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Abstract

Network meta-analysis (NMA) is an extension of pairwise meta-analysis

(PMA) which combines evidence from trials on multiple treatments in con-

nected networks. NMA delivers internally consistent estimates of relative

treatment efficacy, needed for rational decision making. Over its first

20 years NMA's use has grown exponentially, with applications in both

health technology assessment (HTA), primarily re-imbursement decisions

and clinical guideline development, and clinical research publications. This

has been a period of transition in meta-analysis, first from its roots in edu-

cational and social psychology, where large heterogeneous datasets could

be explored to find effect modifiers, to smaller pairwise meta-analyses in

clinical medicine on average with less than six studies. This has been fol-

lowed by narrowly-focused estimation of the effects of specific treatments

at specific doses in specific populations in sparse networks, where direct

comparisons are unavailable or informed by only one or two studies. NMA

is a powerful and well-established technique but, in spite of the exponential

increase in applications, doubts about the reliability and validity of NMA

persist. Here we outline the continuing controversies, and review some

recent developments. We suggest that heterogeneity should be minimized,

as it poses a threat to the reliability of NMA which has not been fully appre-

ciated, perhaps because it has not been seen as a problem in PMA. More

research is needed on the extent of heterogeneity and inconsistency in data-

sets used for decision making, on formal methods for making recommenda-

tions based on NMA, and on the further development of multi-level

network meta-regression.
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Highlights

What is already known

• It is commonly stated that network meta-analysis relies on three assump-

tions (homogeneity, similarity, and consistency), that it is vulnerable to con-

founding like observational studies, and that direct evidence is more reliable

that indirect evidence.

• A fourth assumption, transitivity, has been introduced, which requires that

trials are similar in all respects apart from the treatments.

• Methodological and reporting guidelines emphasise a range of a posteriori

checks on whether assumptions regarding consistency and transitivity are met.

• Heterogeneity is often tolerated or regarded as inevitable, or even desirable:

to be considered in the same way as in pairwise meta-analysis.

What is new

• Exchangeability is the single assumption underlying both pairwise and net-

work meta-analysis, but it is difficult to detect departures from it in practice,

let alone verify it.

• The exchangeability assumption imposes no limit on the extent of quantita-

tive heterogeneity.

• Heterogeneity increases the expected absolute error in pairwise compari-

sons, indirect comparisons, and NMA, and may introduce inconsistency

between direct and indirect estimates, even when exchangeability is satis-

fied. This effect is due to second-order sampling variation.

• The risk of such realized error and inconsistency increases with between-studies

standard deviation, and if treatment comparisons are directly informed by fewer

trials.

• Most direct comparisons in treatment networks are informed by only one or

two trials.

Potential impact for RSM readers

• When making recommendations based on NMA, robustness to bias, hetero-

geneity and inconsistency in the evidence should be checked where possible

by threshold analysis. Alternatively, in clinical studies, CINeMA software

can be used to reveal the impact on estimates of particular items of data.

• Every effort should be made to reduce quantitative heterogeneity, by carefully

specifying the target population, by modelling and adjusting for study-related

and reporting biases, by appropriately synthesizing outcomes reported in differ-

ent ways and times, by avoiding treatment “lumping,” and when possible by

using multi-level network meta-regression to model and control for differences

in patient characteristics.

1 | INTRODUCTION

Some twenty years have passed since Lumley1 introduced

the term “network meta-analysis” (NMA), referring to an

extension of pairwise meta-analysis (PMA) to connected

networks of randomized trial evidence, such as the net-

work of A versus B, A versus C, A versus D, A versus E,

B versus D, C versus D, illustrated in Figure 1. A 2018

bibliometric analysis2 showed an exponential growth,

recording some 2850 publications in 771 journals and in

6 languages, from over 350 institutes in 85 countries; 82%

were from the USA, China, and the UK. NMA has

become a core methodology in comparative effectiveness

research and in health technology assessment (HTA).

Forms of network meta-analysis had appeared before

Lumley's 2002 paper,3–5 including in the 1992 Confidence

Profile Method.6 The most commonly used model is that

of Higgins and Whitehead.7 Their objective was to
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strengthen inference on a single relative effect by intro-

ducing external indirect evidence, but their model

extends readily to any number of treatments in any con-

nected network of trials.8–10

The 20th anniversary of NMA is a good moment to

reflect on the state of the field. In spite of its widespread

and growing use, many tutorial papers, texts, and com-

mentaries continue to express doubts about its validity

and reliability.11–15 There are also conflicting views on

fundamental issues such as whether NMA evidence

should be viewed as “observational,”16 and thus whether

it estimates causal effects or just associations. Further,

while Lumley's original model allowed for inconsistency

between direct and indirect evidence, the majority of

applied work has assumed consistency, in spite of empiri-

cal evidence that inconsistency is prevalent in typical

networks.17–19 New models and parameterizations have

appeared,20,21 some in response to these findings.

The trickle of negative commentary is now impacting

on patients: during stakeholder consultations on draft

guidelines for treatments for depression, issued by the

National Institute of Health and Care Excellence (NICE) in

the UK, 23 Members of Parliament signed a motion describ-

ing NMA as “a flawed methodology,”22 and 45 stakeholder

organizations called it “an experimental technique” and

pressed NICE not to base recommendations on the results

from NMA.23

In this paper we reflect on areas of controversy that

remain after the first 20 years of explosive growth in the

use of NMA, suggesting possible resolutions, and review-

ing new developments. We begin with a brief summary

of what NMA is, and then give some context on the way

NMA has been used in practice. We focus on issues of

principle and interpretation, including assumptions, valid-

ity of inferences, and reliability. Some additional content

appears in Supplementary Materials. We make no attempt

to duplicate practical guidance already available.16,24–31

Areas for further research are suggested throughout.

2 | WHAT IS NMA?

How should one analyse data from a connected network

of trials, such as the one shown in Figure 1? The objective

is to identify the best of the six treatments A, B, C, D, E,

and F in a specific target population. We might consider

a pairwise meta-analysis (PMA) on each of the nine sets

of trials on which direct evidence is available: this would

generate a series of unrelated relative treatment effect

estimates bdAB,bdAC,bdAD,bdBC:…
bdDE. However, we cannot

determine the best treatment from these estimates as

they lack coherence: in any given group of patients, and

for any three treatments, the true treatment effects must

obey the relationship dAC ¼ dABþdBC, on an appropriate

scale. Unrelated estimates of each pair of treatments do

not have this property, which is essential for rational

decision-making. NMA is a method that delivers a set of

coherent estimates that have the property bd
Coh

AC ¼ bd
Coh

AB þ

bd
Coh

BC for every set of three treatments. It also delivers

coherent estimates of the additional contrasts, repre-

sented by the dashed lines in Figure 1, which have not

been trialled.

A related concept which has been discussed sepa-

rately is the “indirect comparison.”32 This is where infer-

ences are made about the effect of C relative to A (which

has not been compared in a trial), based on “direct” evi-

dence from AB and BC trials, using the relationship
bd
Ind

AC ¼bd
Dir

AB þ
bd
Dir

BC . An indirect comparison is a special case

of an NMA.

3 | THE FIRST TWENTY YEARS: A
CHANGING CONTEXT

3.1 | Broad versus Narrow review
questions and syntheses

A 2018 review in Nature noted that the same meta-

analytic techniques are being used “with two different

fundamental goals in mind.”33 First, the estimation of

specific treatment effects in specific populations, and sec-

ond the broad generalization often based on large num-

bers of studies, accompanied by attempts to identify the

reasons for heterogeneity. In a similar vein, broad syntheses,

A

D

F

E
C

B

A

D

F

E
C

B

FIGURE 1 A connected network of trials on six treatments A,

B, C, D, E, and F. Trial evidence (solid lines) exists on 9 of the

15 possible pairwise contrasts, AB, AD, BC, BD, BE, CD, CE, DE,

EF. The remaining contrasts (dashed lines) are informed by indirect

evidence. It would be possible to obtain direct estimates
bd
Dir

AB ,
bd
Dir

AD ,
bd
Dir

BC ,
bd
Dir

BD :…
bd
Dir

EF on each of these contrasts, but these would

not be coherent: for example, bd
Dir

BD≠
bd
Dir

BC þbd
Dir

CD . A network meta-

analysis (NMA) produces coherent estimates for each of the

15 pairwise contrasts, in which bd
Coh

BD ¼bd
Coh

BC þbd
Coh

CD for every three

treatments. Other terminology: indirect estimates can be derived

from direct estimates as follows: bd
Ind:1

BD ¼bd
Dir

BC þbd
Dir

CD and
bd
Ind:2

BD ¼bd
Dir

BE þbd
Dir

ED : these two estimates involve the evidence loops

BCD and BDE respectively.
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pooling data on different products and different patient

groups, have been seen as useful for testing a scientific

question as to whether a class of treatment works “in

principle.”34,35

In the educational and social sciences where meta-

analysis originated, the “broad” perspective has prevailed

from the outset, including explicit calls to maximise

between-study variation by including studies on a variety

of subjects, exposed to different procedures in a range of

settings.36,37 Moderator analysis, that is sub-group analy-

sis and meta-regression, was then recommended to iden-

tify effect modifiers.

Tutorial texts and commentaries aimed at medical

audiences have also encouraged researchers to embrace a

diversity of trials in their meta-analyses, declaring that

heterogeneity is desirable, inevitable, or both.24,38,39

Gøtzsche uses homoeopathy trials as an example, and

clearly has the “in principle” type of analysis in mind,

pointing to the loss of power if trials are split into sub-

groups.40 But this argument does not work if the inten-

tion is to accurately estimate treatment effects, unless the

level of heterogeneity is low. In the presence of substan-

tial heterogeneity we can only draw conclusions about

the range of effects.41

This has created a degree of ambiguity and confusion:

heterogeneity is “bad” because it makes interpretation of

an effect estimate difficult,34,38 if it cannot be explained

by effect modifiers, but it is also “good” because its pres-

ence allows us to explore effect modifiers.24,37 This

“apples and oranges” debate has been a mainstay of the

PMA literature for many years, especially in social and

psychological studies.42

But while social science meta-analysts could debate

how to choose effect modifiers and how many could be

studied,42 their counterparts in medicine would be lucky

if they could investigate even one. A study of nearly

15,000 Cochrane Reviews up to 2008 showed that 75% of

meta-analyses were based on 7 or fewer studies.43 Given

that the recommended lower limit for meta-regression is

10,44 it is surely unrealistic to believe that effect modifiers

can be properly studied. Standard methods have very lim-

ited power to even detect heterogeneity,45 let alone iden-

tify effect modifiers.34

3.2 | Medical decision making and
systematic review

NMA is most often used in healthcare research, to deter-

mine which of a set of interventions is “best” based on all

the trials that compare two or more of them. In a decision-

making context, the NMA forms the evidence input for

treatment recommendations. In the simplest case, the

decision-maker adopts the single “best” treatment, this

being the one with the highest expected value on a previ-

ously chosen evaluative criterion.46 This could be efficacy,

or cost-effectiveness based on Net Benefit,47 which is mon-

etized quality-adjusted life years (QALYs) minus lifetime

costs, or any scheme like Multi-Criteria Decision Analy-

sis48 that weights different outcomes. Alternative ways of

deriving treatment recommendations from an NMA are

explored in Section 14.

Probabilistic49 decision models or cost-effectiveness

models, often incorporating a model of the natural his-

tory of the disease, are used by agencies that make

reimbursement decisions such as the NICE,50 and by

the professional societies and colleges who issue clini-

cal guidelines. It is essential that the joint statistical

uncertainty in the NMA estimates is propagated

through the decision model. This can be conveniently

achieved by posterior simulation from a Bayesian NMA

embedded within the decision model or, if frequentist

methods are preferred, by boot-strap resampling, or by

forward simulation from the maximum likelihood esti-

mates and their variance–covariance matrix.51 Bayes-

ian Markov Chain Monte Carlo (MCMC) software for

NMA is available from the NICE Decision Support

Unit,52 from ISPOR (International Society for Pharma-

ceutical Outcomes Research),29 a 2018 textbook,53 and

several software packages.54,55 Frequentist software is

also readily available.56,57

Whatever the evaluative criteria, a decision context

requires that interventions are narrowly defined: different

doses of the same drug and different co-treatments are

considered different treatments. “Lumping” over different

doses or treatments is generally avoided as different doses

have different costs and side-effects and are, indeed,

intended to have different effects. Similarly, different treat-

ment recommendations will be made for treatment-naïve

patients and for patients who have failed on first-line ther-

apy, so that re-imbursement decisions in particular tend to

be applied to specific dose regimes in narrowly defined,

clinically homogeneous populations. The decision-making

context is thus inherently “narrow” in definitions of treat-

ments and target populations.

Cochrane systematic reviews are also intended to

inform clinicians' choice of treatment, but instead

have emphasized completeness of inclusion of trials

using the treatments under study, including grey liter-

ature. This inevitably draws together qualitatively

heterogeneous sets of patients who may be at different

points in the disease pathway, exemplifying the

“broad” approach to synthesis. Analysts at NICE,

sometimes explicitly,58 start with a broad Cochrane

review, and then select studies relevant to their nar-

rower target population.

4 ADES ET AL.
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Interestingly, Cochrane Systematic Reviews appear to

have become narrower in scope, at least in some clinical

areas. The 2009 review of biologics in rheumatoid arthritis

combined trials with different doses, with and without co-

treatments, and in different patient groups (first line, failed

on non-biologics, and failed on biologics).59 Several years

later the same authors produced separate NMAs in four

different patient groups,60–63 each review distinguishing

different doses and different co-treatments.

Whether or not this represents a more general conver-

gence in NMA practice, there remain distinct differences

between NMAs undertaken for a clinical research paper

and those used for decision making. This is most clearly

seen in the more proactive approach to bias- and

covariate-adjustment in a decision setting (Sections 12

and 13), compared to simply documenting bias64,65 or

down-grading evidence for bias, “indirectness,” or other

attributes.66,67

The first 20 years of NMA have, therefore, been a

period of transition. First, a transition from the large

reviews seen in the social and educational sciences, to

smaller reviews in medicine, where sub-group analysis is

barely feasible. Then a transition from PMA to NMA at a

time when high levels of clinical and quantitative hetero-

geneity were either welcomed or tolerated without com-

ment, and finally to routine use in decision making,

which is generally incompatible with clinical heterogene-

ity, and where unexplained heterogeneity poses particu-

lar difficulties that we explore below.

4 | WHAT ARE THE
ASSUMPTIONS OF NMA, AND ARE
THEY DIFFERENT FROM PMA?

4.1 | Three assumptions: homogeneity,
similarity, consistency

Song et al68 described three assumptions which they

stated were required by NMA. Homogeneity, which was

also assumed in PMA, and two further assumptions, simi-

larity and consistency, which were required for NMA. In

their words:68 homogeneity means that each trial “esti-

mates the same single treatment effect … or different

treatment effects distributed around a typical value”; sim-

ilarity requires that trials in the different treatment com-

parison sets “are similar for moderators of relative

treatment effect.” Finally, consistency requires there is no

conflict between the parameters estimated by “direct” and

“indirect” evidence (see Figure 1). Later papers introduced

another term, transitivity,12,14 which requires that “indirect

comparisons validly estimate the unobserved head-to-head

comparison,”12,69 equivalent to consistency. Transitivity

was also seen as requiring that trials are similar in every

important respect other than treatment,70 equivalent to

similarity.

Song et al's three assumptions have been repeated in

methodology and tutorial papers, sometimes verbatim,71

but also with variations such as: dropping similarity;72

dropping homogeneity;73 adding transitivity;15 dropping

similarity and transitivity.74 Transitivity and similarity

have been viewed as the same assumption,12 but “similar-

ity reduces to homogeneity” in a single head-to-head

comparison.12 Also, “the notion of transitivity is analogous

to … homogeneity”; or that “a lack of transitivity causes

inconsistency”;14 or that it is “incorrect” to consider transi-

tivity and consistency as the same.75 Evidently, there has

been a lack of clarity about the precise definition of these

terms, and the relationships between them. We provide a

set of recommended definitions in Table 1.

4.2 | Or a single assumption:
exchangeability (qualitative homogeneity)

It appears that Song et al used the term “homogeneity” as

a qualitative construct. On this reading, the homogeneity

assumption is a characterization of the standard “random

effects” model, in which trial treatment effects are samples

from a distribution, for example: δi,AB�Normal dAB,σ
2
AB

� �
.

In this sense homogeneity is similar to exchangeability

(Table 1), as previously recognized in the Bayesian

literature,76,77 although neither make specific distribu-

tional assumptions. Song et al's68 version of the homoge-

neity/exchangeability assumption correctly captures the

“randomness” recognized in every account of random

effects meta-analysis. Consistency is then not an addi-

tional assumption required by NMA, as we ourselves

once believed,9,10 it is in fact a corollary of exchangeabil-

ity.78 The reasoning is as follows. Assuming a linear pre-

dictor scale on which treatment effects are additive, if a

meta-analysis of AB trials is characterized by trial-specific

relative treatment effects δi,AB�Normal dAB,σ
2
AB

� �
, drawn

from a normal distribution with between-trial variance

σ2AB and a meta-analysis of BC trials by δi,BC �

Normal dBC ,σ
2
BC

� �
, then it follows that the true AC treat-

ment effects must conform to δi,AC ¼ δi,ABþδi,BC, and

therefore that δi,AC �Normal dAC,σ
2
AC

� �
where dAC ¼

dABþdBC is the “consistency assumption.”10 It can also

be deduced that Minimum σ2AC,σ
2
BC

� �
< σ2AC < σ2ABþσ2BC ,

which is a 2nd order consistency relating the three

variances.79 This is the triangle inequality in which the

standard errors correspond to the side lengths of an

acute-angled triangle (Supplementary Note 1).

Because exchangeability implies similarity with respect

to effect modifiers across treatment comparisons, all three
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of Song et al's requirements can be derived from exchange-

ability, along with transitivity in both its senses.

4.3 | Quantitative versus qualitative
heterogeneity

As well as its exchangeability meaning, homogeneity has

also been interpreted in a quantitative sense. Several

authors have concluded that the homogeneity assump-

tion requires that relative treatment effects have to be

quantitatively similar,71,72,80 and that it can be verified or

ruled out by statistical tests of homogeneity,27,74 or mea-

sured by I2 statistics.81

However, the fact is that, whether one prefers the

broad or narrow approach to synthesis, there is no tech-

nical requirement in either PMA or NMA for treatment

effects to be quantitatively homogeneous; indeed, there is

no theoretical limit on how quantitatively heterogeneous

treatment effects can be. Think of a basket of green apples:

however much they vary in size they are still homoge-

neous (exchangeable). They become non-exchangeable if,

for example, oranges get in; which can happen if colour

is not recognized as a potential effect modifier.

5 | HOW TO ESTABLISH
EXCHANGEABILITY

If exchangeability is the only assumption, how can it be

checked and verified? Establishing exchangeability a pos-

teriori by statistical analysis requires a demonstration

that subsets of the data are “similar to an adequate

approximation”, based on sub-group analyses, with the

definitions of both “similar” and “subsets” being decided

by context.77 However, as noted above, fewer than 25% of

Cochrane PMAs consist of more than seven studies,43

and most NMAs will be under-powered to detect sub-

groups. Tests for inconsistency are also investigations of

whether treatment effects in pre-defined sub-sets of the

data are similar. But these are also inherently weakly

powered,82 as well as being hampered by insufficient data

(see Section 10).

Establishing exchangeability a posteriori will there-

fore seldom be feasible. Unless large numbers of trials

are under study, the judgement of exchangeability of

relative treatment effects in a given network can only be

made a priori on the basis of topic expertise.77 It is here

that the concepts of similarity and transitivity have

value, providing a rationale for a range of informal

checks and investigations recommended in tutorial

papers and checklists.26,28,29,31,83 Table 2 summarises

the various prior and posterior approaches to checking

NMA assumptions.

6 | DOES NMA ESTIMATE CAUSAL
EFFECTS OR ASSOCIATIONS?

When refereeing an applied paper recently, one of us was

surprised to read the following editorial comment:

“Results of this meta/network association analysis should

be described in terms of association, not in terms of a

causal effect.”

The 2008 Cochrane Handbook84 stated that “indirect

comparisons … are essentially observational findings across

TABLE 1 Definitions of terms.

Term Definition

Exchangeability Random variables are said to be exchangeable (qualitatively homogeneous), if a sequence of those

variables has a joint probability distribution that is unchanged if the sequence is reordered. For

example, if some studies were in treatment-naïve patients and other studies in non-naïve, then we

could a priori create sequences of treatment effects that had different joint distributions.

Qualitative homogeneity/

heterogeneity

Same as Exchangeability/lack of exchangeability.

Quantitative homogeneity/

heterogeneity

The hypothesis of quantitative homogeneity is tested by, for example, Cochrane's Q-statistic,212 or

comparing the fit of fixed and random effects models.

Quantitative heterogeneity is what is measured by between-trials variance. Heterogeneity refers to

variation within treatment comparisons.

Consistency Direct and indirect sources of evidence estimate the exact same parameters. A corollary of exchangeability.

Similarity Distribution of effect modifiers is similar across direct and indirect sources of evidence. Implied by

exchangeability.

Transitivity (a) equivalent to consistency, or (b) equivalent to similarity

Incoherence Same as inconsistency; lack of consistency between treatment comparisons.

6 ADES ET AL.
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trials, and may suffer the biases of observational studies, for

example due to confounding”. This statement has been

repeated almost verbatim in the 2019 edition70 and in tuto-

rial papers on NMA.14,27,85–87 When randomized trials are

contrasted with observational studies, the term “confound-

ing variables” usually refers to prognostic variables, factors

that impact the absolute outcomes, but not necessarily on

relative treatment effects. But indirect comparisons are not

vulnerable to confounding in this sense, because randomi-

zation ensures that prognostic variables are balanced over

arms in each trial. Thus, PMA, indirect comparisons and

NMA all respect randomization and all produce weighted

averages or linear combinations of relative treatment

effects,78,88 each of which are controlled for prognostic

factors.

A similar claim is that NMA is a form of sub-group

analysis or meta-regression, and that NMA is therefore

“observational” because regression coefficients cannot be

interpreted as causal effects, only as associations.12 Both

PMA and NMA, and indeed RCTs themselves, can be ana-

lysed as regressions with treatment as the covariate. But

this does not prevent the coefficients being interpreted as

estimates of causal effects, due to randomization.

Relative treatment effects are, however, affected by

effect modifiers, and estimates produced by PMAs, indi-

rect comparisons and NMAs, will be dependent on the

distribution of effect modifiers in included studies.83 In

this sense PMA can be and has been regarded as observa-

tional in nature.89,90 But, how can it be possible to draw

causal inferences from a single randomized trial, but not

from 2 or 3 trials?

Heterogeneity does not prevent a pooled effect from

being causal, but it still has a profound impact on what

can be concluded from it:

• A single trial identifies a causal effect, but in the pres-

ence of unrecognized effect modifiers, we may remain

uncertain about the population or circumstances in

which it applies.38 (Possibly, this explains why trials

are hard to replicate.91)

• If, in a synthesis of several trials, the effects are quanti-

tatively homogeneous, this increases certainty about

the population in which the causal effect occurs.

• If the treatment effects are quantitatively heterogeneous,

we can remain confident that there are causal effects in

the populations studied, but we may now be uncertain

about their size and direction in any new population.38

• In the extreme case of a statistically strong pooled

effect, whose 95% interval does not include zero effect,

but where the distribution of effects does cross the zero

line, we are still confident there is a causal effect, but

now we have no idea in which population(s) it occurs.

A large proportion of random effect meta-analyses

appear to be in this final category (Supplementary Note 2).

7 | NETWORK GEOMETRY
AND BIAS

The PRISMA-NMA check-list asks authors “to explore

the geometry92 of the treatment network … and the

potential biases related to it,” and “provide an … overview

of gaps in the evidence, and potential biases reflected in

the network structure.” This advice requires clarification

because it is unclear what kinds of bias or bias mecha-

nisms are being associated with network structure.

Related to the idea that NMA is “observational” is

that it is vulnerable to selection bias. The supposed bias

TABLE 2 Methods for checking the exchangeability assumption, with selected references.

A posteriori checks and

statistical tests

Subgroup analysis, meta-regression213; network meta-regression.214

Single loop inconsistencies.32

Multiple independent inconsistencies.215

Node-Splitting.216

Graphical Comparison of consistency and inconsistency models.10

Design-by-treatment interaction models.19,21,126

Measures of and tests for between-comparison variance.1,10,126,217

A priori checks for similarity/

transitivity

Examination of outcomes in control groups may provide clues about potential effect modifiers.31,218

For example severity, previous treatment, age, calendar time.

Examination of the distribution of potential effect modifiers across different treatment comparisons.31,83

Joint randomizability:12 it should be possible to randomize every treatment to each of the trial

populations; equivalently, it should be possible to have a multi-arm trial that includes all the

treatments; equivalently, in each trial treatments that are missing are missing-at-random with

respect to their efficacy.
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occurs “when the choice of comparator in a study is

dependent on the relative treatment effect.”86 A similar

claim, under the name “opportunity bias,” is that indirect

comparisons of treatments A and C via treatment B will

be biased unless allocation of patients to AB comparisons

and BC comparisons is random.93 Likewise, it has been

claimed that the transitivity assumption is violated if the

choice of comparators is related directly or indirectly to

the relative efficacy of the interventions.12

Choice of comparators is far from random. New prod-

ucts are generally trialled against placebo to gain regula-

tory approval, and it is no surprise that industry trials

tend—on average—to favour new drug treatments over

placebo.94 Manufacturers may also deliberately game the

system by comparing their product to competitor prod-

ucts at a less effective dose.95 This has earned the name

“comparator preference bias”.96 But as long as the differ-

ent doses are reflected as separate treatment nodes, the

appropriate indirect comparisons can be made and bias

caused by “lumping” different doses is avoided.

Network structure certainly needs to be monitored

and understood, because it determines how potentially

biased evidence in one part of the network is propagated

across the network to cause bias in NMA estimates.97,98

However, the network structure cannot lead to bias in

and of itself (Supplement Note 3).

8 | IS “DIRECT” EVIDENCE
BETTER THAN “INDIRECT”

EVIDENCE?

A repeated claim in the literature is that “direct” evi-

dence is better than “indirect.”28,71,99–101 Investigators

have been advised to prefer direct evidence when it is

available,84 to include indirect only when direct evidence

is insufficient,17,27,87,93 to “distinguish between direct and

indirect evidence”, and to “justify using indirect evi-

dence.”80 Some of these ideas may have been fuelled by

the belief (Section 4) that NMA makes more assump-

tions, requires more checking, and is therefore inherently

more dangerous and unreliable than PMA. We have not

been able to find any theoretical foundation for this

advice, and the standard formula32 bd
Ind

AC ¼bd
Dir

AB þ
bd
Dir

BC tells

us that if the direct evidence is unbiased, then the indi-

rect estimates must be unbiased too.

The relative merits of direct and indirect evidence can

be discussed if only two or three treatments are involved,

but in larger networks it eventually becomes impossible

to prefer one to the other or even to keep them distinct:

the same evidence that is direct for one contrast is indi-

rect for another. After all, in Figure 1, the 29 indirect esti-

mates (19 based on 3-treatment loops and 10 on

4-treatment loops), and the set of 15 coherent NMA esti-

mates combining both direct and indirect evidence, are

all linear functions of the same 9 “direct” estimates.78

9 | DANGERS OF
HETEROGENEITY ARE MAGNIFIED
BY A SMALL NUMBER OF TRIALS

In this section we show that quantitative heterogeneity

manifests itself as increased expected absolute error

which affects both direct and indirect estimates and leads

to inconsistency, the risk being greater as the number of

trials diminishes, even when exchangeability is satisfied.

9.1 | Second order sampling error
in PMA

Following a 1993 meta-analysis, magnesium was seen as

an effective intervention following acute myocardial

infarction.102 The negative findings from the ISIS-4

super-trial therefore took the trialists by surprise,103

while leading experts called the earlier meta-analysis

results “discrepant” and “misleading.”104 However, a pre-

dictive cross-validation analysis105,106 shows that while

the treatment effect in ISIS-4 is indeed statistically signifi-

cantly different from the meta-analytic pooled effect, it is

entirely within the prediction interval for a new trial. In

other words, given the degree of between-studies varia-

tion in previous trials, a trial with an effect as small as

ISIS-4 should not have been unexpected.53 The estimated

between-study standard deviation (SD) was 0.58 on the

log odds scale;53 meaning that effects as much as a factor

of 3 higher or lower than the median effect could be

within the 95% envelope. This high level of heterogeneity

was not commented on, or even documented, reflecting

the permissive attitude to heterogeneity that prevailed at

the time, and to some extent still does.

The ISIS-4 trial has been also used to illustrate publi-

cation bias,107 and the role of sceptical Bayesian priors.108

The confusion over whether ISIS-4 was unexpected or

exactly in line with the existing evidence would be less

likely to occur now, as opinion is shifting away from the

pooled mean and its confidence interval as the appropri-

ate summary, and towards the predictive effect in a new

study.109 There has also been further progress on

methods for outlier detection in NMA.110–112

The error in the predictive effect reflects the sampling

error arising from a single draw from the random effect

distribution. We may extend this concept from a single

study to syntheses of 2, 3 or more studies. This has been

described as second-order sampling error.45 Imagine a

8 ADES ET AL.
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meta-analysis of infinitely large trials in which

quantitative heterogeneity arises from a single unrecog-

nized trial-level effect modifier, which is present in

50% of all trials, although this is not known to investiga-

tors. The relative treatment effect in the absence of the

effect modifier is 1, and in its presence 2. The “average”

treatment effect is (0.5 � 1.0 + 0.5 � 2.0) = 1.5. The

expected bias of the meta-analysis relative to this target is

zero, regardless of the number of trials. However, no sin-

gle trial will ever estimate this target: it will always be 0.5

higher or 0.5 lower. If the effect modifier is known, sepa-

rate analyses can be conducted on each subset. But with

an unrecognized effect modifier, we do not know if a trial

has delivered an overestimate or an underestimate. The

expected absolute error is the appropriate statistic to

reflect what we might call the realized error in the result

of any given meta-analysis. The expected absolute error

in a meta-analysis decreases as the number of trials

increases,53 from 0.5 if the meta-analysis consisted of a

single trial, to 0.25 with two trials and 0.12 with 10 (see

Figure 2). Recall that 75% of published Cochrane Collab-

oration PMAs before 2009 consisted of 7 or fewer trials.43

9.2 | Second order sampling error in
indirect comparisons

Extending these “thought experiments” to indirect com-

parisons, assume that treatment A is placebo and treat-

ments B and C are active treatments in the same class, so

that the effect modifier changes the outcomes on treat-

ments B and C in exactly the same way. The C versus B

treatment effect in BC trials, bd
Dir

BC , is therefore not affected

by the effect modifier. In the indirect estimate: bd
Ind

AC ¼
bd
Dir

ABþ

bd
Dir

BC , the expected absolute error in bd
Ind

AC is exactly the

same as the expected absolute error in the direct esti-

mates bd
Dir

AB , as shown in Figure 2. However, if we estimate

the BC effect indirectly from the two active-placebo com-

parisons, we find that bd
Ind

BC ¼bd
Dir

AC �
bd
Dir

AB now has a higher

expected absolute error (Figure 2).53 The realized error in

this form of indirect comparison, which is probably the

most common, is especially large.

Second order sampling error arising from heterogene-

ity can therefore result in realized error in direct and indi-

rect estimates, and statistical inconsistency between them.

Critically, sampling error generates inconsistency between

direct and indirect estimates, even under exchangeability,

that is even when the consistency assumption holds at the

level of the parameters. The extent of the inconsistency

depends only on the number of trials (Figure 2) and the

degree of heterogeneity. The problem of realized error

due to second order sampling only disappears if there is

no heterogeneity. Analyses of many thousands of meta-

analyses found median between-studies SD around

0.3 units on the standard normal scale (Supplement

Note 4), which seems high when compared to the

benchmark 0.2, 0.5, 0.8 for small, medium and large

effect sizes.113

The danger of meta-analytic estimates based on small

numbers of trials is especially relevant to NMAs, because

most comparisons are directly informed by only one or

two trials. In a report based on 201 networks published

before 2019, 92% included a comparison informed by

only one study; there was a median 1.3 studies per direct

comparison, and the 90% percentile was less than 1.6.82

Another collection, from 2013, of 93 Cochrane Review
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FIGURE 2 Expected

absolute error in direct and

indirect comparisons, in the

presence of an unknown effect

modifier with effect size 1 unit,

present on 50% of RCTs. A is

placebo, B and C are active

treatments in the same class,

such that the effect modifier

changes their treatment effects

relative to placebo to the same

extent. Solid line: error in

direct bd
Dir

AB estimates, and in

indirect estimates
bd
Ind

AC ¼bd
Dir

AB þ
bd
Dir

BC . Dashed line:

error in indirect

estimates bd
Ind

BC ¼bd
Dir

AC �
bd
Dir

AB .
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NMAs had a median 1 study per comparison, and 67%

had less than 2.114 In Song et al's 2011 study of inconsis-

tency, 50% of the 3-edged evidence loops were supported

by 5 or fewer studies.18

It is a benefit of NMA that it allows all the evidence

to contribute to each comparison, so that in cases where

direct evidence from one or two trials delivers an extreme

estimate, it is generally moderated by indirect evi-

dence.110 (This effect is limited by the geometry of the

network; it does not hold for comparisons that involve a

“dead end” in the network graph.115) Interestingly, in

empirical studies, most of the evidence on each compari-

son is indirect.116

10 | ALTERNATIVE
PARAMETERIZATIONS

10.1 | Arm-based models

The models most often used for NMA, as we noted in the

introduction, are contrast-based,10,117 with relative treat-

ment effects drawn from random effect distributions. An

alternative puts a multivariate-normal model on arm

effects.118–120 Arm-based models are equivalent to contrast-

based models in which a random effect model is also put

on the study-specific effects.121 (Note that contrast-based

models may have arm-based likelihoods). Putting a model

on study effects has been avoided both in traditional PMA

and NMA as it allows study effects to contribute informa-

tion on relative treatment effects, and this risks introducing

bias if the trial effect model is mis-specified.121,122

A second feature of arm-based models is that they

oblige users to inform the absolute outcomes and the rel-

ative effects from the same data. In practice, information

on absolute outcomes is better sourced from external

evidence, such as register studies or single contemporary

trials.123 This is the strategy commonly adopted by deci-

sion modellers.124

10.2 | Inconsistency models

Two definitions of inconsistency have been proposed.

Loop inconsistency occurs if the meta-analytic estimate

of the direct AC effect, bd
Dir

AC , differs from the indirect esti-

mate bd
Ind

AC ¼bd
Dir

AB þ
bd
Dir

BC .
10 Its detection is achieved by

testing the null hypothesis that inconsistency terms

for all loops bωABC ¼
bd
Dir

AC �
bd
Dir

AB þ
bd
Dir

BC

� �
are zero.10,125

In networks with multi-arm trials the definition of

the loop inconsistency terms depends on how the model

is parameterized. Design inconsistency20,126 avoids this

problem by including both loop inconsistencies and

differences between the AB effects estimated in AB, ABC,

ABD sets of trials. It has lower power to detect inconsis-

tency due to having more parameters than the loop-

inconsistency approach.

Inconsistency models have been used primarily to

detect inconsistency by goodness of fit tests and residual

plots from the two models.10,127 However, Lumley's origi-

nal NMA models, which allowed for loop inconsistencies,

and Jackson et al's design inconsistency models were

intended for routine use in applications.21,128 This strat-

egy is supported by several papers reporting that incon-

sistency is more prevalent than would be expected by

chance (Supplementary Note 5).18,19,82

However, the implications of these reports are

unclear. First, they are based on data from Cochrane

reviews and clinical literature from a period where high

levels of clinical and quantitative heterogeneity were

tolerated. Second, comparison of consistency and incon-

sistency models is limited to two methodological

papers,21,128 in which differences between estimates

from consistency and inconsistency models were either

barely perceptible, or differed by only a fraction of the

between-studies (within-comparison) standard devia-

tion. Model choice did not impact on the ranking of

treatments by their expected effects. In practice,

researchers have been hesitant to use inconsistency

models in routine applications; possibly because of the

dependence on parameterization of loop inconsistency

models, and the difficulty understanding what design

inconsistency may represent.

10.3 | Remaining research questions on
inconsistency

The studies on prevalence of inconsistency should be

repeated, looking separately at networks informing re-

imbursement decisions, clinical guideline recommenda-

tions, and other NMAs published in clinical journals. As

before,43,129 research should also distinguish between dif-

ferent disease areas: less between-study variation might

be expected in networks of cancer treatments than in net-

works of depression trials or complex interventions,

where trial populations are more variable. Updating

these studies could provide more appropriately targeted

data on suitable prior distributions for between-studies

variance parameters.43,130 Research on the prevalence

of inconsistency82 and work on inconsistency models21

has assumed that the inconsistency terms are them-

selves exchangeable, drawn for example from a random

effects distribution. Some of the published examples,

however, suggest otherwise: plotting residuals from

consistency and inconsistency models against each

10 ADES ET AL.
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other can reveal that inconsistency is largely confined

to just one or two comparisons.127,131 Further research

would clarify the prevalence of both exchangeable or

non-exchangeable inconsistency, and the extent

to which choice of model impacts on treatment

recommendations.

11 | THE RELIABILITY OF NMA

A posteriori checks on exchangeability assumptions are

unlikely to be conclusive (Section 5). Therefore, whatever

a priori efforts are made minimize the risk of non-

exchangeability, investigators need to assess the reliabil-

ity of conclusions based on NMA. Distinct approaches

have emerged.

11.1 | GRADE certainty of evidence
ratings

GRADE is a method for ascribing a “quality” or “cer-

tainty” rating (high, moderate, low, very low) to every

PMA estimate. These ratings are based on assessments

in five domains: risk of bias (study limitations), impre-

cision, inconsistency (quantitative heterogeneity), indi-

rectness (applicability), publication bias.66 To extend

this to NMA it was proposed that the GRADE process

must be applied to every direct estimate, and then to

every indirect estimate.67 The rating attached to each

indirect estimate would be the lowest of the ratings of

its two direct components. Then the certainty rating

attributed to each NMA estimate would be the highest

of the direct and indirect ratings. In the Figure 1 net-

work there are 21 indirect estimates based on triangu-

lar evidence loops: the same quality ratings belonging

to the 9 direct estimates are therefore recycled a total

of 2 � 21 + 9 = 51 times to produce the NMA quality

ratings.

If the direct and indirect estimates are substantially

different from each other, researchers are advised to

choose the one with the highest certainty.67 GRADE

could then deliver an incoherent set of estimates (A > B,

B > C, C > A). Nevertheless, the Working Group con-

firmed that certainty should take preference over

expected efficacy132 (though see Section 14).

The GRADE approach requires a subjective quality

rating for every item of direct and indirect evidence,

which is laborious to implement in networks where there

may be several hundred indirect comparisons. Subse-

quent clarifications and elaborations132–135 have made

this time-consuming process even more complex, with

unclear benefits.

11.2 | Confidence in network meta-
analysis—CINeMA

The potential for incoherence and the multiple recycling

of the same ratings can be avoided by exploiting the fact

that each NMA estimate is a linear combination of the

direct effect estimates and a set of coefficients which rep-

resent their relative contribution.78,88 These coefficients,

elements of the so-called contributions matrix, can be

multiplied into modified GRADE ratings attaching to

each direct comparison, to provide a coherent confidence

rating for every NMA estimate, and a confidence rating

for the whole network.136 This approach was subse-

quently refined as Confidence In Network Meta-Analysis

(CINeMA) and streamlined with user-friendly software98

(Supplement Note 6).

There are drawbacks, however. First, GRADE-type

assessments are required on all items of evidence at the out-

set, each requiring subjective judgements, including judge-

ments of how much heterogeneity or inconsistency should

be allowed before an item of evidence is downrated. As

with GRADE, further complexity is introduced because of

the overlap in multiple uncertainty-related concepts: impre-

cision, indirectness, heterogeneity, inconsistency (incoher-

ence), and transitivity. Elaborate precautions have to be

implemented to avoid double counting.98,132,134,136

However quality or confidence ratings for NMA esti-

mates are generated, it is unclear how they are intended to

impact on treatment decisions, because there is no relation

between the confidence in evidence and the impact of that

evidence on the rank ordering of treatments.137,138

11.3 | Threshold analysis: reliability of
recommendations based on NMA

Providing an accurate analysis of the impact of every

piece of direct evidence on every NMA estimate, CIN-

eMA presents investigators with almost too much infor-

mation. To reduce the dimensionality of the problem we

can instead investigate the robustness of recommenda-

tions based on NMA evidence to potential biases and

uncertainties in the data. This is done via a specific form

of threshold analysis,138,139 a standard technique in deci-

sion analysis.46 Threshold analysis for NMA asks the

question: “given the imprecision, uncertain relevance,

potential biases in the trial estimates, and possible incon-

sistency or intransitivity, how much would the evidence

have to change before this impacts the treatment recom-

mendation?”138,139 This question can be asked about the

evidence from single trials, or the pooled evidence on

each treatment contrast, or applied to treatment effects in

selected subsets of trials, for example those at higher risk
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of bias.140 Underlying the threshold analysis is the same

algebra, based on the hat matrix, that is used in the CIN-

eMA approach.

Threshold analysis defines the invariant intervals over

which the evidence can change without impacting on

recommendations. In larger NMAs it can turn out that

no plausible change in the evidence, whether due to bias

or sampling error, could change the recommendations.138

(The definition of “plausible” introduces a subjective ele-

ment into what is otherwise a purely mechanical pro-

cess). In other cases the credible intervals extend beyond

the invariant regions, indicating that the recommenda-

tion is sensitive to uncertainty.138 Threshold analysis

identifies what may be a small number of trials or treat-

ment comparisons to which the recommendation is sen-

sitive, so that these can be further scrutinized. By

contrast, both GRADE and CINeMA require every item of

evidence to be researched and rated at the outset, and in

multiple ways. However, this disadvantage will be sub-

stantially offset by accumulating evidence in “living”

reviews.141

Whilst GRADE and CINeMA must, in their current

forms, be carried out separately for each outcome, thresh-

old analysis can be applied to treatment recommenda-

tions based on decision models that incorporate multiple

outcomes, cost-effectiveness,139 inconsistency, and bias

modelling (Section 13).131,142 However, more work is

needed to develop computational methods to apply it to

the full range of non-linear economic models typically

seen in HTA.

12 | POPULATION-ADJUSTED
TREATMENT EFFECTS

In the presence of effect modifiers relative treatment

effects estimated in trials will differ from the effects that

would be observed in a target population. The purpose of

population-adjustment methods is to project, or extrapo-

late, treatment effect estimates onto a specified target

population. Solutions include: simple direct standardiza-

tion;143,144 model-based standardization,145 a form of

reweighing by propensity scores; outcome regression;

and doubly robust estimation.146 The properties of these

methods, their variants, target estimands, and scope of

application were reviewed previously.147,148 Another

approach reweights according to propensity calculated

from a baseline risk score.149

Two important innovations, Matching Adjusted Indi-

rect Comparisons (MAIC)150 and Simulated Treatment

Comparisons (STC)151,152 extended the above methods to

indirect comparisons and specifically to evidence struc-

tures including both IPD and aggregate data (AgD).

MAIC and STC address a situation that is common in

HTA, where, given IPD from a manufacturer's AB trial

(A being placebo and B an active treatment), the aim is

to generate an indirect BC comparison from AgD avail-

able from a competitor's AC trial. MAIC achieves this

using a modified propensity score reweighting, and STC

by covariate adjustment. Detailed analyses of both

methods have been published147,148 and their perfor-

mance has been assessed in simulation studies.153 A criti-

cal problem with both methods is that they are limited to

extrapolating the AB and BC relative treatment effects

into the population represented in the (competitor's) AC

trial. For the same reason they can only be applied in

(AB-AC) indirect comparisons, not to wider networks.

We begin our description of more general methods by

considering evidence networks consisting entirely of IPD.

12.1 | The relation between treatment
effects at individual patient and aggregate
levels

Covariate adjustment is recommended in the analysis of

individual trials because it increases the precision of esti-

mated treatment effects, controls for baseline imbalances,154

and avoids aggregation bias when trial outcomes are non-

linear.155 For the same reasons, IPD meta-regression is rec-

ognized to be the gold standard; it also allows individual

level effect modifiers to be studied and accounted for in a

way that is not possible when only AgD is available.156

Decisions about which treatment is best are, however,

made for whole populations, which requires estimation

of the absolute effects of treatment at the marginal (AgD)

level. Starting from an IPD meta-analysis including

regression coefficients for prognostic variables, effect

modifiers and treatment effects, one may obtain an aver-

age probability in a specified target population by inte-

grating the individual outcomes over the target joint

covariate distribution.157–160 Note that for non-linear link

functions, such as log, logit or probit, the relative treat-

ment effects at the AgD and IPD levels are not the same,

as has sometimes been assumed.161–163

12.2 | Multi-level network meta-regression
(ML-NMR)

Multi-Level Network Meta-regression (ML-NMR),153,160,164

illustrated in Figure 3, reconstructs an IPD analysis of con-

nected networks consisting of any combination of IPD and

AgD trials. It has the important property that, if all trials

provide IPD, it is equivalent to the gold standard IPD

meta-regression; if all provide AgD it is equivalent to a

12 ADES ET AL.
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standard NMA. ML-NMR coherently relates the

individual- and aggregate-level models by integrating

over the joint covariate distribution in each AgD study

(Supplement Note 7), which avoids the aggregation

bias caused by plugging-in mean covariate values in

non-linear models, as was proposed in earlier work on

combining IPD and AgD in NMA.161–163 Unlike MAIC

and STC, ML-NMR can be applied to any number of

AgD and IPD trials and in networks of any complexity.

Furthermore, with non-collapsible effect measures

such as (log) odds ratios, ML-NMR correctly combines

marginal and conditional effects and can produce both

marginal and conditional estimates. Crucially, only

ML-NMR can generate treatment comparisons in any

specified population.

In practice, it is frequently necessary to assume that

each effect modifier impacts on a set of treatments in

the exact same way (the Shared Effect Modifier—SEM

assumption), in order to estimate the model with the

available data. In most population-adjustment analyses

treatments belong to classes of drugs within which the

SEM assumption is reasonable. With IPD on multiple

comparisons the assumption can be tested,164 and if nec-

essary abandoned. Limited experience so far shows that

ML-NMR estimates treatment effects more precisely

than standard NMA, as it takes account of individual,

within-study variation,153,164 and reduces between-study

heterogeneity and inconsistency by accounting for the

different effect modifier distributions rather than aver-

aging over them.

12.3 | Network meta-interpolation (NMI)

NMI uses information on AgD level relative treatment

effects in sub-groups. If all trials report the relative treat-

ment effect in both, say, severe and non-severe sub-

groups, it would be possible to estimate the relative

treatment effect on the linear predictor scale in each trial

that would be observed with any specified (target) pro-

portion of severe patients. A standard NMA can then be

run at the target values of that effect modifier. This can

be extended to multiple sub-group dimensions using a

best linear unbiased estimator approach based on mar-

ginal subgroup estimates and covariate correlations,165

without the need for data on sub-group combinations

(as with ML-NMR, the covariate correlations are bor-

rowed from available IPD). NMI does not require the

SEM assumption, as effect modifier information has to be

available on all trials. However, because NMI works at

the level of population average conditional effects, it can-

not access the patient-level regression parameters needed

to estimate absolute average treatment effects in the tar-

get population. This limits its use in HTA.

FIGURE 3 Multilevel network meta-regression (ML-NMR). Schematic Directed Acyclic Graph showing how (a) individual patient data,

and (b) population average absolute treatment effects from aggregate data trials, jointly inform a common set of parameters, which then

predict treatment effects in a target population. (1) IPD network meta-regression: relative treatment effect (RTE), study baselines, regression

coefficients for prognostic variables and for effect modifiers at the IPD level are informed by a connected IPD network of trials on

treatments. (2) Integration step: calculation of population average relative and absolute treatment effects in specific populations, including

the target population for the decision. (3) Information from AgD trials back-propagated to contribute further parameter information.
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12.4 | Research priorities in population
adjustment

Population adjustment methodology is an active area

of research, with rapid uptake in submissions to reim-

bursement bodies such as NICE.55 Several variations

of MAIC and STC have been proposed,166,167 but the

fundamental inability of MAIC and STC to extend to

larger networks remains, and a recent report commis-

sioned by the NICE Decision Support Unit suggests

that ML-NMR should be the preferred approach.168

Ongoing research aims to extend ML-NMR to incorpo-

rate subgroup analyses and regression coefficients

reported by AgD studies, in order to aid estimation

and reduce reliance on the SEM assumption. This

opens the door to performing ML-NMR analyses with-

out any IPD at all, recreating the equivalent IPD NMA

without the difficulties of obtaining IPD. Such

advances have the potential to revolutionise evidence

synthesis. Standardized reporting of the necessary

summary statistics, including the joint covariate dis-

tributions, regression coefficients and covariance

matrices, would further increase the applicability of

ML-NMR. Technical methods for accessing IPD with-

out jeopardising confidentiality or intellectual prop-

erty are also being developed.169,170

13 | BIAS-ADJUSTMENT

13.1 | Quality-related bias in RCTs

A 1995 study by Schultz et al.171 showed that RCTs at

high risk of bias through failure of allocation conceal-

ment or lack of blinding tended to exaggerate treatment

effects. Since then a series of meta-epidemiological stud-

ies have provided evidence of quality-related biases in

specific disease areas and for specific kinds of outcome

measure.172–174 The bias model assumes that low risk

studies estimate a relative effect δi and the high risk stud-

ies estimate δiþβi with a bias distribution βi �N b,σ2B
� �

.

The meta-epidemiological studies provide empirically-

based priors for bias distributions, so that studies at low

and at high risk of bias can then be incorporated in a sin-

gle meta-analysis.175

In NMA, the extra degrees of freedom can be lev-

eraged to estimate the bias distribution associated

with high-risk studies, and then generate bias-

adjusted relative treatment effects, using only the

data at hand. This has been applied to quality-related

bias,176 novel agent (optimism) bias,177 small-study

bias,178 sponsor-bias,95 and biases associated with

missing data.179,180

13.2 | The use of non-randomized
studies to estimate relative treatment
effects?

The use of non-randomized studies (NRSs) to estimate

relative treatment effects has been debated for over

40 years and remains controversial. Various reasons for

incorporating NRS evidence, besides a lack of RCT evi-

dence, have been advanced: that RCTs may have poor

external validity,181 that RCTs may be unable to predict

treatment effects in the ‘real world’,163,182 and that inclu-

sion of NRS evidence will make the results more gener-

alisable.183,184 The way estimates are derived from NRS

has received little attention in the synthesis literature

(Supplement Note 8).

The generalisability argument takes us back to the

“broad” versus “narrow” debate. If the focus is on spe-

cific treatment regimens at specific points in a disease

pathway, the advantage of greater generalisability is

unclear. Regarding external validity, it is true that RCT

populations may have a patient mix than differs from

the target distribution, but it is unclear in what way

case–control and cohort studies are more “real” or exter-

nally valid than RCTs. If IPD is available, population-

adjustment methods like ML-NMR (section 12) are

designed to map RCT treatment effects over to any spec-

ified population, possibly based on a register, without

the need to estimate relative treatment effects directly

from NRS data.

A Cochrane review comparing relative treatment

effects in RCTs and NRSs reported that on average there

is little difference,185 although “substantial heterogene-

ity” was reported in the odds ratio of RCT to NRS effects

Thus, in any given analysis, a substantial absolute differ-

ence between the RCT effect and the NRS effect can be

expected (Supplement Note 9). In practice, the true het-

erogeneity in RCT:NRS odds ratios is considerably

greater, as the review examined average effects from

meta-analyses consisting of between 19 and 530 studies.

13.3 | Methods for incorporating NRS
evidence on relative treatment effects

Meta-analytic methods for incorporating NRS, reviewed

in more detail elsewhere,186,187 divide into three classes.

In the first category NRS evidence is used to provide a

prior distribution for the relative treatment effect, which

can be down-weighted in various ways,188,189 and to vari-

ous extents, in recognition of the likelihood of bias.163,181

Choosing a specific weight is problematic, which might

explain why the most common approach is to accord

NRSs the same weight as RCTs.183

14 ADES ET AL.
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A second approach introduces a third hierarchical level

representing different ‘types’ of evidence,163,181,182,184,190 for

example RCT and NRS, perhaps also distinguishing case–

control, and cohort studies. The target estimand is now the

mean of the study-type distribution. But this is clearly not

an estimate of the causal effect which RCTs are designed to

identify. Further, its value depends on the amount of evi-

dence on each type, and the between-type variance, which

is poorly estimated with so few types, and hence influenced

by priors.

Both the 3-level hierarchical model and the down-

weighting methods may mitigate the bias attaching to

NRS, but they inevitably incorporate it into the final esti-

mates. The degree of influence of NRS and hence the

level of bias, is subject to arbitrary choices: neither

method has the transparency or consistency needed for

accountable decision making.191

By contrast, the NMA bias-adjustment approach176,177

(Section 13.1) can be applied to RCT and NRS evidence, to

generate bias-adjusted and down-weighted estimates in a

relatively objective way,184 although modelling choices

regarding direction of bias and its dependence on treat-

ment comparison are necessary. An interesting exten-

sion192 adds a further parameter for probability of bias.

While this increases flexibility, applications so far163,192

have used strongly informative, investigator-originated,

priors for this parameter, again lacking in transparency.

14 | METHODS FOR DERIVING
RECOMMENDATIONS FROM NMA

So far, we have assumed that the optimal treatment was

the one with the highest expected value on the chosen

evaluative criterion. This is theoretically optimal in an

economic sense,193 but the implication that uncertainty

does not matter194 jars with epidemiological thinking.

One way to liberalise the way recommendations are

derived, suggested in our work on threshold analysis, would

be to recommend all treatments showing an improvement

of size X or more, relative to the standard reference treat-

ment, and which are within a margin X of the most effec-

tive treatment.138 The quantity X could, for example, be a

minimal clinically important difference(MCID). Such a pro-

cedure automatically picks out the best K treatments, with

K determined by the margin X. It could also be modified to

take account of uncertainty by requiring a given posterior

probability of superiority. A similar method was adopted in

the GRADE Working Group's 2020 guidance on how to

draw up recommendations.195,196 However, the final

GRADE categories are reconsidered in the light of their

consistency with other pairwise comparisons, and as previ-

ously noted, a more certain treatment may in the end be

preferred to a less certain one with a higher expected

efficacy.67,132

New methods for deriving ordered treatment rankings

are being actively researched.197,198 Rankings based on the

SUCRA (Surface under the cumulative ranking curve)

statistic,199 or equivalently on the P-score statistic,200 reflect

both the mean (rank) outcome value and its uncertainty. A

more general formulation ranks treatments according to

the probability that their effect exceeds a given threshold,

and this can be extended to rankings that combine multiple

outcomes, each with its own threshold.201

Statistical decision theory202,203 provides another

means of trading expected efficacy for certainty that is

perhaps easier to justify theoretically. Put simply, the

probability that a decision based on expected value is

wrong gives rise to an expected loss, which can then be

subtracted from the expected value of the decision, thus

adjusting for uncertainty. Calculations of this sort, simi-

lar to those used to assess the value of acquiring further

information,204 have been discussed in the context of

value-based pricing of pharmaceutical products.205,206

Further research is needed to find a definition of optimal-

ity that will accommodate multiple treatment recommen-

dations while penalising uncertainty, whether decisions

are based on efficacy, cost-effectiveness, or some other

evaluative function.

In the context of reimbursement decisions, methods

that take account of uncertainty as well as expected value

could have societal benefits, incentivizing the production

of higher quality data,207 and countering the trend to

include one-arm studies and other NRS evidence in esti-

mates of causal effects.

15 | CONCLUSIONS

15.1 | Summary of findings

The first 20 years of NMA have been a period of transition.

As the PMA practices accepted in social and educational

sciences were adopted in clinical studies. Investigators

may have become accustomed to averaging quantitatively

heterogeneous treatment effects, but with too few trials to

allow causes of heterogeneity to be identified. These prac-

tices were then carried over to the newly emerging NMA.

But while tutorial papers and reporting guidelines were

right to cite “concerns” and “challenges,”12,26 the emphasis

was on the need to guard against inconsistency and intran-

sitivity, while the practice of averaging over heterogeneous

treatment effects remained unquestioned. In the Cochrane

Handbook, the validity of NMA is said to rely on the fulfil-

ment of the transitivity and coherence (loop consistency)

assumptions, while heterogeneity is considered in the same
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TABLE 3 Methods for reducing quantitative heterogeneity (between-studies variation) in evidence synthesis, with selected references.

Cause of heterogeneity Methods to reduce heterogeneity

Treatment variation Variations in treatment (dose, co-treatments, and multiple components) have been averaged over in the primary analysis, creating

heterogeneity, and then explored as effect modifiers rather than causal effects. Dose, treatment regime, and co-treatment should

instead be considered as treatment modifiers. Patients cannot be randomized to different characteristics, but they can be

randomized to different doses and co-treatments. NMA offers the opportunity to distinguish between different doses and co-

treatments, which reduces between-study heterogeneity relative to models that “lump” treatments together. In addition, the

variation in treatment can be modelled, reducing the number of parameters and increasing network connectivity.

Dose For examples of dose models, see reference.53 More complex dose models for synthesis of pharmaco-

metric studies are also available, known as model-based network meta-analysis.219,220

Treatment

components

These models are used when treatments consist of multiple components, each of which has a separate

effect. The effects of each component are considered to be independent and additive on the linear

predictor scale, although interactions may also be modelled.221 Examples include educational,

cognitive, behavioural, and relaxation components in studies of psychological interventions;222,223 and

long-acting beta agonists and inhaled corticosteroids as components in treatments for chronic

obstructive pulmonary disease.224 Frequentist software is available.115 These methods are likely to

assume greater importance in studies of complex or behavioral interventions, where between-trials

variation in treatments is particularly large.

Class effects Class models are used when there are several treatments that can be considered “similar,”5,225,226 for

example SSRI's for social anxiety.227 They are a compromise between assuming that a class of different

treatments all have the same effect, which may result in excessive heterogeneity, and assuming they all

have independent and different effects which can lead to uncertain estimates. The class model assumes

the treatment effects are drawn from a distribution.53

Bias Adjustment RCT Indicators of lower quality trials, such as lack of allocation concealment or lack of blinding, are not only

associated with larger observed treatment effects (Section 13.1), but also with more between-study

heterogeneity.228 Applications of NMA bias-adjustment models176–178 substantially reduce between-study

heterogeneity by removing variation in bias. Estimation of, and adjustment for, bias, can be contrasted

with approaches that simply document it or use it to downgrade evidence.13,65,98,136

NRS The same methods can be applied to Non-Randomized Studies. Much of the between-studies variance

seen in NRSs is absorbed into the bias distribution, reducing the between-studies variance in relative

treatment effects.184 The other methods reviewed above (Section 13.3) result in estimates that are

biased to an unknown extent.

Multiple outcomes

and outcomes reported

in different ways

Many trials report more than one related outcome, and different trials frequently report different outcomes. Rather than a

separate synthesis for each outcome, it is preferable, especially for decision making purposes, to incorporate the different

kinds of evidence into a single coherent model. The simplest approach is a within-trial synthesis combining multiple

outcomes of the same type and on the same scale into a single mean effect, taking account of the correlation between

them.229 A standard univariate synthesis can then follow. Alternatively, different scores, such as verbal and maths test

results, can be combined into a composite outcome.24

For the general case of multiple outcomes, with incomplete reporting across trials, Multivariate Normal Random Effects

(MVNRE) meta-analysis has been proposed and extended to network meta-analysis.211,230–233 This is a generalization of

the standard single outcome model to multivariate structures at both within- and between-trial levels, and in theory allows

borrowing of strength across outcomes. Estimates from MVNRE are, however, usually very close to those from univariate

analyses,234–236 unless there is both a high proportion of missing data and a high correlation between outcomes.237

Modelling the structural or logical relationships between outcomes directly, rather than just their correlation, allows a greater

borrowing of strength across outcomes. Some examples are given below. Models of this type should be checked for clinical

plausibility, and their assumptions tested statistically wherever possible.

Ordered

categories

Outcomes in trials of treatments for Psoriatic Arthritis are often recorded in terms of the proportion

showing 50%, 75%, or 90% improvement in PASI (Psoriasis Area and Severity Index). Rather than a

separate synthesis at each cutoff, a more robust and inclusive analysis can be achieved by treating

these as ordered categorial outcomes, with a common treatment effect at each cutoff.53,117 This

correctly captures the negative correlations between proportions of responses falling into each

category, and increases network connectivity. Similar ordered benchmarks are used in Rheumatoid

Arthritis trials, based on the American College of Rheumatology scale: ACR-50, ACR-75, etc.

Scale of

Measurement

Trials of treatments for depression report outcomes on a wide range of scales, such as the Beck Depression

Inventory, and the Hamilton Depression Rating Scale. Patient- and Clinician-Reported Outcomes of this sort

are routinely used in studies of anxiety and many other psychological and neurological disorders. The usual

strategy is to convert all mean treatment effects to Standardised Mean Differences by dividing the mean

effect from each study by the study standard deviation (SD). This introduces unwanted heterogeneity,238 also

known as “range variation”,45 because trial populations vary widely in their variance239 and estimated SDs

are also subject to sampling variation. One alternative is Ratio of Means,240which assumes that treatments

act multiplicatively. If sufficient trials report on more than one scale, simultaneous synthesis and mapping of

all outcomes onto a common scale has also been proposed.239,241
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way as in PMA.70 Similarly, AHRQ guidance calls for

(quantitative) homogeneity of direct evidence in NMA,

but notes that this applies to all forms of synthesis, and

the emphasis is again on checking inconsistency.27 The

fact that heterogeneity can itself introduce inconsis-

tency, especially when there are few trials, and the dire

impact, of having most NMA comparisons informed

directly by only one or two trials (Figure 2), has not

been widely appreciated.

NMA finds its natural place in medical decision mak-

ing, where it is needed to compare specific treatments in

specific patient populations. In this context, where quan-

titative heterogeneity and inconsistency are likely to be

far less, NMA may be less problematic.

This paper has tried to clarify, if not resolve, the con-

tinuing controversies surrounding NMA. Our findings are:

• There is only one assumption, exchangeability, from

which the consistency assumption can be derived, and

which implies similarity and transitivity. However, this

assumption is weak and hard to test, let alone verify,

especially in small datasets; it is only in larger NMAs

that it has any practical significance.

• Exchangeability places no limit on quantitative hetero-

geneity. But heterogeneity results in lack of interpret-

ability, and when contrasts are informed by few trials,

can increase realized error and lead to inconsistency

between direct and indirect estimates.

• Estimates of relative treatment effects from PMA, indirect

comparisons and NMA are estimates of causal effects:

any interactions observed in investigations of subgroups

are associations. For this reason, it is important that dif-

ferences in treatments, such as dose differences, are ana-

lysed as different treatments, not as sub-groups.

• Network geometry is important to understanding how

biased evidence in one part of the network could influ-

ence estimates elsewhere. It may also reflect biases in

what evidence is collected or reported, but it cannot

in itself cause NMA estimates to be biased.

15.2 | Recommendations for practice

Besides general recommendations on the need for thresh-

old analyses, and other forms of sensitivity analysis such

as quantitative bias analysis,208 our main recommenda-

tion, in line with our main findings, is that quantitative

heterogeneity should be minimized. Heterogeneity

undermines the relevance of estimates to the target popu-

lation (Section 6), and increases realized error and incon-

sistency, even under exchangeability, especially when

contrasts are informed by small numbers of studies

(Section 9). Reducing heterogeneity will also reduce the

impact of any lack of exchangeability.

Clinical heterogeneity is an important source of

between-trials variation. However, the decision to adopt

TABLE 3 (Continued)

Cause of heterogeneity Methods to reduce heterogeneity

Multiple time

points

Binary outcomes reported at different time points can be converted to independent observations, and

modelled with piece-wise constant hazards.242,243

Multiple continuous observations in which the treatment effect is allowed to vary over time can be

modelled using fractional polynomials,244 or assuming functional forms specifically tailored to the

evidence.219,220

Structural

relationships

Cancer studies may report either time to progression-free survival (PFS) or overall survival (OS), or both.

A common approach has been to model the OS and PFS log hazard ratios using MVNRE,245 and

similar models are used routinely in the surrogate endpoint literature.246–248 An alternative approach is

to estimate NMA models of PFS and Post-Progression Survival (PPS), subject to the structural

constraint PSF + PPS=OS, using area-under- the-curve (AUC) as an outcome, up to a restricted

follow-up time.249 This method requires that Kaplan Meier curves are digitized so that AUC can be

measured.250 The limitation to restricted mean survival can be avoided by using external register data

to extrapolate survival curves.251,252

Other examples where structurally related outcomes are reported in a variety of ways are: (1) combining

data on PFS, OS and probability of response in a single model.253 (2) combining data on median survival

time, mean survival time, and proportion surviving.254 (3) ‘Chain of evidence’ structures in which trials

report one or more of: the proportion of patients reaching endpoint A, the proportion reaching later

endpoint B, and the proportion reaching B conditional on having reached A.255

Survival models Synthesis of time-to-event (survival) trials is usually based on the reported hazard ratios from Cox survival models, assuming

proportional hazards (PH). Most trial reports include Kaplan Meier curves and algorithms have been published which

reconstruct the original curve from the digitised image.250 Although abandonment of the PH assumption requires

investigators to adopt new measures of treatment effect,256 it allows a wide range of more flexible models,257,258 including

2- and 3-parameter survival curves,257,259 fractional polynomials,260 restricted mean survival time,261 splines,262 and piece-

wise exponential models.242
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either a “narrow” or “broad” approach to patient inclu-

sion is best taken by re-imbursement agencies or guide-

line developers, not methodologists, while bearing in

mind that broad inclusion may result in quantitative het-

erogeneity and put recommendations at increased risk of

error, to an extent determined by the between-studies

SD. It is concerning that it may be difficult to reduce the

heterogeneity in studies of psychological or complex

interventions, where there is so much variation between

interventions and their implementation as well as varia-

tion in study populations (Supplement Note 10).

There is a growing body of literature on statistical model-

ling methods for reducing quantitative heterogeneity in evi-

dence synthesis (Table 3). This includes variation in

treatments (dose, treatment components), bias-adjustment,

methodological variation, and time-to-event (survival) out-

comes. Many of these strategies are under-utilized.209 Also

included in Table 3 are a range of multivariate methods that

allow disparate forms of data, that would otherwise be

analysed separately, to be aggregated into a single

coherent analysis. This increases network connectivity

and robustness of conclusions. Separate analysis of

multiple outcomes ignores within-study correlations,

increases heterogeneity, lowers the precision of

estimates,210 and creates a multiplicity problem.211

ML-NMR and NMI should be adopted whenever possi-

ble: these are the key methodologies capable of reduc-

ing the impact of between-trials variation in patient

characteristics.
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