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Abstract: Background and objectives: Evaluating left ventricular filling pressure (LVFP) plays a crucial
role in diagnosing and managing heart failure (HF). While traditional assessment methods involve
multi-parametric transthoracic echocardiography (TTE) or right heart catheterisation (RHC), cardio-
vascular magnetic resonance (CMR) has emerged as a valuable diagnostic tool in HF. This study aimed
to assess a simple CMR-derived model to estimate pulmonary capillary wedge pressure (PCWP)
in a cohort of patients with suspected or proven heart failure and to investigate its performance
in risk-stratifying patients. Materials and methods: A total of 835 patients with breathlessness were
evaluated using RHC and CMR and split into derivation (85%) and validation cohorts (15%). Uni-
variate and multi-variate linear regression analyses were used to derive a model for PCWP estimation
using CMR. The model’s performance was evaluated by comparing CMR-derived PCWP with PCWP
obtained from RHC. Results: A CMR-derived PCWP incorporating left ventricular mass and the
left atrial area (LAA) demonstrated good diagnostic accuracy. The model correctly reclassified 66%
of participants whose TTE was ‘indeterminate’ or ‘incorrect’ in identifying raised filling pressures.
On survival analysis, the CMR-derived PCWP model was predictive for mortality (HR 1.15, 95%
CI 1.04–1.28, p = 0.005), which was not the case for PCWP obtained using RHC or TTE. Conclusions:
The simplified CMR-derived PCWP model provides an accurate and practical tool for estimating
PCWP in patients with suspected or proven heart failure. Its predictive value for mortality suggests
the ability to play a valuable adjunctive role in echocardiography, especially in cases with unclear
echocardiographic assessment.

Keywords: cardiovascular magnetic resonance; heart failure; echocardiography; haemodynamic
assessment; filling pressure

1. Introduction

Left ventricular filling pressure (LVFP) is a critical determinant of cardiac performance
and a crucial parameter in establishing the diagnosis of heart failure (HF) [1]. LVFP is a
determinant of cardiac output and stroke volume, as per the Frank–Starling mechanism.
Maintaining normal LVFP is crucial for optimal cardiac function and patient outcomes.
Elevated LVFP is often associated with symptoms of heart failure, such as dyspnea, due
to increased left atrial pressure and pulmonary capillary wedge pressure. The American
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College of Cardiology Foundation (ACCF), American Heart Association (AHA), and Heart
Failure Society of America (HFSA) guidelines emphasise that evidence supporting in-
creased filling pressures is important for the diagnosis of heart failure if the left ventricular
ejection fraction (LVEF) is >40% [2,3]. On the other hand, if LVFP is too low, this can
lead to inadequate ventricular filling and reduced cardiac output, potentially resulting in
symptoms of low perfusion such as fatigue and syncope.

Conventionally, the assessment of LVFP was predominantly conducted using multi-
parametric transthoracic echocardiography (TTE) or, in borderline cases, diastolic stress
testing and right heart catheterisation (RHC), particularly if there was a discrepancy be-
tween right and left ventricular filling pressures [4]. Pulmonary capillary wedge pressure
(PCWP) is often used as an indirect estimate of LVFP since an increase in LVFP leads to an
increase in left atrial pressure, which is reflected in the PCWP measurement.

Cardiovascular magnetic resonance imaging (CMR) is increasingly used in the diag-
nostic workflow of patients with suspected or proven HF, including detecting scars and
ischaemia, revealing subendocardial defects through stress perfusion and quantifying infil-
tration or fibrosis during gadolinium analysis [5]. Several methods have been developed to
assess diastolic function and, by extension, PCWP [6]. In a recent study by our group [7],
RHC and CMR were performed within 24 h, and participants with breathlessness were
split into derivation (n = 706) and validation (n = 127) cohorts, enabling the creation of
a model that can derive PCWP through CMR to be constructed. Within this model, two
parameters were found to be independent predictors of PCWP: left ventricular mass (LVM)
and left atrial volume (LAV).

With the recognition that there is a need for practical clinical implementation, this
study leverages the left atrial area (LAA), obtained from a single view (usually the four-
chamber view), to develop a simplified model of deriving PCWP by using CMR in a cohort
of patients with suspected or proven HF and to determine whether this model can risk
stratify patients.

We hypothesise that a CMR model that leverages the left atrial area is able to accurately
predict outcomes in patients with suspected or proven heart failure.

2. Materials and Methods
2.1. Study Population

This investigation involved a well-defined cohort of 835 individuals who were referred
to our research centre for the evaluation of breathlessness. The study encompassed an
extensive eight-year period, commencing in 2012 and concluding in 2020. All patients
underwent right heart catheterisation and CMR, with procedures performed within 24 h
of each other. The inclusion criteria included the signs and symptoms of heart failure,
age > 18 years, and the provision of informed consent. The exclusion criteria included
pulmonary arterial hypertension (type 1) and contraindications to RHC or CMR, including
claustrophobia and end-stage heart failure. Ethical approval for the research protocol was
duly granted by the National Research Ethics Service, with approval reference number
16/YH/0352 (approval date 31 October 2016).

2.2. Cardiac and Pulmonary Function Assessment

The comprehensive assessment of patients’ cardiac and pulmonary functions was
carried out through the implementation of two pivotal diagnostic procedures: right heart
catheterisation (RHC) and cardiac magnetic resonance imaging (CMR).

Right heart catheterisation (RHC): RHC was executed using a specialised balloon-
tipped 7.5 French thermodilution catheter. This meticulously conducted procedure facili-
tated the accurate measurement of pulmonary capillary wedge pressure (PCWP) through
established methodologies. Subsequently, PCWP values were subjected to rigorous averag-
ing over multiple cardiac cycles to ensure the precision of the obtained data.

Cardiac magnetic resonance imaging (CMR): CMR investigations were conducted em-
ploying a state-of-the-art 1.5T GE HDx scanner (GE Healthcare, Milwaukee, WI, USA). The
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CMR imaging protocol encompassed a diverse array of sequences, including two-chamber,
three-chamber, four-chamber, and short-axis cine acquisitions using a retrospective cardiac-
gated multi-slice steady-state free precession sequence (TR 2.8 ms, TE 1.0 ms, flip angle 50◦,
field of view 48 × 43.2, 256 × 256 matrix, 125 kHz bandwidth, and slice thickness 8–10 mm).
The short-axis cine images were used to obtain the left ventricular (LV) end-diastolic vol-
ume (LVEDV), the LV end-systolic volume (LVESV), the right ventricular (RV) end-diastolic
volume (RVEDV), and the RV end-systolic volume (RVESV). From end-diastolic and end-
systolic volumes, the LV stroke volume (LVSV), the LV ejection fraction (LVEF), the RV
stroke volume (RVSV), and the RV ejection fraction (RVEF) were calculated. For the specific
purpose of quantifying the dimensions of the left atrial area (LAA), the four-chamber view
was diligently employed. Using a dedicated post-processing workstation, specifically the
GE Advance 4.1, the delineation of the endocardial boundary of the left atrium occurred
during the end-systolic phase, immediately preceding the opening of the mitral valve. It is
noteworthy that this contouring process excluded the pulmonary veins and the left atrial
appendage, which are deemed extraneous to the left atrial body. Additionally, segmen-
tation of both the endocardial and epicardial boundaries within the short-axis stack was
performed to derive ventricular volumes, with particular emphasis on left ventricular mass
measurements during the end-diastolic phase.

A clinical evaluation using transthoracic echocardiography (TTE) was conducted
within 24 h of right heart catheterisation (RHC), following local practice guidelines. Var-
ious echocardiographic parameters were measured, adhering to the minimum dataset
size recommended by the British Society of Echocardiography (BSE). Left atrial pressure
was estimated using the American Society of Echocardiography (ASE) algorithm, which
categorises patients into normal, elevated, or uncertain left atrial pressure based on mitral
inflow parameters, tissue Doppler imaging, tricuspid regurgitation velocity, and the left
atrial volume (LAV) index [4].

2.3. Follow-Up and Cohort Stratification

Subsequent to the initial assessments, participants were diligently monitored over a
mean follow-up duration of 4.0 years. Cohort stratification ensued, dividing the subjects
into two distinct groups: the derivation cohort, constituting 85% of the participant pool
(n = 706), and the validation cohort, encompassing 15% of the participants (n = 127).
The assessment of diastolic function within the validation cohort was conducted using
transthoracic echocardiography (TTE).

2.4. Statistical Analysis

In accordance with established clinical practice, all clinically acquired data were
assumed to follow a normal distribution. Continuous variables were expressed as the
mean ± standard deviation, serving as the primary metrics for their presentation. Mean-
while, categorical data were conveyed in terms of frequencies and corresponding per-
centages. To ascertain significant differences between continuous variables, a two-sample
independent t-test was employed as the statistical methodology of choice. Categorical data,
on the other hand, underwent scrutiny through the χ2 test, a robust method for assessing
associations and differences among categorical variables. For the objective of comparing
cardiac outputs as determined by cardiac magnetic resonance imaging (CMR) and right
heart catheterization (RHC), a paired t-test was applied, offering a suitable framework for
analysing paired continuous data.

2.5. Model Development and Evaluation

The dataset was stratified into two distinct cohorts: the derivation cohort, which
constituted 85% of the total population (n = 706), and the validation cohort, comprising
15% of the total population (n = 127).

Within the derivation cohort, statistical analysis encompassed several phases. Firstly,
uni-variate linear regression was employed to derive Pearson correlation coefficients,
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elucidating the relationships between individual CMR metrics and pulmonary capillary
wedge pressure (PCWP) as determined via RHC. Subsequently, a multi-variate regression
model was crafted to establish relationships between various CMR metrics. Furthermore,
the utility of supervised machine learning penalised regression models was explored for
the prediction of CMR-derived PCWP.

2.6. Validation and Diagnostic Performance Assessment

The final model derived from the derivation cohort was subsequently applied to
the validation cohort. Receiver operating characteristic (ROC) analysis was conducted to
rigorously assess the diagnostic performance of CMR-derived PCWP in the detection of
elevated RHC-derived PCWP, thereby elucidating the model’s efficacy.

2.7. Prognostic Analysis

For the comprehensive analysis of prognosis, Kaplan–Meier analysis was undertaken
to delineate survival probabilities, while Cox’s proportional hazard model was harnessed
for multi-variate prognostic evaluation.

2.8. Software and Significance Threshold

Statistical analyses were executed using SPSS version 22 (IBM, Chicago, IL, USA), with
confirmatory analyses conducted in MedCalc (MedCalc Software, Ostend, Belgium version
19.1.5). Notably, supervised machine learning penalised regression was implemented in
StataIC 16.

2.9. Statistical Significance

Throughout all analyses, unless explicitly specified otherwise, all statistical tests were
two-tailed, and statistical significance was established at a threshold of p < 0.05.

2.10. Primary Objectives

The study’s primary objectives encompassed the examination of the correlation be-
tween CMR-derived PCWP and the PCWP values ascertained via RHC. Furthermore, the
study sought to rigorously assess the performance of the developed model in stratifying
individuals whose TTE results yielded non-diagnostic outcomes. These outcomes were
classified as either ‘indeterminate’ or ‘incorrect’ in their capacity to accurately identify
individuals with elevated filling pressures during invasive assessment. Additionally, the
prognostic potential of CMR-derived PCWP was scrutinised, particularly in comparison to
RHC and TTE. Prognostic values were articulated as hazard ratios (HR) within Cox’s pro-
portional hazard regression, supplemented by visual representation through Kaplan–Meier
survival curves. For an exhaustive exposition of the study’s population, research method-
ologies, and the intricacies of the statistical analysis, we refer readers to the previously
published documentation for comprehensive reference [7].

3. Results

A total of 835 participants were included in this study. Patient characteristics for the
derivation cohort (n = 708) and the validation cohort (n = 127) are summarised in Table 1.
A total of 60% of participants were female (n = 498). The primary diagnosis of a patient’s
breathlessness was left heart disease in 60% of patients (n = 497), lung disease in 19% of
patients (n = 160), and pulmonary hypertension in 21% of patients (n = 178). Of those with
left heart disease, 89% had HF with preserved ejection fraction (HFpEF), and 11% had HF
with reduced ejection fraction (HFrEF).
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Table 1. Patient characteristics, cardiac haemodynamic data, and cardiac magnetic resonance data
stratified by right heart catheterisation pulmonary capillary wedge pressure.

Derivation Cohort (n = 708) Validation Cohort (n = 127) p-Value

Age (years) 66.3 ± 13.2 66.0 ± 12.7 0.82
Male sex 295 (42%) 43 (34%) 0.10

Body surface area (m2) 1.91 ± 0.25 1.87 ± 0.22 0.22
HFpEF 371 (52%) 71 (56%) 0.47

HFmrEF 29 (4.1%) 3 (2.4%) 0.34
HFrEF 15 (2.1%) 8 (6.3%) 0.008
Other 293 (41%) 45 (35%) 0.20

Heart rate (bpm) 76.0 ± 14.2 75.2 ± 14.7 0.5670
Systolic blood pressure (mmHg) 143.0 ± 26.2 145.6 ± 30.3 0.3174
Diastolic blood pressure (mmHg) 77.5 ± 12.6 78.9 ± 14.0 0.2644
Mean arterial pressure (mmHg) 102.0 ± 17.5 103.9 ± 18.9 0.2854

Mean PCWP (mmHg) 14.0 ± 6.2 13.4 ± 6.3 0.2866
Mean right atrial pressure (mmHg) 10.2 ± 5.8 8.5 ± 5.2 0.0016

Mean pulmonary artery pressure (mmHg) 38.4 ± 13.7 35.4 ± 14.0 0.0265
Systolic pulmonary artery pressure (mmHg) 63.3 ± 24.1 58.3 ± 23.2 0.0317
Diastolic pulmonary artery pressure (mmHg) 22.2 ± 9.6 20.1 ± 10.1 0.0230

Arterial oxygen saturations (%) 94.0 ± 4.3 95.4 ± 3.5 0.0006
Venous oxygen saturations (%) 65.7 ± 8.4 67.2 ± 9,1 0.0866

Cardiac output (L) 5.0 ± 2.0 4.9 ± 1.5 0.5523
Cardiac index (L/min/m2) 2.7 ± 1.0 2.7 ± 0.8 0.8798

Left atrial volume (cm3) 80.0 ± 43.8 72.5 ± 41.7 0.1239
Left ventricular end-diastolic volume (mL) (indexed) 58.2 ± 18.5 58.1 ± 19.1 0.9784
Left ventricular end-systolic volume (mL) (indexed) 19.6 ± 10.2 20.5 ± 14.9 0.3908

Left ventricular stroke volume (mL) (indexed) 38.6 ± 12.4 37.6 ± 12.4 0.3881
Left ventricular ejection fraction (%) (indexed) 50.6 ± 14.4 56.4 ± 21.4 0.0001

Left ventricular mass (g) (indexed) 78.8 ± 31.6 73.7 ± 29.1 0.0911
Right ventricular end-diastolic volume (mL) (indexed) 45.7 ± 25.6 40.5 ± 22.2 0.0319
Right ventricular end-systolic volume (mL) (indexed) 33.0 ± 13.7 33.2 ± 14.0 0.9438

RHC, right heart catheterisation; PCWP, pulmonary capillary wedge pressure; HFpEF, heart failure with preserved
ejection fraction; HFmrEF, heart failure with mid-range ejection fraction; HFrEF, heart failure with reduced
ejection fraction.

3.1. Derivation Cohort

Within the derivation cohort, during univariable regression, the LAA demonstrated
a moderate association with RHC PCWP (R = 0.50, 95% CI 0.44–0.55, p < 0.0001). When
compared to all other CMR metrics previously tested, the LAA was most strongly correlated
with RHC PCWP.

Within the derivation cohort, during backward multi-variate regression, the two CMR
variables that demonstrated an independent association with invasively measured PCWP
were the LAA and LVM (Figure 1). The following equation was derived:

CMR-derived PCWP = 4.0584 (constant) + 0.3148 (LAA) + 0.02944 (LVM)

3.2. Validation Cohort

The area under the curve for the CMR-derived PCWP model was 0.79 (95% CI
0.70–0.85, p < 0.0001, Figure 2a). The area under the curve for integrated TTE LVFP
assessment was 0.55 (95% CI 0.42–0.67, p = 0.4, Figure 2b).

Using RHC, PCWP values were obtained, where a threshold of 15 mmHg was used
to differentiate ‘normal’ from ‘elevated’ filling pressures. However, when using TTE to
identify ‘elevated’ filling pressure within the validation cohort, results were ‘indeterminate’
in 49% of participants and ‘incorrect’ in 26%. On applying the simplified CMR-derived
PCWP model, CMR was able to accurately reclassify 66% (n = 63) of the participants who
had previously been marked as ‘incorrect’ or ‘indeterminate’ using TTE (Figure 3).
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Figure 3. A simplified CMR-derived PCWP model correctly reclassified 66% of participants where
TTE failed to identify participants with ‘elevated’ filling pressures.

In Cox’s proportional hazard regression survival analysis (Figure 4A) within the
validation cohort (mean follow-up of 5.2 ± 0.3 years), the simplified CMR-derived PCWP
model was predictive for mortality (HR 1.17, 95% CI 1.04–1.31, p = 0.01). This was not
the case for PCWP by RHC (HR 1.00, 95% CI 0.96–1.05, p = 0.87), TTE (HR 1.30, 95% CI
0.77–2.20, p = 0.33), or left ventricular mass by CMR (HR 1.0, 95% CI 0.99–1.01, p = 0.67).
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Figure 4. Panel (A): Cox’s proportional hazard regression within the validation cohort demonstrates
that a simplified CMR-derived PCWP model predicts mortality, whereas predicting PCWP by RHC
and TTE does not. Panel (B): Kaplan–Meier survival curves within the validation cohort demonstrate
the prognostic significance of a simplified CMR-derived PCWP model, whereas assessment using
TTE does not.

In Kaplan–Meier analysis (Figure 4B), participants with simplified CMR-modelled
PCWP ≥15 mmHg had worse all-cause mortality over the follow-up period (X2 = 4.09,
p = 0.04), whereas TTE did not demonstrate the prognostic (X2 = 2.48, p = 0.12).

4. Discussion
4.1. Main Findings

This study demonstrates that, in a large heterogeneous cohort of patients with sus-
pected or confirmed heart failure, a simplified CMR model can estimate PCWP with good
diagnostic accuracy. Increases in pre-load or after-load can result in elevated filling pres-
sures, and since the left atrial area is a marker of the pre-loading condition on the ventricle,
the results of this study are physiologically conceivable [8]. This study also demonstrates
that a simplified CMR-derived PCWP model has predictive power, suggesting its comple-
mentary role alongside echocardiography in assessing diastolic function, particularly in
patients with indeterminate echocardiographic assessment.

4.2. Mechanism of Findings

Increases in intracardiac pressure due to cardiac impairment result in re-modelling
of both the atrium and ventricle [9]. The findings of this study, where both the left atrial
area and left ventricular mass are positively associated with invasively measured PCWP,
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are consistent with the Frank–Starling mechanism underpinning cardiovascular physiol-
ogy [10].

Dysfunction of the left ventricle is associated with left ventricular hypertrophy, which
can be quantified using left ventricular mass [11]. Importantly, LVH is established as an
independent marker of poor prognosis [12]. The results of this study are consistent with
this phenomenon. Furthermore, the left atrial area as a proxy for left atrial re-modelling in
chronic heart failure is thought to result from the cumulative effect of raised cardiac filling
pressures and was also found to be associated with RHC-measured PCWP [13].

These two main structural pathophysiological changes due to raised LVFP, namely LA
dilation (predominantly pre-load-related) and LV hypertrophy (predominantly afterload-
related), form the basis of the American College of Cardiology and American Heart Asso-
ciation grading system, commonly used to assess suspected HF patients, and are crucial
components of a true physiological model [2]. The CMR model described within this study
includes only parameters fundamental to the pathophysiology of HF and is thus simple to
translate into clinical practice.

4.3. Clinical Translation

The successful transition of research-based tools into clinical practice hinges on their
practical utility for clinicians and patients, which, in the case of CMR-derived PCWP,
may rest in identifying patients with abnormal PCWP and haemodynamic guidance of
HF therapy [9]. Simultaneously, these tools must enhance clinical workflow without
introducing unnecessary complexities. In the case of CMR-derived PCWP assessments, the
use of the LAA rather than the LAV is more practical in the clinical setting.

Whilst the LAV does provide a complete assessment of the left atrium, it does not
appear to contribute to a more diagnostically powerful PCWP model than the LAA. So, in
cases where precise estimation of atrial volume may be required, such as atrial conditions
associated with atria (e.g., congenital heart disease, atrial fibrillation, cardiomyopathies),
or in assessing chronicity of diastolic function, the LAV may be the most appropriate
metric [14].

Despite providing an enhanced characterisation of the left atrium, there are several
limitations to using the LAV within a clinical setting. First, it requires meticulous image ac-
quisition and post-processing, including accurate delineation of the endocardial borders in
two views (both the two-chamber and four-chamber views), which can be time-consuming
and technically demanding. Second, due to the need for endocardial contouring in multiple
views, the measurement of the LAV is associated with increased observer variability. Whilst
automated or semi-automated methods can reduce this variability, these tools are not
universally available and may vary across clinical settings. If a comprehensive assessment
of left atrial structure and function is not required, then clinicians can utilise the practicality
and reliability of the left atrial area within pressure assessments, which, in its current form,
is most suited to the dichotomisation of PCWP than the exact estimation of the exact value.
The LAA measurement is generally simpler and more time-efficient than the LAV, requiring
a single view (typically the four-chamber view) and less post-processing, enhancing its
practicality within a busy clinical environment.

In comparison to an invasive assessment of filling pressures, CMR offers a non-
invasive estimate of LVFP at a lower cost with similar, if not enhanced, prognostic po-
tential. The results of CMR-derived filling pressures can be obtained quickly with good
diagnostic accuracy.

Echocardiography is the first-line non-invasive method of LVFP assessment. It is ver-
satile and cost-effective and can estimate LVFP at the bedside. The reliability of integrated
echocardiographic methods for determining raised filling pressures is debatable. This
current study highlights the complementary value of CMR in instances where echocardiog-
raphy is non-diagnostic or indeterminate. The main utility of CMR rests in discrepant cases
of echocardiographic assessment rather than accurate estimation of pressure. Further, CMR
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can provide a wealth of useful diagnostic and prognostic information outside of filling
pressure assessment.

There is a need for further work to explore the role of CMR-derived PCWP assessment
in guiding therapy for patients with heart failure. In this situation, precise and accurate
estimation of PCWP is less important than a change in response to therapy. This should
be tested further. The described method of deriving PCWP is easily applied; there is no
need for additional or specialist CMR sequences, as atrial and ventricular quantification are
part of routine CMR scans. There is also an additional need to explore other CMR-derived
PCWP models, which may improve accuracy, such as myocardial strain and ones that
consider a patient’s sex.

4.4. What This Study Adds

This large clinical study expands on previous small research studies involving ill-
defined clinical groups. This real-world study utilised standard TTE, which is typically
the first imaging investigation of choice in the assessment of cardiovascular structure
and function. It is recognised that, since TTE is performed by a range of operators, sig-
nificant variation in the parameters obtained and the accuracy of such measurements is
commonplace. This can affect the estimation of filling pressures. CMR, on the other hand,
is associated with much higher repeatability and, therefore, is less subject to variability. We
speculate that the CMR model is less susceptible to changes in pre-load conditions than
echocardiography since the left ventricular mass is not altered by acute changes in loading
conditions. The left atrial area is more susceptible to changes in loading conditions, which
adds value in making the model more dynamic and discriminatory. There would be value
in testing this suggestion, perhaps in the same patient pre- and post-treatment. We believe
that these characteristics of CMR-derived PCWP assessment make it a clinically useful
non-invasive imaging test and may reduce the need for invasive assessment.

The results of this study demonstrate that CMR-derived PCWP is not inferior to
invasive PCWP assessment for informing prognosis and may have specific value for cases
where assessment with TTE yields an indeterminate probability of ‘raised pressures’. This
model, where the left atrial area is used instead of the left atrial volume, highlights how
versatile the model is, accommodating several different left atrial measures as a surrogate
for pressures.

4.5. Study Limitations

This study’s limitations include its single-centre nature, potentially introducing se-
lection bias due to referrals for right-heart-catheterization (RHC) assessment, which may
have contributed to an elevated mean pulmonary artery pressure in the overall population.
Caution should be exercised when extrapolating these results to a more diverse and het-
erogeneous population. Further multi-centre studies would be beneficial to validate the
model’s performance across a broader spectrum of patients and healthcare settings. Whilst
the LVEF was different between the derivation and validation cohorts, this is unlikely to
have influenced the validity of the observed results.

Additionally, the study focused on clinically stable patients with real-world presenta-
tions of shortness of breath in outpatient departments, excluding acutely decompensated
heart failure (HF) patients requiring intravenous therapy. Acutely decompensated patients
often exhibit fluid shifts, hemodynamic instability, and variable filling pressures, which
could introduce substantial measurement variability. However, it is worth acknowledging
that these patients represent a significant and clinically relevant subgroup within the heart
failure spectrum. In light of this, potential future research directions could involve devel-
oping specific protocols or methodologies for assessing acutely decompensated patients
using CMR, as well as exploring the utility of the CMR-derived PCWP model in guiding
their management.

As a retrospective study within a specific population, the applicability of the proposed
algorithm in prospectively recruited, non-selected patients remains untested. Furthermore,
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limited TTE analysis was conducted, and advanced echocardiographic techniques were
not explored, preventing a comparison with our CMR model in these aspects. Future
research should explore the use of advanced echocardiographic techniques, such as speckle
tracking echocardiography or three-dimensional echocardiography, which may provide
more precise measurements of the left atrial area and the left ventricular mass.

5. Conclusions

A simplified CMR model can accurately estimate PCWP in patients with suspected or
confirmed heart failure. The study showcases the predictive power of a simplified PCWP
model, indicating its potential as a valuable adjunct to echocardiography, particularly in
cases with unclear echocardiographic diastolic assessment. This study also emphasises the
practicality and efficiency of utilising the left atrial area in PCWP assessment, facilitating a
streamlined workflow in clinical settings. Using this revised model, CMR-derived LVFP
can inform the risk of decompensation from HF requiring hospitalisation and the risk of
composite MACE.
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