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Abstract

Aggregated mobility indices (AMIs) derived from information and communications technolo-

gies have recently emerged as a new data source for transport planners, with particular value

during periods of major disturbances or when other sources of mobility data are scarce. Par-

ticularly, indices estimated on the aggregate user concentration in public transport (PT) hubs

based on GPS of smartphones, or the number of PT navigation queries in smartphone appli-

cations have been used as proxies for the temporal changes in PT aggregate demand levels.

Despite the popularity of these indices, it remains largely untested whether they can provide

a reasonable characterisation of actual PT ridership changes. This study aims to address this

research gap by investigating the reliability of using AMIs for inferring PT ridership changes

by offering the first rigorous benchmarking between them and ridership data derived from

smart card validations and tickets. For the comparison, we use monthly and daily ridership

data from 12 cities worldwide and two AMIs shared globally by Google and Apple during peri-

ods of major change in 2020–22. We also explore the complementary role of AMIs on tradi-

tional ridership data. The comparative analysis revealed that the index based on human

mobility (Google) exhibited a notable alignment with the trends reported by ridership data and

performed better than the one based on PT queries (Apple). Our results differ from previous

studies by showing that AMIs performed considerably better for similar periods. This finding

highlights the huge relevance of dealing with methodological differences in datasets before

comparing. Moreover, we demonstrated that AMIs can also complement data from smart

card records when ticketing is missing or of doubtful quality. The outcomes of this study are

particularly relevant for cities of developing countries, which usually have limited data to ana-

lyse their PT ridership, and AMIs may offer an attractive alternative.

1 Introduction

1.1 Public transport demand data

The availability of suitable data is critical for city planners to tackle the current and future chal-

lenges in urban mobility. This need is amplified when there is a disruptive change in urban
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mobility at any scale, ranging from local short-term events such as natural disasters, social

unrest, and transport supply breakdown to global long-term events such as pandemics/epidem-

ics, economic crises and conflicts. In this context, a continuous monitoring of public transport

(PT) demand changes is essential for authorities and PT operators [1,2]. In spite of the growth

in the availability of higher quality data in many parts of the world, still there remain many cities

that do not have access to proper data for a constant characterisation of the PT demand; or even

if they have it, the available data present limitations in terms of the quality and coverage. In cit-

ies without automated data collection systems to passively record ticketing levels, traditionally,

the information related to PT demand has come from datasets that have been manually col-

lected on a small population sample. Such data, despite providing granular information, has

been criticised for the lack of feasibility to be steadily applied during long periods [3]. This

makes them unsuitable to analyse dynamic PT demand changes and to quantify the impacts of

unexpected disruptions [4–6]. By contrast, cities that have already adopted automated fare col-

lection (AFC) schemes have had the advantage of analysing their PT demand information from

smart cards and digital transactions [7–9]. However, some limitations on the fare collection sys-

tem may affect the quality of these data [10]. For example, ridership data may be lower than the

actual one when ticketing are missing or incomplete, such as in the cases of ticket-free riding

days or when there are special periods where fare evasion is potentially higher. Additionally,

AFC systems may only cover a limited number of the PT modes present in a city (e.g. metro

rails only), capturing ridership data only of those modes [11,12]. In these cases, even cities with

AFC systems can benefit from secondary data sources to complement traditional ones.

1.2 Aggregated mobility indices

The increasing penetration of Information and Communication Technologies (ICT) in society

has allowed several emerging datasets to be harnessed to face urban mobility challenges [13].

Call detail records (CDRs) [6], social media data [14–16], Wi-Fi and Bluetooth traces [17], and

web-based ticket records [18] are some of the technologies explored in the last decade to

understand the behaviour of PT passengers. Despite the effort to leverage these data to study

different characteristics of PT demand, their adoption has been mainly limited to research pur-

poses and a few case studies, as such data availability remains largely restricted [3]. Less atten-

tion, however, has been paid to the usage of data sets associated with GPS traces collected by

global mobile phone apps or the level of queries in travel planner apps in the PT sector [3,19].

This situation changed in 2020, following the urgent need of health authorities, local govern-

ments, transport agencies, and the public for continuously updated and easily accessible data

to deal with the COVID-19 pandemic.

Aggregated mobility indices (AMIs) based on ICT were globally provided by tech compa-

nies during the COVID-19 pandemic to describe human mobility patterns in cities. AMIs

were based on data collected from the regular use of mobile devices associated with GPS and

apps, technologies that were already part of tech companies’ products and services [20]. The

information was aggregated to describe human mobility behaviour within cities, offering a

near-complete coverage of the urban grid and a large proportion of the population. AMIs were

used to analyse mobility trends and scenarios, and assess the effectiveness of mobility restric-

tions on human mobility [5,21–25]. AMIs were also employed in studying COVID-19 trans-

mission [26], pandemic indicators [26,27], air quality [28,29] and economic recovery [30],

among other topics. Big Tech companies such as Google and Apple shared reports on the

aggregated mobility changes of the population at a city or regional scale between 2020 and

2022 [31,32]. Other companies, such as Moovit and Citymapper, which run travel planner

apps, also offered similar mobility indices [33,34].
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Among the AMIs proposed, Google COVID-19 Community Mobility Reports (GCMR)

and Apple Mobility Trend Reports (AMTR) were the most popular. GCMR were based on the

variation of human movements across different categories of locations (residential, workplace

and public transport stations, among others) [35]. To measure the mobility changes related to

PT, GCMR considered the access frequencies and the time spent on PT hubs (bus stops, train

stations, etc.). The relative change was estimated by comparing a mobility level with a pre-pan-

demic baseline value. Some uses of the GCMR’s PT index were the characterisation of the use

of PT, the clustering of cities with similar PT demand change levels, and the assessment of the

effectiveness of mobility restrictions [4,12,21,36–38]. On the other hand, AMTR reported indi-

ces estimated based on navigation data from the Apple Maps app service to describe its users’

mobility trends [32]. AMTR showed daily relative changes for three transport modes (PT,

walking and driving) by estimating the quotient between the volume of direction requests for a

specific day and pre-pandemic baseline [20]. The characterisation of the change in mobility

was one of the main uses of this data set [4,21,39–41].

1.3 Ridership data versus AMIs

Despite the widespread use of the AMIs provided by tech companies during the last three

years, it is surprising that limited evidence of the reliability of these indices to represent actual

PT demand shifts is available. As the importance of mobility data availability transcends the

COVID-19 pandemic, a proper assessment of the potential of AMIs in PT is desirable for

wider applications. So far, comparisons between AMIs that offered proxies for PT and rider-

ship data have been provided tangentially by a few studies that analysed both data sources

when characterising COVID-19’s impact on PT demand. These studies preliminarily reported

that AMI captured the generalised drop in ridership during the pandemic outbreak and that

after it, they overestimated PT demand recovery [34,42]. For instance, using ridership data, a

study conducted in Sweden [42] reported a reduction in PT demand of 40% in Skåne, 50% for

Västra Götaland and 60% for Stockholm at the end of June 2020. By contrast, using the PT

index of GCMR, the same study observed only a 0%, 10%, and 20% reduction in ridership,

respectively. When they explored the PT index of AMTR, they obtained a reduction of around

20% with no noticeable difference between those areas. A smaller difference was observed in

New York, where a 50% ridership decrease was observed using the PT index of AMTR when a

70% reduction was reported by the subway transactions [11]. In a study conducted on the

Community of Madrid also for 2020, the authors contrasted smart card records with the Moo-

vit mobility index. They found that during the recovery stage, the Moovit index reported a

drop of only 5% compared to a reduction of 50% recorded for the ridership data [34]. Despite

this evidence, several limitations in the existing studies lead to inconclusive findings about the

level of accuracy of AMIs in terms of replicating PT ridership changes and their potential for

wide-spread use in PT planning and operational decisions:

1. Early comparisons overlooked differences in the methodological approaches used to esti-

mate AMIs. Therefore, the benchmarking required for properly comparing the datasets is

yet to be conducted.

2. As the primary goal of the above-mentioned studies was to describe PT demand changes

and not to assess the similarity between ridership data and AMIs, they did not conduct a

formal quantitative comparison, limiting the current evidence to point-temporal compari-

sons and visual inspections of the trends only. In addition, as these early insights are based

on data from the first half of 2020 and a few isolated contexts, there is a significant gap in

the literature in studying a more comprehensive period and a wider sample of cases.
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3. To the best of our knowledge, attempts to leverage the complementary role of AMIs on tra-

ditional ridership data have yet to be done (e.g., fill in temporal gaps in the data, identify

supplementary information, etc.).

To address these gaps, this study aims to conduct a comprehensive similarity evaluation

between the changes reported by AMIs for PT demand and ridership data. Monthly ridership

data from 12 cities worldwide from eight countries and daily ridership for three case studies

(London, New York and Santiago de Chile) were used for the analysis. Similarity metrics

assessed the agreement between AMIs and ridership data for the period 2020–2022. Seasonal

ARIMAX models were also employed to test the capacity of AMIs to predict PT demand

changes in periods where ridership data did not record the actual demand. The results of this

study provide a more comprehensive understanding of similarities and differences between

the two data sources and reveal the potential role of AMIs in PT demand characterization, par-

ticularly in developing countries.

The remainder of this paper is structured as follows. The methodology of this study is pro-

vided in Section 2, including a description of the data and a definition of the metrics used to

measure the degree of similarity between ridership data and AMIs. Section 3 shows the results

of the similarity comparison and Section 4 presents the complementarity analysis between

AMIs and ridership data. Finally, the implications of the findings and future perspectives are

discussed in Section 5.

2 Methodology

This study investigates the reliability of using aggregated mobility indices (AMIs) for inferring

PT ridership changes. Fig 1 shows the methodological procedure followed in this study. First,

we retrieved data on AMIs and ridership data between 2020 and 2022 for several cities. Then, a

common baseline was defined and adopted, allowing the comparison between data sets. AMIs

and ridership were then analysed, and practical applications were explored. A detailed defini-

tion of each step is presented next.

2.1 Data

Two AMIs that offered proxies for PT were retrieved to be tested in their alignment with rider-

ship changes. We selected Google COVID-19 Community Mobility Reports (GCMR) and

Apple Mobility Trends (AMTR) as they offered global coverage and the most prolonged avail-

ability [31,32]. Additionally, they present proxies for PT use based on different ICT sources:

GCMR used GPS traces from smartphones, and AMTR employed the queries for PT made in

the Maps application of Apple devices (a further description of these indices is provided in Sec-

tion 1.2). In this work, we will use the term Human Mobility Index (HMI) to refer to the

Fig 1. Methodological approach followed in this study.

https://doi.org/10.1371/journal.pone.0296686.g001
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particular index in the GCMR that measured the changes in human mobility in PT hubs (train

stations, bus stops, etc.). Analogously, we will use the term Apple Query Index (QI) to refer to

the category of AMTR that compared the level of queries for PT directions in Apple Maps.

Both indices were updated daily from 2020 to 2022. Specifically, HMI was provided from 15

February 2020 to 15 October 2022 and QI from 13 January 2020 to 12 April 2022 (AMTR data

for 11–12 May 2020, 12 March 2021 and 21 March 2022 were unavailable). On the other hand,

ridership data came from validations made by smart cards and paper or digital tickets and

were directly retrieved from the official portals of several PT operators. The inclusion criteria

for selecting an urban area as a case study considered the availability of ridership data and

AMIs. A total of 12 different case studies were selected (considering a monthly temporal reso-

lution of ridership), aiming to include different contexts and increase the generalization of the

similarity assessment. In only three of them, daily ridership data were publicly available (Lon-

don, New York and Santiago de Chile). Both, monthly and daily ridership data were used in

the similarity analysis (See S1 Table). Table 1 specifies the case studies included in the analysis,

indicating the availability of AMIs as well as the temporal and spatial resolution of the

retrieved ridership data. This work employed publicly available data, whose use complied with

the terms and conditions for each source. Further details of the terms and conditions can be

found directly in the web pages of each source using the links provided in the Supporting files

(S1 Table).

2.2 Establishing a common definition

To generate comparable datasets, a common basis for estimating mobility changes was

adopted. This common basis was required due to differences in how AMIs were reported and

the absolute nature of the ridership data (i.e. the total number of transactions), aspects that

were ignored in early comparisons. The GCMR and AMTR reported daily relative changes by

estimating the quotient between the mobility volume for a specific day and a baseline mobility

volume defined for the pre-pandemic. The proportion obtained was reported as a percentage,

and a positive value indicated the percentage of increase with respect to the baseline, while a

Table 1. Case studies for the comparison between AMIs and ridership data.

Country City Ridership PT authority Google’s Index (HMI) Spatial definition Apple’s Index (QI) Spatial definition

Case studies with daily ridership data

U.K. London Transport for London (TfL) City of London / Sub-region 2 London / City

U.S. New York MTA New York New York County / Sub-region 2 New York / City

Chile Santiago Met. Public Transport Agency (DTPM) Santiago Province / Sub-region 2 -

Case studies with monthly ridership data

Australia Sydney Transport for NSW City of Sydney / Sub-region 2 Sydney /City

Canada Toronto Toronto Transit Commission Toronto / Sub-region 2 Toronto / City

Colombia Bogotá Transmilenio* Bogota / Sub-region 1 -

U.S. Dallas Dallas Area Rapid Transit Dallas County / Sub-region 2 Dallas / City

U.S. Denver Regional Trip District Denver County / Sub-region 2 Denver / City

U.S. Salt Lake Utah Transit Authority Salt Lake County / Sub-region 2 Salt Lake / City

U.S. Chicago Chicago Transit Authority Cook County / Sub-region 2 Chicago / City

Taiwan Taipei Metro Taipei** - Taipei City / Sub-region

Hong Kong Hong Kong MTR Hong Kong** Hong Kong / Country-region -

* Only BRT ridership available.

** Only metro ridership available.

https://doi.org/10.1371/journal.pone.0296686.t001

PLOS ONE Aggregated mobility indices for inferring public transport ridership changes

PLOS ONE | https://doi.org/10.1371/journal.pone.0296686 January 5, 2024 5 / 24

https://doi.org/10.1371/journal.pone.0296686.t001
https://doi.org/10.1371/journal.pone.0296686


negative one specified the degree of reduction. However, the baseline definition adopted by

each index was different. As the QI employed as a baseline the number of queries of only one

day, this index was more susceptible to high variability due to the lack of inclusion of weekly

mobility cycles. In the case of ridership data, a normalisation of their values respecting a base-

line was also required to obtain a relative scale. A review of the criteria employed in the litera-

ture for estimating relative changes with aggregate PT demand supported the baseline

definition adopted by the HMI [34,43], and for this reason, it was employed as the consistent

basis in the current paper. The definition includes the choice of a pre-COVID-19 period, the

recognition of demand variability within the week and a way to deal with potential outliers. As

no AMIs were available before 2020, using data from 2019 to describe the pre-pandemic

period was not possible. Both ridership data and the QI were adapted according to the HMI’s

baseline definition. We present the details of the baseline definitions adopted for the case stud-

ies where daily ridership was available in Table 2. Table 2 also explores the consistency of daily

values for ridership and the QI in the baseline period. Coefficients of variation smaller than

6.0% were observed, revealing high stability in the mobility trends of the same days of the

week for the period that characterised the pre-pandemic. It was interesting to observe also for

this period that the QI depicted the highest demand for PT information on Fridays and Satur-

days, contrasting with the typical daily variability of ridership data (See S1 Fig).

The expressions used to apply the common basis on ridership data and the QI are presented

in Eqs 1 and 2. We call these new indices relative ridership change index (RRC) and Apple

Table 2. Details of the common baseline adopted to estimate relative changes in ridership data and the QI.

Apple’s

Index1 (QI)

Ridership Data

London New

York

London New York Santiago

Period data available 13 Jan 2020 to

12 Apr 2022

01 Jan 2020 to 31 Oct 2022 01 Mar 2020 to 31 Oct 20222 01 Jan 2020 to 31 Oct 2022

Baseline definition (pre-pandemic)

Original reported

values

AMTR Recorded subway and bus ridership,

nominal values

Recorded subway and bus

ridership, nominal values

Recorded subway and bus ridership,

nominal values.

Common baseline

definition applied

The median

value for each

day of the

week over the

three weeks

between 13

January and 2

February 2020

The median value for each day of the week

over the five weeks between 3 January and 6

February 2020

Average value for January 2020

for weekdays, Saturday and

Sunday

The median value for each day of the week

over the five weeks between 3 January and 6

February 2020

Consistency of baseline values

Coeff. Var.

baseline values

Mon 1.7% 5.5% 3.9% - 1.9%

Tue 1.8% 1.4% 3.3% - 2.3%

Wed 2.2% 2.3% 2.7% - 4.6%

Thu 2.4% 2.4% 2.3% - 4.3%

Fri 3.2% 2.6% 1.0% - 4.8%

Sat 1.4% 3.2% 6.2% - 5.0%

Sun 2.9% 4.9% 5.0% - 5.0%

1 The category of PT of the AMTR was not available for Santiago de Chile.
2 No bus ridership data collected directly from a smart card or ticketing validation was available between 1 Mar and 30 Sep 2020.

https://doi.org/10.1371/journal.pone.0296686.t002
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query modified Index (QMI). The RRC at a time t (RRCt) was defined as follows:

RRCt ¼
rt
Rf ðtÞ
� 1

 !

� 100 ð1Þ

Where rt is the ridership on day t (t = 1, 2, . . ., T) and Rf(t) is the baseline ridership for each day

of week f, whose value in Eq 1 depends on the day of the week corresponding to t. If both rt
and its corresponding Rf(t) were the same, the quotient is one and the RRCt is equal to zero (i.e.

0% change). The RRC takes a negative value if the ridership in the time t is smaller than the

one existing in the baseline period for the corresponding day of the week. For instance, if the

ridership were half compared with the baseline value, the index would be equal to -50 (%). The

same interpretation apply for the HMI. In the case of New York, daily ridership was not avail-

able for January. Therefore, we use the reported average value of ridership for weekdays, Satur-

days and Sundays during January 2020 as baseline values. To estimate RRC for the case studies

where only monthly ridership was available, we first estimated the average daily ridership for

each month, dividing monthly ridership by the number of days of each month. Then, the RRC

was estimated analogously, employing the average daily ridership of January 2020 as a baseline

value.

In the case of the QI, its original values were reported as percentage changes relative to one

particular day. Apple provided these values on a base of 100, assigning a value of zero to the QI

of 13 January 2020. Then a value of 5.0 would indicate that for a particular day, the number of

queries was five percent higher than the base day. The adoption of the common baseline for

estimating relative changes for this index was addressed by proposing the Apple’s query modi-

fied index (QMI):

QMIt ¼
QIt þ 100

QIBf ðtÞ þ 100
� 1

 !

� 100 ð2Þ

Where QIt is the Apple’s query index on day t (t = 1, 2, . . ., T) and QIBf(t) is the Apple’s query

index baseline for each day of the week f, whose value in Eq 2 depends on the day of the week

corresponding to t. Each QIB was estimated as the median QI value for the same day over the

three weeks between 13 January and 2 February 2020 (as there were no earlier values). In this

way, the QMI overcomes the original limitation of the QI, comparing query levels of the same

days of the week and controlling for outliers if they were present. The QMI shares the same

interpretation with HMI and RRC. Monthly QMI and HMI were obtained by averaging their

daily values for each month.

2.3 Similarity assessment

The degree of similarity between the values reported by AMIs (HMI and QMI) and RRC was

assessed by applying metrics under a time series approach. For the monthly analysis, we

included the mean Euclidean distance (MED), the cosine distance (COS) and a trend similarity

index (TSI). The Dynamic Time Warping distance (DTW) and the Granger Causality test

were included for the daily similarity analysis where a higher granularity in the data was avail-

able. The MED is recommended when a straightforward interpretation of the differences is

required. In our case, as the time series values are all relative changes (%), the MED interpreta-

tion is the average distance in percentage points between the relative change reported by the

AMIs (HMI or QMI) and RRC. The COS is a similarity measurement between two vectors

defined in an inner product space [44]. Their values are always between -1 and 1, where 1

means perfect alignment and -1 indicates the opposite. DTW is an alignment-based metric
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that estimates the Euclidean distance between two time series that may not be aligned [44]. We

included DTW for the daily analysis to deal with potential shifts in the times series, particularly

present in the QMI. The Granger Causality test determined whether AMIs could be used to

forecast the RRC values [45]. This statistical hypothesis test uses Student’s statistic and F-statis-

tic tests to determine whether values of a certain variable provide statistically significant infor-

mation about the values of Y. The trend similarity index (TSI) was estimated as the proportion

of slopes with the same sign for the same pair of consecutive months/days between the RRC

and AMIs. The sign of the slopes for two consecutive times was obtained by observing the

direction of the change between the values of each index. The TSI between RRC and an AMI

(HMI or QMI) was defined as:

TSIRRC;AMI ¼

P
ts

RRC;AMI
t

T � 1
ð3Þ

sRRC;AMI
t ¼

1;DRRCt;tþ1 � DAMIt;tþ1 � 0

0; otherwise
ð4Þ

(

Where Δ indicate the difference between two consecutives values for the respective index, and

T is the length of the time series. TSI metric ranges between 0 and 1, where the value one

means that the AMI replicated exactly the same direction of change of the RRC and zero the

case of a complete disagreement.

2.4 Complementary role of AMIs

We also explore the complementary role of AMIs in contexts where ridership data did not cap-

ture the actual PT demand and on atypical days where mobility demand was extraordinarily

high. Hence, the next situations helped illustrate the role that AMIs may play in complement-

ing ridership data:

1. Free bus travel period in London during the pandemic outbreak: From 20 April to 30 May

2020, Transport for London introduced middle/rear-door-only boarding in bus services to

take care of drivers. AMIs were used here to reveal an approximation of the actual PT

demand in this period where ridership was under-reported.

2. Partial ridership data in New York MTA: No bus ridership data collected directly from a

smart card or ticketing validation was available for the New York MTA between 1 March

and 30 September 2020. Using AMIs, an approximation of the actual RRC in this period

was estimated.

3. High mobility demand day for Santiago: The day of the national referendum in Chile (Sun-

day, 4 September 2022) was marked by an extraordinarily high mobility, resulting in the

highest recorded RRC for Santiago in the study period. We assessed the discrepancies

between the predicted RRC (based on the AMIs) and the recorded RRC.

Autoregressive Integrated Moving Average (ARIMA) models were employed to calibrate

the relationship between the recorded RRC and the AMIs. For this, we selected the AMI that

exhibited the highest similarity with RRC, while the calibration was made on periods with the

most stable conditions available. ARIMA models are particularly efficient and appropriate

when successive observations show serial dependence (e.g. in this case, daily observations),

and therefore, the assumption of independent errors typically made for cross-section regres-

sion data is violated. At the same time, this modelling approach allows testing whether the

AMI contribution to explain RRC is statistically significant. As a weekly periodicity was also
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found in the descriptive analysis (see S2 Fig), an appropriate model specification may consider

both, daily and weekly autocorrelation. To consider both correlations, a multiplicative seasonal

ARIMA model is specified, where one component (p, d, q) captures the daily correlation, and

a second component (P, D, Q) explains the weekly correlation in the data. If s is the seasonal

period of the time series (considering weekly seasonality s = 7), then the seasonal ARIMAX (p,

d, q)×(P, D, Q)[s] [46] can be written as follow:

F∗
PðL

sÞFpðLÞð1 � LsÞ
D
ð1 � LÞdyt ¼ mþY

∗
QðL

sÞYqðLÞεt þ oAMIt ð5Þ

where yt is the value of the RRC time series for the time t. εt is the white noise process (i.e. ran-

dom error, i.i.d. Gaussian (0, s2
ε)) and L is the backshift or Lag operator, defined as Lyt = yt−1. d

represents the differences that can be applied on the dependent variable to obtain a stationary

time series for the non-seasonal model. Fp(L) is the polynomial of order p that contains the

marginal contribution of the auto-regressive (AR) component and Θq(L) the polynomial of

order q of the moving average (MA). F∗
PðL

sÞ is the operator of the seasonal AR component

with order P, D is the seasonal differences number and Y
∗
QðL

sÞ is the operator for the seasonal

MA with order Q. Note that we have added in the last term of Eq 5 the AMI, which is an exoge-

nous variable in the modelling with coefficient ω.

3 Exploratory analysis

3.1 Monthly analysis

A monthly analysis of 12 cities worldwide from eight countries showed that HMI and QMI

were capable of replicating the RRC with different degrees of accuracy. Fig 2 presents the

monthly variability of each index for the entire study period per case study, while Table 3 pres-

ents the results for the similarity metrics. Overall, AMIs correctly mimicked the main direction

of changes depicted by RRC. In all the cases considered, AMIs properly replicated the drop in

PT demand during the pandemic outbreak. However, in most cases, AMIs reported higher PT

demand recoveries than the RRC. The average MED for the HMI and QMI were 11.9 and 11.6

for 2020 and 14.4 and 26.6 percentage points for the entire period, respectively. Cities like Lon-

don and Sydney exhibited the greatest match between HMI and RRC, with small MED

obtained (5.1 and 4.0). However, common MED were between 10 and 20 percentage points

for most studied cases. Regarding the QMI, this index exhibited a similar adjustment to HMI

until April 2021. After this date, QMI showed a general increase until August 2021, when the

index stabilised around 60 percentage points above RRC values. The Similarity Trend Index

(STI) ranged from 0.71 to 0.94 for the HMI and 0.73 to 0.92 for the QMI, revealing a high

capability to replicate the direction of change of the monthly ridership trends by the AMIs.

The cosine distance values supported these results showing magnitudes that indicate high sim-

ilarity. Case studies where only partial ridership information was retrieved showed higher dif-

ferences compared with the general trends. For instance, the greatest difference between HMI

and RRC was observed in Bogota. This may be explained as ridership data for Bogota only

describes the BRT system’s demand and does not consider the local bus system. Moreover,

contrary to the remaining case studies, AMIs in Taipei and Hong Kong reported lower PT

demand recovery than the RRC. This difference may be explained by considering that only

metro ridership was available for these two cities.

3.2 Daily analysis

The daily analysis compared HMI and QMI with RRC for the cities of London, New York and

Santiago. Fig 3 provides a graphical illustration of the aggregate PT demand shifts depicted by
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Fig 2. Average monthly changes in HMI (orange), QMI (green), and RRC (blue). Centre of the graphic indicates -100% change, central

grid circumference 0% change and external grid circumference +60% change (all compared with baseline values). Data from February 2020

to October 2022 (for some case studies, available ridership data end in July 2022).

https://doi.org/10.1371/journal.pone.0296686.g002
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each index. The HMI was found to match surprisingly well with the daily RRC time series. At

the same time, the QMI displayed a reasonable fit in terms of the magnitude of the PT demand

recovery until the first half of 2021. For that period, the main trends of peaks and troughs of

the RRC time series were also depicted appropriately by HMI and QMI, including short sharp

reductions during holidays. A particular concurrence of the values of all indices was observed

during the periods where the stricter mobility restrictions were in place (pandemic outbreak

and from November 2020 to February 2021).

Table 3. Monthly similarity metrics between AMIs and RRC.

Google’s human mobility index (HMI)

MED STI COS

Location All years 2020 2021 2022 All years All years

London 5.8 ●●● 8.3 ●●● 3.0 ●●● 6.5 ●●● 0.87 ▲▲4 0.99 ▲▲▲
New York 9.2 ●●● 12.5 ●●� 8.2 ●●● 7.0 ●●● 0.93 ▲▲▲ 0.99 ▲▲▲
Santiago 18.1 ●●� 14.2 ●●� 18.6 ●●� 21.8 ●●� 0.90 ▲▲▲ 0.94 ▲▲▲
Sydney 4.1 ●●● 5.3 ●●● 4.3 ●●● 2.1 ●●● 0.94 ▲▲▲ 0.99 ▲▲▲
Toronto 10.1 ●●� 13.9 ●●� 8.1 ●●● 8.1 ●●● 0.90 ▲▲▲ 0.99 ▲▲▲
Bogota 35.2 ●�� 14.6 ●●� 43.0 ●�� 49.8 ●�� 0.84 ▲▲4 0.52 ▲44
Dallas 13.4 ●●� 13.2 ●●� 16.7 ●●� 9.4 ●●● 0.71 ▲44 0.99 ▲▲▲
Denver 18.1 ●●� 10.3 ●●� 23.9 ●●� 20.0 ●●� 0.77 ▲44 0.96 ▲▲▲
Salt Lake 15.7 ●●� 12.4 ●●� 21.4 ●●� 12.2 ●●� 0.71 ▲44 0.97 ▲▲▲
Chicago 18.0 ●●� 18.8 ●●� 20.3 ●●� 13.8 ●●� 0.90 ▲▲▲ 0.99 ▲▲▲
Taipei - - - - - -

Hong Kong 10.3 ●●� 7.4 ●●● 11.9 ●●� 11.8 ●●� 0.94 ▲▲▲ 0.81 ▲▲▲
Average 14.4 11.9 16.3 14.8 0.86 0.92

Std. Deviation 8.1 3.6 10.8 12.4 0.08 0.14

Median 13.4 12.5 16.7 11.9 0.90 0.99

Apple query modified index (QMI)

MED STI COS

Locations All years 2020 2021 2022 All years All years

London 36.2 ●�� 13.4 ●●� 44.6 ●�� 73.3 ●�� 0.81 ▲▲4 0.61 ▲44
New York 37.6 ●�� 14.8 ●●� 47.7 ●�� 64.3 ●�� 0.88 ▲▲4 0.67 ▲44
Santiago - - - - - -

Sydney 11.2 ●●� 2.8 ●●● 10.9 ●●� 35.3 ●�� 0.81 ▲▲4 0.96 ▲▲▲
Toronto 28.4 ●�� 13.1 ●●� 33.3 ●�� 56.0 ●�� 0.88 ▲▲4 0.83 ▲▲4
Bogota - - - - - -

Dallas 18.6 ●●� 10.1 ●●� 19.9 ●●� 38.0 ●�� 0.77 ▲44 0.90 ▲▲▲
Denver 27.0 ●�� 12.1 ●●� 33.5 ●�� 48.1 ●�� 0.92 ▲▲▲ 0.83 ▲▲4
Salt Lake 30.1●�� 12.0 ●●� 35.3 ●�� 64.6 ●�� 0.73 ▲44 0.67 ▲44
Chicago 33.5 ●�� 7.6 ●●● 47.1 ●�� 64.2 ●�� 0.85 ▲▲4 0.66 ▲44
Taipei 16.8 ●●� 18.7 ●●� 13.5 ●●� 14.4 ●●� 0.85 ▲▲4 0.91 ▲▲▲
Hong Kong - - - - - -

Average 26.6 11.6 31.8 50.9 0.83 0.78

Std. Deviation 8.7 4.2 13.3 17.7 0.06 0.12

Median 28.4 12.1 33.5 56.0 0.85 0.83

AMIs: aggregate mobility indices, RRC: ridership relative change index, MED: mean Euclidean distance, STI: similarity trend index, COS: the cosine distance. ●●●:

MED� 10, ●●�: 10<MED�25, ●��: MED>25. ▲▲▲: STI/COS� 0.90, ▲▲4: 0.90>STI/COS�0.80, ▲44: STI/COS <0.80.

https://doi.org/10.1371/journal.pone.0296686.t003
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Fig 3. Daily variation of PT mobility indices. HMI, QMI and RRC for the case studies of London, New York and

Santiago.

https://doi.org/10.1371/journal.pone.0296686.g003
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To identify changes in the pattern of the dissimilarity between the AMIs and RRC, Fig 3

also presents the differences between them for each day. A positive distance indicates that the

AMIs observed a lower relative drop or a higher relative increase than the RRC. The difference

between HMI and the RRC showed relatively constant values, whilst the difference between

QMI and the RRC exhibited greater variability. In general, mostly positive differences were

observed, except for London, where the HMI generated negative differences from May 2021

onwards. This situation coincides with changes in the fare scheme for children, which involved

removing free travel for some ages. The highest dissimilarities in the London case between

HMI and RRC were observed from April to May 2020, when mandatory payments in Lon-

don’s buses were suspended. In the case of New York, a change in the trend of the differences

was observed during the first half of 2020, where RRC was represented only by the subway rid-

ership. In the case of Santiago, the most remarkable observed differences were associated with

sharp peaks in the HMI during special events (e.g. national elections and referenda). For the

QMI, the highest differences with the RRC were observed during the first recovery period

(June to November 2020) and during the second recovery (April 2021 onwards, where QMI

was considerably higher). A ratio of increase in the number of PT queries greater than the

recovery in the actual ridership during the first half of 2021, when many restrictions were

eased, would explain these discrepancies. This interpretation is supported by the results of Syd-

ney (see Fig 2), where its QMI experienced a similar increase when a similar ease of mobility

restrictions started in that city at the end of 2021.

Similarity metrics presented in Table 4 support the descriptive analysis based on Fig 3. Con-

sidering the entire period, the MED for the HMI were 6.2, 9.1 and 18.2 for London, New York

and Santiago, respectively. In the same order, standard deviation values of 5.8, 4.5 and 5.7

were calculated, indicating consistency among the case studies in terms of the differences

between the HMI and the RRC. For each case study, the MED of HMI was seen to be relatively

constant across the three years, showing great stability in its capabilities of replicating the

changes reported by ridership data. In the case of the QMI, an overall MED of 35 percentage

points was estimated for London and New York. Contrasting with the HMI results, the QMI

showed an increasing difference along the time series with the RRC. Moreover, the standard

deviation of the MED of QMI ranged from 26 to 28 percentage points, considerably higher

than the one estimated for HMI. The analysis based on the DTW distance offered a similar

interpretation for the AMIs. The Similarity Trend Index (STI) showed that the HMI replicated

correctly between 75% and 85% of the RRC trend change directions; in the case of the QMI,

the STI dropped to values from 54% to 74%. This may be explained considering that RRC and

HMI depicted higher PT demand recovery on weekends, while QMI reported greater values

on Fridays and Saturdays (see S2 Fig). The cosine distance indicated that QMI only presented

a high similarity with RRC during 2020 and the Granger Causality Test indicated that both

HMI and QMI could be used to predict RRC.

4 Modelling results

Based on the results of the similarity analysis, the HMI was selected as the best candidate for

exploring the capability of AMIs to complement ridership data. Seasonal ARIMAX models

were used to calibrate the relationship between HMI and RRC and then to forecast RRC for

three particular cases (which have already been described in detail in section 3.4): a free bus

travel period in London, a partial ridership data period in New York (both during the first half

of 2020), and the day with the highest recorded RRC in Santiago during late 2022. A seasonal

component of seven days was considered as the correlograms of the time series identified

weekly periodicity. The periods used to fit and validate the models were selected considering
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the nearest interval to the research periods with homogeneous differences between the HMI

and RRC. Two models were fitted for London, one with data located before the research period

and a second with data after it. For fitting and validation purposes, the selected data were split

into two segments considering a proportion 5:1. Details of the fitting, validation and research

periods, as well as the modelling results, are shown in Table 5.

The results highlighted the statistical significance of the HMI in the model estimation of

RRC (t-statistic higher than 50.0), whose relationship with the actual RRC (ω) was estimated

between 0.97 and 1.15. Both, the non-seasonal (daily correlation) and the seasonal (weekly cor-

relation) components were statistically significant in the modelling. In the non-seasonal com-

ponent, coefficients ϕ of the Autoregressive model (AR) were significant in the first order

(p = 1). This means that the RRC on a day before (t-1) only was relevant to explain the RRC

value of the next observation (t). AR coefficients were all positive, ranging from 0.24 to 0.96. In

the case of the Moving Average (MA) coefficients (θ), those associated with the MA of orders 1

and 2 were statistically significant. This implies the prediction benefited from correcting the

error term of the lagged RRC prediction t-1 and t-2. Analogous results were observed for the

seasonal component but related to observations of consecutive weeks (e.g. �
∗
1

indicates a statis-

tically significant effect of the RRC value of the previous week to the prediction of RRC of the

next, considering the same day). The residual of the fitted models satisfied white noise

Table 4. Similarity metrics between AMIs and RRC, daily analysis.

Period Similarity measurement Google’ human mobility Index (HMI) Query modified index (QMI)

London New York Santiago London New York

Distance between AMIs and RRC (in percentage points)

All Mean Euclidian distance (MED) 6.2 9.1 18.2 35.7 36.1

2020 8.8 12.0 14.7 13.6 14.5

2021 3.5 8.2 18.6 44.9 47.9

2022 6.6 7.1 21.2 72.0 61.9

Dynamic Time Warping distance (DTW)

All DTW 5.0 5.8 9.6 24.5 24.2

2020 4.7 5.2 6.6 7.4 6.3

2021 3.8 6.1 9.4 30.5 24.2

2022 6.9 6.4 16.8 64.6 60.3

All MED Std. Dev. 5.8 4.5 5.7 28.5 25.2

MED Weekdays 5.8 8.3 17.5 37.3 36.5

MED Weekends 7.1 11.2 20.1 31.6 35.2

Similarity Trend Index (STI)

All STI 0.80 0.83 0.75 0.61 0.73

2020 0.80 0.82 0.68 0.59 0.70

2021 0.77 0.83 0.76 0.63 0.73

2022 0.85 0.83 0.83 0.54 0.74

Cosine distance (COS)

All COS 0.99 0.99 0.94 0.62 0.69

2020 0.99 0.99 0.99 0.98 0.99

2021 0.99 0.99 0.94 0.37 0.30

2022 0.98 0.99 0.81 -0.78 -0.55

Granger Causality Test

2020 to 2022 Test F 4.8 11.5 19.4 44.8 45.6

p value 0.03 <0.01 <0.01 <0.01 <0.01

https://doi.org/10.1371/journal.pone.0296686.t004
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properties, i.e. no evidence of autocorrelation was found, and the P-values of the Ljung-

Box statistical test were all greater than 0.05. Results indicate an exceptional capability of the

models to replicate recorded RRC using the HMI. RMSE values in the fitting stage fluctuated

between 1.21 and 2.48 only, while MED ranged between 0.90 and 1.72 percentage points.

Moreover, the quality of the predictions for the validation data was as high as the fitting stage,

also obtaining remarkable goodness of fit. Once the models were validated, we employed them

to predict RRC values on previously defined research periods.

4.1 London case study

The fitted and forecasted RRC for the London case study are shown in Fig 4A and 4B. Model-

ling results suggest a substantial under-reporting in ridership due to the free-bus policy

enacted from 20 April to 24 May 2022 (see Fig 4B). The difference between recorded and

Table 5. Seasonal ARIMAX time series modelling results.

London New York Santiago

Period details

Forecasting backward forward backward forward
Fitting period 01 Dec 2020 to 30 Sep 2021 15 Feb to 07 April 2020 01 Dec 2020 to 30 Sep 2021 10 Mar to 10 Aug 2022

Validation period 01 Oct 2020 to 30 Nov 2020 08–14 April 2020 01 Oct 2020 to 30 Nov 2020 11 Aug to 03 Sep—05 Sep to 11 Sep 2022

Research period 15 April to 30 Sep 2020 15 April to 30 Sep 2020 01 March to 30 Sep 2020 04 Sep 2022

Modelling results

Variable Coef (Test-t) Coef (Test-t) Coef (Test-t) Coef (Test-t)

Exogenous variable–Google human mobility Index (HMI)

HMI (ω) 1.15 (54.25) 1.12 (64.86) 0.97 (57.26) 1.14 (51.14)

Model specification

(p, d, q)(P, D, Q) (1,0,1)(1,1,1) (1,0,0)(1,0,0) (1,0,2)(1,0,1) (1,1,1)(2,0,0)

Non-Seasonal Component (p, d, q)

Intercept (μ) - -0.52 (0.40) -9.31 (2.29) -

AR1 (ϕ1) 0.84 (15.21) 0.64 (5.80) 0.96 (43.43) 0.24 (2.28)

MA1 (θ1) -0.38 (4.22) - -0.40 (6.47) 0.89 (15.41)

MA2 (θ2) - - -0.22 (3.82) -

Seasonal Component [s = 7] (P, D, Q)

SAR1 (ϕ∗1) 0.23 (3.02) 0.27 (1.98) 0.99 (204.37) 0.27 (3.26)

SAR2 (ϕ∗2) - - - 0.23 (2.98)

SMA1 (θ∗1) -0.87 (22.28) - -0.88 (23.67) -

Goodness-of-fit

LL -506.67 -101.2 -496.62 -358.02

AIC 1025.13 210.4 1009.24 728.03

BIC 1047.3 218.28 1038.98 746.22

Residuals–Fitting sample

Ljung-Box (P-value) 0.51 0.79 0.56 0.45

MED 0.96 1.31 0.90 1.72

RMSE 1.30 1.62 1.21 2.48

Mean Error 0.04 -0.04 0.02 0.2

Residuals–Validation (out-of-sample data)

MED 0.97 1.19 1.02 2.08

RMSE 1.30 1.46 1.37 2.55

Mean Error 0.50 0.37 0.82 -0.63

https://doi.org/10.1371/journal.pone.0296686.t005
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predicted RRC was at least 20 percentage points when the free-bus trip policy started on 20

April 2020. The predicted RRC (using forward and backward forecasting) coincided with the

under-reporting magnitude, showing only that the forward forecasting generate a slightly

more conservative prediction of the RRC. Predicted RRC suggested that the actual PT demand

started to recover at the end of April 2020, not at the end of May, as the recorded RRC shows.

Thereby, the dissimilarity between recorded and predicted RRC increased as PT demand

started a slow and gradual recovery that ridership data did not take into account. The results

also revealed that even when the free-bus policy finished on 24 May, the under-reporting in

ridership continued for several months, gradually decreasing. In fact, according to Fig 4B, it

took at least two months after the end of the free bus policy to observe the unification between

the recorded and predicted RRC. This finding revealed a gradual adaptation process of PT

users to return to normal payment behaviour after experiencing a free bus ride policy, which

ridership data was unable to observe.

4.2 New York case study

Graphical results for the New York case study are provided in Fig 5A and 5B. Here, using

HMI, it was possible to obtain an approximation of the actual ridership change in the city dur-

ing the research period (see Fig 5B). To understand these results, two facts may be recalled

from the New York data description: a) recorded RRC from 1 March to 30 September 2020 are

Fig 4. Predicted RRC using calibrated HMI for London. (A) Results for the fitting and validation period, (B) Forecasting for the research period (95%

confidence intervals).

https://doi.org/10.1371/journal.pone.0296686.g004
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based only on subway validations, and b) data from 1 October onward contain both bus and

subway ridership data. Thereby, as the calibration between RRC-HMI is made when the com-

plete data are available, the predicted RRC illustrates an approximation of the actual ridership

in the New York MTA, as both bus and subway ridership would have been available. The

results suggest that the actual changes in ridership in the system were lower in magnitude than

the only-subway changes. Therefore, bus ridership should have experienced lower changes

than the subway during the research period. In fact, the estimation showed that bus ridership

was, on average, about 20 percentage points above the recorded relative subway changes for

the period. It is interesting to notice that, as the predicted RRC is depicted below the recorded

RRC on the first weeks of March 2020, the backward forecasting of RRC should be seen as a

conservative approximation of the true RRC in terms of actual ridership recovery.

4.3 Santiago case study

Fitted and forecasted RRC for the Santiago case study are presented in Fig 6A, while Fig 6B

zooms in on a fraction of the validation period. The results of the RRC prediction for the Chil-

ean national referendum on 4 September 2022 showed that the HMI overestimated the

recorded RRC (30.2% vs. 17.2%, see Fig 6B). This difference was much higher than any other

prediction error observed in the validation period, suggesting that the reason for that differ-

ence was an exceptional overestimation in the mobility on PT hubs registered by the HMI.

Fig 5. Predicted RRC using calibrated HMI for New York. (A) Results for the fitting and validation period, (B) Forecasting for the research period (95%

confidence intervals).

https://doi.org/10.1371/journal.pone.0296686.g005
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Several elements that may have influenced the overestimation in the predicted RRC are

hypothesised, related mainly to the nature of the HMI. For instance, a high HMI value may be

associated with an increment in the time spent in PT stations due to higher waiting times of

PT users caused by either a high demand or a limited PT supply. In fact, on 19 December 2021

(also an election day), Santiago’s PT supply was severely criticised for the lack of bus services,

low frequencies and unusually long waiting times. Interestingly, that day Santiago’s HMI

exhibited its highest value (57.1%) and highest difference with the RRC. An additional feasible

cause of the HMI overestimation is linked to the exceptional nature of a national referendum,

which involved millions of people travelling to their assigned locations. This generalised and

exceptional number of people on the street may have affected the MI, for instance, by increas-

ing pedestrian activity near PT hubs. In consequence, even when HMI successfully predicted

RRC on regular days (including public holidays), it may be susceptible to registering higher

mobility levels than the actual ridership on days with exceptional mobility.

5 Concluding discussion

Despite the extended use of aggregated mobility indices (AMIs) as proxy for the aggregate

shifts in PT demand in the last years, existing research is inconclusive as to what extent they

could replicate the changes recorded by actual PT ridership. The results reported here provide

the first rigorous assessment of the capabilities of such indices to reproduce actual aggregate

Fig 6. Predicted RRC using calibrated HMI for Santiago. (A) Results for the fitting and validation period, (B) Forecasting for the research period (95%

confidence intervals).

https://doi.org/10.1371/journal.pone.0296686.g006
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shifts in PT demand. We conducted such assessment addressing the gaps of previous studies

by: 1) establishing a common methodological approach for estimating relative mobility

changes with different data sources, 2) considering a larger number of case studies and analys-

ing differences in a more comprehensive study period and 3) exploring the complementary

role of AMIs with ridership data. We summarise the result of their performance as follows:

• Difference in relative changes between AMIs and ridership data (RRC): AMIs correctly cap-

tured the main changes in ridership levels, particularly for the first year of analysis (2020).

When compared with ridership data, averages monthly differences of only 11.9 ± 3.6 and

11.6 ± 4.2 percentage points were found for the relative changes provided by Google (HMI)

and Apple’s Index (QMI) during 2020, respectively. While considering the daily analysis,

average differences between 8.8 and 14.5 percentage points were observed. Even though

these results suggest that AMIs tend to overestimate relative changes compared with rider-

ship data, they greatly differ from previous studies, which reported differences between 30 to

50 percentage points for the same period [11,34,42]. The fact that previous studies have over-

looked methodological differences between ridership data and AMIs in terms of their collec-

tion and definition would explain these discrepancies. For the following years, HMI kept a

similar performance for all the study period, whilst QMI showed a substantial overestima-

tion from April 2021.

• Accuracy in replicating the direction of change of ridership: The metric varied depending on

the temporal granularity of the analysis. Based on the monthly similarity assessment, HMI

and QMI correctly replicated as high as 85% of the direction changes. In the daily analysis,

only the HMI kept a similar performance; QMI achieved slightly worse (61% to 73% overall).

This difference in the QMI performance for the daily analysis has its root in the higher level

of recovery in the number of PT queries on Fridays and Saturdays, which contrasts with the

patterns recorded by ridership and HMI, which revealed higher recoveries on Saturdays and

Sundays (See S2 Fig).

• Overall consistency: Strong evidence was found supporting a better performance of HMI rel-

ative to QMI. HMI showed a lower and more consistent mean distance with the changes

reported by ridership data across the entire study period and a higher capability to replicate

the direction of ridership change (between 10 and 20 percentage points more accurate).

Additionally, the difference QMI-RRC presented five times the deviation observed between

HMI-RRC. All these findings may imply that indices based on PT queries would be more

prone to generate higher deviation and less accuracy in replicating ridership changes than

GPS-based indices, particularly if extended periods are considered.

Different degrees of similarity were observed between the values of HMI and RRC among

the case studies, with Sydney and London being the two cities where the highest similarities

were found. We hypothesize that the definition of bus stop areas, fare evasion, coverage of PT

services integrated into the AFC system and the variation in the PT infrastructure across the

study period may have influenced how well HMI mimicked RRC. For instance, in the cases of

London and Sydney, having well-established bus stop areas may have increased HMI’s accu-

racy in accounting for changes in PT usage. Similarly, lower fare evasion and higher coverage

of PT services in these two cities may have facilitated that ridership data reproduced the actual

changes in the entire PT network. In contrast, for cities where only partial ridership was avail-

able (i.e. not all PT modes), the observed differences were higher (e.g. the Bogota case) or the

differences observed followed different trends compared with other cases (e.g. Hong Kong).

Since the characteristics and their effects discussed here remain speculative, further supple-

mentary data collection efforts should be made to establish ground truth associations.
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The overestimation in the QMI compared with the recovery in the actual ridership was

observed for most of the cities analysed from April 2021, in moments when mobility restric-

tions were being eased. The reasons for this overestimation were likely the addition of the PT

queries made by the new Apple Map app’s users and the changes in the users’ use behaviour of

the Apple Map app. In particular, in this period users may have had a greater need for infor-

mation on changes made to PT frequencies and services, which may have elevated the number

of PT queries. These circumstances may have caused the increase observed in the QMI values

immediately after the lifting of travel restrictions since this index was estimated considering a

pre-COVID-19 baseline (which implicitly considers a pre-COVID-19 number of users and PT

query behaviour). Hence, addressing the natural increase in the penetration of certain technol-

ogy on which a QMI may be based, as well as the changes in the trend, may be relevant for

future practical applications based on query data. This would improve the reliability of query

indices for mid- and long-term analyses, especially when fixed baseline periods are considered.

Overall, two directions for potential uses of AMIs were identified: (a) providing a comple-

mentary characterisation of ridership changes and (b) providing supplementary information

on the quality of PT services. Related to (a), in cities that do not have access to AFC systems,

AMIs may play a key role in the analysis of PT systems, helping provide a refined characterisa-

tion of mobility trends to face global long-term events such as economic crises, pandemics/epi-

demics and conflicts, and local short-term events such as natural disasters, social unrest and

transport supply disruptions. Such a characterisation is currently unavailable in these contexts,

as existing traditional methods rely on information gathered by surveys, which provide

restricted insights from small sample sizes and partial coverage of the consequences of the

event (temporally and spatially). This contrasts with the capabilities of AMIs, which have the

potential to provide continuous monitoring of the mobility over a region, registering the

impacts of unanticipated events on PT demand and its resilience. In relation to cities that

already have AFC systems, as we demonstrated in this study, AMIs may be useful when rider-

ship data from ticketing is missing or of doubtful quality, such as in the cases of ticket-free rid-

ing days or when there are special periods where evasion is higher. In this regard, AMIs may

offer a more far-reaching alternative to face this challenge than current methods based on

manual passenger counting, motion and weight sensors, and CCTV cameras.

For the second category (b), the same raw ICT data used to estimate AMIs may be imple-

mented to retrieve supplementary information on the quality of PT services. For example, GPS

time on PT hubs could be analysed to study the time spent by owners of phone devices waiting

for a PT service. This practical application has the potential to overcome the limitations of

existing methods associated with travel surveys by providing a more dynamic, continuous and

spatially richer characterisation of waiting times in PT systems. Regarding indices based on PT

queries, there is potential in harnessing the dynamic fluctuations of information requested by

travellers. For instance, an app query-based index may eventually be used to represent users’

perceived level of reliability of the PT supply. This may help PT authorities take action regard-

ing users’ PT information needs. An atypical number of requests between specific O-D could

be used to activate an immediate response from PT operators. The same data set could reveal

whether there are PT service disruptions that could affect frequencies. PT query data may pres-

ent advantages in identifying PT disruption compared with other novel approaches based on

data from social media [47] since PT query data may be easily analysed based on variations in

the query volumes. Interestingly, both data sources (PT query and social media platforms) can

eventually be employed jointly to crosscheck information related to PT service disruption. In

brief, the highest potential of AMIs is either their complementary role with existing smart card

data or the provision of supplementary information on the quality of PT services.
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The findings of this work indicate that AMIs based on data collected by smartphone apps

have the potential to provide a reasonable proxy for the aggregate level shift in public transport

(PT), particularly those that retrieve GPS traces, which also have the potential to provide sup-

plementary information for PT. Nonetheless, many aspects of AMIs still need to be addressed

in the future. The influence of the increasing number of users needs to be clarified, as well as

the penetration rate needed to obtain reliable proxies. Additionally, the existing literature will

greatly benefit from more transparency in how future AMIs are estimated. Ethical and privacy

concerns are also elements that must be considered, as these data sets may reveal private user

information and/or expose identifiable mobility traces. With a proper penetration rate, a rider-

ship characterisation at a neighbourhood or more disaggregate level (e.g. at the level of PT

hubs) may be available. These data would also allow observations to be made at a high granular

temporal resolution, complementing the spatial heterogeneity in such data, eventually provid-

ing a rich representation of PT demand changes across the urban grid. To get to this stage, dis-

aggregate data from ICT companies and App providers related to GPS traces and PT queries

would need to be available (considering both temporal and spatial information). The decision

of the private sector to make available these data may be motivated by the development of

potential applications for the public transport sector. An assessment of the quality of these dis-

aggregated data should be first conducted considering the desired spatial aggregation level

(e.g. neighbourhood, census zone or PT hub). Such analyses should rely on a validation pro-

cess that assesses the match between AMIs and ridership data at the chosen disaggregate level

to investigate AMIs’ data appropriateness. Special attention should be paid to identifying char-

acteristics of the disaggregate zones that may explain the capability of the AMI to mimic rider-

ship across the city (e.g. availability of PT infrastructure, PT demand characteristics). This

analysis would allow the possibility to improve reports on particular zones, increasing the reli-

ability of AMIs to represent the changes of PT demand across the city.

Considering the current and future urban challenges, the importance of mobility data avail-

ability transcends the COVID-19 pandemic. With that in mind, the main contribution of this

work is having proved that AMIs based on a regular smartphone use may be used to generate a

reasonable approximation of the actual aggregate PT demand changes. The results of this

paper support the need for replacing discontinued AMIs provided during the COVID-19 pan-

demic by proposing new AMIs based on similar data sets. For instance, it has been recently

demonstrated that it is possible to replicate big tech companies’ AMIs using GPS traces col-

lected by an emergency smartphone alert app [19]. Regarding the level of PT queries, these

data are currently collected by many private companies and PT operators that run PT trip

planners locally or globally. Additionally, future research should focus not only on validating

new proxies for PT demand based on data collected by mobile phone apps, but also on com-

prehensively integrating these emerging datasets with traditional ones.
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S1 Fig. Average mobility per day of the week by data set, baseline period.

(TIF)

S2 Fig. Weekly periodicity pattern in by index for the London case study.

(TIF)

S1 Table. Monthly and daily datasets.

(XLSX)

PLOS ONE Aggregated mobility indices for inferring public transport ridership changes

PLOS ONE | https://doi.org/10.1371/journal.pone.0296686 January 5, 2024 21 / 24

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0296686.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0296686.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0296686.s003
https://doi.org/10.1371/journal.pone.0296686


Author Contributions

Conceptualization: Maximiliano Lizana, Charisma Choudhury, David Watling.

Data curation: Maximiliano Lizana.

Formal analysis: Maximiliano Lizana.

Investigation: Maximiliano Lizana.

Methodology: Maximiliano Lizana, Charisma Choudhury, David Watling.

Software: Maximiliano Lizana.

Supervision: Charisma Choudhury, David Watling.

Validation: Maximiliano Lizana.

Visualization: Maximiliano Lizana.

Writing – original draft: Maximiliano Lizana.

Writing – review & editing: Maximiliano Lizana, Charisma Choudhury, David Watling.

References
1. UITP. The Value of Data for the Public Transport Sector, https://www.uitp.org/publications/the-value-

for-data-in-the-public-transport-sector/ (2018).

2. Milne D, Watling D. Big data and understanding change in the context of planning transport systems. J

Transp Geogr. 2019; 76: 235–244.

3. Welch TF, Widita A. Big data in public transportation: a review of sources and methods. Transp Rev.

2019; 39: 795–818.

4. Padmakumar A, Patil GR. COVID-19 effects on urban driving, walking, and transit usage trends: Evi-

dence from Indian metropolitan cities. Cities. 2020; 126: 103697.

5. Saha J, Barman B, Chouhan P. Lockdown for COVID-19 and its impact on community mobility in India:

An analysis of the COVID-19 Community Mobility Reports, 2020. Child Youth Serv Rev. 2020; 116:

105160. https://doi.org/10.1016/j.childyouth.2020.105160 PMID: 32834269

6. Demissie MG, Phithakkitnukoon S, Sukhvibul T, et al. Inferring Passenger Travel Demand to Improve

Urban Mobility in Developing Countries Using Cell Phone Data: A Case Study of Senegal. IEEE Trans

Intell Transp Syst. 2016; 17: 2466–2478.

7. Zannat KE, Choudhury CF. Emerging Big Data Sources for Public Transport Planning: A Systematic

Review on Current State of Art and Future Research Directions. J Indian Inst Sci. 2019; 99: 601–619.
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