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Abstract

The training problem of neural networks (NNs) is known to be
∃R-complete with respect to ReLU and linear activation func-
tions. We show that the training problem for NNs equipped
with arbitrary activation functions is polynomial-time bire-
ducible to the existential theory of the reals extended with the
corresponding activation functions. For effectively continuous
activation functions (e.g., the sigmoid function), we obtain an
inclusion to low levels of the arithmetical hierarchy. Conse-
quently, the sigmoid activation function leads to the existential
theory of the reals with the exponential function, and hence the
decidability of training NNs using the sigmoid activation func-
tion is equivalent to the decidability of the existential theory of
the reals with the exponential function, a long-standing open
problem. In contrast, we obtain that the training problem is
undecidable if sinusoidal activation functions are considered.

1 Introduction

Neural networks (NNs) constitute the driving force behind
the remarkable achievements of modern artificial intelligence
and machine learning. A crucial stage in their development is
training, during which NNs adapt to training data and form
the capability to generalize their learned patterns to novel
scenarios. The objective is to set up the NN’s internal param-
eters in a way that minimizes the selected cost function. In
practice, this involves gradually adjusting the NN’s weights
and biases, making use of cost function gradients at each step.
Due to its inherently local nature, and since the cost function
is not necessarily convex, the process is not guaranteed to
converge to the cost function’s global minimum. It is then nat-
ural to ask: What is the computational cost of training neural
networks in a globally optimized manner? The corresponding
decision problem is to decide whether it is even possible to
train the NN to work under a given threshold error.

This paper studies the computational complexity of neural
network training problems parameterized by various activa-
tion functions. Such a training problem asks, given a neural
network architecture, finite training data, a cost function and
a threshold, whether there exist real-valued edge weights
and neuron biases for the network such that the total train-
ing error with respect to the training data is below the given
threshold value. Neural network training problems have been
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studied extensively (see (Šı́ma 2002) for a comprehensive
historical survey). Recently, certain versions of this prob-
lem were shown to be complete for the complexity class ∃R
(Abrahamsen, Kleist, and Miltzow 2021; Bertschinger et al.
2022), defined as the class of all decision problems P that
are polynomial-time reducible to the existential theory of the
reals (ETR). This class has turned out to have many inter-
esting complete problems, such as the so-called art gallery
problem (Abrahamsen, Adamaszek, and Miltzow 2022), two-
dimensional packing problems (Abrahamsen, Miltzow, and
Seiferth 2020), and certain decision problems on symmetric
Nash equilibria (Bilò and Mavronicolas 2017).

Hardness results for complexity classes above NP give
theoretical explanations on why methods suitable for solv-
ing problems in NP do not work for the training problem.
The activation functions in the ∃R-complete training prob-
lems mentioned above are restricted to linear functions and
the rectified linear unit (ReLU). In practice, there are also
other useful activation functions, such as the standard logistic
sigmoid function, which is defined in terms of the exponen-
tial function, and sinusoidal activation functions. However,
whereas ETR is NP-hard and included in PSPACE (Canny
1988), it is a long-standing and influential open problem
posed by Alfred Tarski whether exponential arithmetic is
decidable. This problem is known to be related to another
major open question – Schanuel’s conjecture – in transcen-
dental number theory (see, e.g., (Wilkie 1997; Servi 2008)).
On the other hand, the theory of the reals extended by the
sine function is known to be undecidable, even under some
further restrictions on the allowed syntax of the formulae
(Richardson 1968).

In this article, we generalize the connection between ETR
and the neural network training problem from linear functions
and the ReLU activation function to arbitrary real-valued
functions. On the ETR side, the corresponding activation
function is added as a new function symbol to the signature
of the underlying structure (R,+,×, <,=, 0, 1). We show
that the NN training problem using f as an activation func-
tion together with the identity activation function is complete
for the extension ∃Rf of the class ∃R. In other words, this
training problem is polynomial-time many-one bireducible
to the existential theory of the reals extended with f . Besides
a single activation function f , we allow the use of a set τ of
activation functions both in the training problem and in the



definition of complexity classes of the form ∃Rτ . Our results
imply that the decidability of the training problem of neural
networks using the sigmoid activation function is equivalent
to the decidability of (the existential fragment of) exponential
arithmetic. In fact, due to a certain model theoretic property
(model completeness) of the theory of exponential arithmetic,
this theory is decidable if and only if its existential fragment
is decidable, and for showing decidability, it suffices to show
it to be recursively enumerable (Σ0

1) (see, e.g., (Servi 2008)
for further discussion). Another immediate consequence is
that the NN training problem is undecidable if the sine func-
tion is allowed to be used for neural activation. Interestingly,
sinusoidal activation functions have already been observed to
be hard to train in simulations, and have been analyzed, for
instance, in (Lapedes and Farber 1987). Our result presents a
theoretical explanation for the observation.

Moreover, we establish upper bounds for the complexity of
the NN training problem in the case of effectively continuous
activation functions. The class of effectively continuous func-
tions (see (Servi 2008)) contains, for example, the sigmoid
function and sinusoidal activation functions. Using rational
approximations and basic topological properties, we show
that it is possible to place these problems into Σ0

3, the third
level of the arithmetical hierarchy. For effectively continuous
functions, the complexity of ∃Rτ drops to Σ0

1 if the use of
the equality sign is disallowed in the formulae. Note that
disallowing equalities in favour of the strict order relation has
no implications in the complexity of ETR without further
functions added (Schaefer and Stefankovic 2017).

Related work. The NN training problem has been studied
in numerous articles over the past decades, e.g., (Blum and
Rivest 1992; Judd 1988; Jones 1997; Goel et al. 2021; Boob,
Dey, and Lan 2022). There are only two previous works that
relate the existential theory of the reals to the training prob-
lem (Abrahamsen, Kleist, and Miltzow 2021; Bertschinger
et al. 2022). These articles explore the training problem with
respect to piecewise linear activation functions such as ReLU.
The problem has not been studied before in conjunction with
non-linear activation functions using logical methods. We
extend the examination to arbitrary activation functions such
as the logistic sigmoid function and sinusoidal activation
functions. We settle a question presented in (Abrahamsen,
Kleist, and Miltzow 2021) regarding the complexity of the
training problem over the sigmoid function: the problem is as
hard as the existential theory of the reals with exponentiation.
Our logic-based approach is very general as it encompasses
all practically relevant activation functions.

2 Preliminaries

We assume familiarity with basic complexity classes such
as P, NP and PSPACE, and the arithmetic hierarchy (see,
e.g., (Arora and Barak 2009). For real numbers a and b, we
let (a, b) and [a, b] denote the open and closed intervals with
endpoints a and b, respectively. We write |a| for the absolute
value of a.

The first-order language of real arithmetic, written
FO(+,×, <,=, 0, 1), is given by the grammar

φ ::= i < i | i = i | φ ∧ φ | φ ∨ φ | ∃xφ | ∀xφ, (1)

where i stands for numerical terms given by the grammar

i ::= 0 | 1 | x | i×i | i+i, where x is a first-order variable.

Note that adding negation to (1) does not increase the expres-
siveness of the language. A negated formula can be expressed
positively via a negation normal form transformation and sub-
sequent positive rewriting of negated atomic formulae.

We consider various extensions of the above language. For
a set of relation and function symbols C, FO(C) is the variant
that uses only function and relation symbols in C. Existential
real arithmetic ∃FO(+,×, <,=, 0, 1) is obtained from (1)
by dropping universal quantification; the logic ∃FO(C) is
defined analogously.

A formula φ is open if some variable appears free in φ,
and otherwise closed. Closed formulae are referred to as
sentences. Given some first-order structure A and a variable
assignment s, we write A |=s φ if φ is true in A with respect
to s. If φ is a sentence, we write A |= φ if φ is true in A.

The semantics for the language of real arithmetic is de-
fined over the fixed structure (R,+,×, <,=, 0, 1) of real
arithmetic in the usual way, and similarly for FO(C) where
the symbols in C have their usual interpretations. As a slight
abuse of notation, we use f to denote both a real-valued func-
tion and the corresponding function symbol. Moreover, we
allow function symbols to be interpreted as partial functions.
Any atomic formula with some undefined term with respect
to an assignment s is defined to be false.

We write R and R< as shorthands for the structures
(R,+,×, <,=, 0, 1) and (R,+,×, <, 0, 1), respectively. For
a collection τ of additional functions, we write Rτ and R<

τ

for the corresponding extension of the models R and R<,
respectively. We define the complexity class ∃Rτ as the col-
lection of decision problems that have a polynomial-time
many-one reduction to closed formulae of the existential real
arithmetic with additional functions from τ . We also consider
a subclass of ∃Rτ defined in terms of strict inequalities: the
class ∃R<

τ is defined otherwise as ∃Rτ , except that we drop
equality atoms i = i from (1).

3 Effectively Continuous Functions and the

Arithmetical Hierarchy

We begin by showing that ∃Rτ and ∃R<
τ are included in low

levels of the arithmetical hierarchy, when the functions in τ
are effectively continuous.

Definition 1 ((Servi 2008, Definition 4.2.1)). A function
f : Rn → R is effectively continuous if there exists a com-
putable function g with the following properties:

• To each n-tuple of open intervals (a1, b1), . . . , (an, bn)
with rational endpoints, the function g associates an open
interval (c, d) with rational endpoints such that

∀x (x ∈ (a1, b1)× · · · × (an, bn) =⇒ f(x) ∈ (c, d)) .

• ∀M > 0 ∀ε > 0 ∃δ > 0 ∀ai, bi it holds that, if c, d is the
output of g on input ai, bi, then

∧

i∈[n]

(ai, bi) ⊆ [−M,M ]∧|ai−bi| < δ =⇒ |c−d| < ε.



In this case, it is said that g computes the function f . We write
ECF to denote the set of all effectively continuous functions.

As noted in (Servi 2008), there is at most one effectively
continuous function for each computable function. Thus the
set ECF is countable, and not every constant function is ef-
fectively continuous. On the other hand, rational constant
functions, the identity function x 7→ x, the absolute value
function x 7→ |x|, together with addition, multiplication,
division, and the exponential function and basic trigono-
metric functions are effectively continuous. Using these
functions and the following lemma, all rational functions
and many standard neural activation functions, such as the
ReLU function x 7→ max(0, x) and the sigmoid function
σ : x 7→ 1/(1 + exp(−x)), can be seen to be in ECF.

Lemma 2 ((Servi 2008, Lemma 4.2.6)). ECF is effectively
closed under composition. That is, given computable func-
tions g and g′ which compute two effectively continuous
functions f and f ′, respectively, we can effectively find a
computable function g′′ which computes the composition
f ◦ f ′ (when the latter is defined).

Lemma 3 ((Servi 2008, Remark 4.2.2 (rephrased))). Effec-
tively continuous functions are uniformly continuous on every
compact cube of the form [−M,M ]n, where M > 0. In par-
ticular, effectively continuous functions are continuous in the
Euclidean topology.

The proof of the following theorem can be found in the
full arXiv version (Hankala et al. 2023). The result relies
on the fact that, in the absence of the equality sign, existen-
tial formulae over ∃R<

ECF define open sets in the standard
Euclidean topology.

Theorem 4. Let φ(x̄) be an existential formula without iden-
tity over the structure RECF. Then the set of rational solu-
tions ā ∈ Qn for RECF |= φ(ā) is recursively enumerable.
Moreover, the complexity class ∃R<

ECF is contained in Σ0
1.

In the following, a τ -polynomial is a τ -term where, except
for the arithmetic operations + and ×, functions g can only
appear with variable or constant arguments (i.e., in the form
g(x) or g(c)). Furthermore, the (total) degree of a polynomial
P is defined as the maximum over the sum of the variable
exponents in each monomial term occurring in P . Note that
the minus sign can be avoided by switching monomial terms
from one side of the (in)equations to the other.

Lemma 5. Let τ be a set of function symbols, and let
φ(x̄) ∈ ∃FO({+,×, <,=, 0, 1}∪τ). Then we can construct,
in polynomial time with respect to the length of φ(x̄), a τ -
polynomial P (x̄, ȳ) of degree at most 4 such that φ(x̄) is
equivalent to ∃ȳP (x̄, ȳ) = 0 over the expanded reals Rτ .

Proof. The proof is analogous to that of (Schaefer and Ste-
fankovic 2017, Lemma 3.2). In fact, it suffices to first simplify
all subterms of φ of the form g(t) to the required form using
new variables: replace g(t) by g(y) and add a new conjunct
y = t. Then the translation in (Schaefer and Stefankovic
2017) can be used directly by treating terms g(y) exactly in
the same way as in the original proof.

Analogous to the ∃R-complete decision problem 4-FEAS
of (Schaefer and Stefankovic 2017), we define 4-FEASτ to

be the decision problem that asks, given a τ -polynomial of
degree at most 4, if the polynomial is feasible, i.e., has a
root in the extended model Rτ . Using the previous lemma,
we obtain a complete problem for the analogue of ∃R with
functions in τ , thus justifying the use of the notation ∃Rτ .

Corollary 6. 4-FEASτ is ∃Rτ -complete.

Using Lemma 5, we can now give an upper bound for
the complexity class of the existential theory of the reals
extended with effectively continuous functions.

Theorem 7. ∃RECF is contained in Σ0
3.

Proof. Let φ be an existential sentence over RECF. By
Lemma 5, we may assume that φ is of the form ∃x̄Pτ (x̄) = 0,
where Pτ is a τ -polynomial over a vocabulary τ that contains
function symbols for the effectively continuous functions. By
Lemmas 2 and 3, the function defined by Pτ is effectively
continuous. We show that ∃x̄Pτ (x̄) = 0 is equivalent with

∃d > 0 ∀ε > 0 ∃x̄ ∈ B(0̄, d) : |Pτ (x̄)| < ε (2)

over RECF. Clearly ∃x̄Pτ (x̄) = 0 implies (2). For the con-
verse direction, (2) entails that there is an infinite sequence
of tuples (x̄i)i∈N inside some open ball B(0̄, d) such that
limi→∞ Pτ (x̄i) = 0. Since the closure B̄(0̄, d) is compact,
the sequence (x̄i)i∈N has a subsequence (ȳj)j∈N that con-

verges to a limit point y ∈ B̄(0̄, d). Since Pτ is continuous,
and limj→∞ Pτ (ȳj) = 0, we obtain that Pτ (ȳ) = 0 and, in
particular, that the claim ∃x̄Pτ (x̄) = 0 holds.

The parameters ε and d can without loss of generality be
assumed to be rational in (2). The innermost existentially
quantified part of (2) then describes a predicate that is de-
finable by an existential formula with ε and d as rational
constant parameters over R<

ECF and thus is in Σ0
1 by Theo-

rem 4. The full expression (2) hence defines a Σ0
3 predicate.

Since ∃RECF is defined as the class of problems that can be
reduced in polynomial time to sentences of the form of φ, we
conclude that ∃RECF is contained in Σ0

3.

The following results follow from the preceding theorems.

Corollary 8. ∃R<
exp ⊆ Σ0

1 and ∃Rexp ⊆ Σ0
3.

In fact, by the model completeness of the first-order theory
of Rexp (see (Wilkie 1997; Servi 2008)), the decidability of
its existential fragment is equivalent to it being recursively
enumerable, and also equivalent to the full first-order the-
ory of Rexp being decidable. Thus, the precise relationship

of ∃Rexp to Σ0
1 and Σ0

3 is an open problem. These observa-
tions can be generalized to any Rτ with a model-complete
first-order theory and to any set τ of effectively continuous
functions.

Below, for convenience of stating the theorem, we assume
that ∃Rsin and ∃R<

sin are closed under computable reductions.

Theorem 9. Σ0
1 ⊆ ∃Rsin ⊆ Σ0

3 and ∃R<
sin = Σ0

1.

Proof. Note that the formula sin(y) = 0 ∧ 4 < y ∧ y < 7
defines 2π in y, and sin(2π × x) = 0 ∧ (x = 0 ∨ x > 0)
defines natural numbers over the reals, with the help of the
previously defined 2π. The first Σ0

1-hardness follows from the
Davis–Putnam–Robinson–Matiyasevich theorem. The latter
hardness follows from the results of (Laczkovich 2003).



4 The Neural Network Training Problem

We show that, under a suitable formulation, the neural net-
work training problem is complete for ∃Rτ , where τ consists
of the unary real functions that are used for neural activation.
In the case of effectively continuous activation functions, the
complexity of the training problem is then in Σ0

3.

Definition 10. A neural network architecture is a pair
N = (G,ϕ) over a finite directed acyclic graph G = (V,E)
and a function ϕ that maps each v ∈ V to some function
ϕ(v) : R → R. The vertices of the graph are called neurons.
An input (resp. output) neuron is a neuron that has no incom-
ing (resp. outgoing) edges. Every other vertex of the graph
is a hidden neuron. For each neuron v, the value ϕ(v) is the
activation function of the neuron v. The function ϕ(v) is also
denoted as ϕv .

Definition 11. A neural network is a triple N = (N,w, b)
over some neural network architecture N together with real
functions w and b with the following properties:

• The function w maps each edge e of the underlying graph
to a real number. The value w(e) is the edge weight of e
in the network and is alternatively denoted as we.

• The function b maps each non-input neuron v to a real
number. This is called the bias of v and is denoted as bv .

A data point for an architecture N is a function d that
maps a real number to each input and output neuron.

Definition 12. Let N = (N,w, b) be some neural network.
By the neural function of N we mean the unique function g
with the following definitions and properties:

• The domain of g is the set of all possible data points for
the architecture N . For each data point d, the value g(d)
is a function that maps each neuron v to a real number,
called the neural value of v computed by the network for
the data point d. This function is also referred to as gd.

• For each data point d ∈ dom(g) and each input neuron v
it holds that gd(v) = d(v).

• For each x ∈ dom(g) and for each non-input neuron
v ∈ V it holds that

gd(v) = ϕv

(

bv +
∑

u∈P

(

w(u,v) × gd(u)
)

)

, (3)

where P is the set of all immediate predecessors of v in
the underlying directed acyclic graph.

In other words, the neural function for a data point d is
defined recursively as follows: For each input neuron v, the
value given by the neural function is the value d(v) given
by the data point. For every other neuron v, the neural value
gd(v) is computed by first adding the bias value bv to the
sum of the incoming neural values, each multiplied by the
corresponding edge weight, and then mapping the resulting
sum through the activation function ϕv . The neural function
is well defined, since the network architecture is assumed to
be acyclic.

In the following definition, we denote by dO the tuple that
consists of the values of a data point d for the output neurons
of the network architecture, where some fixed order on the
output neurons independent of the data points is assumed.

Definition 13. Let τ be some fixed set of unary real-
valued functions. An NNτ -TRAINING instance is a tuple
(N,AE , AV , D, c,≺, δ) as follows:

• The pair N = (G,ϕ) is a neural network architecture.

• For each neuron v, the activation function ϕv is either the
identity function x 7→ x or a function f from τ .

• A subset AE of the edges of the graph G mark the active
edges in the training process. Similarly, AV is the subset
of active neurons.

• D is a finite set of data points that map non-hidden neu-
rons to rational numbers.

• A cost function c : R2m → R, where m is the number of
output neurons of N , is assumed to be definable with an
arithmetic expression.

• The symbol ≺ is one the of relations in the set {=,≤, <}.

• A threshold value δ for the allowed total training error is
given as a rational number.

A pair (w, b) is a satisfying solution for the training in-
stance (N,AE , AV , D, c,≺, δ), if (N,w, b) is a neural net-
work (as in Definition 11) such that w(e) = 1 for each edge
e ∈ E \AE , b(v) = 0 for each neuron v ∈ V \AV , and the
neural function g satisfies the condition

∑

d∈D

c ((gd)O, dO) ≺ δ. (4)

NNτ -TRAINING is the decision problem that asks, given
an NNτ -TRAINING instance, whether it has a satisfy-
ing solution. NNτ -TRAINING< is defined likewise, ex-
cept that the strict order relation < is the only allowed
choice for ≺. For a function f , we write NNf -TRAINING
and NNf -TRAINING< for NN{f}-TRAINING and

NN{f}-TRAINING<, respectively.

A cost function c is faithful, if c(ā, b̄) = 0 if and only if
ā = b̄, for all ā and b̄. If the cost function c is both faithful
and non-negative, the threshold value δ equals 0, and ≺ is
replaced with the equality sign, then the condition 4 is equiv-
alent to all data points d ∈ D satisfying (gd)O = dO. Then
gd(v) equals d(v) for every output neuron of the network.

Lemma 14. For any set τ of unary real-valued functions,
NNτ -TRAINING< is in the complexity class ∃R<

τ ∪{−,÷}.

Proof. Let (N,AE , AV , D, c,≺, δ) be an instance for the
problem NNτ -TRAINING<. We show how to construct a
formula φ(w̄, b̄) of ∃FO({+,−,×,÷, <, 0, 1} ∪ τ) in poly-
nomial time so that there exists a satisfying solution for
the given instance of the training problem if and only if
Rτ |= ∃w̄ ∃b̄ φ(w̄, b̄), where w̄ and b̄ are finite sequences of
variables that in some fixed order encode all the weights and
biases of the active edges and active neurons, respectively.
We use g to denote the intended neural function of N that
corresponds to the variables in w̄ and b̄. Let m be the number
of output neurons of N .

First we show that for each data point d ∈ D and for
each neuron v of the network, there is a term t(d,v) which

evaluates to gd(v) over Rτ . Namely, if v is an input neuron,
we can express t(d,v) succinctly as the corresponding input
value given by d, for instance, in the form of a fraction of



two binary expansions of integral values. If v is a non-input
neuron, the term t(d,v) can be obtained as in the expression 3
of Definition 12 using the terms t(d,u) of the predecessors u
of v and the sets AE and AV . Note that the underlying graph
structure is given as a part of the input, and that the graph is
assumed to be acyclic.

As in Definition 13, the cost function c is expressible as an
arithmetic expression. Then, for each d ∈ D, there is some
term t′d that evaluates to c((gd)O, dO) over Rτ . Furthermore,
the given rational threshold value δ can be expressed by
some constant term t′′δ . Finally, the relational formula 4 of
Definition 13 is expressible as

∑

d∈D t′d < t′′δ , thus yielding

a formula φ(w̄, b̄) as claimed.

Note that in the previous proof, φ(w̄, b̄) is even a single
quantifier-free relational atom. It also defines the set of all
satisfying solutions for the training instance as a subset of

the Euclidean space R|AE |+|AV |. If all the functions in τ
are effectively continuous, this solution set is open in the

Euclidean topology and its intersection with Q|AE |+|AV | is
recursively enumerable by Theorem 4. In particular, in this
case the training instance has a solution if and only if it has a
rational solution.

If the first-order theory of the model Rτ is o-minimal (see,
e.g., (Servi 2008) for definition and discussion), then the set
of satisfying solutions has only a finite number of connected
components. In particular, the structure Rexp is known to
be o-minimal, whereas Rsin is not o-minimal. However, for
example in the case of the sigmoid activation function, it is
an open problem whether positive lower bounds for the radii
of open neighbourhoods for solutions in the open solution set
can be computed in general. Considering the model complete-
ness of Rexp, this question is in part connected to Tarski’s
exponential function problem and the first root conjecture
(see, e.g., (Wilkie 1997; Servi 2008)).

Lemma 15. For any set τ of unary real-valued functions, the
decision problem NNτ -TRAINING is in ∃Rτ .

Proof. Let (N,AE , AV , D, c,≺, δ) be an instance for the
problem NNτ -TRAINING and let the formula φ(w̄, b̄) be
as in the proof of Lemma 14. It is enough to show that there is
some formula φ′(w̄, b̄) of ∃FO({+,×, <,=, 0, 1} ∪ τ) that
is equivalent to φ(w̄, b̄) over the structure Rτ ∪{−,÷}. For

this, note that if θ(x) is a formula with some open variable x,
then formulae of the forms θ(−y) and θ(y/z) can be written
as ∃x(θ(x) ∧ x+ y = 0) and ∃x(θ(x) ∧ x× z = y). Thus,
the functions − and ÷ can be eliminated from φ(w̄, b̄).

Notice that the proof of Lemma 15 and the membership of
the training problem in the class ∃Rτ can be generalized to
the case where all data points, activation functions, threshold
values and cost functions can be defined using existential
formulae of the alphabet {+,×, <,=, 0, 1} ∪ τ . In addition,
the set τ may also include other than unary functions.

We define a decision problem for existential formulae in a
certain normal form. The definition is an extended version of
the problem called ETR-INV in (Abrahamsen, Adamaszek,
and Miltzow 2022), now allowing unary function symbols.

Definition 16. Let τ be a set of unary real-valued functions.
Then ETRτ -INV-FLAT is the following decision problem:
Given a finite set C of constraints, each of one of the forms

x = 1, x+ y+ z = 0, x× y+1 = 0, x+ f(y) = 0, (5)

where x, y and z are first-order variable symbols and f is
some function in τ , determine whether the constraints of C
are satisfiable over Rτ using a single variable assignment.

The different constraint types listed in 5 are called unit
constraints, addition constraints, inversion constraints and
function constraints, respectively.

Lemma 17. ETRτ -INV-FLAT is ∃Rτ -complete.

Proof. It is enough to show that the satisfiability problem
of the existential theory of Rτ is reducible in polynomial
time to ETRτ -INV-FLAT. Let φ be a sentence of the logic
∃FO({+,×, <,=, 0, 1} ∪ τ). First simplifying all subterms
that correspond to function symbols as in the proof of Lemma
5 and then proceeding in the same manner as in the proof
of Theorem 16 of (Abrahamsen, Adamaszek, and Miltzow
2022), the satisfiability of φ can be reduced in polynomial
time to a finite set C′ of constraints of the following forms:

x = 1, x+ y = z, x× y = 1, x = f(y).

For every variable x, y and z, the condition x+ y + z = 0 is
under every variable assignment equivalent to

∃u∃v(v + v + v = 0 ∧ z + u+ v = 0 ∧ x+ y + u = 0).

Similarly, for monomial terms t and t′, the formula t = t′ is
under any variable assignment equivalent to

∃u∃v(v + v + v = 0 ∧ t+ u+ v = 0 ∧ t′ + u+ v = 0).

Thus, each of the constraints in C′ can be expressed in
an equivalent manner using at most a constant number of
ETRτ -INV-FLAT constraints.

Depending on the functions in τ , some of the constraints
in Definition 16 can be removed without losing completeness
for ∃Rτ . For instance, the exponential function can be used
in order to switch between addition and multiplication in
existential formulae.

The proof of the following theorem is based on the neural
network construction of (Abrahamsen, Kleist, and Miltzow
2021), in which it was used to obtain the first known version
of an ∃R-complete NN training problem.

Theorem 18. Let τ be a set of unary real-valued functions.
Then NNτ -TRAINING is ∃Rτ -complete.

Proof. By Lemmas 15 and 17 it is enough to show that the
decision problem ETRτ -INV-FLAT has a polynomial-time
reduction to NNτ -TRAINING. To this end, let C be some
finite set of ETRτ -INV-FLAT constraints. We may assume
that C does not include unsatisfiable constraints of the form
x×x+1 = 0. Similarly to (Abrahamsen, Kleist, and Miltzow
2021), we may further assume that each variable symbol is
incident with at most one inversion constraint. Let W be the
set of variable symbols that appear in the constraints of C.

We describe how to construct in polynomial time such
an NNτ -TRAINING instance (N,AE , AV , D, c,≺, δ) that



has a satisfying solution if and only if the finite system C of
constraints is satisfiable. First, let (AV ,≺, δ) := (∅,=, 0).
In particular, biases are assumed to be 0 for all neurons. Let c
be any faithful and non-negative cost function. We may refer
to the variables of individual constraints using indices in the
set {1, 2, 3} according to the subscripts in the following order
for each constraint type:

x1 = 1, x1 + x2 + x3 = 0,

x1 × x2 + 1 = 0, x1 + f(x2) = 0. (6)

For each constraint C ∈ C, let lC ∈ {1, 2, 3} be the total
number of these indices for C. We define the underlying
graph G of the network architecture N = (G,ϕ) based on
the sets W and C. The resulting substructure of the network
for each constraint type is depicted in Figure 1.

• For each variable x ∈ W , there is a unique input neuron
ix and an edge to its immediate successor jx. The intended
meaning of these two neurons is to encode the value of
the variable x into the weight of the edge (ix, jx).

• There is a unique output neuron oC for each constraint
C of C. For each index k ∈ {1, . . . , lC} there are unique
hidden neurons h(C,k) and q(C,k), and an input neuron

p(C,k). They are incident with the edges (jxk
, h(C,k)),

(h(C,k), oC), (p(C,k), q(C,k)) and (q(C,k), h(C,k)). Here,
the neurons p(C,k) and q(C,k) are intended to cancel out
the output value of the neuron h(C,k) for those data points
that in the construction are not intended to directly con-
cern the constraint C but that still give a non-zero value
for the input neuron ixk

.

• For each constraint of the form x× y + 1 = 0, an input
neuron eC is added and connected to the neuron jy using
the edge (eC , jy).

Finally, the function ϕ is selected so that for each neuron v,
the activation function ϕv is the identity function except for
the case that v is of type h(C,2) for some function constraint

C of the form x1 + f(x2) = 0; in this case, the selection
ϕv := f is used. The set AE of active edges is defined to be
the set of all edges of N that are either of the form (ix, jx),
(jy, h(C,2)) or (p(C′,k), q(C′,k)), where x and y are variables,
C is an inversion constraint z × y + 1 = 0 for some z ∈ W ,
and C ′ ∈ C is any constraint for which k ∈ {1, . . . , lC′}
is an appropriate index. In Figure 1, active edges are drawn
using thicker arrows than the other edges of the network.

Recall that all input neurons of N are either of the form ix,
p(C,k) or eC , and that {oC | C ∈ C} is the set of all output
neurons. Let D consist of the following three data points:

• The data point da ∈ D is defined as follows:

– For each variable x ∈ W we have da(ix) = 1. For each
constraint C of the form x × y + 1 = 0 it holds that
da(p(C,1)) = 1 and da(p(C,2)) = 1. For every other

input neuron v of the network, da(v) = 0.

– For every output neuron oC corresponding to some unit
constraint C ∈ C, it holds that da(oC) = 1. For every
other output neuron v, we have da(v) = 0.

• The remaining two data points, dl and dr, are associated
with inversion constraints and are defined as follows:

oCh(C,1)

jxix

q(C,1)p(C,1)

oC

h(C,1)

jxix

q(C,1)p(C,1)

h(C,2)

f
jyiy

q(C,2)p(C,2)

oC

h(C,1)

jxix

q(C,1)p(C,1)

h(C,2)

jyiy

q(C,2)p(C,2)

h(C,3)

jziz

q(C,3)p(C,3)

oC

h(C,1)

jxix

q(C,1)p(C,1)

h(C,2)

jy

iy

eC

q(C,2)p(C,2)

Figure 1: Left to right, top to bottom: The graph structures,
or gagdets, corresponding to unit constraints, function con-
straints, addition constraints and inversion constraints.

– If C is an inversion constraint of the form x×y+1 = 0,
it holds that the data point dl maps the neuron tuple
(ix, iy, eC , oC) to the tuple (1, 0, 1, 0), whereas the data
point dr maps the tuple (ix, iy, eC , oC) to (0, 1, 0, 1).

– If C ′ ∈ C is not an inversion constraint, dl maps to 1 all
those input neurons of the form p(C′,k) for which the

number k ∈ {1, . . . , lC′} is an index for x1 in some
inversion constraint x1 × x2 + 1 = 0, and dr maps to
1 all the input neurons of the form p(C′,k) for which

k ∈ {1, 2, 3} is an index for the variable x2 in some
inversion constraint x1 × x2 + 1 = 0 of C.

– If v is any other input neuron or output neuron of the
network N , it holds that dl(v) = 0 and dr(v) = 0.

Note that in the preceding definition of the data points dl and
dr we use the assumption that C does not have constraints of
the form x× x+ 1 = 0 and that each variable appears in at
most one inversion constraint.

It remains to show that the NNτ -TRAINING instance
(N,AE , AV , D, c,≺, δ) has a satisfying solution if and only
if the system C is satisfiable. For this, first assume that some
edge weight function w is a solution for the training problem.
Let variable assignment s be such that for each variable
x ∈ W it holds that s(x) = w(ix, jx). We show that s
satisfies the system C. For this, let C ∈ C be arbitrary.

• If C is a unit constraint x = 1, then by the definition of da
and the non-negativeness of the cost function c, it holds
that da(oC) = 1. Since da(ix) = 1 and da(p(C,1)) = 0,

we have w(ix, jx) = 1 and so s(x) = 1.

• In the case that C is x+ y + z = 0, we have da(oC) = 0
and da(p(C,k)) = 0 for each index k ∈ {1, 2, , 3}. Thus,



w(ix, jx) + w(iy, jy) + w(iz, jz) = 0 or, equivalently,
s(x) + s(y) + s(z) = 0.

• If C is an inversion constraint of the form x× y + 1 = 0,
the definition of dl and the structure of N imply that

w(ix, jx) + w(jy, h(C,2)) = dl(oC) = 0.

Similarly, from the definition of dr we get

w(jy, h(C,2))× w(iy, jy) = dr(oC) = 1.

Thus both of the claims w(ix, jx) × w(iy, jy) + 1 = 0
and s(x)× s(y) + 1 = 0 are true.

• If C is a function constraint of the form x + f(y) = 0,
we have da(oC) = 1, and da(ix) = da(iy) = 1, and
da(p(C,k)) = 0 for k ∈ {1, 2}. From these it follows that

w(ix, jx) + f(w(iy, jy)) = 0 and s(x) + f(s(y)) = 0.

Therefore, the assignment s satisfies all the constraints of C.
For the other direction, let s be some assignment over the

variables in W such that all the constraints of C are satisfied.
Let w be an edge weight function defined as follows:

• For each variable x ∈ W , we have w(ix, jx) = s(x).
• For each inversion constraint C of the form x×y+1 = 0,

value −s(x) is assigned to the edge (jy, h(C,2)). The edge

(p(C,2), q(C,2)) is mapped to the value s(x)× s(y).
• Every remaining edge in the set AE that is of the form
(p(C,k), q(C,k)) for some C ∈ C is given the value −s(xk),
where xk is such a variable symbol that it matches with
the index k ∈ {1, 2, 3} of C in the sense of the list 6.

• For every e ∈ E \AE it holds that w(e) = 1.

Let b be the bias function that maps each non-input neuron of
N to 0, and let g be the neural function of the neural network
(N,w, b). It remains to show that for every output neuron v
and for every data point d ∈ D it holds that gd(v) = d(v).
Recall that for each output neuron v there is a unique C ∈ C
such that v = oC .

We will first consider the data point da. If C ∈ C is not an
inversion constraint, then for all indices k ∈ {1, . . . , lC} it
holds that gda

(h(C,k)) evaluates to

w(ixk
, jxk

)× da(ixk
) + w(p(C,k), q(C,k))× da(p(C,k)),

which equals to s(xk). From this it follows that if C is a unit
constraint, then gda

(oC) = s(x1) = 1, and if C is an addition
constraint, then gda

(oC) = s(x1) + s(x2) + s(x3) = 0.
Furthermore, if C is some function constraint of the form
x1 + f(x2) = 0, then gda

(oC) = s(x1) + f(x2) = 0. Then,
for each of the preceding cases we have gda

(oC) = da(oC).
If C is an inversion constraint x× y + 1 = 0, then the value
of gda

(h(C,1)) is obtained by

w(ix, jx)× da(ix) + w(p(C,1), q(C,1))× da(p(C,1))

= s(x)× 1 + (−s(x))× 1 = 0,

and in a similar manner, gda
(h(C,2)) can be evaluated to

(−s(x)× (s(y)× 1 + 0) + (s(x)× s(y))× 1) = 0.

Thus, it holds that gda
(oC) = 0 = da(oC).

Next, let d be either of the data points dl and dr. Then for
each constraint C ′ ∈ C that is not an inversion constraint and

for each index k ∈ {1, . . . , lC′} it holds that h(C′,k) = 0.

Namely, either it holds that both of the claims d(xk) = 0
and d(p(C′,k)) = 0 are true, or that both d(xk) = 1 and

d(p(C′,k)) = 1 are true. Then we have g(oC′) = 0 = d(oC′).
For any inversion constraint C of the form x× y + 1 = 0

and for each d ∈ {dl, dr}, the value gd(h(C,1)) evaluates to

w(ix, jx)× d(ix) + w(p(C,1), q(C,1))× d(p(C,1))

and thus is equal to s(x) × d(ix). From this it follows that
gdl

(h(C,1)) = s(x) and gdr
(h(C,1)) = 0. On the other hand,

the value gd(h(C,2)) can be evaluated to

−s(x)× (s(y)× d(iy) + d(eC)) .

Then, gdl
(oC) = 0 and gdr

(oC) = 1, from which it follows
that gd(oC) = d(oC) for each d ∈ {dl, dr}. This concludes
the proof the theorem.

Using the previous theorem, we can connect sigmoidal NN
training with exponential real arithmetic.

Corollary 19. NNσ-TRAINING is ∃Rexp-complete.

Proof. By Theorem 18, NNσ-TRAINING is ∃Rσ-complete.
Furthermore, the sigmoid function σ is existentially definable
in Rexp and similarly the exponential function is existentially
definable in Rσ. Thus it follows that NNσ-TRAINING is
∃Rexp-complete.

Corollary 20. NNsin-TRAINING is undecidable but in Σ0
3.

Proof. The claim follows from Theorems 9 and 18.

Similar to the proof of Theorem 9, the NN training problem
can be shown to be undecidable in the case of activation
functions having some form of periodic nature that can be
used to define natural numbers with existential formulae.

5 Conclusion

We studied the complexity of the neural network training
problem and showed that the training problem corresponding
to sets τ of activation functions are complete for the complex-
ity classes ∃Rτ that extend the reals with the corresponding
functions. We also showed that for sets τ of effectively con-
tinuous functions, these problems reside in Σ0

3, and even in
Σ0

1 when defined without the equality sign and negation. The
following topics deserve further study:

Can we improve or extend our Σ0
1 upper bound for the

identity-free existential theory of the reals with effectively
continuous functions? Note that for decidability of the expo-
nential arithmetic it would suffice to establish an Σ0

1-upper
bound for its existential fragment (Wilkie 1997; Servi 2008).

It is an open question whether our result holds if the NN
architecture is assumed to be a fully connected graph with
all edge weights and neuron biases being active, or when
restricted to the case that all neurons use the same activation
function. Cf. (Bertschinger et al. 2022).

It is an open problem when the complexities of the gen-
eral training problem NNτ -TRAINING and its restrictions

NNτ -TRAINING≤ and NNτ -TRAINING< coincide. The
present paper establishes the upper bounds Σ0

3 and Σ0
1 for

these restricted versions, respectively.
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