
ABSTRACT
The recharging plans are a key component of the 

electric bus schedule. Since the real-world charging 
function of electric vehicles follows a nonlinear relation-
ship with the charging duration, it is challenging to ac-
curately estimate the charging time. To provide a feasible 
bus schedule given the nonlinear charging function, this 
paper proposes a mixed integer programming model with 
a piecewise linear charging approximation and multi-de-
pot and multi-vehicle type scheduling. The objective of 
the model is to minimise the total cost of the schedule, 
which includes the vehicle purchasing cost and opera-
tion cost. From a practical point of view, the number of 
line changes of each bus is also taken as one of the con-
straints in the optimisation. An improved heuristic algo-
rithm is then proposed to find high-quality solutions of 
the problem with an efficient computation. Finally, a re-
al-world dataset is used for the case study. The results of 
using different charging functions indicate a large devia-
tion between the linear charging function and the piece-
wise linear approximation, which can effectively avoid 
the infeasible bus schedules. Moreover, the experiments 
show that the proposed line change constraints can be an 
effective control method for transit operators.

KEYWORDS
electric bus scheduling problem; nonlinear charging  
function; line change constraints; mixed integer  
optimisation; heuristic algorithm.

1. INTRODUCTION
Due to the environmental benefits of electric ve-

hicles, vehicle electrification is now regarded as the 
main decarbonisation pathway, especially for public 
transit buses. Various bus electrification plans have 
been implemented under government incentives, 
such as the TIGER program in the United States, 
the Green Bus Fund Program in the UK, the Electric 
Mobility program in Germany, and the Ten Cities 
and Thousand Vehicles Program in China [1]. With 
this trend, electric buses will have a large market 
share in the future public transit system. The adop-
tion of electric buses requires comprehensive plans 
for facilities and operation strategies. In the bus op-
erational planning, the scheduling is one of the key 
parts, which focuses on the bus type selection and 
the trip timetable design in a cost-efficient way.

The electric bus scheduling problem is an exten-
sion of the traditional vehicle scheduling problem 
(VSP). VSP refers to the problem of determining 
the optimal assignment of vehicles to carry out all 
the trips in a given transit timetable. The objective 
is to find a schedule that can complete all the trips 
with the minimum number of vehicles or the mini-
mum total cost [2]. An important branch among dif-
ferent types of the VSP is the multi-depot vehicle 
scheduling problem (MDVSP), in which multiple 
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multi-depots (multi depot electric vehicle schedul-
ing problem, MDEVSP), and the partial charging 
policy was adopted. The model was solved by an 
adaptive large neighbourhood search algorithm. 
Tang, Lin [10] proposed a robust scheduling mod-
el within a branch-and-price solution framework to 
handle the stochastic traffic conditions. Some other 
research focused on the EVSP with heterogeneous 
fleet (multi-vehicle type electric vehicle schedul-
ing problem, MVTEVSP), which can provide more 
practical suggestions for the fleet management. 
Rogge, van der Hurk [11] studied the MVTEVSP 
with the optimisation of charging infrastructure. 
A grouping genetic algorithm with mixed-integer 
charging infrastructure optimisation was developed 
to minimise the total cost of ownership. Li, Lo [12] 
studied the bus scheduling problem considering a 
mixed fleet composed of both electric and conven-
tional fuel buses. The problem is formulated as an 
integer linear program which could be solved by 
mathematical programming solver. Rinaldi, Picarel-
li [13] developed a mixed integer linear program 
to address the mixed electric bus fleet scheduling 
problem, coupled with an ad-hoc decomposition 
scheme to enhance the scalability of the model.

However, the state of charge during the charging 
process usually shows a nonlinear relationship with 
the charging time due to the change of the termi-
nal voltage and current [14]. Therefore, it means 
that if a vehicle starts charging at different states 
of charge, the charging time required for the same 
amount of charged electrical energy can be varied. 
Although the linear charging function or fixed time 
estimation method can simplify the modelling and 
solving methods of the EVSPs, it may lead to a 
wrong estimated charging time compared to the ac-
tual charging duration. The simplification can cause 
operational problems, especially for public transit 
buses. Overestimating the charging time results in 
a waste of bus operating time, while the underes-
timation leads to insufficient state of charge for a 
complete bus service. To solve this problem, Mon-
toya, Guéret [15] studied the electric vehicle rout-
ing problem with nonlinear function, the piecewise 
linear approximation approach is used to accurately 
approximate the charging function of the vehicle. 
Froger, Mendoza [16] proposed an improved path-
based model for the problem to avoid replicating the 
charging stations nodes and thus reduced the com-
putational time. However, models and algorithms 

depots exist in the network and vehicles are forced 
to return to their departure depots after performing 
their scheduled trips. The MDVSP is proved as an 
NP-hard problem [3] and is usually solved by the 
heuristic approach to achieve an acceptable com-
putation time. Another important VSP variant is 
the multi-vehicle type scheduling problem (MVT-
VSP), which uses multiple available vehicle types 
to complete the timetable trips. Bunte and Kliewer 
[4] reviewed the modelling approaches for different 
kinds of VSPs and gives the basic ideas of solution 
approaches.

For the bus scheduling problem, to increase the 
vehicle utilisation rate and reduce the operation 
cost, bus companies usually allow buses to shift 
among different lines for more trips, which is also 
called “mixed-line” strategy. Kliewer, Mellouli [5] 
adopted this strategy and proposed a model based 
on the time-space network theory to optimise the 
bus scheduling with multi-depots. However, this 
strategy is not always cost-efficient. A large num-
ber of line changes creates more deadhead mileag-
es, increases energy consumption, and raises the 
risk of delays. It also possibly leads to inconve-
niences for the bus and crew management, espe-
cially in a large transit network. [6] extended their 
research to find a low number of different lines per 
bus rotation when the schedules are cost-minimal. 
However, few studies have been conducted to in-
vestigate the bus scheduling problem with limited 
line changes.

With the fast-growing market share of electric 
vehicles, research studies on the electric vehicle 
scheduling problem (EVSP) have emerged. Dif-
ferent from the conventional fuel vehicle sched-
uling problem, the electric vehicle scheduling 
problem needs to consider the driving range and 
recharging constraints. To design an appropriate 
recharging plan for the fleet, it is essential to ac-
curately estimate the charging time of the vehicles. 
The linear charging function or the fixed time es-
timation method is often applied in the research. 
Chao and Xiaohong [7] proposed a single depot 
scheduling model with a non-dominated sorting 
genetic algorithm to optimise the battery swapping 
buses schedule. Li [8] investigated the single de-
pot bus scheduling problem considering battery 
swapping and fast charging vehicles. The col-
umn-generation-based algorithm was developed 
to solve the problem. Wen, Linde [9] developed a 
mixed-integer programming model for EVSP with 
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Let  S be the set of timetable trips, which contains 
the trips of several bus lines. When the bus of type 
k performs a trip s, the time it takes is denoted as ts 
and the electrical energy it consumes is denoted as  
ek

s. During the operation, the bus is allowed to shift 
from one bus line to another, but no more than the 
maximum number of θ times. The state of charge 
of each bus in operation must be kept above the 
safe driving level. If the bus needs to be recharged 
during operation, it needs to return to its departure 
depot for recharging after finishing the current trip. 
The set F={f1,...,fr} denotes all the recharging trips f. 
In a single charge, the bus can be recharged for any 
amount of energy until the battery is fully charged. 
Once the bus finished its schedule, it needs to return 
to its departure depot.

The objective of the optimisation is to minimise 
the operating cost of the bus fleet by determining the 
type of buses, the number of each type, the sched-
uling and recharging plan of all buses. A solution of 
the problem is feasible if (1) all timetable trips are 
performed exactly once, (2) the schedule does not 
violate the trips’ time window, (3) the bus service 
will not be broken down due to insufficient state of 
charge, (4) the number of line changes of each bus 
does not exceed the limitation.

2.2 Modelling the charging function
As is mentioned in the Introduction, the re-

al-world charging functions are usually nonlinear 
[14]. A typical two-phase charging curve is shown 
in Figure 1. This charging procedure is widely used 
in practical operations of lithium-ion battery, which 
is currently the most widely used battery type for 
electric vehicles [17]. The vehicle is charged at a 
constant current (CC phase) in the first phase, and 
state of charge (SOC) increases linearly. In the 
second phase, the vehicle is charged at a constant 

proposed in previous studies only focused on vehi-
cle routing problems, whereas the multi-depot and 
multi-vehicle type conditions are rarely considered.

To fill these gaps, this paper investigates the 
electric bus scheduling problem with a nonlinear 
charging function. From a practical perspective, the 
multi-depot and multi-vehicle type conditions are 
considered in the optimisation of the total cost of 
the schedule (multi-depot and multi-vehicle type 
electric vehicle scheduling problem with nonlinear 
charging function). Besides, to improve the mixed-
line strategy in bus scheduling, constrains are set 
to restrict the upper bound number of line changes 
for each vehicle in the fleet. The transit operators 
can control the number of bus line changes while 
seeking a low cost. An adaptive large neighbour-
hood search heuristic algorithm (ALNS) with im-
proved mechanisms is developed to solve the prob-
lem more efficiently. This methodology can provide 
effective suggestions for the electrification of the 
public transportation.

The paper is organised as follows. Section 2 
presents the developed mathematical formulation 
of the optimisation problem and the heuristic algo-
rithm for solving the problem. A case study with the 
real-world operation data is conducted by applying 
the proposed optimisation algorithm. The results are 
analysed in Section 3. Finally, a summary of the re-
sults and future studies is provided in Section 4.

2. METHODOLOGY

2.1 Optimisation problem
The optimisation problem in this paper can be 

defined as follows: Let D={β1,...,βn} be the set of 
depots β at which the buses can recharge their bat-
tery and park. Let K be the set of electric bus types. 
Each bus type k!K has the battery capacity Ek,  
energy consumption rate τk, and purchase cost ck. 
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Figure 1 – An illustration of linear vs. real charging function and the piecewise linear approximation approach  
Source: Hõimoja, Rufer [18]; Montoya, Guéret [15]
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c f
k  and c f

k  being the time when the bus starts and 
finishes charging, respectively. Let the binary vari-
ables w f

k
b  and w fb

k  equal 1, b!Bk\{0}, if the state 
of charge of the bus is between the breakpoints ak-

f,b-1 and ak
fb of the piecewise linear approximation. 

Besides, the continuous variables fb
km  and fb

km  
are the coefficients associated with the breakpoint  
(ck

fb, a
k
fb) in the piecewise linear approximation, when 

the bus starts and finishes charging, respectively. It 
is worth mentioning that theoretically buses can be 
recharged after any service trip; in the directed graph 
G, each service trip node is followed by a possible 
recharging node. The node would be connected to 
two service trip nodes if it is used, otherwise it be-
comes an isolated node, which is not connected into 
the graph. Set F contains both used and isolated re-
charging nodes. Let li

βk denote the number of line 
changes of the bus pass node i, whose bus type is k 
and departing from depot β. Since all nodes except 
the departure and arrival nodes can only be passed by 
one bus once, this parameter can track the number of 
line changes of each bus.

The binary variable xa
βk represents the connections 

in the graph, where a=(i,j) is the arc of any two nodes. 
xa

βk is 1 if a bus of type k from depot β is operating on 
arc a=(i,j). For simplicity, let Δ+(i) and Δ-(i) denote 
all the arcs starting or ending at node i, respectively. 
Figure 2 shows an example of the directed graph G 
with 2 depots and 8 service trips in total.
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8
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Recharging trip Connected arcs
Depot Isolated recharging node Service trip

Figure 2 – An illustration of the directed graph

The mathematical model can be formulated as 
follows:
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Subject to:

voltage (CV phase) and decreasing current, and the 
charging curve is concave. Two common linear ap-
proximating functions mentioned in [15] are also 
shown in the figure. The first approximation (LC1) 
directly uses the charging rate in the CC phase as 
the charging rate of the whole process. The second 
approximation (LC2) is more conservative, which 
calculates the average charging rate of the whole 
process. Both linear functions have a clear deviation 
from the actual charging function, which may result 
in overestimation or underestimation of the actual 
charging time, thus leading to infeasible schedules.

To avoid the error in charging time estimation, 
the piecewise linear approximation approach is used 
to model the real-world charging function. For a bus 
type k, a specific piecewise linear charging function 
ϕk is provided. Let Bk={0,...,mk} denote the break-
points of the function, where m is the number of the 
breakpoints. Let ck

fb and ak
fb represent the charging 

time and state of charge corresponding to each 
breakpoint on the piecewise linear function, where 
b and f represent the breakpoint and recharging trip, 
respectively. The dashed line in Figure 1 shows a 
piecewise linear approximation function consist-
ed of 4 secant lines and 5 breakpoints. Compared 
with the two linear functions, the piecewise linear 
approximation has a better fit with the real-world 
charging curve. In the piecewise linear approxi-
mation, the number of breakpoints is user-defined. 
The approximation becomes more accurate as more 
breakpoints are used [19].

2.3 Mathematical formulation
The model of the problem is defined on a direct-

ed multigraph G=(V,A). V=oβ,dβ,S,F represent all 
nodes in the graph. Nodes oβ and dβ denote the start 
and end nodes for the depot β!D, respectively. A rep-
resents all feasible arcs, representing all deadhead 
trips in the schedule. For a node i!V representing 
a trip, the start time is denoted as zi, and the trav-
el time is denoted as ti. For an arc a=(i,j), a!A, the 
travel time, distance, and the energy consumption of 
the arc are denoted by tij, dij, and eij

k. For simplifi-
cation, in the model, we use the notation ta, da, and 
ea

k instead of tij, dij, and eij
k. When the bus performs 

a service trip or a deadhead trip, the unit electricity 
cost is ce and unit time cost is ce. For a recharging 
trip f!F, let q f

k  and q f
k  denote the state of charge 

(according to the piecewise linear approximation 
of the charging function) of the bus of type k at the 
beginning and end of recharging trips, respectively, 
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Objective 1 minimises the total cost of the sched-
ule, which is split into three components. The first 
component calculates the purchase cost of all buses. 
The second component is the electricity consump-
tion cost in the schedule, while the last component 
is the time-dependent cost in the schedule. Constraint 
2 enforces that each service trip is covered exactly 
once. Constraint 3 ensures that each possible recharg-
ing trip can be performed at most once. Constraints 4 
and 5 ensure that the number of buses departed and 
returned from each depot is the same, and constraint 
6 is the flow conservation constraint. Constraint 7 en-
sures that the state of charge after charging is great-
er than that before charging. Constraints 8 and 9 denote 
the state of charge and charging time when the bus 
starts charging according to the piecewise linear 
approximation. Constraint 10 couples the coefficient 
related to the breakpoint with the binary variable 
representing the state of charge. Constraint 11 couples 
two kinds of binary variables. Constraints 12–14 define 
the relationship between the coefficient and the bi-
nary variable. Similarly, Constraints 15–21 define the 
state of charge and charging time when a bus finish-
es charging. Constraint 22 ensures that the two nodes 
continuously visited by the same bus do not violate 
the time window of any trips, where M is a suffi-
ciently large positive number. Likewise, constraint 
23 ensures that the bus has enough time to arrive at 
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solution, and the selection probability of each op-
erator varies according to how much the solution is 
improved in the previous iteration. With this mech-
anism, the algorithm can select operators that are 
more suitable for the problem during the iterative 
process, and it can achieve a high-quality solution 
in a reasonable time frame. Besides, a local search 
procedure is implemented to enhance the efficiency 
of the algorithm. A flowchart illustrating the pro-
posed algorithm is shown in Figure 3, and the steps 
of the algorithm are described below.

Initialisation
The initial solution is generated by a greedy 

construction algorithm similar to Adler [21]. 
First, all service trips are sorted according to their 
starting time and then iteratively inserted into the 
solution. Each inserted trip is first assigned to the 
schedule of the existing buses. The number of line 
changes is counted, and buses with less than the 
maximum number of line changes are allowed to 
insert trips at this stage. The algorithm calculates 
the cost of the trip according to its schedule. If 
the bus is unable to complete the schedule due to 
insufficient state of charge, the algorithm tries to 
insert a recharging trip into the schedule. For the 
bus that still cannot complete the schedule after the 
recharging trip is introduced, the algorithm chang-
es its bus type to one with a larger battery or lower 
energy consumption rate. The increase of the cost 
during the whole process is counted in the inser-
tion cost of the trip. The algorithm assigns the trip 
to the bus with the lowest insertion cost. If none 

the start location of the next trip after recharging. 
Similarly, constraints 24 and 25 ensure that the bus has 
enough energy to reach the start location of the next 
trip after performing the previous service trip or re-
charging trip. Constraint 26 ensures that the number of 
line changes of all buses is 0 when departing from 
the depot for the first time. Constraints 27 and 28 track 
the number of line changes of the bus. Constraint 29 
ensures that the number of times the bus changes 
the lines will not exceed the limit. Constraint 30 tracks 
the state of charge of the bus to ensure that it is al-
ways between the safe level and the maximum state 
of charge, where σ is the proportion of safe energy 
level to the maximum state of charge. Constraint 31 
ensures that buses are fully charged when departing 
the depot for the first time. Constraint 32 ensures that 
the number of buses departing from each depot will 
not exceed its limit, where εβ is the parking limit 
of the depot. Finally, constraints 33 and 34 define the 
decision variables.

2.4 Solving the problem
Guedes and Borenstein [20] demonstrated that 

MDMVTVSP is an NP-hard problem. Since the 
problem studied in this paper is an extension of the 
MDMVTVSP considering the driving range limit 
and recharging demand, it is also NP-hard. In or-
der to improve the potential of the methodology 
in practical application, an Adaptive Large Neigh-
bourhood Search Algorithm (ALNS) is employed to 
solve the problem. This algorithm iteratively selects 
a pair of destroy and repair operators to optimise the  

Determine whether the new
solution is better than the

current best solution
If the termination condition

is met

Update the current best solution
and record the iteration number

Accept or reject the solution
according to the acceptance

criteria

Update weight fraction and
temperature

Initialisation

Select a destroy operator

Select a repair operator

Local search procedure

Generate a new solution

Output the final solution

NoNo

YesYes

Figure 3 – Flow chart of the algorithm
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the service by changing the bus type. The addition-
al purchase cost brought by the type change will be 
added to the insertion cost of the trip. Let j!J be the 
index of the buses and ci

j be the insertion cost of bus 
j, where J is sorted based on ci

j. The regret value of 
the trip i can be calculated according to equation 35, 
where k  is the calculation parameter of the regret 
value. In each iteration, the regret-k algorithm will 
insert the trip with the largest regret value. The al-
gorithm will iterate until all trips are inserted into 
the solution. The regret-2, regret-3, and regret-4 al-
gorithms are used in the ALNS.

regret trip i c ci
j

i
j

k
1

1
- = -

=
^ ^h h/  (35)

Local search
Due to the multi-depot and multi-vehicle type 

conditions investigated in this study, a local search 
procedure is introduced into the algorithm to en-
hance the search capability. The local search ex-
plores the alternative bus type and departure depot 
to achieve a lower operation cost. Let u!K, v!D, 
(u,v) represent the bus type and depot information 
combination. The algorithm explores all the possi-
ble combinations while keeping the bus schedule 
unchanged. The combination leading to the minimal 
bus cost will be selected. After processing all the 
buses, due to the parking limit of depots, redundant 
buses must be moved from any depot where the 
number of parked buses exceeds the spare space of 
the depot. Similar to the approach of the regret in-
sertion, the regret value of each bus in the depot that 
exceeds the limit is calculated to determine which 
bus is to be moved. Let n!N be the index of the 
buses and cin

(u,v) be the total cost of bus i, where N is 
sorted based on cin

(u,v). The regret value of bus i  can 
be calculated according to equation 36. Buses with the 
smaller regret values will move to other depots first.

,

, , , ,

regret vehicle i c c

u u K v v D v v

, ,

' ' '

u v
in

u v
i

n
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=
=

Y
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Acceptance and termination criteria
A simulated annealing approach is employed to 

handle the acceptance of the solution. Let s and s' 
be the solutions before and after the current itera-
tion, respectively. The solution generated in each 
iteration is accepted with a probability e(f(s)-f(s')/T), 
where T is the current temperature initialised by T0 
and decreases with the cooling rate α, and f(s) is the 
objective value of the solution s.

of the existing buses can perform the trip, the algo-
rithm creates a new bus with the lowest cost for the 
trip. The algorithm stops until all the service trips 
are served.

Destroy operators
The destroy operators remove a series of trips 

from the solution with certain rules. Three kinds of 
operators are employed in the ALNS.

The RandomRemoval randomly removes a 
specified number of trips from the solution. The 
TimeRelatedRemoval aims to remove the series of 
trips with the closest start time. It first removes a 
randomly chosen trip and then repeatedly removes 
trips that have the closest start time to any of the 
removed trips. The NeighbourRemoval removes the 
series of trips most likely to be performed by the 
same bus. It starts with a randomly chosen trip and 
then removes the neighbouring trip closest to its end 
time, including ξn trips closest to the start time of 
the neighbouring trip.

In each iteration, one of the operators removes  
δ trips from the solution, where δ is a random num-
ber between [ξmin, ξmax]. After that, the algorithm 
searches for schedules with fewer than two trips and 
removes them. This process may increase the run-
ning time, but it can effectively improve the ability 
to reduce the fleet size.

Repair operators
When the solution is destroyed, the repair oper-

ators are employed to rebuild it. The regret inser-
tion approach is employed in the ALNS. The basic 
greedy algorithm tends to insert the trip with the 
greatest increase in the operation cost later in the 
process, leaving only a few possibilities of search-
ing the neighbourhood of the current solution. To 
avoid this behaviour, the regret insertion approach 
uses a regret-value which represents the expected 
costs of inserting a trip not in this operation but in a 
future operation.

For a trip i to be inserted, the insertion costs 
and positions of all possible buses are calculated 
iteratively. If the insertion leads to an infeasible 
solution that violates the timetable, the insertion 
cost is set as a sufficiently large positive number 
M. If the inserted trip is feasible in timing but leads 
to infeasible energy requirements, the recharging 
trips are inserted into the schedule. Similar to the 
approach in the initialisation process, if the bus 
cannot complete the schedule after the recharging 
trip is inserted, the algorithm will try to complete 
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functions of the three types of electric buses used 
in the case is extracted from [17], and it is detailed 
in Table 1. The piecewise linear approximation ap-
proach is used to model the charging functions of 
the buses. For the maintenance of the battery, the 
state of charge of the bus is required to be higher 
than 20% of the battery capacity during operation. 
In addition, the energy consumption rate of the bus 
during a deadhead trip is set as 1.5 kWh/km, and the 
energy consumption rate in service is set as 1.8kWh 
/km [17]. The electricity consumption cost ce is 0.07 
yuan/kWh [22], and the time-dependent cost ct is 
3 yuan/min [11]. There are 360 operating days per 
year, and the average life of the electric buses is cal-
culated as 7.8 years [23].

Through the preliminary experimental analysis, 
parameters of ALNS are set as follows: the maxi-
mum iterations ηmax is 2000 and ηmaxNoimprove is 500; 
the initial temperature T0 is 50 and the cooling rate   
α is 0.99. The number of trips deleted by the destroy 
operators in each iteration [ξmin,ξmax] is set to 10-20, 
and ξn is 2.

3.2 Comparison between exact approach 
(CPLEX) and heuristic approach 
(ALNS)

A small computational experiment is conducted 
to compare the results of the ALNS algorithm with 
the CPLEX solver. The instances are generated by 
randomly selecting a certain number of trips from 
all the timetable trips. The results are listed in Table 2. 

Two termination conditions are applied in the 
algorithm, the algorithm terminates when ηmax iter-
ations have been executed, or ηmaxNoimprove iterations 
occur without an improvement.

3. RESULT ANALYSIS

3.1 Parameter values
In this section, a case study is conducted based 

on a real-world transit network in Nanjing, China. 
The network has three bus lines and two depots, 
as shown in Figure 4. Both depots have a number of 
parking spaces and are equipped with charging in-
frastructures for recharging the buses. Depot 1 is a 
smaller depot at the terminal station that can serve 
30 buses, while depot 2 is a large transit centre that 
can provide parking and recharging services for 
more than 100 buses. The three bus lines serve in 
total 518 trips, and the operation data of all lines 
(including the trip start time, duration, and end 
time) are extracted from the automatic vehicle lo-
cating (AVL) system. The information and charging 

Table 1 – Parameters of electric bus types

Type A Type B Type C

Battery capacity 
[kWh] 72 240 400

Purchase cost 
(CNYҰ) 2,450,000 2,835,000 3,150,000

Legend
Route 100
Route 302
Route 35
Depot

Figure 4 – Transit network in Nanjing

Table 2 – Comparison between exact approach (CPLEX) and heuristic approach (ALNS)

Number  
of trips

CPLEX ALNS
Gap [%]Obj

(million yuan) Mix Time [s] Obj
(million yuan) Mix Time [s]

20 42.24 A2B6 4.5 42.24 A2B6 52.6 0

20 32.98 A2B3 5.8 32.98 A2B3 50.6 0

25 49.98 A2B7 8.7 49.98 A2B7 90.7 0

25 42.17 A2B4 6.4 42.18 A2B4 63.7 0.02

30 51.38 B6 >3600 51.38 B6 76.5 -

30 47.82 A1B5 114.1 47.82 A1B5 85.8 0
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PL function to check the schedule of each vehicle. 
The infeasible schedule represents the proportion 
of all bus schedules that are infeasible due to in-
sufficient energy storage. Since the battery capacity 
of bus type A is small, it is infeasible to perform 
all trips when only bus type A is used. When LC1 
approximation is adopted, due to the fast charging 
rate of LC1 approximation, buses are assumed to 
obtain more energy within the same charging time, 
enabling it to perform more trips. Therefore, it can 
be seen from the table that for solutions with het-
erogeneous fleets or homogeneous fleets of bus type 
B, the fleet size and total cost in LC1 approxima-
tion solutions are both lower than those of the other 
solutions. However, due to the large deviation be-
tween the charging rate of LC1 approximation and 
PL function, a large proportion of bus schedules are 
infeasible, which means that buses will break down 
due to insufficient energy during the service. When 
only bus type C is used, fleet size and total cost do 
not show a significant difference between LC1 ap-
proximation solution and other solutions. This can 
be explained by the large battery capacity of the bus 
type C, which significantly reduces the recharging 
trips compared with the other solutions. It also re-
duces the impact of different charging functions on 
the bus scheduling.

When LC2 approximation is adopted, the re-
charging trips of the solutions with both heteroge-
neous fleets and homogeneous fleets are higher than 
those with the PL function. The charging rate of 
LC2 approximation is lower than that of PL func-
tion between 0–80% state of charge, which means 
that the charging time at this stage will be longer 
when using LC2 approximation, and more buses are 
needed to fill the gap when other buses are charging.

The maximum running time for CPLEX is set to 1 
hour. The results show that although CPLEX takes 
less time to solve most of the instances, its solving 
time increases rapidly with the increase of number 
of trips in instances. In contrast, ALNS can provide 
high-quality solutions for all instances, and the run-
ning time is relatively stable. The advantage can be 
further enhanced when the number of trips increases.

3.3 Comparisons of nonlinear and linear 
charging functions

To compare the difference between using non-
linear charging function and linear charging func-
tion in the scheduling process, we solve the prob-
lem with different charging functions respectively. 
The Piecewise Linear (PL) functions represent the 
piecewise linear approximation of the charging 
functions referenced from [17]. Two linear ap-
proximation functions, shown in Figure 1 (LC1 and 
LC2), are used for comparison. The results for ho-
mogeneous and heterogeneous fleets are both cal-
culated, and all results are the average of five ran-
dom runs. To eliminate the effect of different line 
change constraints, the number of line changes is 
set to be large enough to allow buses to perform a 
flexible schedule.

The results are listed in Table 3. The first column 
indicates the bus type and charging function used 
in the scenario. Fleet size represents the number 
of buses required in the solution. The total cost of 
the solution is listed in the third column. Mix rep-
resents the number of buses required for each bus 
type in the solution. Recharging trips represent the 
total number of recharging trips of all buses in the 
daytime operation. After using the linear approxi-
mation function to solve the problem, we use the 

Table 3 – Results of solutions with different charging functions

Fleet size Total cost
Mix

Recharging trips Infeasible schedule [%]
A B C

B

LC1 76 724.7 - - - 120 66.23

LC2 79 734.2 - - - 132 26.16

PL 80 737.1 - - - 116 -

C

LC1 72 731.7 - - - 49.6 15.74

LC2 72 731.8 - - - 54.4 4.17

PL 73 734.8 - - - 47.2 -

Mix

LC1 72 718.3 1.4 50.2 20.4 117.6 61.57

LC2 72 728.1 1 32 39 111 36.99

PL 72 727.3 0 20.6 51.4 67.8 -
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sult obtained will not change significantly. Therefore, 
we set the maximum value of this value to 4. For 
each scenario, five random runs are performed, and 
average results are reported in Table 4. The fleet size 
and the total cost are the highest when  θ=0 (which 
means that the bus can only operate on a single line). 
When θ equals 1, the total cost has a significant drop. 
As the value of θ varies from 1–4, the flexibility of 
the schedule is improved, thus reducing the total cost 
and fleet size. The comparison of the number of lines 
changes of different scenarios is interesting. Because 
of the line change constraints, the average of line 
changes of five runs when θ=1 is only 38. Although it 
increases with the relaxation of the constraints, there 
is no difference in the average number of line chang-
es when θ increases from 2 to 4. This indicates that 
it is more cost-effective to allow more line change 
operations for a small number of buses than to in-
crease the number of line changes for all buses. In 
terms of the fleet composition, when buses are re-
stricted to operate on a single line, the solution tends 
to use more buses with smaller batteries. When mul-
tiple shifts among different lines are allowed, more 
buses with a larger battery are used. The number of 
recharging trips in the solution also decreases due to 
the increasing number larger battery buses, which 
can perform more trips after fully charged. It indi-
cates that when the flexibility of scheduling increas-
es, buses with larger batteries are more efficient and 
thus preferred. On the other hand, although more re-
charging trips are required when each bus only serves 
one line, since the buses do not need deadhead trips 
between two terminal stations to serve trips of other 
lines, their deadhead mileages are shorter, which also 
reduces the electricity consumption.

Comparing these solutions, it can be observed that 
the largest drop of the total cost occurs when θ in-
creases from 0 to 1, while the deadhead mileage and 

In general, conservative methods such as LC2 
are preferred when linear approximation functions 
are used to approximate the real-world charging 
functions. It can be seen from Figure 1 that the curve 
of LC2 approximation is below the curve of PL and 
the real-world charging functions. Therefore, it is 
intuitively believed that although LC2 may con-
servatively estimate the charging speed, it ensures 
the feasibility of bus schedules. However, a cer-
tain proportion of bus schedules is still not feasible 
based on the result of this study. This is because the 
charging rate of LC2 approximation is higher than 
NL function at 80–100% state of charge. When the 
bus is recharged in this state of charge interval, the 
estimated charging time based on LC2 approxima-
tion for the same energy amount is shorter than the 
estimated time of PL function, which can result in 
insufficient energy charged by the bus within the es-
timated charging time.

In addition, it can be found that the proportion of 
infeasible bus schedules in the solutions with only 
bus type C are significantly lower than the solutions 
with only bus type B. Especially in the LC2 approx-
imation solution with homogeneous fleets of type C, 
only 4.17% of the bus schedules are infeasible. This 
indicates that the linear approximation approach is 
more suitable to estimate the charging rate for buses 
with larger batteries.

3.4 Sensitive analysis of maximum number 
of lines changes

To analyse the influence of different line change 
number constraints on scheduling, a sensitive analy-
sis is conducted by setting four different values for 
the maximum line change numbers of a bus. Accord-
ing to the preliminary computational experiments, 
when this value is greater than or equal to 4, the re-
Table 4 – Results of solutions with different maximum number of lines changes

θ=0 θ=1 θ=2 θ=4

Fleet size 77 74 73 72

Total cost (million CNY) 734.2 730.4 728.3 727.3

Mix

A 2 1.2 0.2 0

B 44.2 28.4 27 20.6

C 30.8 44.4 45.8 51.4

Recharging trips 88.2 73.8 71.8 67.8

Number of line changes 0 38 66.2 66.2

Total deadhead mileage [km] 461.2 495.3 504.2 507.7

Electricity consumption [kWh] 29592.4 29643.4 29656.8 29661.8
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integrated for a better and more efficient manage-
ment. In addition, the uncertainty of the bus energy 
consumption can be considered for a more realistic 
energy consumption estimation, rather than a con-
stant energy consumption rate adopted in this paper.
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刘野

非线性充电函数和车辆跨线路约束对纯电动公
交车辆调度的影响

摘要

充电计划是纯电动公交调度方案的关键部分。由
于电动汽车的实际充电函数为非线性，因此准确地
估算充电时间非常困难。为了研究考虑非线性充电
函数时的电动公交调度问题，本文提出了一种混合
整数规划下的分段线性近似方法以研究多车场多车
型条件下的电动车辆调度问题。本文的数学模型目
标在于最小化包括车辆购置成本和运营成本的总调
度成本。同时基于现实的角度考虑，模型增加了对
车辆的跨线路次数的约束。为了高效地求解问题，
本文提出了一种改进的启发式算法。最后，本文使
用了真实数据用于案例研究。结果表明线性近似充
电函数与分段线性近似充电函数所计算出的结果存
在较大偏差，这表明采用分段线性近似的充电函数
能够避免得出不可行的调度方案。此外，结果也显
示了所提出的车辆跨线路次数约束可以成为公交公

司的一种有效的调度策略。

关键词

电动车辆调度问题；非线性充电函数；跨线路

次数约束；混合整数规划；启发式算法。
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