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ABSTRACT

At present, industrial robotics focuses more on motion control and vision, whereas

humanoid service robotics (HSRs) are increasingly being investigated and researched

in the field of speech interaction. The problem and quality of human-robot

interaction (HRI) has become a widely debated topic in academia. Especially when

HSRs are applied in the hospitality industry, some researchers believe that the

current HRI model is not well adapted to the complex social environment. HSRs

generally lack the ability to accurately recognize human intentions and understand

social scenarios. This study proposes a novel interactive framework suitable for

HSRs. The proposed framework is grounded on the novel integration of Trevarthen’s

(2001) companionship theory and neural image captioning (NIC) generation

algorithm. By integrating image-to-natural interactivity generation and

communicating with the environment to better interact with the stakeholder, thereby

changing from interaction to a bionic-companionship. Compared to previous

research a novel interactive system is developed based on the bionic-companionship

framework. The humanoid service robot was integrated with the system to

conduct preliminary tests. The results show that the interactive system based on the

bionic-companionship framework can help the service humanoid robot to effectively

respond to changes in the interactive environment, for example give different

responses to the same character in different scenes.

Subjects Human-Computer Interaction, Artificial Intelligence, Robotics

Keywords Humanoid robotics, Human-robot interaction, Social robotics

INTRODUCTION
Humanoid service robots (HSRs) have seen a sharp rise in adoption recently and are seen

as one of the major technologies that will drive the service industries in the next decade

(Harris, Kimson & Schwedel, 2018). An increasing number of researchers are committed

to investigating HSRs to help humans complete repetitive or high-risk service and

interactive tasks such as serving patients with infectious diseases, delivering meals and so

on. Delivery robots, concierge robots, and chat robots have been increasingly used by

travel and hospitality companies (Ivanov, 2019). Although the contribution of these

achievements mainly comes from the rapid development of robotics engineering, Ivanov

et al. (2019) indicated that future research focus will gradually shift from robotics
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engineering to human-robot interaction (HRI), thus opening up interdisciplinary research

directions for researchers.

In the early days, Fong, Thorpe & Baur (2003) proposed that in order to make robots

perform better, the robot needs to be able to use human skills (perception, cognition, etc.)

and benefit from human advice and expertise. This means that robots that rely solely

on self-determination have limitations in performing tasks. The authors further propose

that the collaborative work between humans and robots will be able to break this

constraint, and research on human-robot interaction has begun to emerge. Fong, Thorpe &

Baur (2003) believe that to build a collaborative control system and complete human-robot

interaction, four key problems must be solved. (1) The robot must be able to detect

limitations (what can be done and what humans can do), determine whether to seek help,

and identify when it needs to be resolved. (2) The robot must be self-reliant and secure.

(3) The system must support dialog. That is, robots and humans need to be able to

communicate with each other effectively. However, dialog is restricted at present. Through

collaborative control, dialog should be two-way and require a richer vocabulary. (4) The

system must be adaptive. Although most of the current humanoid service robots

already support dialog and can complete simple interactive tasks, as propounded in the

research, such dialog in the present time remains limited and “inhuman.” In the process of

interacting with robots, humans always determine the state of the robot (the position of the

robot or the action the robot is doing) through vision, and then communicate with the

robot through a dialog system. However, HSR cannot perform this yet as they do not seem

to fully satisfy the two-way nature of dialog. Therefore, this research responds to the

current gap and attempts to differ from the current HRI research. This research attempts

to introduce deep learning into the existing dialog system of HSR, thus advancing the field.

With the continuous development of humanoid robots, more and more humanoid

robots are used in the service industry, especially the hospitality industry. Human-Robot

Interaction (HRI) has become a hot potato by more and more researchers (Yang & Chew,

2020). However, with the deepening of research, some researchers found that when

humans interact with humanoid service robots (HSRs), humans hope that HSRs should

have the ability and interest to interact with the dynamic thoughts and enthusiasm of

the partner's relationship, and can recognize the environment, blended with what others

think is meaningful and the emotions to express sympathy (Yang & Chew, 2020). This

coincides with Trevarthen’s (2001) companionship theory, so the concept of human robot

companion (HRC) was proposed this research. The earlier concept of the robot

companion is mentioned by Dautenhahn et al. (2005): HSRs need to have a high degree of

awareness and sensitivity to social environment. Through the review of the above

literatures, it is proposed to establish an interactive and companion framework for HSRs

using deep learning and neural image caption generation, thus advance the current field

of HSRs to tackle with bionic-interactive tasks of the service industry and further evolve

from conventional HRI to Human and Robot Companion (HRC) (See Table 1).

This study proposes that the introduction of visual data into the current HRI model of

HSRs enables HSRs to have a high level of sensitivity to the social dynamic environment

while interacting with humans, thereby enhancing the current HRI model to HRC. With
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the continuous development of deep learning, some researchers have recently realized the

transformation of static pictures or videos from conventional camera input into text

descriptions (Li et al., 2020; Hu et al., 2020; Luo, Hsu & Ye, 2019). This deep learning

algorithm model is called neural image capturing (NIC). This research attempts to adapt

and integrate NIC into HSRs and propose a novel framework (bionic-companionship

framework) to enhance the traditional HRI experience. This framework aims to improve the

current HRI interaction mode in the field of HSRs to a higher level of HRC (Yang & Chew,

2021). The bionics in this research refers to the humanoid service robot imitating all the

tastes of life, trying to adapt to the seven emotions of ancient human nature (joy, anger,

sadness, fear, love, disgust, liking) and six biological wills (life, death, eyes, ears, mouth, nose)

(Chew et al., 2021). The system proposed in this study combines visual intelligence and

Speech Intelligence, and imitates human behavior in social activities, which is in line with the

Table 1 Scenario based comparison for HRI and HRC.

Scenario: HRI HRC

Scenario 1: Hospitality:

The enhancement from HRI to HRC:

(1) Compared with HRI, robots in HRC can

recognize the environment (luggage) and

changes in customers’ appearance (red shirt),

which is in line with the proposed concept of

companion should become dynamic in the

theory of companionship.

(2) More enthusiastic and bionic interaction

capabilities (automatically detect whether they

are regular customers, and greet

enthusiastically).

(3) The robot in HRC remember the

customers’ past orders and provide meal

recommendation for well-being.

When you enter a hotel, you see a reception area

dominated by robots. When you approach the

reception area, the HSR will say “Welcome to

Hotel XYZ, please follow the instructions to

check-in on my display screen”. After

completing the check-in, the robot will tell

you the room number and issue you a room

card, you go to your room, change a suit and

prepare to go downstairs to eat. When you go

back to the reception, the robot says ‘welcome,

please follow the instructions to place an order

on my display’. You choose a few dishes that

look good on the screen of the robot, but when

the food comes up you don't seem to be

satisfied with the taste…

When you enter a hotel, you can a reception

area thoughtfully served by robots. The robots

also see you and wave to you, ‘Welcome Jack,

you have a nice luggage, I can help you to

check-in. What else can I do for you?’After

completing the check-in, the robot will tell

you the room number and issues you a room

card. You go to your room and change to a red

shirt to go downstairs to eat. When you go

back to the reception, the robot says,

“Welcome Jack, you wear nice red shirt, what

can I do for you?” You choose a few dishes

that look good on the robot’s screen, but the

robot tells you that ‘According to your past

order and diet preferences, these meals may

not be suitable for you. Feel free to change it to

a less cholesterol dishes with special house

promotion and I recommend you to take this

quality wine as a treat to have a healthy eating

while enjoying your stay with us.’

Scenario 2: Health care:

(1) The enhancement from HRI to HRC:

Robots have dynamic thinking and real-time

neural image captioning ability: able to deal

with emergencies and a quick decision making

from what it sees the environment in real-time.

(2) Robots has been improved from

conventional smart Q&A and interactions to

new concept of bionic companionship.

You bought a robot at home to monitor your

health. The robot obtains some of your health

indicators (such as temperature, blood

pressure, etc.) through some external devices.

When there is a problem with your indicators,

the robot can give you corresponding

suggestions or help you contact a doctor. A

total of 1 day you suddenly fainted at home for

some reasons, but because you did not aim at

the detection device connected to the robot,

the robot did not find your condition.

Fortunately, your neighbor found you fainted

at home. . .

You bought a home care robot to monitor your

health. The robot obtains some of your health

indicators (such as pulses, blood pressure,

etc.) through some external devices. When

there is a problem with your indicators, the

robot can give you corresponding suggestions

or help you contact a doctor. A total of 1 day

you suddenly fainted at home for some

reason. The robot discovered your real-time

condition through the deep learning vision

system and contacted the your family member

or hospital in time, subject to what the robot

sees, e.g., fainted human with lots of blood or

motion (call hospital for emergency); fainted

human with conscious and free speech (call

family members).
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concept of robot bionics proposed by researchers such as Chew et al. (2021). Therefore, this

study believes that the proposed system is a bionic system.

RELATED WORKS
With the continuous development of HRI research, industrial robots have been able to

interact with humans accurately and self-adaptively. Some advanced control systems

(Zhang, Hu & Gow, 2020) and algorithms (Tang, Zhang & Hu, 2020) have been proposed

as Industrial robots provide reliable support for completing interactive tasks in an

industrial environment. However, as HSRs began to enter the service industry, some

research cases began to discover that there are still problems with the interaction of HSRs

in the social environment. Caleb-Solly et al. (2018) believed that users can also help robots

when robots help users; meanwhile, users can give feedback to optimize the system.

The feedback reflects not only the optimization of the robot system but also the satisfaction

of customers. Chung & Cakmak (2018) study indicated that hotels in the hospitality

industry want to collect customer feedback in real-time to immediately disseminate

positive feedback and respond to unsatisfactory customers while they are still on the scene.

Guests want to inform their experience without affecting their privacy. Stakeholders in the

hospitality industry hope that intelligent robots can interact more with users. Besides,

Rodriguez-Lizundia et al. (2015) concluded that the optimal distance between users and

robots is 69.58 cm. Specifically, interaction with a certain greeting mode can attract users to

maintain a longer interaction time; robots with the active search are more attractive to

participants. The interaction time is longer than that of passively searching robots,

suggesting that robots should be designed to keep at a certain distance from humans and

consider adding the ability to allow robots to actively identify customers and attract them.

Research suggests that the current interactive system used by HSRs lacks the ability

to process and adapt to dynamic social environments. The dynamic social environment

here refers to the same human behavior and language often expressing different meanings

in different social situations, such as In different situations, the handshake may require

two completely different interactive messages to respond. Therefore, this research proposes

the concept of HRC to develop a new interactive mode to solve the current problems

faced by HRI in the hospitality industry. For a more detailed comparison of HRI and HRC,

please refer to the video in the appendix link (https://youtu.be/fZmV4MKeYtQ).

Review of neural image captioning

The challenge of generating natural language descriptions from visual data has been

extensively researched in the field of computer vision. However, early research has mainly

focused on generating natural language descriptions from video-type visual data (Gerber &

Nagel, 1996; Mitchell et al., 2012). These systems convert complex visual data into

natural languages using rule-based systems. However, because the rules are artificially

designed, these systems are sufficiently robust, bionic, and have been shown to be

beneficial in limited applications such as traffic scenarios (Vinyals et al., 2015). In the past

decade, various researchers, inspired by the successful use of sequence-to-sequence
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training with neural networks for machine translation, proposed a method for generating

image descriptions based on recurrent neural networks (RNNs) (Cho et al., 2014;

Sutskever, Vinyals & Le, 2014). In fact, this method of replacing the encoder in the

encoder-decoder framework in machine translation with image features transforms the

original complex task of generating image data caption into a simple process of

“translating” the image into a sentence (Cho et al., 2014). Furthermore, Donahue et al.

(2014) used long short-term memory (LSTM) for end-to-end large-scale visual learning

processes. In addition to images, Donahue et al. (2014) also applied LSTM to videos,

allowing their models to generate video descriptions. Vinyals et al. (2015) and Kiros,

Salahutdinov & Zemel (2014) initially proposed the structure of a currently popular neural

image generation algorithm based on the combination of a convolutional neural network

(CNN) image recognition model and a natural language processing (NLP) structured

model. Moreover, the neural image captioning algorithm based on the attention

mechanism has also attracted extensive attention in the field of computer vision. Denil

et al. (2012) proposed a real-time target tracking and attention recognition model driven

by sight data. Tang, Srivastava & Salakhutdinov (2014) proposed an attention-generation

model based on deep learning. From the perspective of visual neuroscience, the model

requires object-centric data collection for model generation. Subsequently, Mnih et al.

(2014) proposed a new recurrent neural network model, which can adaptively select

specific areas or locations to extract information from images or videos and process the

selected area at high resolution. As the algorithm has increasingly mature, the application

of the algorithm in related fields has also been breaking through recently, such as the

caption generation of car images (Chen, He & Fan, 2017), the description generation of

facial expressions (Kuznetsova et al., 2014), and educational NAO robots driven by image

caption generation for video Q&A games for children’s education (Kim et al., 2015).

Recent research on image caption generation also shows that the accuracy and reliability of

the technology have increased (Ding et al., 2019). In addition, reinforcement learning

to automatically correct image caption generation networks have also been proposed

(Fidler, 2017). These deep learning–based studies have undoubtedly laid a foundation for

the possible NIC integration with HSRs as proposed in this study. The novel integration

led to the possibility for humanoid robots to interact with humans while recognizing

the social environment in real time, thereby improving the interactive service quality of

the HSRs.

Neural image caption generation algorithm ‘crash into’ robot

An increasing number of studies have been conducted on HRI combined with image

caption generation algorithm. Kim et al. (2015) used the structure of a convolutional neural

network (CNN) combined with RNN + deep concept hierarchies (DCH) to design and

develop an educational intelligent humanoid robot system for play video games with

children. In this study, CNNwas used to extract and pre-process cartoons with educational

features, and RNN and DCH were used to convert the collected video features into Q&A

about cartoons. During the game, after watching the same cartoon, the child and the

robot ask and answer questions based on the content of the cartoon. The research results
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show that such a system can interact effectively with children. However, for HRIs, such

simple and limited-structured Q&A conditions cannot satisfy all the interaction scenarios

required. Cascianelli et al. (2018) used a gull-gated recurrent unit (GRU) encoder-decoder

architecture to develop a human-robot interface that provides interactive services for

service robots. This research solves a problem called natural language video description

(NLVD). The authors also compared the performance when using LSTM and GRU with

two different algorithms to solve these problems. They demonstrated that the GRU

algorithm runs faster and consumes less memory. This type of model may be more

suitable for HSRs. Although the research model is competitive on public datasets, the

experimental results on the designed datasets show that the model suffers from significant

overfitting. This proves that in the actual model training process, a specific training

dataset for HSR interaction should be established, and other methods (such as transfer

learning) should be considered to improve the generalization ability of the model for

interactive tasks. Luo et al. (2019) created a description template to add various image

features collected by the robot, such as face recognition and expression, to the generated

description. Compared with the previous models, their interaction is slightly more natural

and closer to the human description. However, Luo et al. (2019) use the model to

provide limited services to industry managers, hard to generalize, and not for developing

an entire HRI framework.

Like the research on robot vision language, research on robot vision action is in its

infancy. Yamada et al. (2016) used RNNs to enable robots to learn commands online from

humans and respond with corresponding behaviors. This research furthermore provides

a reference and direction for humanoid robots to use deep learning to obtain online

learning capabilities for human commands. Inspired by the above study, the rationale and

hypothesis proposed in the present research are that the description generated by the

neural image captions can drive HSRs to perform appropriate behaviors, and HSRs can even

obtain online learning capabilities of interacting with surrounding people through studying

and analyzing social environments. Tremblay et al. (2018) and Nguyen et al. (2018)

believe that non-experts often lack the rationality of task descriptions when issuing

instructions to robots. They use deep learning to allow robots to automatically generate

human-readable instructions’ descriptions according to the surrounding social environment.

In addition, Nguyen et al. (2018) also used visual data to make humanoid robots imitate and

learn human actions under corresponding commands so that the robot can learn how to

complete the corresponding tasks only through visual data; however, social robots cannot

complete precise control of movements when they imitate movements of visual data.

CONTRIBUTION TO THE KNOWLEDGE: THE BIONIC-
COMPANIONSHIP FRAMEWORK WITH NIC FOR HSRS
The contribution of the present study is the novel investigation and design of the bionic-

companionship framework for HSRs, adapting and integrating neural image caption

generation algorithms and bionic humanoid robots, to be validated in a lab-controlled

environment and real-life exploration. The newHRC framework is anticipated to enhance HRI

to reach a new state, making it possible for HSRs to become bionic companions of humans.
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This study proposes adapting and integrating deep learning techniques to one of the

world’s most advanced HSRs so that robots can autonomously and in a timely fashion

convert pictures or data information captured by robotic visions and sensors into texts

or sentences in order to respond and communicate more naturally with humans. The

conceptual model of the proposed system consists of various modules, as shown in Figs. 1,

2. The contributions of this research are summarized as follows:

1. In order to solve the current problems of HSRs in the hospitality industry, a new

interactive concept-HRC is proposed.

2. A novel bionic interaction framework is designed based on the proposed HRC.

3. A system that can be used on HSRs is developed based on the bionic interaction

framework, and the system has been tested and verified. The preliminary results prove

that the system can enable HSRs to handle dynamic social environments.

Humanoid service robot used in research

The design and investigation of this HRC framework involves using the Canbot U05E

humanoid robot (see Fig. 1 for the high-level design, Figs. 2–5 for further details)

(CANBOT, 2020). The robot’s 22-degree-of-freedom motion joints enable it to perform a

Figure 1 HSR capabilities with the proposed high-level of HRC conceptual model.

Full-size DOI: 10.7717/peerj-cs.674/fig-1
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variety of simulated movements, such as raising the head, turning the head, raising the

arm, shaking the crank, shaking hands, leaning back, walking, and turning, and based on

the proposed framework, it can acquire natural human behaviors and, as a result,

efficiently interact with humans. In addition, Canbot U05E’s advanced vision system and

sensors can collect more complete environmental data for the proposed design and make

Figure 2 Bionic-companionship framework design. Full-size DOI: 10.7717/peerj-cs.674/fig-2

Figure 3 Neural image captioning model structure for HSR.

Full-size DOI: 10.7717/peerj-cs.674/fig-3
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the novel framework more robust. The robot is designed to imitate the human’s seven

senses, providing strong support for the concept and implementation of the bionic partner

designed in this study.

Bionic-companionship framework

In this study, we review the previous works on this topic and research gaps in the literature

and describe a novel humanoid service robot and human interaction framework with

neural image subtitles as its core (details are shown in Fig. 2). The framework uses the

structure of the NIC algorithm to better realize the interaction of HSRs from HRI to

the direction of bionic-companionship. According to the initial descriptions of robot

companions, as in the studies by Turkle (2006) and (Kim et al., 2015), the proposed

framework should provide HSRs with more natural interactions and a more sensitive

understanding of the environment, and hence, the design of the framework is divided into

two subsystems (see the dotted red).

Image/video description generation system

These subsystems are the core modules of the entire interactive framework. HSRs collect

visual data of the surrounding environment through equipped visual sensors (such as

HD or 3D cameras) and sensors (such as tactile and radar). The type of visual data

collected depends on the complexity of the interactive task to be completed by HSRs. It is

generally considered that more complex interactive tasks require the use of continuous

images or real-time videos. The system uses the latest neural image generation algorithm

structure and CNN to perform feature extraction on the pictures and video data of the

surrounding social environment, and converts the data into feature vector sequences that

Figure 4 Samples Flickr 8k (Rashtchian et al., 2010) training data set.

Full-size DOI: 10.7717/peerj-cs.674/fig-4
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can be used by RNN. Finally, the RNN completes the process of generating an interactive

description from the visual data. HSRs use a speech synthesis system that converts these

descriptions into voices to communicate with humans. This process is different from

the past mode of using HSRs human sensing sensors and setting fixed interactive feedback;

the innovation of this system is that HSRs can automatically and naturally generate

interactive feedback. This means that the change in the scene during the interaction will

Figure 5 The infrastructure of the humanoid service robot generating neural image captions as part

of the bionic companionship framework. Full-size DOI: 10.7717/peerj-cs.674/fig-5

Yang et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.674 10/20



cause a continuous change in the interaction feedback, and this change is not preset by

humans. In addition, in further conversation interactions, human voice response and

social environment data will be coordinated by HSRs and produce continuous

conversation interaction behavior.

Command-robot behavior system

For HSRs, simple conversation interactions are insufficient. HSRs should generate

corresponding motions based on visual and human behavior data. For example, when

humans wave to a robot, the robot should also actively respond. The hypothesis of this

study is to classify or cluster description text generated from visual data and use these

classified description texts to control the motions of HSRs in response to complex

interactive tasks. For example, when the description generated by neural image captions is

“Hello”, then HSRs will automatically determine whether ‘Hello’ matches a category that

requires interactive motion and performs corresponding motions such as waving.

PILOT TESTING, PRELIMINARY RESULTS, AND
DISCUSSION
In the present study, we designed and integrated a classic NIC model on the HSR and

performed a preliminary evaluation.

Introduction to HSR-NIC model

The structure of the HSR-NIC algorithm used in this study was adapted and enhanced

from the model structure proposed by Mao et al. (2014) who used a classic encoder-

decoder structure. In this study, the encoder uses the Xception pre-trained CNN to convert

the input image into a feature vector. The word sequence is then input into the LSTM after

a layer of word embedding layer, and finally, and add operation is performed on the

word features output by the LSTM and the image features extracted by the trained CNN.

These are then input into a decoder composed of a single-layer fully connected layer,

which generates the probability distribution of the next word using a softmax layer. The

LSTM introduced by the model can solve the long-term dependency problem in the

traditional RNN, thereby improving the accuracy of the model. The dense representation

of word embedding can reduce the amount of calculations involved in the model; it also

enables the model to capture similar relationships between words. In addition, the

model used in this study also introduces a dropout layer with a probability of 50% to

increase the robustness of the model. The teacher forcing mechanism was used during

model training to accelerate the model training process. The optimizer used in the research

is Adam, which has the advantages of making the model converge more quickly and

automatically adjusting the learning rate with learning. The variables of the model are

updated by minimizing the cross-entropy loss between the probability distribution of the

predicted result and the probability distribution of the true result and back-propagation.

The model structure diagram as follow (Fig. 3).
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Model forward propagation process

The training process of the image captioning task can be described as follows: For a picture

in the training set, its corresponding description is a sequence that represents the words in

the sentence. For model h, given input image I from the HSR’s vision, the probability of the

model generating sequence is expressed as

P SjI; hð Þ ¼ �N
t¼0PðStjS0; S1; . . . ; St�1; I; hÞ (1)

The logarithm of the likelihood function is used to obtain the log-likelihood function:

log P SjI; hð Þ ¼
XN

t¼0
log PðStjS0; S1; . . . St�1; I; hÞ (2)

The training objective of the model is to maximize the sum of the log-likelihoods of all

training samples:

h
� ¼ argmaxh

X
I;Sð Þ

log PðSjI; hÞ (3)

where (I, S) is the training sample. This method of maximum likelihood estimation is

equivalent to empirical risk minimization using the log-loss function. Therefore, in the

forward propagation process of this research model, the image feature vector Iv is extracted

from the image using the CNN, and a two-dimensional vector of shape (batch size, 2048) is

the output.

Iv ¼ CNNhc
Ið Þ (4)

The extracted image features need to be encoded by a fully connected layer into the

context feature vector C that can be matched with word features. The word feature vector

is the output Ot of the LSTM over the time step. The input word of LSTM passes through a

word-embedding layer to generate a dense vector representation W(s).

C ¼ Wh Ivð Þ; Ot ¼ LSTMh W sð Þð Þ (5)

Finally, word feature Ot and context feature C are together input into a decoder

composed of a single fully connected layer after the softmax calculation generates the

probability distribution of the next word PðSijI; hÞ.

P SijI; hð Þ ¼ softmax Wh C þ Otð Þð Þ (6)

The loss function is expressed as

L ¼
XT

t¼1
y tð Þ log p tð Þ þ 1� ytð Þ log 1� ptð Þ (7)

Training dataset

For the present study, we use Flickr 8k (Rashtchian et al., 2010) as the training dataset. This

is a new benchmark collection for sentence-based image descriptions and searches. It

consists of 8,000 images. Each image was paired with five different captions. These
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captions provide content descriptions of the objects and events in the picture. The images

do not contain any well-known people or locations but depict random scenes and

situations. Examples of datasets are shown in Fig. 4. The Flickr 8k dataset not only contains

images of animals and objects, but also of some social scenes. These data can help robots to

better understand natural, day-to-day scenes.

The process of humanoid service robot generating image captions

To explore the feasibility of the bionic-companionship framework, preliminary tests were

conducted on a real humanoid service robot (Canbot U05E). The process of generating

image captions by a humanoid service robot is divided into four steps, as shown in Fig. 5.

Step 1. The HSR-NIC API is responsible for controlling the robot to call the high-

definition camera to collect surrounding environment information (the data collection in

this study is focused on HSR capture images). The collected data will be sent to the

local host service program through the HTTP protocol and wait for a response from

the HSR.

Step 2. The HSR-NIC localhost server program receives the data, and the requests

perform preliminary processing and cleaning of the data (image) and send the data

(image) to the HSR-NIC model server program to wait for the calculation result (the

generated caption description).

Step 3. The HSR-NIC model server program analyzes the image data according to the

training parameters saved before, generates the descriptive caption, and returns it to the

local server.

Step 4. The HSR-NIC local server program sends the caption description to the robot

application through the HTTP protocol, and the robot application controls the robot to

respond according to the caption description, such as speech synthesis and motion control.

Preliminary test results and limitation

In this study, we conducted a preliminary test on a humanoid service robot integrated with

the NIC algorithm. The results of the preliminary test were found to be promising.

With the discuss of the last chapter, the research will integrate the NIC into the HSRs

to make the HSRs take advantage of the change of the surrounding environment interact

with the human better. Therefore, the system proposed by this research will combine

qualitative analysis and quantitative analysis to initially validate the performance of the

system.

This study introduces the cross-entropy loss curve of the last 50 epochs of the model

as the evaluation metric for quantitative analysis. As shown in the Fig. 6, the model

finally converges to the minimum loss value of 2.65 in the training set and 2.71 in the

validation set, which proves that the model has no over-fitting and under-fitting, and has

generalization ability. Since the loss value is calculated from the sum of the difference

between the probability value of each predicted word in the predicted description and the

true value, the loss value will be affected by the sentence length of the predicted

description. In related work, researchers (Li et al., 2020; Hu et al., 2020) used some more

reliable evaluation methods to evaluate the performance of the model, including the
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BLUE4 (Papineni et al., 2002) and CIDEr (Vedantam, Lawrence Zitnick & Parikh, 2015).

These evaluation metrics are usually used in the field of machine translation instead of

manual evaluation. Since the tasks handled by the NIC model can be regarded as translated

from images/scenes into English, the evaluation metrics can also be applied to the

evaluation of NIC. This study will use qualitative analysis to replace quantitative analysis of

metrics such as BLUE4 and CIDEr, so as to further evaluate the preliminary performance

of HSR after the integrated NIC model.

As shown in Figs. 7 and 8, the researcher conducted two sets of tests in three different

scenarios with HSR. In the first set of tests, the researcher wore a hat and changed

scenarios. In the second set of tests, the researcher did not wear a hat, and the scene

switching method was the same as in the first set. It can be seen from the experimental

results that the humanoid robot can complete the perception of scene switching through

this algorithm and generate a rough description of the scene. In the first set of tests, most of

the content described was accurate. The robot equipped with the NIC algorithm can

effectively identify ‘man’, ‘black shirt’, and ‘sitting on a bench’. However, in the second

group of tests, there were many errors in the recognition results. This could be attributed to

the researcher’s long hair. Interestingly, researchers with long hair are easily identified

as women or children. This indicates that the accuracy of the NIC algorithm still has room

for improvement.

In addition, in order to test the performance of the system in a dynamic environment.

The researcher conducted the test in a real environment (as Fig. 8). The researcher selected

six real environments as the test data and let the robot generate interactive information.

Among the six real interactive environments, there are three scenes that can be more

accurately recognized by the robot and produce corresponding descriptions. The

description information can correspond to the test environment, and the corresponding

part of the description has been highlighted with the same color in the Fig. 8. Some of

the objects, facilities, and human movements in these scenes can be accurately predicted,

such as sidewalk, traffic, bench, building, building, etc. However, in the other three

environments, the robot did not give an accurate description. The researchers believe that

Figure 6 Loss curve of NIC model on training set and validation set.

Full-size DOI: 10.7717/peerj-cs.674/fig-6
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this may be due to the fact that the training set does not contain objects in these three

environments, causing the model to fail to learn how to express the ‘unfamiliar

environment’.

Figure 7 A series of preliminary testing results captured from Canbot U05E and bionic-

companionship preliminary framework. Full-size DOI: 10.7717/peerj-cs.674/fig-7
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In general, as per the results of the to two experimental sets, it was proven that the robot

equipped with the NIC algorithm can capture the changes in the surrounding environment

and generate different feedbacks according to the changes. The results also demonstrate

the feasibility of the proposed bionic-companionship framework. Although there is still a gap

between the prediction results of the algorithm and the real communication scene,

the researcher believes that special data collection for some specific interaction scenarios

and model training for these specific data can be effective in addressing this gap. Future

Figure 8 Real social environment test examples. Full-size DOI: 10.7717/peerj-cs.674/fig-8
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research directions will mainly focus on improving the accuracy of algorithms and

achieving more human-like interactions. (The detailed process is shown in the HSR-NIC

demo video.) In addition, the researcher believes that the scene understanding of static

images is the basis for dealing with dynamic environments. Some researches have

mentioned that the introduction of related algorithms of object detection into NIC can

identify and generate descriptions of scenes in dynamic environments. This is also the

current research limitation of this research and the research challenges that will be faced in

the future.

CONCLUSIONS
This study presents a review of neural image generation algorithms and application cases

in the field of robotics, and proposes a novel humanoid service robot and human

interaction framework based on the bionic-companionship theory. The subsystems of the

bionic-companionship framework are designed and introduced in detail. Preliminary tests

also initially proved that the framework could increase the sensitivity of HSRs to changes

in the surrounding environment. The proposed framework will contribute to further

development from HRI to HRC. Future work will focus on implementing each of the

subsystems in the framework and applying the framework to HSRs to verify its

performance.
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