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Holographic limitations and corrections to quantum information protocols
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We discuss the limitations imposed on entanglement distribution, quantum teleportation, and quantum com-

munication by holographic bounds, such as the Bekenstein bound and Susskind’s spherical entropy bound. For

continuous-variable (CV) quantum information, we show how the naïve application of holographic corrections

disrupts well-established results. These corrections render perfect CV teleportation impossible, preclude uniform

convergence in the teleportation simulation of lossy quantum channels, and impose a revised Pirandola-

Laurenza-Ottaviani-Banchi bound for quantum communication. While these mathematical corrections do not

immediately impact practical quantum technologies, they are critical for a deeper theoretical understanding of

quantum information theory.
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I. INTRODUCTION

Inspired by the holographic principle, the holographic

bounds [1] set fundamental limits on the amount of informa-

tion that can be contained within a given volume of space.

Rooted in theories that intersect quantum mechanics, general

relativity, and thermodynamics, these bounds suggest that the

maximum entropy in a spatial region is directly proportional

to its surface area rather than its volume. Prominent exam-

ples include the Bekenstein bound [2], Susskind’s spherical

entropy bound [3], and the Bekenstein-Hawking entropy for-

mula for black holes [4,5]. These have profound implications

for our understanding of gravity, information theory, and the

fabric of the universe itself.

It is very interesting to explore such bounds in the context

of quantum information theory. Assuming a simple connec-

tion between thermodynamic and von Neumann entropy [6]

and that quantum protocols can be operated in the same way

no matter if in flat or curved space-time, one can derive simple

limitations for the number of qubits that can be entangled

or teleported over a certain distance. More interesting, be-

cause standard results in continuous-variable (CV) quantum

information are related to high-entropy limits, the direct ap-

plication of the holographic bounds to CV protocols leads

to fundamental restrictions and corrections. This is the case

for CV teleportation [7,8], its associated tools for quantum

channel simulation [9,10], and for the fundamental limit of

quantum communication, known as the Pirandola-Laurenza-

Ottaviani-Banchi (PLOB) bound [11].
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II. GENERAL SCENARIO

Consider an entanglement source between two parties,

Alice and Bob. As shown in Fig. 1, the source is located

at the origin x = 0, while Alice is at position x = −R − ε

and Bob at x = R + ε, with ε � 0 arbitrarily small. The

Alice-Bob distance is therefore equal to D = 2R + 2ε � 2R.

Suppose that the source distributes a maximally entangled

state �AB := |�〉AB〈�|, where |�〉AB = d−1/2
∑

i |ii〉, with d

being the local dimension of systems A (reaching Alice) and

B (reaching Bob). Because of entanglement distillation, this

state is equivalent to n = log2d Bell pairs or entanglement bits

(ebits), i.e., n copies of the state |�0〉 = 2−1/2(|00〉 + |11〉).

This resource may be used to implement quantum protocols,

including teleportation.

Using this shared distilled resource, Alice may teleport an

arbitrary state of n qubits to Bob. She may measure each input

qubit (in a reduced state ρ) with the A part of an ebit by per-

forming a joint Bell detection. The effect of the measurement

is to project Bob’s B part of the same ebit onto the state PuρP†
u ,

where {Pu}3
u=0 = {I, X,Y, Z} is the set of Pauli operators [6]

plus the identity. Then Alice transmits the 2-bit value u to

Bob. Thanks to this classical communication (CC), Bob can

undo the unitary Pu from his B qubit, thus reconstructing the

state of Alice’s input qubit. This procedure can be repeated for

all the n input qubits, so that Alice’s global state is perfectly

transferred to Bob’s qubits. For this transfer, n ebits are con-

sumed, and 2n classical bits need to be communicated. It is

natural to assume that input qubits and shared ebits are of the

same nature (e.g., same mass). Here, we refer to D ≃ 2R as

the entanglement or teleportation distance.

Because the nonlocal state �AB is pure, it has von Neumann

entropy SAB = 0. At the same time, the reduced local states of

Alice and Bob are maximally mixed, i.e., ρA = ρB = d−1I ,

where I is the identity operator. Thus, in Alice’s and Bob’s

labs, the local systems have maximal von Neumann entropy

SA = SB = n qubits. This is also known as entanglement

entropy.
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FIG. 1. Double-sphere scenario. An entanglement source is lo-

cated at the origin x = 0 of the position coordinate x, while Alice

is at −R − ε and Bob at R + ε, with ε arbitrarily small. Alice’s

and Bob’s local labs are within spheres of radius R. The middle

source distributes n Bell pairs to the remote parties, separated by D =
2R + 2ε ≃ 2R. We call D entanglement or teleportation distance.

For the following derivations, we make the following naïve

assumptions:

(1) The von Neumann entropy of a subsystem provides its

thermodynamic entropy. More precisely, we assume that the

thermodynamic entropy is obtained by changing the log base

to nats and including the Boltzmann constant k, so that Sth
A =

Sth
B = kn ln 2.

(2) Quantum protocols for entanglement distribution, tele-

portation, and quantum communication are assumed to be

operated in the same way no matter if they are in flat or curved

space-time.

III. HOLOGRAPHIC BOUNDS

Given the assumptions above, one can easily show the

immediate and general limitations that holographic bounds

impose on protocols for entanglement distribution and quan-

tum teleportation. These limitations are expressed in terms of

the number of ebits that can be distributed or qubits that can be

teleported over some distance D. We discuss these limitations

from the perspective of the Bekenstein bound [2], and we then

extend the discussion to Susskind’s spherical bound [3].

A. Holographic limits from the Bekenstein bound

The Bekenstein bound holds for any weakly gravitating

matter system in an asymptotically flat space-time. In such an

approximately flat scenario, consider a single sphere of radius

R centered on Alice’s local system A (e.g., see the left sphere

of Fig. 1). The thermodynamic entropy of Alice’s system must

satisfy the bound [2]:

Sth
A (= kn ln 2) �

2πkRE

h̄c
, (1)

where E is the energy within the sphere, h̄ is the Planck

constant, and c is the speed of light in vacuum. It is easy to

see that this inequality provides a macroscopic upper bound

to the number n of qubits that can be compressed within a

sphere of radius R and internal energy E .

Because D � 2R, we may write

DE �
h̄c ln 2

π
n ≃ 6.97 × 10−27n [J m]. (2)

This can be seen as an upper bound on the number of ebits

that can be shared by two parties that are separated by D and

have local energy E (as depicted in the two-sphere scenario of

Fig. 1). In turn, this is also an upper bound on the number of

qubits that can be teleported over distance D by consuming an

entanglement source with total energy 2E [12].

Now assume that the local systems A and B in Fig. 1 are at

rest, so that their local mass M provides an equivalent energy

of E = Mc2 (we assume there is no charge or momentum as-

sociated with the qubits, so we also ignore relativistic effects).

Then Eq. (2) becomes

DM �
h̄ ln 2

πc
n ≃ 7.77 × 10−44n [m Kg/s], (3)

which provides a macroscopic bound to the number n of

qubits that can be entangled at distance D with local mass

M. If we assume that M is also the mass of an object

to be teleported (in a mass-preserving teleportation), then

Eq. (3) bounds the number n of massive qubits that can

be teleported over distance D. It is clear that, fixing the

number n of qubits in Eq. (3), we get a tradeoff between

entanglement/teleportation distance D and local mass M. Sur-

prisingly, the lesser M is, the greater D needs to be, so that

we can entangle or teleport massive objects only beyond a

minimum distance, which becomes infinite in the limit of

M → 0.

B. Limitations from the spherical entropy bound

The violation of the Bekenstein bound is associated with a

violation of the second law of thermodynamics. It is generally

considered valid for weakly gravitating systems in spherical

symmetry [1]. Under the same kind of symmetry, one may

consider Susskind’s spherical entropy bound [3] which can

be extended to strongly gravitating systems, i.e., truly curved

space-time.

The thermodynamic entropy in a volume of space bounded

by a spherical surface with area A = 4πR2 and radius R must

satisfy the bound:

Sth
�

kA

4l2
p

=
πkR2

l2
p

, (4)

where lp =
√

Gh̄/c3 ≃ 1.6 × 10−35 m is the Planck length,

with G being the gravitational constant. The saturation of this

bound is achieved by the most entropic possible object, a

black hole. This extremal value is also known as Bekenstein-

Hawking (BH) entropy SBH, in which case R and A are

radius and area of the event horizon, respectively. In the ab-

sence of charge and angular momentum, we may consider a

Schwarzschild black hole with mass M whose event horizon

has radius RS = 2GM/c2. Then the BH entropy becomes

SBH =
πkR2

S

l2
p

=
2πkcRSM

h̄
. (5)

In our entanglement distribution scenario (see Fig. 1), Al-

ice’s and Bob’s local systems have Sth
A = Sth

B = kn ln 2, so the

entropy bound in Eq. (4) directly provides

n �
π

ln 2

(

R

lp

)2

,
D

lp

�

√

4 ln 2

π
n. (6)
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Thus, independently of their mass, the maximum number n of

qubits that can be entangled or teleported between Alice and

Bob is limited by the area of the circle πR2 in Planck units.

Similarly, there is a universal minimum distance D/lp for n-

qubit entanglement and teleportation that scales quadratically

in the number of qubits [13].

Note that tighter restrictions can be derived from the

‘t Hooft bound for ordinary matter [14,15]. If we ex-

clude energies leading to gravitational collapse and assume

an approximately flat space-time, the maximum thermody-

namic entropy within a sphere with area A scales as Sth �
k(A/l2

p )3/4. Replacing Sth = kn ln 2, we then find

n �

(

R

lp

)3/2

,
D

lp

� n2/3. (7)

These scalings are clearly tighter than those in Eq. (6).

C. Black-hole creation dynamics

For the sake of completeness, let us describe the previous

process by setting the equality in Eq. (3) so that DminM =
nh̄ ln 2/(πc). This is equivalent to saying that we are con-

sidering the smallest spheres capable of enclosing Alice’s

and Bob’s systems. By increasing the local mass M, the

entanglement/teleportation distance Dmin decreases. Simul-

taneously, the Schwarzschild radius associated with Alice’s

and Bob’s systems increases as RS = 2GM/c2. At the critical

point Dmin = 2RS, Alice’s and Bob’s systems become a pair

of entangled black holes whose event horizons are tangent.

Clearly, teleportation can no longer work because the CC

needed to perform the protocol cannot escape the horizons.

One can easily check that, at the critical point, the local

masses must be equal to

M

mp

=
√

n ln 2

4π
, (8)

where mp =
√

h̄c/G ≃ 21.76 µg is the Planck mass. It is

then easy to see that the minimum distance is Dmin/lp =√
4n ln 2/π , which saturates the bound in Eq. (6). For D >

Dmin, n-qubit protocols for entanglement distribution and tele-

portation become in principle possible because Alice’s and

Bob’s labs can be located outside the event horizons within

their local spheres.

IV. HOLOGRAPHIC LIMITATIONS TO CV PROTOCOLS

Let us now show what type of implications and limitations

the spherical bound would have for CV quantum information.

This is a field where a number of fundamental results are

obtained by taking limits for infinite entanglement, squeezing

or modulation, which means that these limits imply infinite

entropy.

A. Limits to Gaussian modulation and two-mode squeezing

Let us start from the problem of signal modulation. In a

typical CV protocol for quantum communication, Alice pre-

pares an input alphabet of coherent states whose amplitude α

is modulated according to a Gaussian distribution. On average

this is a thermal state with n̄ mean number of photons and

entropy:

h(n̄) := (n̄ + 1) log2(n̄ + 1) − n̄ log2 n̄. (9)

It is easy to show that h(n̄) � log2(en̄) so that, multiplying

by ln 2 and including the Boltzmann constant k, we compute

Alice’s thermodynamic entropy Sth
A � k ln(en̄). Using the lat-

ter inequality in the spherical bound of Eq. (4) leads to

n̄ � exp
(

πR2
p − 1

)

, (10)

where Rp := R/lp is the radius in Planck units. The first imme-

diate consequence of Eq. (10) is that Alice’s signal alphabet

must be limited by her radius, so that infinite modulation is

not allowed for any finite Rp.

The same bound clearly holds for the maximal amount of

CV entanglement that can be shared by Alice and Bob. The

fundamental state to consider here is the two-mode squeezed

vacuum (TMSV) state �
μ
AB with parameter μ = n̄ + 1

2
.

Tracing out Bob’s B part of this state provides Alice with

a local thermal state ρ n̄
A with n̄ = μ − 1

2
mean photons.

Therefore, Alice’s reduced state has thermodynamic entropy

Sth
A � k ln(en̄), and the spherical bound provides Eq. (10) or,

equivalently,

μ � μmax(Rp) := exp
(

πR2
p − 1

)

+ 1
2
. (11)

As we will see below, the bound in Eq. (11) has drastic conse-

quences for CV teleportation [7,8] and the teleportation sim-

ulation of channels [11]. It will also impose holographic cor-

rections to the quantum capacities of bosonic channels [16].

B. Holographic no-go for ideal CV teleportation

Let us apply the CV teleportation protocol to mode a of an

input TMSV state �
μ̃
Ca by using another TMSV state �

μ
AB as

a resource. The ideal CV Bell detection on modes a and A,

and the CC of the outcome realizes an approximate identity

channel I
μ
a→B from mode a to mode B. This is strongly (i.e.,

point-wise) equivalent to an additive-noise Gaussian channel

with added noise [17–20]:

ξ = 2μ −
√

4μ2 − 1. (12)

When applied to �
μ̃
Ca, we get the output �

μ,μ̃
CB := IC ⊗

I
μ
a→B(�

μ̃
Ca), where IC is the identity channel applied to system

C. Consider the (square-root) quantum fidelity:

F (μ, μ̃) =
∥

∥

√

�
μ̃
Ca

√

�
μ,μ̃
CB

∥

∥

1
, (13)

between the input and the output (teleported) state, where

||O||1 := Tr
√

O†O is the trace norm. In the present case, this

is the fidelity of teleporting CV entanglement [21]. Using the

formula for Gaussian states [22], we explicitly compute (see

also Ref. [9, Appendix A])

F (μ, μ̃) = {1 − 4μ̃[
√

4μ2 − 1 + μ̃ − 2μ(1 + 2μ̃ξ )]}−1/4.

(14)

This expression would go to 1 if we could take the limit of

μ → +∞, but unfortunately, we have the holographic bound

μ � μmax(Rp) of Eq. (11) for any radius Rp. This implies

F < 1 for any finite Rp, so we cannot perfectly teleport CV en-

tanglement. The maximum fidelity in Eq. (14) is achieved for

013157-3
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μ̃ = 1
2
, corresponding to the teleportation of the vacuum state

from a to B. At Planckian distance Rp = 1, we have maximal

fidelity F ≃ 0.986403. At larger Rp, the fidelity approaches 1

but remains <1 at any finite radius.

This reasoning implies that CV teleportation would not

strongly converge to the identity channel unless Alice and Bob

are separated by an infinite distance. Note that this problem

affects not only the strong convergence but also the uniform

convergence of CV teleportation [9,10].

C. No uniform convergence in teleportation simulation

Because the holographic bounds implies that CV telepor-

tation cannot be perfect at finite distance, we have that many

applications of this tool are also affected. This includes the

teleportation simulation of bosonic Gaussian channels. To

illustrate the idea, consider the bosonic pure-loss channel

which is the most relevant Gaussian channel. This may be

represented by a beam splitter with transmissivity 0 < η < 1,

which mixes an incoming bosonic mode with an environmen-

tal vacuum mode.

Because the pure-loss channel Eη is teleportation covari-

ant [11], it may be simulated by using the CV teleportation

protocol T implemented over its quasi-Choi matrix χμ
η :=

IA ⊗ Eη(�
μ
AB). In other words, we may write the simulation

channel Eμ
η (ρ) := T (ρ ⊗ χμ

η ) for any input state ρ. One can

check that Eμ
η = Eη ◦ Iμ and write

lim
μ→∞

∥

∥Eη − E
μ
η

∥

∥

⋄ = 0. (15)

Recall that the diamond distance is the appropriate distance

between channels and defined by the following optimization

of the trace distance over bipartite states ρAB:

∥

∥Eη − E
μ
η

∥

∥

⋄ := sup
ρAB

∥

∥IA ⊗ Eη(ρAB) − IA ⊗ E
μ
η (ρAB)

∥

∥

1
.

(16)

Holographically, we cannot take the limit in Eq. (15) due

to Eq. (11), so that the uniform convergence is excluded by a

nonzero lower bound. In fact, we have

∥

∥Eη − E
μ
η

∥

∥

⋄

(1)

�
∥

∥|00〉〈00| − |0〉〈0| ⊗ E
μ
η (|0〉〈0|)

∥

∥

1

(2)

� 2[1 − 〈0|Eμ
η (|0〉〈0|)|0〉]

(3)= 2ηξ (1 + ηξ )−1, (17)

where (1) we pick a particular state (the vacuum ρAB = ρ00 :=
|00〉〈00|) in the optimization in Eq. (16) and use the fact that

I (ρ00) = Eη(ρ00) = ρ00; (2) we use the quantum Chernoff

bound [23] ‖ρ − σ‖1 � 2[1 − C(ρ, σ )], where C(ρ, σ ) :=
infs∈[0,1] Tr(ρsσ 1−s) for any pair of states ρ and σ , and the

fact that, for pure ρ := |ϕ〉〈ϕ|, we may write C(|ϕ〉, σ ) =
F (|ϕ〉, σ )2 = 〈ϕ|σ |ϕ〉. Finally, in (3), we use the fact that

Eμ
η (|0〉〈0|) is a thermal state with variance ηξ + 1

2
, and we

apply the formula of the fidelity between Gaussian states [22].

The tighter lower bound for the diamond distance

‖Eη − Eμ
η ‖⋄ is obtained when Eq. (11) is saturated, i.e., for

μ = μmax(Rp). Correspondingly, the added noise ξ in Eq. (12)

takes the minimum possible value:

ξmin(Rp) = 2μmax −
√

4μ2
max − 1. (18)

However, for any finite Rp, we have ξmin(Rp) > 0 so that

min
μ

∥

∥Eη − E
μ
η

∥

∥

⋄ =
∥

∥Eη − E
μmax

η

∥

∥

⋄

� 2ηξmin(Rp)[1 + ηξmin(Rp)]−1 > 0. (19)

For instance, for η = 1
2

and Planckian radius Rp = 1, we

have ‖Eη − Eμmax
η ‖⋄ > 0.0273791. For large Rp, we expand

the lower bound at the leading order and write

∥

∥Eη − E
μmax

η

∥

∥

⋄ �
η

2
exp

(

−πR2
p

)

> 0, (20)

so the uniform convergence to Eη is not possible.

Similarly, we may enforce a holographic upper bound to

the diamond distance. In fact, we may compute [24]

∥

∥Eη − E
μ
η

∥

∥

⋄ � δ := 2

√

ηξ

ηξ + 1 − η
(21)

≃
√

η

(1 − η)μ
+ O(μ−3/2). (22)

Using Eq. (11), for large Rp, we then derive

∥

∥Eη − E
μmax

η

∥

∥

⋄ �

√

η

1 − η
exp

(

−
π

2
R2

p

)

. (23)

As we see below, this bound imposes conditions on the quan-

tum capacities of the pure-loss channel.

V. HOLOGRAPHIC CORRECTIONS TO THE QUANTUM

COMMUNICATION LIMIT

The ultimate performance for quantum key distribution

(QKD), entanglement distribution, and quantum state trans-

mission over a pure-loss channel is provided by the PLOB

bound [11]. More precisely, since the PLOB (upper) bound

coincides with the lower bound proven in Ref. [25], it auto-

matically establishes several capacities for the lossy channel

Eη. It shows that K (Eη ) = D2(Eη ) = Q2(Eη ) = − log2(1 − η),

where K is the secret key capacity, D2 is the two-way assisted

entanglement distribution capacity, and Q2 is the two-assisted

quantum capacity. All these capacities are generally assumed

to be assisted by two-way CC.

One of the techniques used to prove the PLOB bound is

teleportation stretching, where the tool of quantum channel

simulation is used to reorganize the most general possible

two-assisted adaptive quantum protocol into a simpler block

version, with no need for feedback CC between the remote

parties (see Ref. [9] for a general review). In the bosonic

setting, the optimal simulation of a channel via teleportation

requires taking the limit for infinite CV entanglement in the

resource state. Because this limit cannot be taken according

to Eq. (11), we need to compute holographic corrections.

Consider Alice and Bob, each within a radius Rp and con-

nected by pure-loss channel Eη. Assume that they implement

the most general (N,R, ε) protocol for entanglement distribu-

tion. This means that they use the channel N times interleaved

with local operations (LOs) and two-way CCs and finally

013157-4



HOLOGRAPHIC LIMITATIONS AND CORRECTIONS TO … PHYSICAL REVIEW RESEARCH 6, 013157 (2024)

share a bipartite state ρN which is ε close (in trace distance) to

a tensor product φ⊗NR of NR Bell pairs. Due to the spherical

bound, we must have Eq. (6), and therefore,

R �
πR2

p

N ln 2
. (24)

At macroscopic distances, Rp is so extremely large that the

bound in Eq. (24) is very large even with N ≫ 1.

To compute a tighter upper bound, we replace each in-

stance of the channel Eη with its simulation Eμ
η (ρ) = T (ρ ⊗

χμ
η ) for some LOCC T , where χμ

η is the quasi-Choi matrix

of the channel. This operation generates a simulated protocol

with output ρ
μ
N such that ‖ρμ

N − ρN‖
1
� Nδ, where δ is the

bound defined in Eq. (21) [26]. Using the triangle inequality,

we get

∥

∥ρ
μ
N − φ⊗NR

∥

∥

1
�

∥

∥ρ
μ
N − ρN

∥

∥

1
+ ‖ρN − φ⊗NR‖1

� ε + Nδ := ε̃. (25)

Assuming the condition ε̃ �
1
2
, we may write a Fannes-type

inequality for the relative entropy of entanglement (REE)

[27,28] ER. Following Ref. [11], this is given by

ER(φ⊗NR) � ER

(

ρ
μ
N

)

+ 4ε̃ log2 d + 2H2(ε̃), (26)

where d = 22NR is the total dimension of the target state

φ⊗NR, and H2 is the binary Shannon entropy.

Because the REE bounds the two-way distillable entangle-

ment of a quantum state, we may write NR � ER(φ⊗NR).

Then because the channel Eμ
η is simulated by the resource state

χμ
η , we may apply the stretching technique from Ref. [11]

and decompose the output state as ρ
μ
N = �(χμ⊗N

η ) for a trace-

preserving LOCC �. Finally, because the REE is monotonic

under � and multiplicative over tensor products, we may

write ER(ρ
μ
N ) � NER(χμ

η ). Therefore, by employing all these

considerations, we have that Eq. (26) becomes

R �
ER

(

χμ
η

)

+ 2N−1H2(ε̃)

1 − 8ε̃
. (27)

For a given radius Rp, we can take the maximum value μ =
μmax(Rp), so that we get

ε̃ = ε̃min := ε + 2N

√

ηξmin(Rp)

ηξmin(Rp) + 1 − η
, (28)

where we have used Eqs. (18) and (21). By replacing μmax

and ε̃min in Eq. (27), we get a bound for the optimal rate of an

(N,R, ε) protocol implemented at distance 2Rp over a pure-

loss channel with transmissivity η.

Take the limits for large μ ≃ exp(πR2
p) and small ε, so that

ε̃ ≃ ε + N

√

η

1 − η
exp

(

−
π

2
R2

p

)

≃ 0. (29)

Let us expand (1 − 8ε̃)−1 ≃ 1 + 8ε̃ + O(ε̃2) and H2(ε̃) ≃
ε̃/ ln 2 + O(ε̃ ln ε̃), so that Eq. (27) becomes

R � (1 + 8ε̃)ER

(

χμ
η

)

+ O(ε̃2, ε̃N−1). (30)

At the leading order in μ, we may also write [11]

ER

(

χμ
η

)

� − log2(1 − η) + O(μ−1). (31)

By using Eqs. (29) and (31) in Eq. (30), we derive the follow-

ing modified version of the PLOB bound:

R �

[

1 + 8ε + 8N

√

η

1 − η
exp

(

−
π

2
R2

p

)

]

× [− log2(1 − η)], (32)

where we see the holographic correction due to Rp.

This minor adjustment may not hold immediate practical

significance for quantum technologies. However, it suggests

that the PLOB upper bound might not be precisely aligned

with a corresponding lower bound. Further work is needed in

this direction, specifically in terms of extending the coherent

[29,30] and reverse coherent [25] information to include holo-

graphic corrections.

VI. CONCLUSIONS

We have investigated the implications of directly impos-

ing holographic bounds on the processes of entanglement

distribution and quantum teleportation. In the first general

discussion, we overviewed how these bounds would provide

direct constraints to the maximum number of ebits and qubits

that can be involved in these quantum protocols, together

with limitations on the minimum distance for entanglement

distribution or teleportation. More interestingly, we have ana-

lyzed the effects of holography on CV quantum information,

where results are typically achieved in the limit of unbounded

entropy. In this case, we have explored how standard results

would break down, such as ideal CV teleportation, while

others would need corrections, such as the PLOB bound for

quantum communication.
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