. 2019. Available online: https://github.com/facebookresearch/
detectron2 (accessed on 3 December 2023).

21. Lei, H.; Li, Y.; Xiao, S.; Lin, C.-H.; Norris, S.L.; Wei, D.; Hu, Z.; Ji, S. Routes of Transmission of Influenza A H1N1, SARS CoV, and
Norovirus in Air Cabin: Comparative Analyses. Indoor Air 2018, 28, 394–403. [CrossRef] [PubMed]

22. Liu, L.; Li, Y.; Nielsen, P.V.; Wei, J.; Jensen, R.L. Short-Range Airborne Transmission of Expiratory Droplets between Two People.
Indoor Air 2017, 27, 452–462. [CrossRef] [PubMed]

23. World Health Organization. Considerations for Quarantine of Individuals in the Context of Containment for Coronavirus Disease
(COVID-19): Interim Guidance, 19 March 2020; World Health Organization: Geneva, Switzerland, 2020; Available online: https:
//apps.who.int/iris/handle/10665/331497 (accessed on 10 August 2023).

24. European Centre for Disease Prevention and Control. Contact Tracing in the European Union: Public Health Management of
Persons, Including Healthcare Workers, Who Have Had Contact with COVID-19 Cases—Fourth Update. 2021. Available online:
https://www.ecdc.europa.eu/sites/default/files/documents/TGU-20211019-1878.pdf (accessed on 21 November 2023).

25. Centers for Disease Control and Prevention. Appendices. Available online: https://archive.cdc.gov/#/details?q=contact%
2520tracing%2520plan&amp;start=0&amp;rows=10&amp;url=https://www.cdc.gov/coronavirus/2019-ncov/php/contact-
tracing/contact-tracing-plan/appendix.html (accessed on 21 November 2023).

26. Chu, D.K.; Akl, E.A.; Duda, S.; Solo, K.; Yaacoub, S.; Schünemann, H.J.; Chu, D.K.; Akl, E.A.; El-harakeh, A.; Bognanni, A.; et al.
Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: A
systematic review and meta-analysis. Lancet 2020, 395, 1973–1987. [CrossRef] [PubMed]

27. Rousseeuw, P.J. Least Median of Squares Regression. J. Am. Stat. Assoc. 1984, 79, 871. [CrossRef]
28. Department for Transport. Domestic Transport Usage by Mode. Available online: https://www.gov.uk/government/statistics/

transport-use-during-the-coronavirus-covid-19-pandemic/domestic-transport-usage-by-mode (accessed on 3 December 2023).

https://doi.org/10.1007/s11042-019-08167-y
https://doi.org/10.1109/HNICEM.2018.8666357
https://doi.org/10.1109/ACCESS.2020.3018124
https://www.ncbi.nlm.nih.gov/pubmed/34812350
https://doi.org/10.1109/ICIMU49871.2020.9243478
https://doi.org/10.3390/app10217514
https://doi.org/10.1007/s00138-022-01356-0
https://www.ncbi.nlm.nih.gov/pubmed/36532615
https://doi.org/10.1109/ICICCS53718.2022.9788241
https://doi.org/10.1145/3486001.3486245
https://doi.org/10.1109/ISC253183.2021.9562868
https://doi.org/10.1088/1742-6596/1916/1/012122
https://doi.org/10.1109/ICISS50791.2020.9307594
https://doi.org/10.1007/s00521-023-08556-3
https://www.ncbi.nlm.nih.gov/pubmed/37273911
https://doi.org/10.32604/iasc.2021.015198
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://doi.org/10.1111/ina.12445
https://www.ncbi.nlm.nih.gov/pubmed/29244221
https://doi.org/10.1111/ina.12314
https://www.ncbi.nlm.nih.gov/pubmed/27287598
https://apps.who.int/iris/handle/10665/331497
https://apps.who.int/iris/handle/10665/331497
https://www.ecdc.europa.eu/sites/default/files/documents/TGU-20211019-1878.pdf
https://archive.cdc.gov/#/details?q=contact%2520tracing%2520plan&amp;start=0&amp;rows=10&amp;url=https://www.cdc.gov/coronavirus/2019-ncov/php/contact-tracing/contact-tracing-plan/appendix.html
https://archive.cdc.gov/#/details?q=contact%2520tracing%2520plan&amp;start=0&amp;rows=10&amp;url=https://www.cdc.gov/coronavirus/2019-ncov/php/contact-tracing/contact-tracing-plan/appendix.html
https://archive.cdc.gov/#/details?q=contact%2520tracing%2520plan&amp;start=0&amp;rows=10&amp;url=https://www.cdc.gov/coronavirus/2019-ncov/php/contact-tracing/contact-tracing-plan/appendix.html
https://doi.org/10.1016/S0140-6736(20)31142-9
https://www.ncbi.nlm.nih.gov/pubmed/32497510
https://doi.org/10.1080/01621459.1984.10477105
https://www.gov.uk/government/statistics/transport-use-during-the-coronavirus-covid-19-pandemic/domestic-transport-usage-by-mode
https://www.gov.uk/government/statistics/transport-use-during-the-coronavirus-covid-19-pandemic/domestic-transport-usage-by-mode


Sensors 2023, 23, 9665 16 of 16

29. Kim, E.C. Nonsocial Transient Behavior: Social Disengagement on the Greyhound Bus. Symb. Interact. 2012, 35, 267–283.
[CrossRef]

30. SMMT. Number of New Bus and Coach Registrations in the United Kingdom (UK) in 2020, by Bus Manufacturer [Graph]. In
Statista. Available online: https://www.statista.com/statistics/322245/total-number-bus-coach-registrations-in-the-united-
kingdom-manufacturers/ (accessed on 21 November 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1002/symb.21
https://www.statista.com/statistics/322245/total-number-bus-coach-registrations-in-the-united-kingdom-manufacturers/
https://www.statista.com/statistics/322245/total-number-bus-coach-registrations-in-the-united-kingdom-manufacturers/

	Introduction 
	Background 
	Aim 

	Related Work 
	Computer Vision in Transportation 
	Computer Vision in Social Distancing 

	Data Acquisition 
	Methodology 
	Pre-Processing and Sorting 
	Passenger-to-Passenger Distances 
	Seating Positions 

	Results 
	Acquired Dataset 
	Passenger-to-Passenger Distances 
	Seating Positions 

	Discussion 
	Depth Quality 
	Experimental Outcomes 
	Employed Approach 

	Conclusions 
	References

