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Fig. 1. Demonstration of the evolving linguistic units (words

or sub-words) by translating them in embedding space with

acoustic sub-word embedding vectors. The figure shows the

proposed hypothesis of reconstructing AWE of a word “aim-

ing” by translating its ASWEs.

Acoustic word embeddings are attractive in processing be-

cause they are fixed length representations of variable length

speech signal that encodes acoustic-phonetic content rather

than pure signal information.

Recently, AWEs have been studied in greater detail, in

terms of extraction and use [12, 13, 14, 15]. Also, there is

a growing interest in analyzing the representational geometry

of AWEs [16] and its ability to capture phonological similar-

ity [17]. AWEs are also getting attention in cognitive science

as it exhibits a word onset bias, which is reported in various

studies on human speech processing and lexical access [13].

Nevertheless, not much has been reported on finding acous-

tic sub-word embeddings (ASWEs). This work attempts to

find ASWEs by decomposing AWEs in the embedding space,

under constrained settings. The AWEs are decomposed in

such a way that they can be reconstructed back by using the

derived ASWEs. We hypothesize that the reconstruction pro-

cess can be described by simple translations in embedding

space, as shown in Fig. 1. The translations are performed by

ASWEs, and in this case, the translations are simple addition

operations in the embedding space. From Fig. 1, it can be

seen that the word-like unit “aim” can be interpreted as the

sub-word-like embedding of “a” plus the sub-word-like em-

bedding of “im”. Further, the word-like unit “aiming” can

be interpreted as the word-like embedding of “aim” plus sub-

word-like embedding of “ing”. This hypothesis is inspired by

TransE [18] work. TransE models hierarchical relationships

by interpreting them as vector translations operating on the

ABSTRACT

There is a growing interest in understanding the represen-

tational geometry of acoustic word embeddings (AWEs), 
which are fixed-dimensional representations of spoken words. 
However, not much research has been conducted on acoustic 
sub-word embeddings (ASWEs), which can provide a bet-

ter understanding of the AWE space. This work focuses on 
decomposing AWEs to obtain ASWEs while retaining the 
ability to reconstruct AWEs by translating ASWEs in the 
embedding space, under constrained settings. Initially, high-

quality AWEs are obtained with an Average Precision (AP) 
score of 0.97 on the word discrimination task. Subsequently, 
ASWEs are derived through the decomposition of AWEs. 
Three adapted versions of the AP metric, utilized for evaluat-

ing the quality of the derived ASWEs and their translational 
properties, are proposed. The results demonstrate that the 
derived ASWEs exhibit high quality, and the reconstruction 
of AWEs from the ASWEs is achievable by translating them 
in the embedding space.

Index Terms— acoustic word embeddings, acoustic sub-
word embeddings, translational, word discrimination task.

1. INTRODUCTION

Deep learning methods have evolved considerably over the 
last decade and the use of embeddings are prevalent across 
many tasks as a way to encapsulate and express a wide range 
of properties of inputs. In natural language processing, em-

beddings are often used to represent discrete objects in se-

mantic space, as in the work Word2vec [1] and BERT [2]. 
In speech processing, embeddings are typically used to en-

code signal context at regular time intervals as in Wav2vec [3] 
and HuBERT [4] models or for segments of speech such as i-
vector [5] and X-vector [6]. In addition, there has been a long-

standing interest in the linguistic unit (word and sub-word) 
embeddings for the purpose of unit discovery [7, 8, 9, 10] and 
acoustic word embeddings (AWE) for word matching [11].

This work was supported by the Centre for Doctoral Training in Speech 
and Language Technologies (SLT) and their Applications funded by UK Re-

search and Innovation [grant number EP/S023062/1]. This work was also 
funded in part by LivePerson, Inc.



embeddings of the entities. For example, if (h, r, t) is a triple

from a knowledge graph where h, t ∈ E (a set of entities) are

two entities with relationship r (h, r, t ∈ R
d), then h+ r ≈ t

if the given fact is true else h + r ̸= t. Similarly, sub-word

embeddings can be understood as translations: the addition

of a sub-word unit to an existing linguistic unit (word or sub-

word) can be interpreted as translations in embedding space

determined by a sub-word embedding as shown in Fig. 1.

In summary, position-dependent translational ASWEs are

obtained by decomposing AWEs, under constrained settings.

These ASWEs represent the compositional model of AWEs.

The classes of the sub-words are defined based on the byte

pair encoding (BPE) tokens [19] learned from the text modal-

ity. Additionally, by using learned ASWEs, AWEs of “writ-

ten words” are also obtained (Sec 4.2, Sec 5), even for unseen

words during training. Therefore, “spoken words’ or “writ-

ten words” can be characterized by these acoustic sub-word

embeddings. These understandings can be applied to various

downstream tasks. For example, a written word or text can

be project into an acoustic embedding space for audio-text

agreements. Another application would be zero-shot open vo-

cabulary keyword spotting, where keywords are enrolled with

text-only, without any spoken examples [20]. The main con-

tributions of this work are as follows:

1. This work is the first attempt to derive translational

ASWEs, under constrained settings, which models

the relationship between linguistic units (sub-words or

words) as simple translations in the embedding space

as demonstrated in Fig. 1.

2. Using AWEs only, we describe an efficient method for

obtaining translational BPE token-based ASWEs with-

out using sub-word time boundary information. Recon-

struction of AWEs by translating ASWEs in the embed-

ding space is also demonstrated.

3. Three adapted versions of AP (used for word discrimi-

nation task to evaluate AWEs) are proposed to evaluate

ASWEs and their translational properties (Sec. 3.2).

4. A method to obtain acoustic word embeddings from

text modality (Word2AWE) is presented. High qual-

ity AWEs of “written words” (even for unseen words

during training) are constructed from the ASWEs (Sec.

4.2, Sec. 5) by using their translational properties.

The rest of the paper structure is as follows: Sec. 2 and 3

describes proposed methodology and implementation details

for extracting AWEs and ASWEs, respectively; Sec. 4 and 5

describes the experiments and results; Sec. 6 concludes the

work with potential future directions.

2. PROPOSED METHODOLOGY

The extraction process of ASWE is divided into two steps.

The first step is to compute AWEs and the second step is to
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Fig. 2. CAE-RNN model setup for AWE [12].

extract ASWEs by decomposing AWEs. Both steps are de-

scribed in the following subsections:

2.1. Acoustic Word Embedding Extraction

AWEs are extracted using correspondence autoencoder-

recurrent neural networks (CAE-RNN) [21], which shows

promising performance on the acoustic word discrimination

task [12]. CAE-RNN is trained with the pairs of segments

having different instances of the same spoken word (X,X ′).
X = x1, x2..., xT and X ′ = x′

1, x
′
2..., x

′
T ′ are sequences of

observed acoustic feature vectors extracted from the speech

segments. Fig. 2 illustrates the CAE-RNN model used in

our experiments. After processing the acoustic input vectors

X , the encoder produces the acoustic word embedding e as

shown in Fig. 2 and Eq. 1.

e = ENC(X) (1)

This embedding is then fed to the decoder as input at every

time step [21], whose target output is X ′. The mean squared

loss for a single training pair (X,X ′) is shown in Eq. 2.

L(X,X ′) =

T ′

∑

t=1

||x′
t − ft(X)||2 (2)

where ft(X) is the tth decoder output.

By feeding two different instances of the same word to

CAE-RNN, it is ensured that the generated embeddings are

invariant to irrelevant properties (e.g. speaker, channel, dura-

tion) whilst at the same time capturing the spoken word iden-

tity. MFCC [22] and HuBERT [4] features are explored as

inputs to train CAE-RNN model.

2.2. Acoustic Sub-word Embedding Extraction

The aim of the work is to validate the proposed translational

acoustic sub-word embedding hypothesis and establish a

proof of concept. Therefore, as a first experiment towards

this research direction, the dataset is defined as a collection

of words with a duration greater than or equal to 0.5 seconds

(standard choice in the literature) [23] and three sub-words.
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Fig. 3. Decomposition model for extracting ASWEs. The

model has three feedforward neural networks for sub-word

classification with joint training. The ASWEs (e1, e2, e3) are

extracted from the last layer of the networks.

More details about data preparation are given in Sec. 3.1. The

model used for decomposing AWEs into ASWEs is shown in

Fig. 3.

The decomposition model has three parallel feedforward

neural networks (FNN) (F1, F2, F3, no shared parameters),

one for each position-dependent sub-word, jointly trained as

a sub-word classifier. AWEs are the inputs for this model as

shown in Fig. 3. For each network, the output of the last

hidden layer is taken as a sub-word embedding representa-

tion as shown in Eq. 3, where e1, e2, and e3 are ASWEs of

sub-word at positions 1, 2, and 3 in a word, respectively. The

total loss of the model is the sum of three individual losses as

shown in Eq. 4, where Le1 , Le2 and Le3 are the cross-entropy

losses of a single training instance for each FNN to learn

position-dependent ASWEs. However, to ensure the trans-

lational property between the extracted ASWEs (e1, e2, e3),

as described in Sec. 1, the similarity loss term is added to the

objective loss function as shown in Eq. 5. Similarity loss is

calculated between the reconstructed embedding e′ by trans-

lating the ASWEs (≈ e1 + e2 + e3) and the original input

embedding e. The reconstructed embedding e′ is calculated

as mentioned in Eq. 6, where Fproj is a fully connected pro-

jection layer. Experiments are conducted on all variations of

loss represented as La and Lb in Eq. 4, 5, respectively with

two variations of reconstructed embedding e′ as shown in Eq.

6.

ei = Fi(e) for i = 1, 2, 3 (3)

La = Le1 + Le2 + Le3 (4)

Lb = La + (1− cos(e′, e))
︸ ︷︷ ︸

similarity loss

(5)

where e′ is defined as:

e′ =

{

Fproj(e1 + e2 + e2), If projected

e1 + e2 + e3, otherwise
(6)

Table 1. A summary of word and sub-word statistics in train,

validation, and test splits.

Dataset split Train Validation Test

Unique spoken words 5152 3399 3360

Total spoken words 29334 9778 9778

Unique spoken sub-words 152 152 152

Total spoken sub-words 29334× 3 9778× 3 9778× 3

Algorithm 1 : Data sampling method

Input: f(w): Relative frequency histogram of words; f(s): Relative fre-

quency histogram of sub-words; S = (s1, s2..., sn) are unique sub-words

and Z = (zs1 , zs2 , ..., zsn ) are their relative frequencies; N = maximum

unique words to be sampled (= 6000 in this case)

Output: D : Sampled dataset

Z′ = (1− zs1 , ..., 1− zsn ) ▷ inverse relative frequency

M ← 0 ▷ unique words in the sampled data

D = {}
while M ≤ N do

si ← f(s), Z′ ▷ sample si from f(s) with weights Z′

wj ← f(w) ▷ sample wj : least frequent word having si
D ← D + wj

Recompute f(w), f(s), Z′

if wj ∈ D then

Continue

else

M ←M + 1 ▷ update M only when wj /∈ D
end if

end while

3. IMPLEMENTATION DETAILS

3.1. Data Preparation

Experiments are conducted on the LibriSpeech dataset [24].

The LibriSpeech dataset is force-aligned to obtain the bound-

aries of word segments. Then, a byte pair encoding (BPE)

[19] tokeniser is trained with a vocabulary size of 200 on

available text from LibriSpeech recordings. A proof of con-

cept is formulated to validate the proposed hypothesis of ob-

taining translational ASWEs by decomposing AWEs in em-

bedding space. The dataset is defined as a collection of words

with 3 BPE tokens (sub-words) and a duration greater than or

equal to 0.5 seconds (a standard choice in the literature) [23].

The sub-words obtained are imbalanced due to the presence

of both rare and frequent sub-words. To mitigate this issue,

a simple sampling method (Algorithm 1) is applied. Follow-

ing sampling, the dataset comprises 6,000 unique words, a

reduced set of 152 sub-words, and a total of 48,890 instances

of spoken words with time boundaries. The dataset is divided

into training, validation, and test sets by the ratio of 60%,

20%, and 20%, respectively. Table 1 displays the total spoken

words and unique words available in the training, validation,

and test splits. The code and dataset are available on GitHub1

1https://github.com/Trikaldarshi/ASWE.git



3.2. Proposed Metrics

The average precision (AP) metric for the word discrimina-

tion task is used in the literature to evaluate AWEs [25, 26, 27,

28, 29]. It was first proposed in the work [30] for rapid eval-

uation of speech representations for spoken term discovery.

To evaluate ASWEs, three adapted versions of this AP metric

used for the word discrimination task are proposed here.

For the acoustic word discrimination task, a pair of AWEs

are compared to decide whether they belong to the same word

or not. For the acoustic word discrimination task, all possi-

ble spoken word pairs are generated. If there are M spoken

words, then the total number of generated spoken word pairs

will be
(
M

2

)
= M(M−1)

2 . For each pair, cosine distance be-

tween their AWEs is computed. Then, the performance mea-

sure is the AP, which is the area under the precision-recall

curve generated by varying all possible thresholds and has a

maximum value of 1. The proposed metrics for ASWEs are

as follows:

1. AP-SD (Average Precision - Sub-word Discrimina-

tion): Average precision on the sub-word discrimina-

tion task for each position, denoted as AP@p1, AP@p2,

and AP@p3. It is an adapted version of the acoustic

word discrimination task, where AWEs will be replaced

by ASWEs.

2. AP-RW (Average Precision - Reconstructed Words) :

Average precision on the acoustic word discrimina-

tion task between original and reconstructed AWEs.

AP-RW is useful for evaluating translational prop-

erties of the learned ASWEs as AWEs are recon-

structed by translating ASWEs in embedding space.

If W =
{
wi

}M

i=1
represents the original spoken words

and W ′ =
{
w′

i

}K

i=1
represents the reconstructed AWEs

then the total number of possible spoken word pairs

will be (wi, w
′
j) ∈ W ×W ′ (total M ×K pairs). Then

the AP will be calculated as described earlier.

3. AP-CW (Average Precision - Constructed Words) : Av-

erage precision on the acoustic word discrimination

task between original AWE and the constructed AWE

of a “written word”. This metric is useful for measur-

ing the quality of the constructed AWEs of “written”

words. The spoken word pairs will be generated from

constructed AWEs of a “written word” and original

AWEs. If there are M original spoken words and K

constructed AWEs of “written” words, then the total

number of possible spoken word pairs will be M ×K.

Then the AP will be calculated as described earlier.

3.3. AWE Implementation Details

To train the CAE-RNN model, a total of 2,57,557 pairs of

spoken word segments having different instances (X,X ′) are

generated from the training set. To extract features of a spo-

ken word, first, the features for the entire sentence are ob-

tained. Then, the available time segments of the spoken word

are used to extract its features. MFCC [22] and HuBERT [4]

are explored as input acoustic features extracted from the spo-

ken word segments. For each spoken word, 20-dimensional

MFCC features are extracted with 30 ms window size and

20 ms shift along with delta and delta-delta features, which

provide 60-dimensional MFCC feature vectors. For HuBERT

features, 768-dimensional output from the 12th Transformer

layer of the HuBERT BASE model are extracted for each spo-

ken word at a 20 ms framerate. HuBERT BASE model is pre-

trained on 960 hours of LibriSpeech data 2. Fig. 2 illustrates

the CAE-RNN model. Both the encoder and decoder are 4-

layer Bidirectional-GRUs with hidden dimension of 256 and

dropout of 0.2. The dimension of the AWE (e) is 128. The

final hidden state of the encoder hT is fed to a fully connected

layer fenc (with tanh activation) whose output is embedding

e. Then, this embedding e is replicated T ′ times to match

the target sequence length and is fed as input to the decoder

[21]. Each output state of the decoder is transformed with a

fully connected layer fdec (without activation), and its outputs

constitute the final predicted sequence.

3.4. ASWE Implementation Details

First, AWEs are computed for the entire dataset. All the

AWEs are converted into unit-length vectors e
||e|| . These

computed AWEs are used as input features to train the de-

composition model for ASWEs as shown in Fig. 3. Each

FNN (F1, F2, F3) has 3 hidden layers with hidden units of

512, 512 and 128, respectively and dropout of 0.2. Each

FNN has 152 output classes (sub-word units) as mentioned in

section 3.1. However, not all the sub-words are present in the

output class of the three parallel networks due to their occur-

rence at different position in a word. Total of 136, 152, and

141 different sub-words are present in the data at positions 1,

2, and 3. Only those sub-words will be reflected in the output

class of the three networks during training. For each FNN,

the output of the last hidden layer (128- dimensional) is taken

as sub-word embedding representation (e1, e2, e3) as shown

in Eq. 3 and all embeddings are normalized to unit-length

vectors (including reconstructed e′). ReLU activation is used

for all layers except the last hidden layer and projection layer,

where tanh activation is used to maintain the consistency

between the derived AWEs and ASWEs.

4. EXPERIMENTS

4.1. Computing AWEs and Translational ASWEs

CAE-RNN model is trained with a batch size of 256 and

Adam optimizer with a learning rate of 0.0001. The model

is trained for 100 epochs in the case of MFCC features and

2https://github.com/pytorch/fairseq



20 epochs in the case of HuBERT features. In each case, the

final model weights are picked based on the best AP precision

value for the acoustic word discrimination task on the valida-

tion set. AWEs are extracted for the test and validation set

with ENC as shown in Fig. 2 and Eq. 1. The decomposition

model is trained with a batch size of 256 and Adam optimizer

with a learning rate of 0.001. The model is trained for 100

epochs and the final model is picked based on the best valida-

tion loss. MFCC and HuBERT-based ASWEs are extracted

for the test set for evaluation.

4.2. AWE and ASWE Evaluation

First, to evaluate the quality of AWEs, word discrimination

task is performed. The total number of generated word pairs

is roughly 47 million, calculated as
(
M

2

)
= M(M−1)

2 , for

both the test and validation sets, each containing 9778 words.

AP for the word discrimination task is calculated using these

acoustic word pairs [30] for both the test and validation sets.

Then, the evaluation of ASWEs is performed, which is

described as follows:

1. AP-SD: For the sub-word discrimination task, approxi-

mately 47 million sub-word pairs are generated for each

position from the test set. Then, the AP-SD for each

position (p1, p2, p3) is calculated for the test set using

these sub-word pairs as described in Sec. 3.2.

2. AP-RW: For AP-RW, all words in the test set are re-

constructed by translating ASWEs in the embedding

space as described in Eq. 6. The spoken word pairs

are generated from reconstructed AWEs (e′) of “spo-

ken words” and the original AWEs (e) for comparison

(9778 × 9778 ≈ 95 million). AP-RW is calculated as

described in Sec. 3.2.

3. AP-CW: AWEs of written words are constructed.

This is referred to as ‘Word2AWE’. Three position-

dependent acoustic sub-word embedding dictionaries

are derived from the three parallel networks of de-

composition model F1, F2, and F3. Each dictionary

has sub-words as keys and the mean of all instances

of their ASWEs in the training set as corresponding

values. This produces three distinct sub-word dictio-

naries, one for each position in the word. Using these

acoustic sub-word embedding dictionaries, AWEs are

constructed for all the unique “written words” (3360)

in the test set. First the words are tokenised and then

ASWEs are obtained for those tokens from the learned

dictionaries. Then translating ASWEs in embedding

space would construct the AWEs as shown in Eq. 6.

From 3360 constructed AWEs and a test set of 9778

original spoken word instances, 3360×9778 ≈ 32 mil-

lion word pairs are generated for comparison. AP-CW

is calculated for these pairs as mentioned in Sec. 3.2.
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Fig. 4. Precision-Recall curve for the test set using a CAE-

RNN model trained with HuBERT and MFCC features.

Table 2. Average precision for the word discrimination task

on the test and validation sets for AWEs with HuBERT and

MFCC as input features to CAE-RNN model.

Input

Features
Model

AP

(test set)

AP

(val set)

HuBERT (768-dim) CAE-RNN 0.97 0.97

MFCCs with delta (60-dim) CAE-RNN 0.50 0.49

5. RESULTS AND DISCUSSION

Table 2 shows the results of the CAE-RNN model for AP

on the acoustic word discrimination task. Fig. 4 shows the

precision-recall curve for both the MFCC and HuBERT-based

CAE-RNN models. The AP is the area under the curve, which

is approximately equal to 0.97 for HuBERT-based CAE-RNN

model, almost two times better than MFCC-based CAE-

RNN. Fig. 5 shows the t-SNE plot of all spoken instances

of the six most frequent words from the test set, derived

from HuBERT-based CAE-RNN model. It is quantitatively

and qualitatively evident that the derived AWEs are of high

quality and well-separated in AWE space.

Fig. 5. t-SNE visualisation of AWEs of all spoken instances

of the six most frequent words from the test set, derived from

HuBERT-based CAE-RNN model.



Table 3. Performance of derived ASWEs from AWEs on the

test set with various decomposition model setups.

Loss,

Features

Proj.

layer

AP-SD

@p1

AP-SD

@p2

AP-SD

@p3
AP-RW AP-CW

La, HuBERT ✗ 0.95 0.89 0.95 0.00 0.00

Lb, HuBERT ✗ 0.93 0.87 0.91 0.95 0.64

Lb, HuBERT ✓ 0.94 0.89 0.94 0.96 0.72

La, MFCC ✗ 0.36 0.22 0.46 0.00 0.00

Lb, MFCC ✗ 0.37 0.22 0.47 0.27 0.05

Lb, MFCC ✓ 0.36 0.22 0.45 0.46 0.13

The results for the ASWEs are shown in Table 3 with all

model variants. Table 3 shows that all the HuBERT-based

decomposition model configurations are capable of producing

high quality ASWEs for each position, as high values of AP-

SD (up to 0.96) are obtained for them when compared with

MFCC-based models. Also, adding similarity loss (Lb) helps

to achieve a better reconstruction and translational properties

as high values of AP-RW (0.95, 0.96 for HuBERT features)

and AP-CW (0.64, 0.72 for HuBERT features) are obtained.

Fig. 6 shows the t-SNE plot of all instances of the five most

frequent sub-words from the test set, derived from the best

decomposition model (AP-CW=0.72 and AP-RW=0.96). It

is qualitatively evident that the derived ASWEs are of high

quality and well separated in the ASWE space.

5.1. Qualitative Analysis of Word2AWE

AWEs of 4 random “written words” from the test set (and not

seen during training) are constructed using the three sub-word

dictionaries learned from the model (Sec. 4.2) with the best

AP-CW (0.72), worst AP-CW (0), and with 2nd & 3rd em-

bedding position swapped for the best model configuration

(i.e. AP-CW=0.72). For these constructed words, their Top-

3 nearest neighbours (Top-3 NN) from the test set are com-

puted and listed in Table 4. Top-3 NN words for high AP-CW

(0.72) are acoustically close to constructed words when com-

pared to the low value of AP-CW (0) where Top-3 NN words

are not similar to constructed words. Additionally, for the

best model configuration, swapping the position of 2nd and

3rd sub-word embeddings has reduced the performance (AP-

CW) from 0.72 to 0.05, and the nearest neighbours do not

match with the constructed AWEs as shown in Table 4. This

proves that derived ASWEs are position-dependent, which

is a desired property to construct the word, as interchang-

ing the position of the sub-words will change how the word

sounds. For example, the word “aiming” can be constructed

with eap1
+ eimp2

+ eing
p3

but not with eap1
+ eing

p2

+ eimp3
,

where pi represents the position of sub-words.

Fig. 6. t-SNE visualisation of ASWEs of all the instances

of the five most frequent sub-words from the test set, de-

rived from the best performing decomposition model (AP-

CW=0.72).

Table 4. Word2AWE - AWEs of 4 random “written words”

from the test set (& unseen during training) are constructed

with HuBERT-based ASWEs. For these words, their Top-

3 NN from the test set are shown for various model setups

(multiple instances of a word could be present in the test set).
Words vised caster mendes indices

BPE tokens {v, is, ed} {c, as, ter} {m, end, es} {ind, ic, es}
3 Nearest

neighbour

(AP-CW=0.72)

vised,

vase,

vested

caster,

casper,

cached

mendes,

mades,

mesas

indices,

indies,

indies

3 Nearest

neighbour

(AP-CW=0.00)

alec,

snap,

alack

gusto,

gusto,

caster

paced,

bass,

abasing

during,

during,

during

3 Nearest

neighbour

(AP-CW=0.05)

vase,

vase,

vase

covers,

covers,

covers

maston,

amended,

amended

mystic,

mystic,

insect

6. CONCLUSION AND FUTURE WORK

Translational ASWEs are successfully extracted from high

quality AWEs derived from HuBERT representations, with-

out using any time boundaries of the spoken sub-words. Three

metrics (AP-SD, AP-RW, and AP-CW) are proposed to eval-

uate ASWEs for the task of sub-word discrimination, recon-

struction of AWEs, and construction of AWEs of “written

words” by translating ASWEs in embedding space. Current

work is restricted to three sub-words only (as a proof of con-

cept). Future directions of this work include combining the

AWE and ASWE extraction modules into a single framework

for variable number of sub-words. These developments in the

AWE and ASWE spaces are expected to help in advancing the

field of query-by-example search [31, 32, 33], zero-resource

speech processing [10], and learning audio-text agreement

using AWEs/ASWEs for open-vocabulary keyword spotting

systems [20] as a potential application of Word2AWE.
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