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—— Abstract

Causal multiteam semantics is a framework where probabilistic dependencies arising from data
and causation between variables can be together formalized and studied logically. We discover
complete characterizations of expressivity for several logics that can express probabilistic statements,

conditioning and interventionist counterfactuals. The results characterize the languages in terms of
families of linear equations and closure conditions that define the corresponding classes of causal
multiteams. The characterizations yield a strict hierarchy of expressive power. Finally, we present
some undefinability results based on the characterizations.
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1 Introduction

The main approach to the study of empirical data in the 20th century has been that of
statistics, which makes use of probabilistic notions such as correlation and conditional
(in)dependence between variables. We follow here another line of study — going back at
least to Sewall Wright [40] — insisting that the analysis should not stop at correlations, but
instead should yield information about causation among variables (conditional on appropriate
scientific assumptions). The methods involved in the analysis of causes and effects have
gained in popularity in the last decades, and their mathematics has been vastly developed
under the label of causal inference (see, e.g., [30, 35]). Today the methods of causal inference
are heavily utilized, e.g., in epidemiology [23], econometrics [22], social sciences [28] and
machine learning [32, 33].

One of the next crucial steps in the development of artificial intelligence will be the
capability of Al systems to represent and reason about causal knowledge (see, e.g., [31]). For
the development of Al applications of causal inference, the clarification of the related formal
logical theory is vital. It turns out that many concepts involved in the analysis of causes can
be reduced to the study of interventionist counterfactuals in causal models. Causal models
represent causation between variables using so-called structural equations, which describe
deterministic causal laws that relate the variables to each other. In their simplest form,
interventionist counterfactuals are expressions of the form

“if variables X1, ..., X, were set to values xi,...,x,, then ¥ would take value y”.
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Expressivity of Probabilistic Interventionist Counterfactuals

Such conditionals are counterfactual (contrary to fact) in that their evaluation forces us
to consider an alternative scenario in which the variables Xi,..., X, are subtracted to the
laws that currently determine their behaviour, and the (possibly new) values taken by such
variables are fixed by some external intervention. The causal laws encoded in the model
then allow us to find out, computationally, how all the variables in the system are affected in
this alternative scenario. Research on logics encompassing interventionist counterfactuals
has been active in the past two decades. For example, [13, 17, 7, 9] provided complete
axiomatizations for languages of increasing generality. The papers [18, 41] drew precise
connections with the earlier Stalnaker-Lewis theory of counterfactuals [36, 27]. In [1] logics for
causal reasoning were studied via translations to first-order logic, and the articles [17, 16, 29]
discuss the complexity of causal and probabilistic languages.

The classical literature on causal inference does not neatly separate the methods of
probability and of causal analysis; many standard concepts in causal inference are expressed
by mixing probabilistic and causal statements. In other words, causal inference uses an array
of new notational devices that are not entirely reducible to classical probabilistic reasoning;
two significant examples (from [30]) of these new notations are the conditional do expressions
(Pr(y | do(x),z)) and Pearl’s “counterfactuals” (Pr(Yx=y | Z = z)). We refer the reader to [8]
for a detailed discussion of the meaning and use of these expressions. Roughly speaking,
they both describe the probability that the variable Y takes value y after intervening to
set X to x, conditional upon the observation that Z takes value z; but the two expressions
differ subtly in that in the former the conditioning is performed in the system modified by
the intervention that sets X to x, while in the latter expression conditioning is relative to
the pre-intervention system. To this regard, we follow the proposal of Barbero and Sandu
[2, 4] to decompose these complex causal-probabilistic expressions in terms of a minimal set
of logical primitives. In particular, probabilistic conditioning and causal interventions will
correspond to two distinct logical conditionals, D and O-.

In order to make this decomposition possible, one needs to move from causal models
to the more general causal multiteam semantics, where all the needed logical operators are
available. Team semantics is the semantical framework of modern logics of dependence and
independence. Introduced by Hodges [24] and adapted to dependence logic by Vadnénen [38],
team semantics defines truth in reference to collections of assignments, called teams. Team
semantics is particularly suitable for the formal analysis of dependencies and independencies
in data. Recent developments in the area have broadened the scope of team semantics to
cover probabilistic and quantitative notions of dependence and independence. Durand et
al. [11, 10] introduced multiset and probabilistic variants of team semantics as frameworks
for studying probabilistic dependency notions such as conditional independence logically.
Further analysis has revealed that definability and complexity of logics in these frameworks
are intimately connected to definability and complexity of Presburger ([14, 39]) and real
arithmetic ([21, 20]).

Causal teams, proposed by Barbero and Sandu [3], fuse together teams and causal models,
and model inferences encompassing both functional dependencies arising from data and
causal dependencies arising from structural equations. The logics considered by Barbero
and Sandu use atomic expressions of the form X = x and =(X;Y) to state that the variable
X takes the value x and that (in the data) the value of the variable Y is functionally
determined by the values of the variable X, respectively. Interventionist counterfactuals
(X = x o> y¢) and selective implications (@ D ¢) then describe consequences of actions
and consequences of learning from observations. For example, the intended reading of
the formula “Pressure = 300 o0— Volume = 4” is: If we raise the pressure to 300 kPa, the
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Figure 1 Arrows denote strict inclusion of expressivity; P(0—) and P(D) are incomparable.

volume of the gas will be 4 m>. On the other hand, the intended reading of the formula
“Pressure = 20 D 10 < Altitude < 30” is: If we read 20 kPa from the barometer, the current
altitude is between 10 and 30 km.

Finally, the causal multiteam semantics coined by Barbero and Sandu [4] fuses together
multiteams and causal models. The shift from teams to multiteams makes it now possible to
study probabilistic conditioning and causal interventions in a unified framework. Barbero
and Sandu study a language called PCO (for Probabilities, Causes and Observations) which
they claim to capture a fair portion of the probabilistic causal reasoning that appears in
the field of causal inference. It does indeed suffice to capture many forms of probabilistic

conditioning, and it suffices to express conditional do expressions, the “Pearl counterfactuals”

mentioned above and more general kinds of statements. For example, the statement “the
probability that a sick untreated patient would be healed when treated is at least %” can
be formalised as (Sick = 1 A Treated = 0) D (Treated = 1 @ Pr(Sick = 0) > %). The paper [4]
raises however the doubt whether PCO can express, in general, the comparison of conditional
probabilities (e.g., statements of the form Pr(a | ) = Pr(y | §)). We show here that it fails
to do so; thus, PCO cannot be used, for instance, to compare the expected efficacy of two
distinct (non-enforced) medical treatments.

The cornerstone of this inexpressibility result is an abstract characterization of the
expressive power of PCO, which in particular shows that the classes of probability distributions
that are consistent with a given PCO formula can be described in terms of a certain class
of linear inequalities. On the other hand, by a geometrical argument we see that there are
statements of comparison of conditional probabilities which unavoidably involve inequalities
of second degree. The quest for an understanding of language PCO naturally proceeds via
an understanding of the expressivity of its key resources: evaluation atoms (Pr(a) > €),
comparison atoms (Pr(e) > Pr(B)), observations (D) and interventions (O—). This leads us to
the study of four fragments P~, P, P(2), and P(0—). We characterize the expressive power
of each of these sublogics, as well as the expressivity of PCQO, in terms of closure properties
and of an appropriate class of linear inequalities; these results are schematized in Table
1. Together with geometrical reasoning, these characterizations yield a strict hierarchy of
expressive power, as summarized in Figure 1. The table and the figure also include a language
PCO” that extends PCO with (countably) infinite disjunctions. The manuscript [4] already

shows that this language is more expressive than PCO; our results yield an alternative proof.

The characterization and hierarchy results can be found in Section 3, after a presentation of
the semantics and syntax of the languages (Section 2). Section 4 presents the inexpressibility
result for conditional comparison atoms, and briefly discusses the related issue of definability
of dependencies and independencies.
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Table 1 Characterizations of expressivity of logics. E.g., a class K of causal multiteams is
definable by a P(2)-formula iff K is signed binary, closed under change of laws and rescaling, and
has the empty multiteam property. K is a union of signed binary, when K = Ugcg, K7, for signed
binary sets of causal multiteams K7 of function component ¥ .

Logic Closure properties References
Type of change of rescaling &
inequalities laws empty multiteam
P~ monic X X Thm. 11
P signed monic X X Thm. 11
PO) signed binary X X Thm. 16
P(O-) wunion of signed monics X Thm. 14
PCO  union of signed binary X Thm. 19
PCO” (unrestricted) X [4]
2 Logics with causal multiteam semantics
Capital letters such as X,7,... denote variables (standing for specific magnitudes such
as “temperature” and “volume”) which take values denoted by small letters. The values
of the variable X will be often denoted by x,x’,.... Sets (and tuples, depending on the

context) of variables and values are denoted by boldface letters such as X and x. We consider
probabilities that arise from the counting measures of finite (multi)sets. For finite sets S C T,
we define P7r(S) := %

A signature is a pair (Dom, Ran), where Dom is a finite set of variables and Ran a function
mapping each X € Dom to a finite set Ran(X) of values (the range of X). We stipulate a fixed
ordering on Dom, and write W for the tuple of all the variables of Dom listed in that order.
We write Wy for the variables of Dom \ {X} listed according to the fixed order. For a tuple
X = (Xy,...,X,) of variables, Ran(X) denotes the Cartesian product Ran(X;)X- - -xRan(X,,). An
assignment of signature o is a mapping s : Dom — | Jyepom Ran(X) such that s(X) € Ran(X)
for each X € Dom. The set of all assignments of signature o is denoted by B,. For an
assignment s having the variables of X in its domain, s(X) denotes the tuple (s(X}),..., s(X,)).
For X € Dom, sx is the restriction of s to the variables in X.

A team T of signature o is a subset of B,. Intuitively, a multiteam is just a multiset
analogue of a team. We represent multiteams as (finite) teams with an extra variable Key
(not belonging to the signature) ranging over N, which takes different values over different
assignments of the team, and which is never mentioned in the formal languages. A multiteam
can be then presented as a table; e.g., the following

Key X Y

010
00
01

describes a multiteam containing two “copies” of the assignment s(X, Y) = (0,0) (first two
rows) plus another assignment #(X,Y) = (0, 1). We will say that the variable domain of this
multiteam 7 is Dom = {X, Y}, and omit mentioning the Key variable. Multiteams will be used
to encode probability distributions over the underlying team (in this case, the distribution
that assigns probability % to assignment s, and probability % to ). The “underlying team”
(i.e., support of a multiteam) is characterized formally later in Definition 6.
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Multiteams by themselves do not encode any solid notion of causation; they do not
tell us how a system would be affected by an intervention. We therefore need to enrich
multiteams with additional structure. In particular, we will associate to some of the variables
a deterministic causal law. The law for variable V takes the form of a function, which
describes the way the value of V is generated from the values of other variables in the system.
These laws will be used crucially in order to compute how the model is affected by an
intervention. Furthermore, we will require that each assignment in the multiteam agrees
with these laws.

» Definition 1. A causal multiteam of signature (Dom, Ran) with endogenous variables

End(T) € Dom is a pair T = (T~,F) such that:

1. T™ is a multiteam of domain Dom,

2. F is a function {(V,Fy) | V € End(T)} that assigns to each endogenous variable V a
non-constant [Wyl-ary function Fy : Ran(Wy) — Ran(V),

3. (T, F) satisfies the compatibility constraint: Fy(s(Wy)) = s(V), for all s € T~ and
V € End(T).

T~ and F will be called, respectively, the multiteam component and the function com-

ponent of T. We write (Dom(T),Ran(T)) to denote the signature of the causal multiteam T .

Notice that, due to the compatibility constraint, not all instances for End(T) and T~ give rise
to causal multiteams. The function component F induces a system of structural equations;
an equation V := Fy(Wy) for each variable V € End(T'). Note that some of the variables in Wy
may not be necessary for evaluating V. For example, if V is given by the structural equation
V := X + 1, all the variables in Wy \ {X} are irrelevant (we call them dummy arguments of
Fv). The set of non-dummy arguments of ¥y is denoted as PAy (the set of parents of V).

We associate to each causal multiteam T a causal graph G7, whose vertices are the
variables in Dom and where an arrow is drawn from each variable in PAy to V, whenever
V € End(T) (see Example 3 and picture 2 for a depiction). The variables in Dom(7T") \ End(T")
are called exogenous (written Exo(T)).

In the present paper we restrict attention to systems of variables that are connected by
causal laws that do not form cycles (e.g., we exclude the possibility that X causally affects
Y, Y causally affects Z, and in turn Z affects X); such systems are usually called recursive.
Concretely, we enforce the following convention:

Throughout the paper we will implicitly assume that causal multiteams have an acyclic causal
graph.

While the study of cyclic systems is far from absent from the literature (e.g. [37, 34, 17, 1]),
in a probabilistic context it introduces a number of complications that go well beyond the
scope of the framework considered in this paper.

» Definition 2. A causal multiteam S = (S~, Fs) is a causal sub-multiteam of T = (T~,F7),
if they have the same signature, S~ CT~, and Fs = Fr. We then write S <T.

We consider causal multiteams as dynamic models, that can be affected by observations
and interventions. Given a causal multiteam 7 = (T~,¥) and a formula « of some formal
language (evaluated over causal multiteams according to some semantic relation ), “observing
a” produces the causal sub-multiteam 7% = (T*)",F) of T, where (T*)” :={se T~ |({s},F) E
a}.! An intervention on T will not, in general, produce a sub-multiteam of T. It will instead

1 Throughout the paper, the semantic relation in terms of which T is defined will be the semantic relation
for language CO, which shall be defined below.

15:5
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Y N
Key X—Y—Z Key X Y—Z Key X Y—Z
0 011 0 011 0 011
1 1|2 3 1 1|1 1 11112
T : ~ ~ T,
2 [1]12]3 2 |11 Y=l 2 [1]1]2
3 213 5 3 211 3 2113
4 213 5 4 211 4 2113
5 213]5 5 211 5 21113

Figure 2 Causal multiteams for Example 3, showing how the multiteam component T_; of a
causal multiteam is computed from T~ given an intervention do(Y = 1). The figure also describes the
associated causal graphs.

modify the values that appear in some of the columns of T. We consider interventions
that are described by conjunctions of the form X; = x; A--- A X, = x, (or, shortly, X = x).
Such a formula is inconsistent if there are two indexes i, j such that X; and X; denote the
same variable, while x; and x; denote distinct values; it is consistent otherwise. Applying
an intervention do(X = x), where X = x is consistent, to a causal multiteam T = (T~,F)
of endogenous variables V will produce a causal multiteam Tx-x = (Tx_,, Fx=x), Where the
function component is Fxx := Fyv\xy (the restriction of F to the set of variables V \ X) and
the multiteam component is Tg_, := {s§:x | s € T~}, where each sizx is the unique assignment
compatible with Fx_x defined (recursively) as

Xi if V= X; € X
sk (V) = s(V) if V € Exo(T) \ X
Fr(sg_ (Wy) if V € End(T) \ X.

We emphasize that the uniqueness of sgzx, and thus the correctness of this definition, hinges
on our assumption that the causal graphs are acyclic. For an explanation of how interventions
may be defined in the cyclic (non-probabilistic) case, see [1].

» Example 3. Consider the causal multiteam T = (T~,F) depicted in Figure 2, where each
row of the leftmost table depicts an assignment of T~ (e.g., the third row represents an
assignment s with s(Key) = 2, s(X) = 1, s(Y) = 2, s(Z) = 3). The rows of the table are
compatible with the laws Fz(X,Y) = X + Y and Fy(X) = X + 1, while X is exogenous. T
encodes probabilities for formulas that discuss variables X, Y, Z and their possible values; for
example, Pr(Z =3) = %

Suppose we can enforce the variable Y to take the value 1. The effect of such an
intervention, depicted in the right-hand side of Figure 2, is to first set the value of ¥ to 1
(in all rows) and then to recompute the values of Z using the function 7. The probability
distribution has changed: now Pr,_(Z = 3) = 1. Furthermore, the function y is omitted
from Ty-;, and thus the arrow from X to Y has been omitted from the causal graph.

Given two languages L, £ of signature o, whose semantics is defined over causal mul-
titeams, and formulae ¢ € £ and ¢’ € L', we write ¢ =, ¢’ if T E ¢ © T E ¢’ holds for all
causal multiteams T of signature o. We omit the index o if it is clear from the context.
Similarly, we may write L, to emphasise that the signature of £ is o.

We write £ < L' if for every ¢ € L there is ¢’ € L' with ¢ = ¢’. We write L < L' if
L <L but L' £ L. Finally, we write £ = £"if £ < £ and £ < L. K is the set of all causal
multiteams of signature o that satisfy ¢. K7 will be (with the exception of contradictory
formulae) a countably infinite set.
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A class K of causal multiteams is definable in £, if K = K for some ¢ € L.

A class K is flat if (T7,F) € K iff ({s},F) € K for every s € T~. A class K of causal
multiteams of signature o has the empty multiteam property, if K includes all empty
causal multiteams of signature o (we say that a causal multiteam (T~,F) is empty if the
multiteam T~ is). A o-formula ¢ has one of the above (or to be defined) properties, if Ky
has it. A language £ is flat ( resp. has the empty team property), if every ¢ € L is flat (resp.
has the empty team property). In general, we say that £ has a certain property if and only
if each ¢ € £ has it.

The language CO, introduced in [3], is defined by the following BNF grammar:

a=Y=y|Y#y|larna|laVa|laDda|X=xI>aq,

where XU {Y} € Dom, y € Ran(Y), and x € Ran(X). It is a language for the description of facts.
We will later introduce extensions that allow us to talk about the probabilities of the facts
that are expressible in CO. Formulae of the forms Y =y and Y # y are literals. Semantics
for CO is given by the following clauses:

TEY=y iff s(Y)=yforall seT".

TEY+y iff s(Y)#yforall seT .

TEaAp iff TEaand T EB.

TEaVp iff there are Ty, T, <T st. Ty UT, =T,
T 'NT, =0, Ty Faand T, EB.

TEa>p iff T EB.

TEX=x0-p8 iff Tx-x F B or X = x is inconsistent.

where T% is defined simultaneously with the clauses, as previously explained.

The intuitive readings of the conditional formulas @ D 8 and X = x O— f are, respectively,
“After observing (or learning) @, we know that 8 holds” and “After setting X to x, we know
that 8 holds”. Some of the semantic clauses for the other connectives may look unusual to
a reader unaccustomed to team semantics, but they are natural lifts of the usual Tarskian
clauses from a setting in which formulas are evaluated on single assignments to a setting
where they are evaluated on a multiplicity of assignments (for an overview of team semantics,
the reader may consult e.g. [12]). As an example, the clause for a disjunction a Vv 8 is just
stating that each assignment in T satisfies either @ or B. It says so by saying that T can be
split into two parts, one containing assignments that satisfy @ and one containing assignments
that satisfy 8. This reading of the clauses is made possible by the fact that language CO is
flat. The proof of the following result is similar to that of the analogous result for causal
teams [3, Thm. 2.10].

» Theorem 4. CO, is flat and therefore has the empty multiteam property.

In a sense, flatness tells us that CO behaves as a classical language. The probabilistic
languages that we shall consider later will not be flat; probabilistic statements are meaningful
at the level of teams but not at the level of the single assignments.

We also remark that in [3] the operator V was defined without insisting that T, N T; = 0.

This was done since the paper considered set-based semantics. As our semantics is based on

multisets, the appropriate definition of V uses a union that is sensitive to multiplicities (i.e.

disjoint union). Theorem 4 entails that this distinction is irrelevant for CO, but it will have
an impact in forthcoming works that apply Vv to formulae ¢ that do not have the following
property called downward closure: if T ¢ and S < T, then S E ¢.

15:7
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If we pick a variable X in the signature and a value x € Ran(X), we can abbreviate the
formulae X = x VX # xand X = x AX # x as T, resp. L (the former is a valid formula
because it just says that the multiteam can be split in two parts, the assignments where X
takes value x and those where it does not). The so-called dual negation of a formula a,
T E o iff ({s), F) ¥ a for all s € T, is then definable in CO as @ O L.

Next, we introduce a language with probabilistic atoms Pr(a) > €, Pr(a) > €, Pr(a) >
Pr(B), Pr(a) > Pr(B), where a,8 € CO and € € [0,1] N Q. The first two are called evaluation
atoms, and the latter two comparison atoms. Probabilistic atoms together with literals
of CO are called atomic formulae. The probabilistic language PCO is then given by the
following grammar:

pr=nlorplelelade | X=xO> ¢,

where X C Dom, x € Ran(X), 7 is an atomic formula, and @ is a CO formula. Note that the
antecedents of D and the arguments of probability operators are CO formulae. The semantic
clauses for the additional operators are given below:

TEYUYy iff TEyorTEy

T EPr(a)>€ iff T =0or Pr(a) > €

T EPr(a) > € iff T™ =0 or Pr(a) > €

T E Pr(a) = Pr(B) iff T™ =0 or Pr(a) = Pr(B)
T E Pr(a) > Pr(B) iff T~ =0 or Pr(a) > Pr(B),

where Pr(a) is a shorthand for P7-((T%)7).2 The language PCO still has the empty team
property but it is not flat. The definability of the dual negation in CO allows us to introduce
many useful abbreviations:

Pr(@) < e:=Pr@®)>1-¢ Pr(a) = € :=Pr(a) > e APr(a) < €

Pr(a) < €:=Pr(@?) > 1-¢ Pr(@) # € := Pr(@) > e UPr(e) < €

We will see in Section 4 that the D operator enables us to express some statements involving
conditional probabilities.

We consider the following syntactic fragments of PCO, which preserve the syntactic
restrictions yielded by its two level syntax — that the antecedents of D and the arguments
of Pr are always CO formulae. P is the fragment without > and O—. £~ is the fragment of
P without comparison atoms. P(0—) and P(D) are fragments of PCO without > and O,
respectively. Finally, PCO® is the extension of PCO with countable disjunctions of the form
| lies ¥i, where the y; are PCO formulae.

» Example 5. Let T = (T7,F) be a causal multiteam over variables GroundSpeed,
DescentAngle, Structurallntegrity, SafelLanding depicting data related to landing an Airbus
A350-900 aircraft. The first three variables are numerical, while the last is Boolean. The
structural equation Fsi (GS, DA, SI) outputs a Boolean value “true” when a plane of given
structural integrity is expected to make a safe landing at a given speed and angle. The
formula “SI # 0 D [(GS = 300 A DA = 4) 0~ Pr(SL = false) < 0.01]” expresses that the

2 We remark that in PCO (but not in CO!) is it also possible to define, inductively, an operator that
behaves as classical negation on nonempty causal multiteams (weak contradictory negation). Details
can be found in [6]; we will not use it here.
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probability of landing failure is less than 1% when setting a landing speed of 300km/h and
descent angle of 4 degrees, conditional on the plane not being grounded due to structural
condition (SI = 0).

Since we can assume that SI is exogenous (the assessment of structural integrity is not
affected by the speed and angle set during the flight), this statement can be equivalently
written as “(GS = 300 A DA = 4) o— (SI # 0 D Pr(SL = false) < 0.01)”. This would not be
legitimate if SI was causally affected by GS or DA; the operators O— and D do not in general
commute with each other.

3 Expressive power of fragments of PCO

We start by rephrasing the known characterizations from the literature. A number of results
appear in the literature (e.g. in [7]) that characterize causal languages in the context of
causal team semantics. A causal team (of signature o) is, essentially, a pair (T, ), where T~
is a team instead of a multiteam (i.e., a set of assignments on Dom instead of Dom U {Key}),
satisfying the conditions given in Definition 1. Each causal multiteam can be seen as a causal
team enriched with a probability distribution. This correspondence is expressed precisely as
follows:

» Definition 6. The support of a causal multiteam T = (T~,F) is the causal team Team(T) =
(Team(T™), F), where Team(T™) := {s1pom | s € T7}.

It is immediate to see that a language without probabilistic features (such as CO) cannot tell
apart two causal multiteams that have the same support. From this, it is straightforward but
tedious (see the extended version of the paper, [5]) to show that the characterization of CO
given in [7, Theorem 4.4] in terms of causal teams holds unchanged over causal multiteams:

» Theorem 7 (Characterization of CO). Let o be a finite signature, and K a class of causal
multiteams of signature o. Then K is definable by a CO, formula (resp. a set of CO,
formulae) if and only if K is flat.

PCO is a purely probabilistic language; it cannot tell apart multiteams representing the
same distribution. Given an assignment ¢t and a causal team T = (T~, F), we write #(t,T) for

the number of copies of # in T~ and (provided T is nonempty) €’ := #‘(;’_Tl) for the probability
of tin T. Two causal teams S = (S7,F) and T = (T, G) are rescalings of each other (S ~ T)
if # = G and either S" =T~ =0 or € =€ for each assignment z. A class K of causal

multiteams of signature o is closed under rescaling if, whenever § € K and S ~ T, also
T € K. An ideal language for purely probabilistic reasoning should be characterized just
by this condition. It turns out that PCO is not expressive enough for the task, however its
extension with countable global disjunctions PCO” is.

» Theorem 8 ([4]). A nonempty class K of multiteams of signature o is definable in PCOY
iff K has the empty multiteam property and is closed under rescaling.

The key to the proof is the fact that for any causal multiteam (T, %) one can write PCO-
formulae ®7- and ®” that characterize the properties of having team component T~ (up to
rescaling) and function component ¥, respectively. A set K of causal multiteams is then
defined by the formula | |- #)ex(O7- A ®7). Since K can be countably infinite, the proof
crucially depends on the use of infinitary disjunctions and gives us no hints on how to obtain
a finitary logic with such expressivity. Actually, a counting argument given in [4] shows that
such a language must be uncountable, and thus that PCO < PCO®. Our characterization of
the expressivity of PCO will provide an alternative proof for the strict inclusion.
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In order to characterize the expressivity of PCO and its fragments, we need to introduce
some classes of linear equations and closure properties of classes of causal multiteams. For
the latter, we have already seen closure under rescaling and the empty multiteam property.
A class K of causal multiteams of signature o is closed under change of laws if, whenever
(T7,F) € K and G is a system of functions of signature o such that (77, G) satisfies the
compatibility constraint (point 3. of definition 1), then (T, G) € K.

It is self-evident that the logics without O— are closed under change of laws, while the
logics with O— are not. Thus, the following hold.

» Lemma 9. P, P, and P(D) are closed under change of laws. PCO, P(@>), and CO are
not closed under change of laws.

» Corollary 10. < P(0-=), P(O) < PCO, and P(O=) £ P(OD).

3.1 Monic and signed monic probability sets: £~, P, and P(0-)

We characterize the expressivity of fragments of PCO by investigating the families of subsets
of Q" that are definable in the logics. For a given signature o, we fix an enumeration sy,..., s,
of the assignments of B, ; every nonempty causal multiteam T can then be associated with
a probability vector p; = (ESTI, e, esT") € Q". Similarly, a class K of causal multiteams of
signature o has an associated probability set Py = {pr | T € K, T nonempty }. Note that
pr and Py are, respectively, a point and a subset of the standard n — 1-simplex A" (i.e.
the set of points of [0, 1]" N Q" that satisfy the equation €, +--- + €, = 1), respectively. To
each formula ¢, we can associate a probability set I_’¢ = 1_37(¢. Note that if S, T are causal
multiteams of the same signature and same function component, such that pg = py, then §
is a rescaling of T. Similarly, a class K of causal multiteams of signature o that is closed
under change of laws and rescaling is the largest class of causal multiteams of signature o
having probability set Pg.

A linear inequality is an expression of the form a;e +- - - +a,e, > b, where > € {>, <, >, <},
ai,....ap,b € Q, and €,...¢, are variables (in the usual algebraic sense). A linear inequality
is signed monic if each of the g; is in {0, 1, —1}. It is monic if each of the a; is in {0,1}. A
probability set P is (signed) monic if it is a finite union of subsets of A"~! defined by finite
systems of (signed) monic inequalities. A class K of causal multiteams of a fixed signature is
(signed) monic if Py is a (signed) monic probability set.

We will show that being monic and closed under change of laws and rescaling characterizes
expressibility in £, whereas being signed monic and closed under change of laws and rescaling
characterizes expressibility in . The full proofs of the following theorem and the subsequent
lemma can be found in the extended version of the paper ([5]). A crucial role in the proofs is
played by the fact that there are only finitely many assignments of signature o (say s1,..., s,)
and that we can describe each such assignment s; with a formula &; := W = s;(W), where W
lists all the variables in Dom.

» Theorem 11. A class K of multiteams of signature o is definable in P~ if and only if K is
monic, has the empty multiteam property, and is closed under change of laws and rescaling.
K is definable in P if and only if K is signed monic, has the empty multiteam property, and
closed under change of laws and rescaling.

Proof (sketch). The fact that £~ and P have the empty multiteam property and are closed
under rescaling follows from Theorem 8. Since T E Pr(@) > € (resp. T E Pr(a) > Pr(B)) iff
the monic inequality Y cteam(re)-) €; > € (resp. the signed monic inequality Y cream(ro)) € +
Y seTeam(1sy-)(—1) - € > 0) holds, we obtain that £~ (resp. #) is monic (resp. signed monic)
by induction on the syntax of formulae.
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For 7, the right-to-left entailment is proved via a direct translation from finite unions of
finite systems of signed monic inequalities into £~ formulae. The union of systems, which
defines the probability set of K, is expressed via a formula of the form ¢ := | | <jcn Nier, ¥is
where each y; := Pr(\/fkeBrr‘a;( -1 &) < b' expresses an inequality of the form aje +---+a,€, < b'
(it is easy to see that b’ can always be assumed to be in [0,1] N Q). The fact that K has
the empty team property and closure under rescaling guarantees that K is “maximal”, i.e.
it contains all the causal multiteams whose probability set is defined by this system; thus
K=%Kg.

In contrast, for £, we do not construct any general direct translations of signed monic
inequalities into P formulas. However, the signed monic inequalities with constant coefficient
0, say Yie; €& — Xjes € <0 with I N J = 0, are easily translated as Pr(/\;o; &) < Pr(Aje; &;). In
order to extend the argument to inequalities with nonzero constant coefficient, we first use
the simplex equality € +---+¢€, = 1 in order to show that we can assume that such inequality
e has at least one null variable coefficient — say, it is of the form aje; + -+ + a,-16,-1 < b (one
must be careful to ensure that in this simplified inequality we still have a; € {0, 1, -1} and
b€ [0,11N Q). But now e is equivalent to a system of three inequalities:

a€e + -+ a,_ 16,1 — €, <0
€ <b
€ >b

the first of which is expressible in # (since its constant coefficient is zero), while the second
and third are even expressible in £~. <

It is not immediate to see whether £~ < P is strict. However, by analyzing the geometry
of A"! we are able show that there are signed monic classes of causal multiteams that are
not monic. The following lemma establishes that not all signed monic probability sets can
be captured by monic inequalities (more specifically, that this happens for sets defined by
a single signed monic inequality). Together with the previous theorem this implies that
P <P.

» Lemma 12. Consider a nonempty probability set P < A" which is defined by an inequality
ay€ + -+ aye, < b, where there are indexes i, j such that a; is 1 and a; is =1, and b is a
rational number in [0,1]. Then P is not a monic probability set.

Proof (sketch). The projection of the set described in the statement on the (i, j)-plane has
as its frontier a line that is perpendicular to the segment of extremes (0, 1), (1,0). On the
other hand, monic equalities describe, in this projection, only lines that are either parallel to
this segment or parallel to one of the axis. <

Next we turn to characterize the expressivity of P(0-). First note that while P(0-) is in
general more expressive than P (Corollary 10), if we restrict attention to causal multiteams
with a fixed function component, all occurrences of O— can be eliminated from P(0—)
formulae (or even PCO formulae). The following result is proven in the extended version of
the paper ([5]).

» Proposition 13. Let ¢ € P(0-), (resp. PCO, ), and F a function component of signature
o. Then there is a formula ¢© € Py (resp. P(D)y) such that, for every causal multiteam T
of signature o and function component ¥, TE o & T E ¢ .

Proof (sketch). Write @, for the formula W = s(W). First, for every subformulae of ¢ of the
form B >y, replace B with /() s @5 (this removes occurrences of O— from antecedents of
D). Next, we use the fact that o— distributes over A, U, D to guarantee that the consequents
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of O— are atoms. The atoms can be assumed to be probabilistic (since X = x = Pr(X = x) > 1,
and similarly for X # x). Then, we use the equivalences

X=xO-Prl@)<e=PrX=xm> a)<e€
X=x0O-Pr(a) < Pr(f) =Pr(X=x0-» o) <PriX =x 00— )

to ensure that all the occurences of O— are inside arguments of Pr. Finally, we replace each
subformula of the form Pr(a) < € with Pr(\/ e @) < €, and similarly for comparison
atoms. |

Notice that, for any fixed finite signature o, there is only a finite number of distinct function
components. We denote the set they form as F,.

» Theorem 14. Let ‘K be a class of causal multiteams of signature o. K is definable by a
P(0-)s formula if and only if 1) K has the empty multiteam property, 2) K is closed under
rescaling, and 3) K = Uger, K7, where each K is a signed monic set of causal multiteams
of function component F .

Proof. We have already mentioned that there is a PCO formula ®” characterizing the
property of having function component . We can obtain an equivalent formula (call it ¥7)
in P(0-) by replacing each subformula of ® of the form a > 8 with Pr(a? v B) = 1 (the trick
works because no consequent of > in ®* contains probabilistic atoms).

=) Suppose K = K,, where ¢ € P(0-),. Now define, for each ¥ € F,, KT = ONPF 5
where W7 is as described above. Clearly ¢ = Llrer, (@ A ¥7), so Ko = User, K.

Now, by Theorem 8, K, is closed under rescaling and has the empty multiteam property.
Next, observe that, by Proposition 13, for every ¥ € F, there is a formula of P, call it ¢*
which is satisfied by the same causal multiteams of function component ¥ as ¢ A ¥ is. In
other words, K7 is the restriction of K7 to causal multiteams of function component ¥
Thus, since K, is closed under change of laws (Lemma 9), we have Pyr = ﬁxﬁ. Now K

is signed monic (Theorem 11), and thus by E(f = l_Dq(f we conclude that also K7 is signed
monic.

<) Suppose K is closed under rescaling, has the empty multiteam property and K =
Uger, K7 for some sets K7 as in the statement. Write K7 for the set of all causal multiteams
of signature o~ whose team component appears in K7 . It is straightforward then that also KT
is closed under rescaling, has the empty multiteam property and is signed monic; however,
K7 is also, by definition, closed under change of laws. Thus, by Theorem 11, there is a #
formula ¢ such that K7 = K7 Note that, K7 is the set of all causal multiteams of Kor
that have function component . Thus K* = Ko7 apr - Thus K is defined by the P(0-),
formula | Jgez (9" A ¥, <

Note that the sets K7 in the statement of the theorem are themselves closed under rescaling
if K is. This immediately follows from the fact that any two causal multiteams (7, %), (S, G)
with F # G are not rescalings of each other.

3.2 Signed binary probability sets: £(2) and PCO

A subset P of A*! is signed binary if it is a finite union of sets defined by finite systems of
inequalities of the form
C_Zéi+C+ZEj ab
i€l jeJ
where INJ =0, c,c"€Z, ¢ <0, ct 20, beQ. Likewise, a class K of causal multiteams of
signature o is signed binary if Py is.
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» Lemma 15. Fvery formula ¢ € P(D) is signed binary.

Proof. The proof proceeds by induction on ¢. We only discuss the most difficult case, when ¢
is of the form @ > . Write < for any symbol in {<, >, <,>}. Using the distributivity of > over
A and V, and the equivalences X =x=Pr(X =x) =, X #x=Pr(X #x) = ,X =x 0~ Pr(a) «
e=PrX=xm a)<eand X=x0- Pr(a) < Pr(B) = PrX =x > @) < Pr(X = x O0— 3), we
can assume ¥ to be a probabilistic atom. Hence we have two cases.

1) Assume y is Pr(B) < b. Now T = (T, F) € K, iff either Pr(a) <0 or Pr(B|a) <b. The
latter is equivalent to Pr(8 A @) < b - Pr(@), which can be rewritten as

Z eST<1b'ZeST

SEB, SEB,
{siEBAQ {siEa
where we write e.g. {s} E @ as a shorthand for ({s}, F) E a.
The above can be rewritten as

Z el <ab-( Z el + Z )

SEB, SEB, SEB,

{s)EBAa {s}EBAa {slE-Bra

which again is equivalent to

(1=b)- > e +(=b)- > & <. (1)

s€B, SEB,
{s)EBAa {slEBha

Now, since b € [0, 1], we have 1 —b > 0 and —b < 0. Then, by multiplying both sides of (1)
by a common denominator of 1 —b and —b, we obtain a signed binary inequality.

On the other hand, the inequality Pr(a) < 0 can be rewitten as Xy, € < 0. Thus 1_390 is
the union of two sets defined by signed binary inequalities.

2) Assume y is Pr(8) < Pr(y). Now T € K, iff either Pr(a@) <0 or Pr(B| @) < Pr(y | a).
The proof then proceeds as in the previous case. <

» Theorem 16. A class K of multiteams of signature o is definable by a formula of P(D) if
and only if K is signed binary, has the empty multiteam property and is closed under change
of laws and rescaling.

Proof (sketch). =) By Theorem 8, K is closed under rescaling. Closure under change of
laws follows from Lemma 9. Lemma 15 shows that Pg is signed binary. The empty multiteam
property is given by Theorem 4.

<) The proof strategy is analogous to that used for the characterization of # (in
Theorem 11), although it involves more difficult calculations. We need to show that every
constraint of the form

C_Zei+c+ZEj <ab
i€l jeJ
where INJ =0, ¢ ,ct €Z,¢ <0, c¢* >0, beQ, can be expressed in P(D).
First of all, let us prove it in the special case when b is 0. Write d for ¢* — ¢~. Notice
that —d < ¢™ <0 < ¢* <d. We can also assume that d > 0 (the case when d = 0 is covered

=

by Theorem 11). Then —< is a rational number in [0, 1], and thus the following is a P(2)
formula (where, as before, &; stands for W = s;(W)):

( v &) > Pr(\/ &))< —%.

keluJ jel
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Now we have

Tk ( \/ &k)zpr(\/&j)q—%

keluJ jeJ

= P\ a1\ @<=

jeJ kelUuJ

— d-PT(\/&j/\ v &k)<1—c_-PT(\/ &)
jeJ keluJ keluJ
= d-Pr(\/&p<a-c-Pr(\/ &)
jeJ keluJ
= dZejT - Z &
jeJ keluJ
= Y d+@d+c)) € <0
iel jeJ
== C‘Zeir+c+ZejT <0,
i€l jeJ
as required.

Now let us consider the case when b # 0. Suppose, first, that we have an inequality of the
form ¢™ Ye; € +¢* 3 jcj €; < b that satisfies the additional constraint that TUJ = {1,...,n}, i.e.
it contains all variables. We show that then it is equivalent to an inequality of the same form,
but with coefficient 0 for at least one variable. Assuming that I is nonempty, let us pick a
variable in I (that we may assume wlog to be €,). Thus the inequality can be rewritten as:

c” Z 6,-+C+Zej+c_en<1b.

iel\{n} jeJ

Using the fact that, in A"™!, € +--- + €, = 1, we can rewrite the inequality as

c Z 6,~+c+ZE_,-+c’—c’el—--‘—c’en_l b

iel\{n} jeJ

ie.,

Z](c+ —c)ej<b—c,

jeJ
which is of the correct form. In case I is empty, we can perform analogous transformations
to eliminate a variable indexed in J.

Thus we can always assume that an inequality ¢~ ¥ & + ¢ X jc; €; < b (as above) has
coefficient 0 for €,. Let k be a positive integer such that kb € Z. Then, it is easy to see that
our inequality is equivalent to the following system:

(kbc™) X e € + (kbc™) Zjej €j + (kbc™)e, <0
€, < —CL,
€ = —CL_

The first of these inequalities is expressible with a P(2) formula by the discussion above. By
theorem 11 the other two inequalities are expressed by £~ formulae. <

In order to prove that P(2) is strictly more expressive than $ , we can follow a similar
strategy as for separating # and $~. In other words, we use Theorem 16 together with the
fact that there are signed binary probability sets that are not signed monic, as established
by the following lemma.
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» Lemma 17. Let P c A™™! be a probability set defined by a single inequality a\ € +- - -+ane, < b,
where 0 # a;,a; € Z and |a;| # lajl, for some indices i, j. Then P is not signed monic.

Proof (sketch). The proof is analogous to that of Lemma 12, using the fact that the
projection on the (i, j)-plane of the figure described in the statement is neither parallel to
any axis, nor parallel or orthogonal to the segment of extremes (0, 1), (1,0). <

Actually, the lemma immediately yields multiple separation results.
» Proposition 18. 1) P <P(D), 2)P(O) £ P@>), 3)P@>)<PCO.

We are finally ready to characterize the expressive power of PCQO; the proof is analogous
to that of Theorem 14.

» Theorem 19. Let K be a class of causal multiteams of signature o. K is definable by a
PCO, formula if and only if 1) it has the empty multiteam property, 2) it is closed under
rescaling, and 3) K = Uges, K7, where each K7 is a signed binary set of causal multiteams
of function component F .

By Theorem 8, PCO® formulae may characterize arbitrary probability sets. By Theorem
19, instead, we know that the probability sets of PCO formulae are all definable in terms of
linear inequalities. A strict inclusion of languages immediately follows. An alternative proof
for this using a counting argument was given in [4].

» Corollary 20. PCO < PCO”.

4 Definability of probabilistic and dependence atoms

Next we briefly explore the relationships of our logics and the probabilistic atoms studied in
probabilistic and multiteam semantics. We consider the dependence atom by Véédndnen [38],

and marginal distribution identity and probabilistic independence atoms by Durand et al. [10].

The dependence atom =(X;Y) expresses that the values of X functionally determine the
values of Y. Dependence atoms can be expressed already in P(D):

=X;Y) = /\ |_| X=x>Y=y

xeRan(X) yeRan(Y)

The marginal distribution identity atom X =~ Y states that the marginal distributions
induced by X and Y are identical. This can be defined in # by

X~Y:= /\ Pr(X = x) = Pr(Y = X)A
xeRan(X)NRan(Y)
Pr(X =x) = 0 A A Pr(Y = y) = 0.
xeRan(X)\Ran(Y) yeRan(Y)\Ran(X)

The conditional probabilistic atoms inherit their semantics from probability theory:

TEP(a|B) > e iff (T?)™ =0 or Prs(a) > €.
T E Pr(a | B) > Pr(y | 6) iff (TP)" =0 or (T%)™ =0 or Prs(a) > Prs(B),

and we may also write e.g. Pr(a | 8) > Pr(y) as an abbreviation for Pr(a | 8) > Pr(y | T).

Related to these, the atom X1 7Y (conditional independence atom) states that for any given
value for the variables in Z the variable sets X and Y are probabilistically independent. Its
special case with Z = 0 is called marginal independence atom. We can define these atoms in
terms of conditional comparison atoms:
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XY := A PrX=x)=PrX=x|Y =y)

xeRan(X)
yeRan(Y)

X17Y = A PrX=x|Z=2)=PrX =x|YZ = yz)
xeRan(X)
yeRan(Y)
zeRan(Z)
Hence the atoms (and the dependence atom expressed as Y1xY) are expressible in P
extended with the conditional probability comparison atoms. It is an open question whether
the probabilistic independence atoms are already expressible in PCO.

The above definitions of atoms imply that our languages, if enriched with conditional
probability atoms and arbitrary applications of the disjunction V, are strong enough to
the express properties of multiteams that are expressible in the quantifier free fragments
of the logics FO(1L) (probabilistic independence logic) and FO(x) (probabilistic inclusion
logic), over any fixed finite structure. The expressivity and complexity of these logics
have been thoroughly studied in the probabilistic and multiteam semantics literature (see
[10, 11, 14, 19, 20, 21, 39)).

It was observed in [4] that Pr(e | y) > € and Pr(e | y) > Pr(8 | y) can be defined by
v D Pr(a) > € and y D Pr(a) > Pr(B), respectively. The latter result concerns comparison
atoms in which both probabilities are conditioned over the same formula, y. We establish
that this restriction is necessary, and that Pr(a | y) > Pr(8 | d) is not, in general, expressible
in PCO. The full proof of the theorem is given in the extended version of the paper ([5]).

» Theorem 21. The comparison atoms Pr(a | B) < Pr(y | 6) and Pr(a | B) < Pr(y), (where
<€ (g, 2, <, >, =}) are not, in general, expressible in PCO.

Proof (sketch). Due to the equivalence Pr(a | 8) < Pr(y | T) = Pr(a | B) < Pr(y), it suffices to
prove the theorem for Pr(a | B) < Pr(y).

Fix a signature o, 6 € [0,1]1 N Q and take four distinct assignments s;, s;, sx, s; € Bo-. The
proof proceeds by showing that the conjunction

Si=Pr(@ V& | & V&) <Pr@ Va,) A Pr@) =6 A Pr@;Vagva)=1-6

has a probability set that cannot be characterized in terms of systems of linear inequalities, and
thus is not expressible in P(2); extending the result to the whole PCO is then straightforward.

—
=)

Calculation shows that any T satisfies E if and only if the two-variable inequality
26 + 206 + (26 — 2)e + 26° 1> 0

holds. Standard geometric techniques (analysis of the homogeneous discriminant) tell us
that, in the intersection of the (k,)-plane with A®, the frontier of the set defined by this
inequality is a segment of a nondegenerate conic (a hyperbola). But, clearly, no linear set
can have a segment of hyperbola as a subset of its frontier. <

5 Conclusion

We embarked for a comprehensive study of the expressive power of logics of probabilistic
reasoning and causal inference in the unified setting of causal multiteam semantics. We focused
on the logic PCO that can express probability comparisons in a dataset, and encompasses
interventionist counterfactuals and selective implications for describing consequences of actions
and consequences of learning from observations, respectively. In addition, we considered
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the syntactic fragments P~, P, P(2), and P(0—) of PCO and proved that they form a strict
expressivity hierarchy (see Figure 1 on page 3). Moreover, we discovered natural complete
characterizations, for each of the aforementioned logics, based on the families of linear
equations needed to define the corresponding classes of causal multiteams (satisfying some
invariances); these results are summarized in Table 1 (on page 4). Finally, we established
that conditional probability statements of the forms Pr(a | 8) < Pr(y | 6) and Pr(a | B) < Pr(y)
are not in general expressible in PCO, and separated PCO from its extension PCO* with
infinitary disjunctions.

Analogous to the folklore result that the logic L, can define all classes of finite structures,
it was shown in [4] that the same holds for PCO® with respect to all classes of causal multiteams
that are closed under rescaling and have the empty multiteam property. While any logic that
is expressively complete in this sense is uncountable, it is an interesting task to identify more
expressive finitary languages. We describe some future directions of research:

In the languages we considered, the usage of the strict tensor V was restricted to CO

formulae. What impact would removing this restriction have on the expressivity of

the languages? We conjecture that liberalizing this operator would allow to capture
probability sets described by any linear inequality.

Can (conditional) probabilistic independence atoms be expressed in PCO? We conjecture

the negative in line with [21, Proposition 26], which establishes that it is not expressible

in FO(=), the probabilistic inclusion logic of [19] (although the proof in [21] relies on the
use of quantifiers).

How can our results be extended to cover infinite signatures? Here one might need to

extend the languages with quantifiers ranging over data values.

Our characterizations cover only logics that express linear properties of data. Can

we generalize our results if some natural source of multiplication, such as conditional

probabilistic independence or the conditional comparison atoms, are added to the logics?

It was shown by Hannula et al. [20] that the so-called probabilistic independence logic is

equiexpressive with a variant of existential second-order logic that has access to addition

and multiplication of reals.

Finally, a promising direction for future work would be to study temporal aspects of

causal inference (see e.g., [25]) via (probabilistic) temporal logics by generalising temporal

team semantics introduced by Krebs et al. [26] and further developed by Gutsfeld et

al. [15].

We conclude by pointing out the formal similarity of our work with some results obtained
for first-order logics with probabilistic dependencies, such as the aforementioned language
FO(=). Such languages do not formalize causation, and yet we can conjecture that PCO
might be embeddable in FO(=) (similarly as the language CO is embedded into first-order
logic in [1]). This idea is supported by a result of Hannula and Virtema ([21]) that establishes
that definability in FO(=) can be reformulated in linear programming. It is however unknown
which exact fragment of linear programming corresponds (in the sense of our Table 1) to
the language FO(=); such a characterization would give precise limits to the possibility of
embedding results.
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