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ABSTRACT The ability to build accurate traffic assignment models on large-scale major road networks

is essential for effective infrastructure planning. Static traffic assignment models often utilize standard

formulations of congestion functions which suffer from various inaccuracies. Conversely, newer approaches

in the literature rely on inverse optimisation to provide enhanced accuracy but incur significantly heavy

computational costs. The work in this article develops density-based congestion function fitting in order to

compute traffic assignment patterns. Computational efficiency makes the method amenable to be used on

real-world networks at national scale. The methodology is applied on the motorway network connecting

the primary metropolitan areas in England using Motorway Incident Detection and Automatic Signalling

system data. The results demonstrate that the use of density-based congestion functions provides significant

improvement in terms of computational runtime in the order of 11,000 times (22 secs vs 68 hours).

Correspondingly, prediction error from this method (3.9 to 6.9% for time prediction and 10.4 to 10.7% for

flow prediction) slightly outperforms the state-of-the-art Inv-Opt method (5.3 to 8.8% for time prediction and

10.5 to 11% for flow prediction). The increased accuracy provides greater confidence in modelling results

for applications such as cost-benefit analysis and price of anarchy calculations.

INDEX TERMS Static traffic assignment, data-driven congestion functions, strategic road network,MIDAS.

I. INTRODUCTION

A. CONGESTION FUNCTIONS

Road networks are complex systems where drivers adopt

selfish behaviours aimed at minimising their own travel

costs, for instance time, disregarding the impact of such

behaviours on the onset of congestion [1]. Macroscopic

traffic assignment (TA) models have been used by transport

planners to model driver behaviour since the middle of the

twentieth century, however, the topic continues to attract

significant attention from the research community [1], [2],

[3]. In TA models the choice of congestion functions is a

fundamental issue.

Congestion functions, also known as volume-delay func-

tions, are smooth, monotonically increasing functions [4]

The associate editor coordinating the review of this manuscript and

approving it for publication was Maurice J. Khabbaz .

modelling travel time in relation to traffic volumes and are

used to produce flow assignment patterns through the solution

of the Traffic Assignment Problem (TAP) [5].

1) ROAD-SPECIFIC FITTING

Transport agencies frequently use their own set of parameters

for congestion functions, either area-wide but fitted to their

specific network [6], or based on road type [7] that, once

decided, tend to be rarely updated. Fitting functions to

global road network data can improve TA model accuracy

over using standard parameter values [8], [9], [10], although

characteristics of specific road segments may get lost in the

process. Evidence shows that the relationship between flow

and travel time in congested conditions is highly dependent

on road design [11].

Road-specific fitting to overcome this problem has seen

the use of uncongested traffic flow data and travel time
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from automatic detectors [12]. Yet this is only viable for

non-congested traffic, where flow and travel time readings

increase together. Such traffic flows are called hypo-critical,

where the critical flow (i.e. capacity) is the threshold after

which hyper-critical traffic occurs and travel time increases

despite decreasing flows. As such, this approach struggles to

represent hyper-critical congested traffic.

2) THE CHALLENGE OF HYPER-CRITICAL TRAFFIC

Fittings biased towards hypo-critical flows often lead to

underestimated travel times for congested conditions [13].

It has been suggested that congestion functions should be

treated merely as tools for the solution of the TAP for

flow assignment patterns, as opposed to providing reliable

estimates of travel time [14]. However, there are important

reasons for having congestion functions that represent delays

more accurately. For instance, the numerical convergence of

the TAP is affected by the function’s gradient. Also, travel

time estimates are of key importance in testing policies

concerned with vehicle speeds (e.g. air quality and emissions,

cost-benefit analysis) [15]. Therefore, congestion functions

that can more accurately represent travel time in all traffic

regimes are necessary.

The delay predictions of congestion functions may be

misleading in hyper-critical traffic as the functions are

defined both above and below capacity flow, which is not

physically possible. To avoid such misunderstanding, the

functions can be thought to use flow demand to calculate the

travel time of a road. This can be interpreted as the number

of vehicles wishing to use the road, accepting that whenever

the flow demand is greater than capacity significant delays

are experienced [16].

3) ALTERNATIVE FITTING TECHNIQUES FOR

HYPER-CRITICAL TRAFFIC

More accurate representations of the hyper-critical traffic

regime have been obtained by estimating the non-observable

flow demand (i.e. greater than capacity) from observable

measurements [17]. These include incorporating queue-based

theory into the estimation [15], using the queues measured

by loop detectors at bottlenecks to provide the number of

vehicles surplus to capacity that can be used to approximate

flow demand. While promising, this approach has proven

hard to implement, being difficult to measure traffic flow at

every bottleneck point in non-stationary real-world traffic.

Alternatively, traffic density can be taken as a proxy

for flow demand. By using a density-based approach to

congestion function fitting, [13] introduced a more realistic

estimation of congestion functions that can account for both

hypo- and hyper-critical traffic regimes. Such a density-based

approach has been found to lead to a lower error than the

queue-based approach across different types of roads and

areas [16].

Prominent works on hyper-critical fitting or road-specific

functions are not often concerned with quantifying the

impact of these formulations on TAP solutions [12], [13]

and are often limited to a small number of roads or traffic

sensors. Furthermore, both [12] and [13] only investigated

the suitability of the commonly used Bureau of Public Roads

(BPR) formulation for these types of fitting.

The BPR formulation often uses a set of standard

coefficients (α = 0.15, β = 4) suggested at its

inception [18]. Different candidate forms for congestion

functions have been developed in an attempt to address the

perceived shortcomings of BPR and to better incorporate

road characteristics, these include Conical [4], Akçelik [11],

and Exponential [15]. In countries such as England and the

USA, highway authorities recommend using an empirically

modified version of the Akçelik function, which depends

on factors relating to road features [7], [19]. However, for

long uninterrupted stretches of road such as motorways, the

standard simple BPR formulation has been found to perform

well and remains a popular choice [9], [20].

An open research question remains in identifying the most

appropriate choice of function form for road-specific density-

based fitting on a range of highways across a large-scale road

network. This work aims to reveal some insight into this, how

it compares to flow-based fittings, and the effect it has when

used in a data-driven static TA model.

B. DATA-DRIVEN TRAFFIC ASSIGNMENT MODEL

1) MODEL INPUTS

In addressing the impact of congestion functions on the TA

modelling, this work considers solely using loop detector data

to build a fully data-driven model. A prominent example of

this type of modelling approach is the static TA model used

in [21] to effectively calculate flow patterns on the Eastern

Massachusetts highway network. Similar models have also

been applied to portions of the England Strategic Road

Network (SRN) [22], [23].

The three key inputs of static TAmodels include 1) the road

network topography; 2) the Origin-Destination (O-D) matrix

of traffic demand within the network; 3) the congestion

functions. These are used to produce the primary outputs

of expected traffic flow and travel time for vehicles across

each road segment for traffic assignment patterns. These

traffic assignment patterns can include user-equilibrium and

system-optimal.

2) TRAFFIC ASSIGNMENT PATTERNS

The user-equilibrium, also known as Wardrop equilibrium,

is an assignment pattern where drivers pursue their selfish

best route and no individual driver can improve their

travel cost by unilaterally changing their routing. This

flow pattern is frequently observed on real-world networks

and it is commonly assumed that it matches the observed

flows [21], [24]. System-optimal is the flow pattern under

which the global cost of all drivers is minimised. To quantify

the difference in cost between these routing patterns and

highlight the loss of performance on the network, the price
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of anarchy (POA) is used as a metric to compare the two [3],

[25].

3) MACHINE LEARNING-BASED GENERALISED CONGESTION

FUNCTION ESTIMATION

The model in [21] utilised a machine learning-based tech-

nique of fitting a generalized congestion function using

Inverse-Optimisation (Inv-Opt) that fits only a single con-

gestion function to all edges on a network specific to a

particular time period of the day. Utilising a computationally

intensive optimisation problem formulation, the method was

only applied to a small 24-node network. This state-of-

the-art method is the benchmark that the density-based

road-specific congestion functions are compared against on

a large network.

The investigated congestion functions are used in the cal-

culation of the traffic flow pattern and within an O-D matrix

congestion adjustment. The effect of using density-based

fitting on the computation time and accuracy of recreating

the observed flows is compared with machine learning-

based Inv-Opt. The performance informs the suitability for

modelling system-optimal flows.

C. SUMMARY OF CONTRIBUTION

This work utilizes the density-based fitting of congestion

functions that are road-specific in order to improve the

accuracy of TA model prediction and the calculation time

over large highway networks. The techniques are applied

to a sample subnetwork connecting the main metropolitan

areas in England, using traffic speed, occupancy and flow

count data obtained from the Motorway Incident Detection

and Automatic Signalling (MIDAS) system used by National

Highways on the National Traffic Information Service

(NTIS) model of the SRN.

For the tested network, it is shown how the BPR is

the best candidate function form when the individual road

congestion functions are validated. Also, it is demonstrated

that the incorporation of the proposed density-based BPR

fitted congestion function compares favourably to other state-

of-the-art methods for calculating user-equilibrium flows

and associated travel times. At the same time, it remains

computationally tractable and applicable to large networks.

These results imply the approach is more suitable for use on

similar real-world major road networks.

Specifically, the primary contributions of this work are:

• The identification of the functional form of congestion

function that best captures the delay-flow demand

relation on a large sample of road segments from the

England SRN, comparing between the density-based

and flow-based fitting approaches.

• The analysis of fitted road-specific congestion function

parameters showing the advantages of density-based

fitting over flow-based by allowing parameters to

be fitted largely independently, which leads to more

suitable functions for use in the TAP.

• The extension of methods to calculate TA traffic

patterns by including a density-based road-specific

congestion function fitting that is suited to large-scale

real-world networks. This highlights the benefit of

fitting road-specific parameters using density instead of

using standard values.

• The benchmarking of the method against the cur-

rent state-of-the-art for use on SRNs, resulting in

a favourable comparison, especially in the trade-off

between accuracy and computational time.

The contributions provide a more accurate and efficient

data-driven static TA model that can be fitted to any time

window of loop detector data and used for strategic planning.

Whilst dynamic TA models have the advantage of modelling

more complex phenomena such as spillbacks, in their current

state they lack the convergence properties required to be

practical in the context of strategic planning [26]. The

ability to compute flow patterns for real-world large-scale

transportation networks is necessary for testing strategic

interventions, such as adaptive road charges, which aim to

optimize traffic flows and enhance transportation efficiency.

By improving congestion function estimation, this work

advances the state of the art in transportation modeling,

offering practical solutions with real-world applications.

The overall structure of this paper is summarized as

follows. Section II introduces the network definition and

mathematical notation used throughout the paper. Section III

describes the overall methodology for creating a static TA

model using network and loop detector data, and provides

a summary description of the MIDAS and NTIS datasets

used for the case study. In Section IV the main results are

presented. Lastly, the paper is concluded with a discussion

in Section V, followed by a short summary conclusion in

Section VI.

II. PRELIMINARIES AND NOTATION

A. NOTATION

In this work, all the vectors are column vectors. For example,

the column vector x is written as x = {xi, . . . , xdim(x)}, where

dim(x) is the dimension of x. The work uses ‘‘prime’’ (e.g. x′)

to denote the transpose of a matrix or vector. R+ denotes the

set of all nonnegative real numbers. Matrix Q ≥ 0 or vector

x ≥ 0 indicates that all entries of a matrix Q or vector x are

nonnegative. Also, |X | represents the cardinality of a set X .

B. NETWORK DEFINITION

The road network is modelled as a directed graph with a set

of nodes V and a set of edges A. The nodes represent the

interchanges of the road system and the edges are the roads

connecting them. The model assumes the graph is strongly

connected and is defined by the node-edge incidence matrix

with N ∈ {0, 1, −1}(|V |×|A|). On road networks in general

and the England SRN in particular, there is a path between

all pairs of nodes so the assumption is valid.
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TABLE 1. Notation for network definition.

The demand for movement between O-D pairs on the

network is represented by dw ≥ 0 with w = (ws,wt ) the

O-D pair of nodes such that W = {wi : wi = (wsi,wti),

i = 1, . . . , |W|}. dw ∈ R
|V | is a vector with all zeros except

for a −dw for node ws and a dw for node wt .

Let x be the vector of the total edge flow xa on edge a ∈ A.

Then the set of feasible flow vectors F is defined by:

F
def
= {x : ∃xw ∈ R

|A|
+

s.t. x =
∑

w∈W

xw,Nxw = dw, ∀w ∈ W}

where xw indicates the flow vector attributed to O-D pair w.

This implies that the total flow vector x is consistent with the

demands dw between all O-D pairs.

D is the set of hourly average observations in the measured

data used in the congestion function fittings. A collection of

the network variables is provided in Table 1.

III. METHODS AND DATA

The process to calculate the user-equilibrium traffic flow

assignment from a TA model derived from raw loop detector

data consists of four steps. After collecting the traffic data

and associating them with the network model, a simplified,

topographic representation of the motorway network is

extracted. This is the networkmodel on which the O-Dmatrix

can be calculated as well as the congestion functions for the

solution of the TAP, which is then addressed in the fourth and

final step. This process is presented in Figure 1.

A. CONGESTION FUNCTIONS

Accurate congestion functions are key to TA models as they

connect the travel time ta to the vehicle flow demand x̌a on

edge a ∈ A. Note the difference between flow demand x̌a
and flow xa. Flow demand indicates the number of vehicles

wishing to use the edge in a period of time. Under congested

conditions, this may be greater than the flow (x̌a ≥ xa),

as flow cannot exceed capacity but flow demand can.

In the network model, congestion functions take the form:

ta(x̌a) = t0a g

(

x̌a

ma

)

, (1)

where t0a is the free-flow travel time of an edge a ∈ A

and g(·), also known as the travel time multiplier, is a

strictly increasing and continuously differentiable function

dependent on the flow demand x̌a divided by the flow capacity

ma of that edge a ∈ A (i.e. the saturation rate).

FIGURE 1. Procedure to obtain data-driven traffic assignment (TA) model
on real-world road networks from loop detector data.

There are several main candidates for the form of the

travel time multiplier g(·) that have been developed with the

required traits for TA.

1) BPR

The first function, BPR, is consistent with Eq. 1 and widely

used in TA models [24], [25]. In its more general form, it is:

ta = t0a

(

1 + α(
x̌a

ma
)

β
)

, (2)

where the values of α and β are coefficients of the model

commonly taken as 0.15 and 4, respectively [27]. In this work

the form of BPR with these standard coefficients is known as

BPR− Standard .

2) CONICAL

Secondly, conical is a function that was developed after BPR

to address some of its perceived issues [4]. It was based

on a simple mathematical derivation to meet the postulated

requirements of well-behaved congestion functions. The

function is:

ta = t0a

(

2 +

√

α2(1 − x̌a/ma)2 + β2

− α(1 − x̌a/ma) − β

)

, (3)

where

β =
2α − 1

2α − 2
,

and α > 1.
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3) AKÇELIK

Thirdly, Akçelik is a function form which has been used in

practice to improve the BPR further by representing better the

hyper-critical and hypo-critical flow regimes [11]. In previous

works it has been shown to be more accurate in representing

road facilities with signalised intersections [9]. The form of

the function used in this work is a simplified version based

on [15] and [28]:

ta = t0a+

[

0.25

(

(
x̌a

ma
− 1)

+

√

(

(
x̌a

ma
− 1)2 + J

x̌a

ma

))]

, (4)

where J is the delay parameter to be fitted, in this work

it subsumes constants present in other formulations. In this

equation, ta is the average travel time per unit distance

(hr/km) and t0a is the free-flow travel time per unit distance

(hr/km).

4) EXPONENTIAL

In other works, exponential functions are used as an

alternative to BPR as they possess a similar shape [15], and in

some studies they fit traffic with greater accuracy [3]. In this

work, the form of exponential function used is:

ta = t0ae
α(x̌a/ma)

β

, (5)

where the values of α and β are coefficients to be fitted.

B. DENSITY-BASED FITTING OF CONGESTION FUNCTIONS

To estimate the form of g(·) based on observed traffic,

a density-based fitting of the congestion function can be used

to calculate specific functions for each edge of the network

(see [13] for details).

The nature of congestion on roads means that, past the

onset of congestion, flows decrease with increasing travel

time. The onset of congestion corresponds to the flow

reaching capacity, the density at this point, ka(ma), for an

edge a ∈ A is called critical. It separates the hyper-critical

(k > ka(ma)) from the hypo-critical (k < ka(ma)) regime.

In the hyper-critical regime, the travel time increases with

decreasing flow and the flow-to-capacity ratio does not

exceed unit value, as the congestion function would instead

indicate (Figure 2 (a)). This makes fitting a monotonic con-

gestion function to flow-time data not possible. In contrast,

when the non-dimensionalised travel time (ta/t
0
a ) is plotted

against density, the hyper-critical region has travel times that

increase as density increases so the congestion function can

be fitted (Figure 2 (b)).

This method uses data to estimate the traffic density

which can transform the congestion function to a form that

a curve can be fitted and specific estimates of parameters

obtained. The method assumes that the flow demand x̌a of the

congestion function is proportional to density ka such that the

following mapping is assumed:

x̌a = ma
ka

ka(ma)
(6)

Flow is proportional to density in the hypo-critical region

of the fundamental diagram (Figure 3), however in the

hyper-critical it is not. The aim is to use density as a proxy

for the number of vehicles wishing to use a road, x̌a, assuming

Eq. 6 holds for the hyper-critical region.

This mapping is applied to all the previously listed

congestion function forms to fit them using density. In the

example of BPR, the mapping transforms Eq. 2 into Eq. 7.

The same α and β values can be used for both equations. The

BPR expressed in terms of density is:

ta = t0a

(

1 + α

(

ka

ka(ma)

)β
)

, (7)

where, for an edge a ∈ A, ka is density of an edge a ∈ A

and the critical density-at-capacity is ka(ma). By using the

relation of speed to edge length l and travel time (v = l/t),

the BPR expression reformulated in terms of average speed

and density is:

v̂a =
v0a

(

1 + α

(

ka
ka(ma)

)β)
, (8)

where, for an edge a ∈ A, the free-flow speed is v0a, and

v̂a is the computed theoretical speed. The values of α and β

can be fitted using a non-linear least-squares approach which

computes the sum of squared difference between modelled

and observed speeds in the set of observations D:

argmin
α,β

(

∑

d∈D

|v̂a,d − va,d |
2

)

(9)

The data used in the estimation include all daytime

measurements together. Night-time data are excluded as

they rarely present congested flow conditions and so would

bias the result. The per-minute observations are averaged

with 60-min mean values to remove outliers to steady-state

conditions. The fitting is only applied to edges with sufficient

data in the hyper-critical congested region. Edges without

congested data assume the standard values of α and β.

Estimating the traffic density using loop detector data is

limited by the instantaneous time-mean measurements [29].

Accurate space-mean measurements of density are only

practically available with aerial photography [30]. In this

work, the measured vehicle occupancy is used to estimate the

traffic density as is commonly done in practice through Eq.

10 [31], [32].

k =
ρ

Lv + Ls
× Clanes, (10)

where ρ is the measuredmean lane occupancy (the fraction of

time the detector has a vehicle above). Lv is the mean length

of vehicle and Ls is the length of sensor. Clanes is the number

of lanes for the road.
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FIGURE 2. Example of hypo-critical (blue) and hyper-critical (red) observations for: (a) Hourly non-dimensional travel time (ta/t0
a ) against hourly

flow/capacity (xa/ma); (b) Hourly non-dimensional travel time (ta/t0
a ) against hourly density/critical density (ka/ka(ma)). The Bureau of Public Roads

(BPR) function is fitted to the data in (b) and also plotted in (a) for comparison. The measurements are the hourly average traffic of an edge on the
subnetwork on the weekdays selected for analysis between September 2018 and May 2019.

For the MIDAS system, the sensor length is 2m. The mean

vehicle length is calculated by using the vehicle class-specific

flow data to calculate a weighted average vehicle length for

each minute recorded by the system.

During fitting, the authors in [13] suggested applying

a weighting, as the number of data points recorded for

hyper-critical congested flow (ka > ka(ma)) is dwarfed by

that of hypo-critical flow (ka < ka(ma)). In this work, the

values are not weighted as experiments with the data

showed the effect to be limited on the TA results. The

same authors also suggest including density-at-capacity and

free-flow speed as variables to optimise in Eq. 9, however,

the effect on the results of this approach was also limited

so is not used. Time bin-specific congestion functions were

considered, however, this reduced the number of data points

and led to worse performance than combining all daytime

measurements.

C. INVERSE-OPTIMISATION CONGESTION FUNCTION

ESTIMATION

Acting here as a performance benchmark for the TA model,

the Inverse-Optimization (Inv-Opt) of the TAP estimates a

general function g(·) for all links a ∈ A for each analysis

time period (e.g. AM 6 am - 10 am) [21]. Inv-Opt assumes

the measurements of the time bin average flows on the roads

are the user-equilibrium flows and solutions to the TAP

for a specific congestion function and O-D demand matrix.

It aims to find this congestion function such that the resulting

calculated user-equilibrium flows are as close as possible to

the observed measurements. It incorporates support vector

regression with a polynomial kernel to produce a function of

the form:

ĝ(x) =

n
∑

i=0

β∗
i x

i = 1 +

n
∑

i=1

β∗
i x

i, (11)

where an optimal β* is obtained by solving the Inv-Opt

quadratic programming problem. n is a hyperparameter to

be selected and is the order of the polynomial congestion

function.

The implemented code is taken from [33] which includes

an additional normalisation constraint to match the total cost

of the fitted congestion function on all edges to that of a BPR

with standard coefficients.

D. CALCULATING FREE-FLOW TRAVEL TIME, CAPACITY

AND DENSITY-AT-CAPACITY

In this work, as in [34], the proposed congestion function

estimation uses the maximum of the observed flows on an

edge as its capacity. The density-at-capacity ka(ma) is then

obtained as the minimum density, across all the observations,

corresponding to such a flow. This obtains the peak of

the rising free-flow branch of the fundamental diagram

(Figure 3). The NTIS-provided values of capacity are used for

edges without sufficient congestion data for this estimation.

The free-flow travel time t0a is obtained by taking the

95th percentile of the observed speeds [12], [21], [35] as the

free-flow speed then converting it to the travel time through

the edge length.

E. TRAFFIC ASSIGNMENT MODEL CALCULATIONS

1) ESTIMATING THE O-D DEMAND MATRIX

The Generalised Least Squares (GLS) method, together

with the Bi-Level optimisation problem (BiLev) adjustment

algorithm, is used to estimate the key input of the O-D

demand matrix without a demand survey using only mean

hourly flow counts. The method used in this work is similar

to [21]. It is computationally limited by the size of network

(i.e. number of O-D pairs) the optimisation can be applied

to and this limits the size of network investigated in this

work [23]. Furthermore, to obtain reliable demand estimates,
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FIGURE 3. Example fundamental diagram for obtaining capacity ma

(which is taken as maximum observed flow rate xa) denoted by the red
circle in the plot and ka(ma) (associated density-at-capacity) from the
flow (xa) vs. estimated density (ka). The measurements are the observed
hourly average traffic of an edge of the subnetwork on the weekdays
selected for analysis between September 2018 and May 2019.

it needs a large enough sample of themean hourly flow counts

that depends on the size of the network. This limits how

small the analysis window can be to obtain sufficient days of

data.

To obtain different static demand profiles, the weekday

flow data are grouped into time bins of distinct periods, AM:

6 am – 10 am,MD (midday): 10 am – 4 pm, PM: 4 pm – 8 pm.

For each time bin, the mean hourly flow is calculated over the

respective period. The time bins are chosen to encapsulate the

demand for the morning and evening commuting traffic and

the middle of the day period. These periods are of interest

for the strategic analysis of congestion and they are similar

to those used in other data-driven TA models [21]. By having

three different time bins, it allows testing of the TA model

performance of the alternative congestion function estimation

methods in different demand scenarios.

2) FLOW PATTERN CALCULATION

The predicted user-equilibrium flow pattern can be calculated

using the adjusted O-D demand matrix and evaluated

congestion functions through the Frank-Wolfe algorithm.

This is done with the following optimisation of the flow-

based TAP [5]:

min
x∈F

TUE (x) =
∑

a∈A

∫ xa

0

ta(s)ds (12)

The Frank-Wolfe algorithm implemented uses a conver-

gence criterion based on the size of relative gap between

consecutive iterations [5]. A non-dimensional relative gap

of ϵ = 10−5 is used for the convergence of the edge

flows, as that has been shown to be sufficient in previous

analysis [26].

The user-equilibrium flow pattern results from drivers

pursuing their selfish best route and throughout this work it

is assumed to match the observed flows as commonly done

in other works [21], [24]. Stochastic and bounded rationality

user-equilibria may provide more realistic driver behaviour

with increased computational complexity. However, deter-

ministic user-equilibrium has been found to match observed

traffic patterns well at the network scale [36]. The difference

between the predicted user-equilibrium flow and travel time

patterns compared to the observed flows and travel times is

used as a measure of the suitability of a congestion function

method in TA models.

For a flow pattern, the Total System Travel Time (TSTT)

(i.e. total generalised network cost) for the network is

calculated using:

C(x) =
∑

a∈A

xata(xa). (13)

This quantity is a measure of the total cost for all drivers on

the network for a time bin.

F. THE ENGLAND STRATEGIC ROAD NETWORK

1) RAW DATASET DESCRIPTION

This work uses traffic data obtained through the MIDAS

system installed on key motorways of the England SRN.

The dataset analysed includes nine months of weekdays from

September 2018 to May 2019 (excluding public holidays).

Most of the traffic data from MIDAS is obtained through

under-road inductive loops spaced approximately every

500m. At approximately 7000 site on the SRN, the system

measures speed, flow, occupancy, and headway. Data is

aggregated over 1-minute intervals and provided on a per-lane

basis.

The NTIS Network and Asset Model contains information

on the different systems National Highways uses to monitor

traffic on the SRN. It contains information on the location

of MIDAS sensors and geospatial information of the road

junctions and motorways that can be converted into a topo-

graphic representation of the network [37]. Also, it contains

information on the direction of travel, capacity and length of

the associated weighted graph’s edges.

As a motorway system, it is assumed that the SRN does not

have intersection control devices such as traffic lights [37],

so the TA model does not need to account for associated

delays at nodes. In general, TA models accounting for node

delays have greater accuracy on road networks with such

devices (e.g. urban areas) [1].

The central section of the SRN network was chosen for

analysis (Figure 4). This portion encompasses the primary

roads with relevant MIDAS sensor sites that connect major

cities in England. It was selected due to its extensive

coverage by the MIDAS system, facilitating the creation

of a fully connected network suitable for a data-driven

TA model. Additionally, its size was conducive to the

O-D estimation techniques applied. By connecting some of

England’s most heavily populated urban centers, such as

London, Birmingham, Manchester, and Leeds, this subnet-

work enables the exploration of a significant segment of SRN

traffic, which in itself accounts for one-third of the total

national vehicle miles travelled [38].
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FIGURE 4. Graph Representation of the National Traffic Information
Service (NTIS) model of the central England Strategic Road Network
(SRN). Map underlay obtained from Google Maps [39].

2) NETWORK GRAPH TOPOGRAPHIC REPRESENTATION

The purpose of the TA model is to represent the overall flows

of traffic around the network. It is not focused on how the

vehicles navigate through the junctions between roads. For

this reason, a processed degenerate arterial road topographic

representation is created based on the NTIS road model.

In this processed version of the NTIS model the junctions

and interchanges are simplified to single supernodes and

the carriageways connecting them are grouped as single

superedges. After the process of node and edge combination,

the supernodes and superedges that constitute the simplified

topographic representation are referred to as its nodes and

edges.

The topographic representation of the central subnetwork

of the SRN is presented in Figure 5. It is has 73 nodes,

156 edges and 5256 O-D pairs. Due to limitations on the

MIDAS data and computational requirements, a number of

minor roads and junctions are omitted.

The number of nodes and edges of the topographic

representation is too many to compute Inv-Opt. The largest

previously considered network for Inv-Opt was composed

of 24 edges. As in previous works, to reduce computational

difficulty the functions are fitted to the last 75 days of data on

a further simplified network (see Appendix), which is then

applied to the full topographic representation [21].

3) MIDAS DATA EXTRACTION

Using the NTIS dataset, available sensor data are extracted

for the associated topographic edges. For each weekday time

bin (AM, MD, PM), the mean hourly flow is calculated over

the respective period. Data were omitted from dates which

coincided with public holidays, days with major weather

disruption (i.e. snow on 01/02/2019), and around the first and

last week of the year due to unrepresentative holiday demand

disruption (20/12/2018 - 07/01/2019).

Loop detector data can contain errors and needs to be

processed before use [40]. To do this, the median flow

FIGURE 5. Topographic representation of the subnetwork of the main
roads connecting the central England Strategic Road Network SRN.

readings are used when multiple sensors are available on the

same edge. This is to filter out erroneous readings, identified

as those with a value of more than twice the median absolute

deviation from the median. This assists the central tendency

of measured flows to be resistant to individual sensors with

faults and those that do not measure the main carriageway.

Due to reliability issues with loop detector data, the data

available from the MIDAS sensors can change over the time

window of analysis. The data available for each edge are

assessed, and days of data that are missing measurements

(i.e. zero flow) for any of the edges in any of the time

bins are excluded from the final data set. If the sensors on

a particular edge are consistently returning faulty readings,

then the topographic graph is amended to absorb that edge

into its neighbour. This is rare and usually occurs when a short

edge is monitored by a single faulty sensor. The absorption

of neighbouring edges omits intermediate junctions, reducing

the accuracy of the topographic representation of the SRN;

however, it produces an approximation for a test network

suitable for the investigations comparing different congestion

function estimation techniques.

From the period September 2018 to May 2019, the final

number of used weekdays of data was 166 out of a possible

273 days, which is sufficient for the application of the OD

demand estimation. The analysis performed on this data

window captures an average trend in traffic on the network,

useful for the high-level strategic analysis of structural

congestion suited to static TA models.

The computation time for extracting and processing (all

time bins) each day ofMIDAS data was on average 12.5 mins

run in parallel on a Dell PowerEdge C6320 with 2.4GHz Intel

Xeon E5-2630 v3 CPU and 4GB RAM.

4) SELECTION OF EDGES TO APPLY ROAD-SPECIFIC FITTING

The edges that road-specific fitting is applied to are best

limited to those with suitable data measurements to improve
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accuracy. Those considered not suitable are: 1) edges without

data in the hyper-critical regime (17 edges); 2) Edges with

the peak of the flows missed by the sensor system (1 edge);

3) edges where it appears multiple speed limits have been

in operation (1 edge). The edges can have a combination of

the problems. In total, 18 (12%) of the edges are unsuitable,

leaving 138 to apply the method to.

IV. RESULTS

A. CHOICE OF FUNCTION FOR DENSITY-BASED FITTING

1) ALTERNATIVE FUNCTIONS

In this section, the alternative forms for fitting the congestion

functions are tested.

The fitting was applied to BPR, Conical, Akçelik and

Exponential with the dependent variable trialled with density,

all the flow and only the hypo-critical flow region (hypo-

flow). As a non-linear least squares regression is used to fit

the parameters, the goodness-of-fit is assessed using the Root

Mean Square Error (RMSE) of the predicted speed values on

each edge selected for fitting a′ ∈ A.

RMSEa′ =

√

√

√

√
6n
i=1

(

vobs
i,a′ − v̂i,a′

)2

n
, (14)

where the vobs
i,a′ is the observed hourly average speed during

time-bins AM, MD and PM. v̂i,a′ is the predicted average

speed based on the observed hourly flow. i ∈ D is the hourly

observation and n is the total number of observations.

The range of RMSE values for the fittings on the selected

138 edges of the sample subnetwork show that across the

different approaches to fitting, density-based fitting has

the lowest RMSE value (Figure 6). Within density-based,

the best errors are found for the BPR and exponential

function forms, with BPR slightly better. For flow and

hypo-flow fittings, it can be seen that all forms perform

similarly.

From these results, it can be concluded that BPR is the

best choice of congestion function form within the tested

functions as it consistently has a low error when applied

systematically using density-based fitting. This finding is in

line with previous research which has suggested that BPR

is the best choice for uninterrupted flow facilities such as

motorways [9].

BPR and exponential have a similar shape which explains

why they perform similarly. Due to the slightly better result of

BPR in Figure 6 (c) and the wide adoption of BPR in transport

planning software it is BPR that is used for further analysis

of density-based fitting.

B. BPR PARAMETER RANGE AND CORRELATION

The convergence of the TAP is determined by the range of

values that are fitted to the BPR function. In Figure 7 it can be

seen that the distribution of α and β are different when fitting

with density, flow and hypo-flow. The flow-based fitting can

be seen to have the largest spread of values. A large amount

FIGURE 6. Distribution of Root Mean Square Error (RMSE) values with
fitting different function forms to the edges of the subnetwork with
different traffic variables: (a) Flow; (b) Hypocritical flow only; (c) Density.
The whiskers of the boxplots represent the range, the box is the IQR and
median. The predicted average speeds, based on the observed hourly
flows, are compared with the observed hourly speeds using
measurements from the weekdays selected for analysis between
September 2018 and May 2019.

of the β values are close to 1 for the flow-based and hypo-

flow-based fittings, this could have a negative impact on the

convergence of TAP as the functions may not sufficiently

encourage the redistribution of vehicles exceeding capacity

on those edges. The fitting of β is limited to not going

below 1, as this would cause convergence issues in the TAP.

The β values for the density-based fitting are all greater

than 2, which means they should sufficiently encourage the

redistribution of vehicles exceeding capacity. Furthermore,

they are in accordance with the values of β mostly used in

practice, typically between 2 and 12 [41].

A key difference between the BPR parameters fitted with

density and those fitted with flow is that the Pearson rank

correlation coefficient shows that the values of α and β are

essentially independent for density-based fitting (r=0.009),

whereas for flow (r=0.693) and hypo-flow (r=0.727) fitting

there is a large amount of positive correlation.

As can be seen in Figure 2, for fitting to flow and

hypo-flow there are no data points with a saturation rate

above 1 (xa/ma > 1), because flow cannot exceed capacity.

This means there is an absence of information for fitting the

region of the BPRwhere x̌a/ma > 1. This region has the most

influence on β, the parameter which represents how quickly

delays increase in hyper-critical conditions. The value of α

has more influence representing delays in the hypo-critical

regime x̌a/ma ≤ 1. When fitting to flow and hypo-flow, both

α and β are fitted to the same data points with saturation rates

of less than 1 (xa/ma < 1), which leads to them exhibiting

correlation. However, with its approximation of flow demand

in the hyper-critical regime, density-based fitting does not

have this problem and its parameters can be fitted with almost

no correlation. The density-based fitting’s β values can more

accurately represent how flow demand increases in congested

hyper-critical conditions.
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FIGURE 7. Distribution of Bureau of Public Roads (BPR) congestion function coefficient values fitted with different traffic variable:
(a) Flow; (b) Hypo-flow; (c) Density. The fittings are applied to the observed hourly average traffic of each edge of the subnetwork on the
weekdays selected for analysis between September 2018 and May 2019.

C. FITTED CAPACITY AND FREE-FLOW SPEED

In addition to the choice of congestion function form and

parameters, the road capacity and free-flow speed (and travel

time) have a strong impact on TA results.

On the subnetwork, the distribution of fitted capacities

shows a wide range of values, from around 2700 to 8300, with

the highest frequency of capacities between 4000 and 8000

(Figure 8 (a)). Compared to the capacity values provided by

the NTIS model, which tend to group around either 6500 or

8500, there is a wider spread of values. On average the

fitted values are 17% lower than the values provided in the

NTIS model, which is not as large a difference as the 66%

average decrease of fitted values from reference table values

in [12].

The free-flow speed results show a spread between

90-120 km/h around the 113 km/h (70mph) speed limit

(Figure 8 (b)). This result shows that using a free-flow travel

time based on posted speed limit is inaccurate, as there is

variation between the roads which could be dependent on

road-specific features such as road condition, curvature and

position in the network. Accuracy in estimating the resulting

free-flow travel time is instrumental in the solution of the

TAP.

D. USER-EQUILIBRIUM ASSIGNMENT PREDICTION

Relative errors in the flow and travel times of the

user-equilibrium assignment prediction are used to evaluate

the performance of the density-fitted BPR method of con-

gestion function estimation (BPR-Density). A comparison

is made using BPR with standard coefficients (α = 0.15,

β = 4) for all edges (BPR-Standard) and the benchmark

of Inv-Opt previously used in this type of data-driven static

TA model. The comparison is made on the subnetwork using

MIDAS measurements from the period September 2018 to

May 2019. For BPR-Density, the edges with the problematic

data identified as not suitable for fitting assume the standard

coefficients of α = 0.15 and β = 4. All methods take the

NTIS values of capacity for these edges.

The Absolute Percentage Errors (APE) are calculated

as:

APE tp,a =
|tuserp,a − tobsp,a |

tobsp,a

, (15)

for travel time, while

APExp,a =
|xuserp,a − xobsp,a |

xobsp,a

, (16)

is used for flows. For each time bin p and edge a, xobsp,a

is the observed flow and tobsp,a is the travel time derived

from observed speed. The values are the mean within

each time bin over the fitting period. tuserp,a is the predicted

travel time derived from the congestion function using

xuserp,a , which is the edge flow value predicted by the model

through solving the user-equilibrium TAP with the calculated

O-D matrix. The APE values for all time bins on all edges

are grouped together to provide the sample, resulting in a

3×156 = 468 sample size that is used to create the boxplots.

The inaccuracy of the user-equilibrium assignment predic-

tion is also assessed through the error in TSTT, Cerror , such

that:

Cperror (x
UE ) =

∑

a∈A xuserp,a t
user
p,a −

∑

a∈A xobsp,a t
obs
p,a

∑

a∈A xobsp,a t
obs
p,a

, (17)

for time bin p. This calculation combines the errors in flow

and time prediction and has particular relevance for analysis

based on aggregate total system cost such as POA.

It was found that the user-equilibrium flows produced

were similar for BPR-Density compared to Inv-Opt and

BPR-Standard (Figure 9 (a)). Overall the errors for the

methods in all time-bins are not statistically different when

tested with a one-way ANOVA. The similarity of flow

prediction error between methods can be expected, as the aim

of the BiLev is to adjust the O-D matrix to make the resulting

user-equilibrium flows match as closely to the observed

flows, which they are all effectively able to do.

There is a difference in the results when comparing

average edge travel time for the user-equilibrium flow pattern

(Figure 9 (b)). The results of one-way ANOVA tests between

the three methods show a statistically significant difference

in performance. There is an improvement from using the

edge-specific density-based BPR fittings compared to the

network-wide values of Inv-Opt and the standard BPR values.

The same trends for flow and travel time accuracy are

consistent within the time bin comparisons (Table 2), where

it is evident that BPR-Density has the best performance in
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FIGURE 8. Fitted parameters for: (a) Comparison between fitted capacity against National Traffic Information Service
(NTIS) capacity (points are semi-transparent, dashed line represent values where fitted capacity matches the capacity
specified by the NTIS); (b) Histogram of free-flow speed (dashed line: posted speed limit). The data used to obtain the
values are the observed hourly average traffic on the edges of the subnetwork for the weekdays selected for analysis
between September 2018 and May 2019.

estimating the travel time. In Table 2, the mean error is the

mean of the difference between measured and calculated

values over all edges. It can be seen that the mean flow

errors are all negative, as well as most of the mean time

errors, indicating there is a systematic underestimation of TA

results regardless of congestion function. BPR-Density has

the lowest values of Cerror (x
ue) in all time-bins, indicating

its superior total network cost prediction. This implies

BPR-Density would be more accurate for use in cost-benefit

analyses and POA calculations. The values of Cerror (x
ue) are

negative in all cases indicating the models also systematically

underestimate TSTT. The underestimation of the models is

likely due to underestimates for the demand leading to less

vehicles on the roads.

E. FUNCTION FITTING COMPUTATION TIME COMPARISON

BPR-Density compares particularly favourably to Inv-Opt

when considering the computation time taken to estimate

the congestion functions. Inv-Opt took 247420s for all three

time-bins, BPR-Density took 22s in total for all the edges.

The Inv-Opt results are for computing equations for all three

time-bins but do not include the cross-validation to set the

hyperparameters. Hence the difference in overall time is even

greater.

The time complexity of Inv-Opt is influenced by the num-

ber of decision variables of the optimisation problem [42].

In the implemented version of the optimisation problem, the

number of variables is of order O(|J |(1+ |W ||V |)), where J

is the number of days of data used in the estimation. As the

network is planar (edges cannot cross over one another), then

|A| ∝ |V |. Also, the number of O-D pairs is related to

the number of nodes, |W | = |V |(|V | − 1). Therefore, the

complexity can be expressed in terms of the number of nodes,

O(|J ||V |3). The complexity of the optimisation problem and

its computation time increases considerably with a larger

network containing more nodes, and also more days of

data used in the fitting. This contrasts with BPR-Density,

which applies the low complexity non-linear least squares

regression to each edge of the network separately, so the

computation time scales linearly with the number of edges

O(|A|), equivalent to O(|V |). BPR-Density can be applied

to the different edges independently in parallel so the

computation time could be even less.

For Inv-Opt, the large increase in computation time as

the network size increases makes the method impractical

for large-scale national-level direct calculation, although the

results suggest a simplified network may give a reasonable

substitute in flow pattern accuracy.

The fitting of the congestion functions was performed on a

Dell PowerEdge C6320 with 2.4GHz Intel Xeon E5-2630 v3

CPU and 24GB RAM.

V. DISCUSSION

From testing density-based fitting of congestion functions on

a subnetwork of the England SRN it has been found that the

best choice of function for use in that type of fitting is BPR.

Despite BPR’s perceived issues, in the case of unsignalised

motorways, it fits the shape of the data better than other

candidates. Alternative functions such as the exponential

equation with a similar shape to BPR also perform well.

The results also show the effect that density-based fitting

has compared to flow-based and hypo-critical flow-based

fitting. The density-based is able to fit the two parameters

of BPR largely independently, whereas they are correlated

when they are fitted with flow-based approaches. This is due

to flow-based lacking information in the hyper-critical flow

regime. The results can conclude that, at the network level,

the density-based fitting of BPR is systematically superior for

reliably obtaining the parameters.

In applying a density-based method, BPR-Density, for

evaluating the congestion functions in a TA model, this work

highlights its potential advantages over more conventional

(i.e. BPR-Standard) and more computationally intensive

machine learning-based methods (i.e. Inv-Opt). The results

show that BPR-Density has a clear advantage over both

BPR-Standard and Inv-Opt in the estimation of the travel

time accuracy when applied in a TA model to predict the
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FIGURE 9. Absolute Percentage Error (APE) in prediction of (a) flow and (b) travel time for user-equilibrium assignment with
alternative congestion function estimation methods. Results are for all time-bins and edges on the subnetwork, using data from the
weekdays selected for analysis between September 2018 and May 2019. The whiskers of the boxplots represent the range, the boxes
are the IQR and median. The points are the individual errors for each edge and time bin. The p-values of one-way ANOVA tests are, #:
p=0.998, ##: p=0.949, ###: p=0.966, *: p=0.237, **: p=0.035, ***: p=1.2e-4.

TABLE 2. Time bin specific user-equilibrium prediction error statistics for all edges on the subnetwork during the analysis period September 2018 to May
2019. The mean errors refers to the mean across all the edges of the subnetwork.

user-equilibrium assignment. This improved accuracy would

have a positive impact on model applications, such as

emissions models.

Compared to BPR-Density, Inv-Opt does have the advan-

tage that it only requires flow data to fit the function, which

could be useful if that is the only data type available. Also,

while it was not possible to apply Inv-Opt to the full-size

network, the functions fitted to the reduced network are

of reasonable accuracy when applied to the more complex

subnetwork. These advantages may be outweighed by the

algorithmic complexity, translating into large differences in

computation time. The results show a very large difference

in time to compute the functions between Inv-Opt and BPR-

Density, strongly suggesting the latter is more suited to the

purpose of strategic transport planning on large SRNs where

the functions may need to be updated regularly. It appears

that the travel time for an individual edge is dependent on the

physical features of the road, such as how it is connected to

other roads. As these features often do not change throughout

the day, BPR-Density’s superior performance suggests it

may prove advantageous to fit a function based on road

characteristics rather than the time of day.

The overall process of using loop detector traffic data

to produce traffic assignments via data-derived congestion

functions and O-D matrices could be used for other road

networks with monitoring systems similar to this work,

including many countries in Europe [43]. The techniques

could then be used to investigate and compare the POA on

different road systems, as well as other high-level strategic

analyses suited to static TA models.

A. FUTURE WORK

There are some shortcomings of the current study that could

be addressed in future work.

By using alternative methods of obtaining the OD demand

matrix for a large network, such as network modularity

partitioning [23], or including alternative demand data

sources (e.g. mobile phone [44]), the analysis could be

applied to smaller windows of time than nine months,

allowing the analysis of seasonal trends in traffic routing.

The limitations of the loop detectors of MIDAS reduce

the accuracy of the topographic representation, limiting the

fidelity of the traffic assignment results. Improvements to

this could be made by augmenting the coverage of the loop

detectors with other data, such as from road-side Bluetooth

data [45]. Also, if such data sources can differentiate

measurements for different vehicle types, this could allow

BPR-Density to be applied to multi-class traffic (i.e. heavy

trucks, motorcycles, etc.).

Possible improvements in the accuracy of density-based

fitting may be sought by utilising better space-mean esti-

mates of traffic density. Also, future work could look into

the improvement of traffic assignment accuracy by using

the density-based congestion function fittings in a fully
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FIGURE 10. Simplified topographic representation of network for the
subnetworks of the main roads connecting the central England Strategic
Road Network. This has been used to fit the congestion functions using
Inverse-Optimisation to ensure computational tractability.

density-based TAP formulation [46], rather than as a proxy

for flow demand.

For the edges that do not have sufficient congested data,

BPR-Density uses the standard coefficients and the NTIS

capacity value. Further work could look into techniques to

estimate such coefficients and capacities from those fitted to

other edges on the network using other attributes (e.g. road

grade).

VI. CONCLUSION

This paper develops the efficient computation of congestion

functions specific to individual roads on a national highway

network solely using loop detector data. The functions

were fitted on a central subnetwork of the England SRN

over a period of nine months and applied in a data-driven

static TA model. The results indicate that this can be

an effective approach in the solution of the TAP for

use in strategic planning. There was an improvement in

user-equilibrium travel time prediction accuracy for the road-

specific BPR-Density fittings compared to the conventional

BPR-Standard and the Inv-Opt method previously applied in

such a type of TA model. Furthermore, the computational

time of fitting the functions of BPR-Density was considerably

lower than Inv-Opt.
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APPENDIX

A. SIMPLIFIED SUBNETWORK FOR

INVERSE-OPTIMISATION FUNCTION ESTIMATION

The method of Inv-Opt is applied to a simplified version

of the central England SRN (Section III-F). This version

(Fig 10) has many motorway junctions omitted as nodes.

In total, it has 30 nodes, 70 edges and 870 O-D pairs.
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