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Abstract 

Background Using four case studies, we aim to provide practical guidance and recommendations for the analysis 

of cluster randomised controlled trials.

Methods Four modelling approaches (Generalized Linear Mixed Models with parameters estimated by maximum 

likelihood/restricted maximum likelihood; Generalized Linear Models with parameters estimated by Generalized 

Estimating Equations (1st order or second order) and Quadratic Inference Function, for analysing correlated individual 

participant level outcomes in cluster randomised controlled trials were identified after we reviewed the literature. 

We systematically searched the online bibliography databases of MEDLINE, EMBASE, PsycINFO (via OVID), CINAHL 

(via EBSCO), and SCOPUS. We identified the above-mentioned four statistical analytical approaches and applied 

them to four case studies of cluster randomised controlled trials with the number of clusters ranging from 10 to 100, 

and individual participants ranging from 748 to 9,207. Results were obtained for both continuous and binary out-

comes using R and SAS statistical packages.

Results The intracluster correlation coefficient (ICC) estimates for the case studies were less than 0.05 and are consist-

ent with the observed ICC values commonly reported in primary care and community-based cluster randomised 

controlled trials. In most cases, the four methods produced similar results. However, in a few analyses, quadratic 

inference function produced different results compared to the generalized linear mixed model, first-order generalized 

estimating equations, and second-order generalized estimating equations, especially in trials with small to moderate 

numbers of clusters.

Conclusion This paper demonstrates the analysis of cluster randomised controlled trials with four modelling 

approaches. The results obtained were similar in most cases, however, for trials with few clusters we do recommend 

that the quadratic inference function should be used with caution, and where possible a small sample correc-

tion should be used. The generalisability of our results is limited to studies with similar features to our case studies, 

for example, studies with a similar-sized ICC. It is important to conduct simulation studies to comprehensively evalu-

ate the performance of the four modelling approaches.
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Background
Randomisation is used in clinical trials to achieve balance 

between treatment arms in variations caused by both 

known and unknown prognostic factors, eliminate selec-

tion bias, and improve the external validity of the study. If 

done properly, it should minimise the effect of the prog-

nostic factors so that researchers can controllably study 

the effect of the intervention(s) of interest [1]. Instead of 

randomising individuals to the treatment arms as done 

in individually randomised controlled trials (IRCTs), 

groups/clusters of individuals are randomised in cluster 

randomised controlled trials (CRCTs). In CRCT there are 

two levels; the distinctive cluster level and the individual 

level (with correlated outcomes) which are nested within 

the clusters. An appropriate statistical method for analys-

ing CRCTs will be any method that considers this hierar-

chical nature of the CRCT design. Ignoring the correlated 

outcomes within a cluster and using standard statistical 

methods that treat the outcomes as being independent, 

might lead to underestimating the standard errors of the 

parameters and consequently obtaining narrower con-

fidence intervals, false small P-values, and incorrectly 

overstating the effect of the intervention.

Some of the common issues in CRCT design and analy-

sis are (a) Ignoring clustering [2], (b) inadequate han-

dling of missing data [3], (c) and poor reporting of results 

[2, 4]. Newer analytical methods for handling cluster-

ing have been proposed in the literature of other study 

designs with clustered data, such as longitudinal study 

designs. Notable ones are targeted maximum likelihood 

estimation (TMLE) [5], quadratic inference function 

(QIF) [6], and alternating logistic regression (ALR) [7]. 

Furthermore, QIF is acclaimed to be a promising alter-

native to GEE1, especially when the correlation structure 

is misspecified [6, 8, 9], however, it is worth noting that 

these recent alternatives have not been comprehensively 

compared to the existing methods used in CRCTs like the 

GEE1, which might account for their slow uptake. This 

study aims to contribute to the literature (in the context 

of CRCTs) on the performance of the newer methods 

compared to the existing methods, to promote their use 

in CRCTs (if necessary).

This paper reviews and describes the selected statisti-

cal methods for analysing both continuous and binary 

outcomes in CRCTs. We focus on statistical methods for 

analysing individual-level outcomes which are correlated 

within clusters. The paper explores the performance of 

all the analytical methods given the settings of our case 

studies. The objectives of this study are to demonstrate 

the practical application of these selected modelling 

approaches for analysing CRCTs, to compare and discuss 

their methodological differences, and to make general 

comments based on our findings.

Literature review

Search strategy

This review provides an overview of the appropriate and 

available statistical methods for analysing outcome data 

from CRCTs by mapping the evidence in the published 

literature on the development, refinement, and compari-

son of the statistical methods. This was a methodological 

review focusing on the appropriate, and available meth-

ods for analysing CRCTs with clustering in treatment 

arms. We reviewed the literature from  1st January 2003 

to  19th December 2020. This was a year before the pub-

lication of the CONSORT statement 2004 extension for 

cluster randomised controlled trials.

We used a developed search strategy (see, Addi-

tional file  1) to search the online bibliography data-

bases of MEDLINE, EMBASE, PsycINFO (via OVID); 

and CINAHL (via EBSCO), and SCOPUS. In addition 

to searching published literature databases, OpenGrey, 

web-of-science, and Scopus databases for conference 

proceedings were also searched to identify difficult-

to-locate (grey) literature. A standardised pre-piloted 

data collection tool was used to extract information on 

the study and methodological characteristics from the 

included articles. One reviewer, BCO, carried out the 

search and extraction of the relevant information; two 

other independent reviewers, SJW and RMJ, supervised 

and validated the process. We discussed extensively to 

reach a consensus on issues presented during the review 

process.

Literature search results

The literature search identified 1573 articles and after 

removing duplicates 1073 articles remained. After 

screening the title and abstract of each of the identified 

articles, 116 were shortlisted and 55 articles (including 

12 from pearl growing) were finally chosen, while other 

73 articles were excluded for various reasons (see, Fig. 1). 

These articles are methodological and application papers 

and are referenced throughout. The search and selec-

tion process of the included articles is presented in Fig. 1. 

Among the included 55 included articles; 34 (62%) com-

pared already existing methods, 25% proposed new sta-

tistical methods, and 13% refined already existing ones. 

There was no clear pattern in the development, advance-

ment, or comparison of statistical methods for analysing 

outcome data from CRCTs in the last two decades (see, 

Additional file 2).

The number of times each method was studied in the 

55 articles and their references are summarised in Table 

S1  (see, Additional file  3). This review identified 27 

unique statistical methods for analysing CRCTs which 

were studied 112 times in total. Regression models with 
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parameters estimated by first-order generalized esti-

mating equations (GEE1) was the most studied method 

(23/112, 21%) followed by maximum likelihood estima-

tion (MLE) (16%). Among the newer methods, QIF was 

the most studied method (5%). Hence, four statistical 

regression models for the analysis of correlated individ-

ual participant-level outcomes in cluster randomised 

controlled trials were selected. They are:

1. Generalized Linear Mixed Models (GLMM) with 

parameters/coefficients estimated by Maximum 

likelihood (MLE) or restricted MLE denoted as 

GLMM henceforth.

2. Marginal Generalized Linear Models (mGLM) 

with parameters/coefficients estimated by 1st order 

Generalized Estimating Equations denoted as GEE1 

henceforth.

3. Marginal Generalized Linear Models (mGLM) 

with parameters/coefficients estimated by 2nd-order 

Generalized Estimating Equations denoted as GEE2 

henceforth.

4. Marginal Generalized Linear Models (mGLM) 

with parameters/coefficients estimated by Quadratic 

Inference Function denoted as QIF henceforth.

Specifically, GLMM and GEE1 were selected based 

on their popularity in the literature of CRCTs, they are 

the two most studied regression methods (see, Table 

S1), while GEE2 and QIF were selected based on find-

ings that suggested them to be the two most promising 

improvements on the GEE1 [10–13]. GEE2 and QIF are 

not commonly used for analysing CRCTs, however, QIF 

has been extensively studied and applied in the context 

of longitudinal studies where outcomes measured repeat-

edly over time from a particular individual are likely to 

Fig. 1 Flow chart of the search and selection process of the included articles
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be correlated. For example, Odueyungbo et  al., [9] and 

Song et al., [8] compared QIF to GEE1 using real-world 

data from longitudinal studies. Several other papers have 

compared QIF to GEE1 using both real-world and com-

puter-simulated data, both in the context of longitudinal 

and CRCT designs [6, 14–17]. Similarly, several studies 

have compared GLMM to GEE1 to assess their relative 

performance [18–21]. To the best of our knowledge, 

no study has compared these four selected methods – 

GLMM, GEE1, GEE2, and QIF at the time of writing this 

report.

Methods
Notation

A boldface letter denotes either a vector or a matrix or 

as otherwise stated. The general notation is established 

as; let yij denote an outcome for the j th subject in the i
th cluster ( i = 1, . . . ,N ; j = 1, . . . , ni) ; N  is the number 

of independent clusters in the study and ni denotes the 

different number of subjects in each cluster (i.e., the i th 

cluster size), yij has a corresponding set of p-dimensional 

vector covariates XT
pij = (x1i, · · · , xpij) where x1i denotes 

an indicator variable for the treatment group to which a 

cluster belongs (x1i = 0 indicates the control group and 

x1i = 1 the intervention group) and Y i = (yi1, · · · , yini)
T 

is a ni × 1 vector of the collection of the individual level 

outcomes for the i th cluster. Also, βp = (β0,β1, · · · ,βp) is 

the unknown p-dimensional vector of regression param-

eters and µi = (µi1, · · · ,µini
)T is an ni × 1 vector of true 

means with µij = E(yij|X
T
pij) being the conditional expec-

tation for the j th subject in the i th cluster with covari-

ates XT
pij.

Individual Level Analysis (ILA)

All the analytical methods considered in this study are 

based on individual-level analysis, meaning that out-

comes from all the participating individual subjects in a 

trial are used as response values. This approach is fur-

ther categorised according to how the regression model 

adjusts for clustering of the response values of subjects 

within a cluster. The different regression models and sta-

tistical methods used for estimating the regression coef-

ficients in the models are explained in the subsequent 

subsections.

Cluster‑Specific Model (CSM)

The models classed under this category adjust for clus-

tering by using the outcome of each of the subjects and 

conditionally relating it to the fixed effects and random 

effects components of the model. The parameter esti-

mates of the fixed effects and random effects components 

are obtained simultaneously. The estimate of the inter-

vention effect from this analytical approach is interpreted 

as what will happen to individuals in a cluster if they 

receive the intervention treatment compared to them 

receiving the control treatment. The linear mixed model 

(LMM) is a common example of this approach.

Generalized Linear Mixed Model (GLMM) with coefficients 

estimated by MLE/REML

The GLMM is also called a random (or mixed) effects 

model and is the most used conditional/cluster-specific 

model for analysing CRCTs [2, 3]. The LMM, with a contin-

uous outcome and identity link function is a special case of 

a GLMM. In a GLMM, a single model equation is specified 

to assess the impact of the fixed effects of some covariates 

of interest and the random effects of the randomly selected 

clusters on the outcome of interest.  MLE is commonly 

used to estimate the parameters of the fixed effects and 

random effects components of a GLMM, simultaneously.

However, technically, the MLE algorithm estimates 

the fixed effects component initially (ignoring the ran-

dom effects component), then plugs the estimates into 

the algorithm to estimate the random effects compo-

nent. This process is repeated until optimal estimates are 

obtained. However, ignoring the random effects compo-

nent in the first step causes the MLE to produce nega-

tively biased variance components, because, it means 

ignoring the variations present in the estimates of the 

fixed effects, which could be substantial when the sam-

ple size is small [22–24]. Also, the MLE does not adjust 

for the degrees of freedom (DoF) lost in estimating the 

parameters of the fixed effects component [24]. Hence, 

the MLE is likely to produce SEs that are too small, 

resulting in smaller P-values, and inflated Type I error 

rates, especially when there are few clusters.

An alternative likelihood-based estimation method is the 

restricted maximum likelihood estimation (REML) which 

can be utilised to circumvent these problems. For large sam-

ple sizes, these problems are not noticeable, and the esti-

mates from MLE and REML are approximately the same. 

However, for cRCTs with small samples, the problems are 

more pronounced [21, 23]. The REML first transforms the 

outcome data to remove the fixed effects, before estimat-

ing the random effects component. Then, it applies gener-

alized least squares estimator to obtain the estimates of the 

fixed effects component within its algorithm. Put differently, 

REML obtains the estimates of the fixed effects and random 

effects components separately, starting with the random 

effects component [24]. To appropriately adjust for the loss 

in the DoF, we applied the Satterthwaite correction on the 

DoF, which resulted in adjusted P-values and CIs [21].

Let yij denote a continuous outcome from a j th indi-

vidual in an i th cluster. A specific example of the LMM 

called the random intercept LMM (because it adjusts for 



Page 5 of 25Offorha et al. BMC Medical Research Methodology          (2023) 23:293  

the random cluster effects using a random intercept term 

in the mixed model) is given as

where β1 is the intervention effect, x1i and  xpij are the 

indicator and pth variables respectively for the j th indi-

vidual in the i th cluster, τi is the random effects term 

which causes variability in the cluster means and εij is the 

residual for each individual. When yij is a non-Normally 

distributed outcome, such as a binary or count outcome, 

model Eq. (1) can be generalized. This explains the “gen-

eralized” in GLMM, the GLMM could be expressed as

where yij is a non-normal outcome, η(.) is a link func-

tion that linearly relates the expected response values to 

the fixed effects and the random effects components of 

the model. For example, if yij ∼ Bi
(

n, Pr
(

yij = 1
))

 then 

Eq. (2) is specified using a logit link function as

where Pr
(

yij = 1
)

 is the probability of  a success, that is, 

yij = 1 and logit
(

Pr
(

yij = 1
))

=

Pr(yij=1)
(1−Pr(yij=1))

 . MLE is a 

common choice for estimating the parameters of the 

GLMM. The general full likelihood of Eqs. (1), (2) and (3) 

is given as [25]

where l(.) is the likelihood function for yij ,ψ(.) is the 

probability function for yij , τi is often assumed to follow 

a Normal probability function g(.) and  θ = (β0,β1,βp) . 

Maximum likelihood estimates are obtained by taking 

the first derivatives of the log of l(.) for each parameter, 

while the second derivative produces the standard errors. 

It is difficult to analytically obtain a closed-form solu-

tion for Eq. (4) due to the high dimension of the integral 

involved, a numerical likelihood approximation method 

is often used to circumvent this problem. We used the 

Adaptive Gauss-Hermite Quadrature (AGHQ) to per-

form the numerical approximation [26]. The GLMM 

models were implemented using the SAS 9.4 procedure; 

PROC GLIMMIX.

Population Average Model (PAM)

The regression models under this class are appropriate 

for assessing the population average intervention effect. 

Here, inferences are made regarding the population of 

(1)yij = β0+β1x1i + · · · + βpxpij+τi+εij , i = 1, . . . ,N ; j = 1, . . . , ni, τi ∼ N
(

0, σ 2
b

)

; εij ∼ N (0, σ 2
w)

(2)

η
(

E
(

yij
))

= η
(

µij

)

= β0+β1x1i + · · · + βpxpij + τi

(3)

logit
(

Pr
(

yij = 1
))

= β0+β1x1i + · · · + βpxpij + τi

(4)

l
(

θ , τi; yij
)

=

∏N

i=1

∫

∏ni

j=1
ψ(τi, θ)g

(

τi; σ 2
b

)

∂τi

clusters rather than the individual subjects, and the target 

of the conclusions reached in the study is the population 

from where the clusters were drawn. Here, the interven-

tion effect estimate is interpreted as the comparison of 

the average change in the population means between the 

intervention and control groups. PAMs are based on the 

marginal likelihoods of the correlated response values 

from the ith cluster, Y i , hence are considered to be semi-

parametric models. The correlation of outcomes within 

clusters are accounted for using a separate working 

covariance matrix characterised by a working correlation 

matrix. In general, a PAM could be expressed as

where  µi is the mean for the ith cluster.  The mar-

ginal variance of a univariate response value yij is often 

specified as φν(µij) , where ν(.) is a known variance 

function and φ is a scale parameter that equals 1 for a 

binary outcome and σ 2 for a continuous outcome (and 

needs to be estimated). Equation  (5) is similar to [2], 

but different in that corr (εij , εij′) �= 0 but rather corr 
(

εij , εij′
)

= ρ

(

xij , xij′;P
)

∀j �= j′,P is the true correlation 

matrix to be approximated by a “working” correlation 

matrix, R , which is characterised by the intracluster cor-

relation coefficient (ICC), ρ.

The intracluster correlation coefficient

The ICC quantifies the correlation between the outcomes 

of any pair of subjects within a cluster. When the ICC is 

zero it indicates that any randomly paired outcome val-

ues from any randomly paired subjects in a cluster are 

independent, which gives rise to the “independence” 

working correlation structure. It is more common in 

cRCT to assume that the ICC is the same and nonzero 

across clusters which gives rise to the “exchangeable” 

working correlation structure. The independence and the 

exchangeable working correlation structures are the two 

most assumed in CRCTs. Common estimators of the ICC 

for continuous and binary outcomes are given as

where σ2
b
 is the intracluster variation, σ2w is individual sub-

ject variation and π = 3.141593 [27]. These two param-

eters, σ2
b
 and σ2w , can be estimated using the extracts from 

the output of a one-way analysis of variance (ANOVA). 

(5)η(E(Y i)) = η µi = X
T
pijβp

(6)ρ̂ =
σ
2
b

σ
2
b
+ σ

2
w

andρ̂ =
σ
2
b

σ
2
b
+

π2

3

respectively
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According to Donner [28] the following equations hold 

true

where MSB is the between-cluster mean squared error, 

MSW  is the within-cluster mean square error, both MSB, 

and MSW  are the extracts from ANOVA,  n is the aver-

age cluster size calculated with the formula below

where N is the total number of clusters, n is the total 

sample size, and ni is the ith cluster size. If Eq. (8) is sub-

stituted into Eq. (7) the ICC estimator becomes [29]

Obtaining either a positive or negative ICC estimate 

depends on which estimator is used, while the ICC estima-

tor of Eq. (6) is positive definite because its components are 

variances, the other estimator, Eq. (9), can produce a nega-

tive ICC estimate because of the subtraction in its numera-

tor, and this occurs when MSB < MSW .

mGLM with coefficients estimated by GEE1

The first-order generalized estimating equations (GEE1) 

is the most common multilevel statistical method used 

for obtaining the parameter estimates of an mGLM (aka, 

PAM) specified in Eq. (5). The GEE1 estimator treats the 

correlations of outcomes within clusters as a nuisance, 

such that, it does not explicitly model the effect of the 

correlations. However, GEE1 accounts for the correla-

tions using a separate “working” covariance matrix char-

acterised by the working correlation matrix.

The GEE1 draws its strength from the linear exponen-

tial family distribution [30]. Liang and Zeger [31] pro-

posed a class of estimating equations that uses a working 

correlation matrix (with fewer nuisance parameters) to 

obtain the parameter estimates of Eq. (5) given as

where V i is the ni × ni covariance matrix for Y i (i.e., 

V i = Cov(Y i) ) specified by the working correlation 

matrix R(α) and defined as

(7)σ̂
2

b
= (MSB − MSW )/nσ̂

2

w = MSW

(8)n =

1

N − 1

(

n −

∑

N

i=1
n
2

i

n

)

(9)ρ̂ =
MSB − MSW

MSB + (n − 1)MSW

(10)Ui(β) =

∑N

i=1

(

∂µi

∂β

)T

V
−1

i

(

Y i − µi(β)
)

= 0

(11)V i = φG
1

2

i
Ri(α)G

1

2

i

where Gi = diag{ν(µi1), · · · , ν(µini)} is a diagonal matrix 

with the diagonal elements ν(µij) that is, the variance 

function for each response  yij , and Ri(α) is an ni × ni 

working correlation matrix specified by the ICC, α . Esti-

mates from a GEE1 with an exchangeable correlation 

structure are equal to that of a random intercept model 

of Eq.  (1) for linear models, but it is not necessarily the 

case for nonlinear models [32].The GEE1 estimator 

computes asymptotically consistent estimates β̂ , regard-

less of the choice of Ri(α) but provided that the mean 

structure is correct. However, it may suffer some loss in 

efficiency if the choice of Ri(α) is not correct [6]. The 

parameter estimates β̂ are iteratively obtained by alter-

nating between a modified Fisher scoring algorithm for 

β and the moment estimation of α and φ , and its residual 

N
1

2 (β̂ − β) is a multivariate Normally distributed resid-

ual with mean zero and a robust sandwich variance–

covariance matrix ξ i . The GEE1 models were fitted using 

the SAS 9.4 procedure, PROC GENMOD.

mGLM with coefficients estimated by GEE2

This class of regression models attempts to leverage 

the major drawback of the GEE1 – possible loss in 

efficiency when the correlation structure is misspeci-

fied, especially when the correlation among outcomes 

is substantial [12, 13]. Statistical efficiency is a desir-

able property of a good estimator after unbiasedness 

has been established. Among all unbiased competing 

estimators, an efficient estimator is the one that pro-

duces the smallest standard error estimate, which is 

indicative of a lesser variability and a higher degree of 

precision.

The GEE2 model estimates the correlation param-

eter (i.e., the nuisance parameter in GEE1) and mean 

parameter simultaneously in its algorithm [11–13, 33, 

34]. Hence, if modelling the correlation among subjects 

within a cluster is of primary interest, then GEE2 should 

be considered. For example, in a family study to assess 

the impact of the genetic relatedness of the family mem-

bers on their alcohol dependence, GEE2 was highly rec-

ommended cause it may improve the efficiency of the 

mean parameters [13].

The models under the GEE2 analytical approach 

draw their strength from the quadratic exponential 

family distribution [30]. If the marginal density of Y i 

conditioned on the mean vector µi and the covariance 

matrix V i , can be expressed as belonging to the quad-

ratic exponential family distribution, then this allows 

for the mean and the covariance of Y i to be obtained 

simultaneously. Several GEE2 estimators have been 
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proposed for estimating the mean and correlation 

parameters simultaneously [11, 12, 33, 34], however, 

Yan and Fine [13] used separate link functions to 

model the mean, the scale, and the correlation param-

eters and generated their corresponding sets of esti-

mating equations to be solved simultaneously. This is 

known as the three-estimating Eqs. (3EE) GEE2, and it 

is applied in this paper.

To establish the model specification, let 

X1i,X2i and X3i  be the ni × p, ni × r and n(n+1)
2

× q 

design matrices for the mean, the scale, and the corre-

lation parameters of the vector of outcomes Y i , respec-

tively. The specific link function for the mean, the scale, 

and correlation parameters to  X1i,X2i and X3i , respec-

tively, is given as

where µi is a ni × 1 mean vector specified by β , φi is a 

ni × 1 scale vector specified by ϕ and ρi is a ni(ni+1)
2

× 1 

pairwise correlation vector specified by α . The unified 

corresponding set of estimating equations for Eq. (12) to 

be solved simultaneously is given as

where Y i and V 1i is as defined in the GEE1 mean model 

of Eqs. (10) and (11), Zi is the ni × 1 vector of the scales, 

Si is the ni(ni+1)
2

× 1 vector of the pairwise correlations, 

V 1i and V 2i are the working covariance matrices of Zi and 

Si respectively.

The GEE2 (Eq.  (13)) requires the specification of the 

first four central moments of the outcome vector (mean 

response, variance, skewness, kurtosis). Yan and Fine 

[13] suggested a way around it to avoid the problem of 

convergence and it is implemented using the geese [35] 

function in the R package geepack [36]. In general, the 

third and fourth moments can be specified as functions 

of the first and second moments, thereby avoiding the 

direct estimation of higher-order moments [12]. The 

GEE2 estimator consistently estimates the mean param-

eters β regardless of whether the scale and correlation 

structures are wrong, the estimates for scales ϕ are con-

sistent regardless of whether the working correlation 

(12)

η1

(

µi

)

= X1iβ

η2

(

φi

)

= X2iϕ

η3

(

ρi

)

= X3iα

(13)

Ui(β ,ϕ,α) =

∑

N

i=1

(

∂µi

∂β

)T

V
−1
i

(

Y i − µi(β)
)

= 0

∑

N

i=1

(

∂φi

∂ϕ

)T

V
−1
2i

(Zi − φi(ϕ)) = 0

∑

N

i=1

(

∂ρi

∂α

)T

V
−1
3i

(

Si − ρi(α)
)

= 0

is mis-specified, but provided that the mean and scale 

structures are correct.

The major merit of the 3EE GEE2 estimator is that 

it allows for separate covariates to be included in the 

mean, scale, and correlation models. This is important 

when investigating heterogeneous correlation across 

clusters or treatment arms, such as modelling multiple 

forms of clustering. Where each cluster or treatment 

arm presents a different degree of correlation αi among 

subjects, possibly due to cluster sizes and covariates 

imbalance. Taking this heterogeneity into account may 

improve efficiency, instead of assuming a constant cor-

relation across clusters or treatment arms [10]. The 

solutions of Eq.  (13) are obtained iteratively by alter-

nating between a modified Fisher scoring algorithm 

and the moment estimation method. The GEE2 models 

were fitted using the R’s geese function in the geepack 

package.

mGLM with coefficients estimated by QIF

Similar to GEE2, the quadratic inference function (QIF) 

was proposed to circumvent a major issue with GEE1, 

that is, the loss in efficiency due to the misspecification 

of the correlation structure. But compared to GEE2, QIF 

does not require the specification of the third and fourth 

moments (as it imposes additional constraints). The QIF 

estimator avoids the direct use of the working correlation 

matrix in its algorithm. Instead, it uses a linear combina-

tion of basis matrices and some constants to replace the 

inverse of the working correlation matrix. Hence, the QIF 

is more robust to misspecification of the working correla-

tion matrix compared to GEE1, providing better protec-

tion against incorrect correlation structure. With this, the 

QIF produces more efficient parameter estimates com-

pared to GEE1 [6]. However, if the working correlation 

structure is not misspecified, the efficiency of the param-

eter estimates from GEE1 and QIF are equivalent [6, 8].

Let Y i,X i,µi , and V i be the same as defined in 

Eqs.  (10) and (11). In the QIF equation, the inverse of 

R specified in Eqs.  (10) and (11) is approximated using 

a linear combination of a set of several basis matrices 

R
−1

h
≈ khMh + · · · + kmMm; (h = 1, . . . ,m);Mh is the 

h th known basis matrix with its unknown coefficient/con-

stant, kh , that needs to be estimated. For the exchange-

able and autoregressive working covariance matrix, h = 1

and 2 should suffice, respectively [6, 17]. Using this new 

information, we can rewrite the estimating Eq. (10) of the 

GEE1 as extended score equations given as
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where gi(β) is the score vector of each cluster, the con-

stants km are considered a nuisance and are not included. 

The QIF estimator uses the generalized method of 

moments (GMM) [37] to optimally combine the multi-

ple estimating equations in [13]. Hence, the estimate β̂ is 

obtained by minimising the weighted length of gN using 

the GMM, which could be express as

where argminβ is the argument of the minimum of β 

that minimises gT
N

�
−1

N
gN . As expected, the true covari-

ance matrix �N is replaced by the estimated covariance 

matrix CN in Eq.  (15), with its inverse C−1

N
 representing 

a weighting function. Thus, the QIF estimator becomes

where CN =

(

1/N 2
)
∑N

i gi(β)gTi (β),C−1
N  is the main rea-

son behind QIF’s efficiency advantage, because it weights 

the information each i th cluster contributes to the esti-

mating equation, clusters with large variation are given 

less weight than the ones with small variation. The esti-

mates β̂ are obtained iteratively using the Newton–Raph-

son algorithm [6] to evaluate Eq.  (16). The QIF models 

were fitted using the SAS 9.4 macro: qif.

Comparison between the methods

Table  1 compares the methodological properties of the 

four modelling approaches, and some of these properties 

are discussed below. For ILA there are situations where 

the parameter estimates from CSM and PAM are equiva-

lent in interpretation. A random intercept LMM typify-

ing a CSM is equivalent to a PAM with an exchangeable 

working correlation structure and collapsible link func-

tion, however, both methods produce inconsistent esti-

mates (i.e., biased estimates) when the cluster sizes are 

informative [32, 38, 39]. Theoretically, the random inter-

cept LMM and PAMs with an exchangeable working cor-

relation structure produce different parameter estimates 

in the case of noncollapsible link functions, and also if 

the cluster sizes are informative.

(14)gN (β) =

1

N

�N

i=1
gi(β) ≈

1

N
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(15)β̂ = argminβg
T
N�−1

N gN

(16)Q̂N (β) = gTNC
−1

N gN

In terms of efficiency (concerning the size of the SE 

of the estimated treatment effect), the GEE1 considers 

the correlation among outcomes within clusters, this 

improves its efficiency (see, Table  1, row 6). However, 

GEE1 produces a consistent intervention effect esti-

mate (and its SE) if the mean model is correct and out-

come data are missing completely at random regardless 

whether the correlation structure is misspecified [31]. 

However, GEE1 suffers some loss in efficiency if the 

working correlation structure is not close to the true cor-

relation structure, especially when the true correlation is 

large and/or the sample size is small. When the sample 

size is small (which is a recipe for imbalance) the robust 

SE estimator of GEE1 does not provide full protection 

over incorrect working correlation structure, causing 

GEE1 to have reduced efficiency in regards to the size of 

the SE of the estimated intervention effect [23, 40, 42].

This disadvantage of the GEE1 is the reason why GEE2 

and QIF were developed to improve GEE1’s efficiency. 

GEE2 achieves this by explicitly modelling the mean and 

correlation parameters simultaneously, using separate 

sets of estimating equations. Also, if mean and correla-

tion are of interest, GEE2 is more likely to produce effi-

cient inferences for the mean and correlation parameters 

than GEE1, especially if the correlation within clusters is 

substantial and the sample size is small [10–13]. QIF is 

another alternative to GEE1 that uses a different strategy 

to estimate the working correlation parameter, thereby 

minimising the impact of its misspecification. Studies 

have proved this advantage of the QIF in the context of a 

longitudinal study [6, 8, 9]. Their results showed that QIF 

is more efficient than GEE1 when the true correlation is 

large and misspecified. Several authors have shown that 

this claim might not necessarily hold when there are few 

clusters and/or there is cluster and covariate imbalance 

between treatment arms [15–17].

The MLE as an estimator of GLMM is known to be 

consistent and efficient when the distributional assump-

tions made are correct. One such assumption is that the 

random cluster effects are Normally distributed. Previ-

ous studies had overstated the impact of misspecifying 

the distribution of the random effects on MLE [43, 44]. 

However, a recent study has shown that the MLE is quite 
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Table 1 Similarities and differences in the methodological properties of the four selected statistical models for analysing CRCTs

S/NO Feature GLMM GEE1 GEE2 QIF

1 Adjustment for clustering Clustering is accounted for via a 
random effects term with its coef-
ficient and that of fixed effects term 
estimated simultaneously using 
a single mean model equation [25] 

The structure of clustering 
is described using a separate work-
ing covariance matrix (characterised 
by the working correlation matrix) 
which is specified separately 
from the mean model equation [40] 

A separate set of estimating equa-
tions and link functions are used 
to model the mean and correla-
tion parameters, thereby explicitly 
explaining the source of the cluster-
level variations [13] 

Avoids the direct use of the cor-
relation parameters in its algorithm, 
instead, it uses a linear combination 
of the product of basis matrices 
and some constants [6]

2 Assumption on the distribu‑
tion of the cluster‑level random 
effects

Most times in GLMM it is assumed 
that the cluster-level random effects 
follow a parametric distribution, 
and Normal distribution is a com-
mon choice

As a semi-parametric method, it 
does not assume any distribution 
for the cluster-level random effects

Same as GEE1 Same as GEE1

3 Multiple forms of clustering Accommodates multiple forms 
of correlation to be investigated 
by incorporating them as random 
effects in the mean model

Allows multiple forms of correlation 
but through a complex procedure 
of including higher forms of clus-
tering as fixed effects in the mean 
model

Same as GEE1 Same as GEE1

4 Assumption of missing data 
mechanism required to obtain 
consistent parameter estimates

Missing completely at random 
and missing at random

Missing completely at random [40] Same as GEE1 Same as GEE1

5 Heterogenous correlation Flexible in modelling complex cor-
relation structures using multiple 
random effects variables

Not flexible in modelling data 
with complex correlation structure

More flexible than GEE1 by using 
a separate equation, link function, 
and covariates for the correlation 
parameter

Same as GEE1

6 Improvement in efficiency (i.e., 
the treatment effect estimate 
with a smaller SE)

Gain in efficiency by includ-
ing random effects components 
in the mean model to account 
for correlation among outcomes 
in a cluster, especially when the cor-
relation is large

Gain in efficiency by using a "work-
ing covariance matrix" which 
accounts for the effect of the corre-
lation among outcomes in a cluster, 
however, it treats the correlation 
as a nuisance

More gain in efficiency compared 
to GEE1 by explicitly model-
ling the effect of the correlation 
among outcomes with a separate 
equation that allows covariates 
adjustment. This provides some 
protection against misspecification 
of the correlation structure

Firstly, it uses a different strategy 
that protects against the misspeci-
fication of the correlation structure. 
Secondly, it weights the information 
contributed by each cluster using 
an empirical weighting matrix, 
clusters with large variation are 
given less weight and vice versa. It 
is acclaimed that these two features 
increase its gain in efficiency com-
pared to the GEE1

7 Moment specification First and second-order moments are 
to be specified

Same as GLMM The first four order  moments1, 
but the third and fourth can be 
specified as a function of the first 
two moments since a working cor-
relation is being used

Same as GLMM

8 Approximation technique Laplace/Adaptive Gauss-Hermite 
 Quadrature2

Modified Fisher scoring algorithm Alternate between the Modi-
fied Fisher scoring algorithm 
and the method of the moment

Newton–Raphson algorithm
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Table 1 (continued)

S/NO Feature GLMM GEE1 GEE2 QIF

9 Goodness of fit All the model selection criteria 
that are based on maximum likeli-
hood theory are applicable, such 
as the LRT, AIC, and BIC

Uses a modification to the AIC 
based on a quasi-likelihood theory 
known as QIC (and  QICu3) for model 
and working correlation selections

Same as GEE1 Provides an objective function 
that follows a chi-square distribution 
(which is analogue to the likelihood 
ratio test)

10 Availability in selected statistical 
software, function(package)

R = glmer(lme4) 
and SAS = glimmix(proc)

R = glmgee(geepack) 
and SAS = genmod(proc)

R = geese(geepack) only R = qif(qif ) and SAS = qif(macro)

GLMM Generalized linear mixed model, GEE Generalized estimating equations, QIF Quadratic inference function, LRT Likelihood ratio test, AIC Akaike information criteria, BIC Bayesian information criteria, QIC Quasi-

likelihood independence criterion

1. The first four order moments of the outcome of interest are the mean, variance, skewness, and kurtosis

2. Adaptive Gauss-Hermite Quadrature equals the Laplace approximation when the quadrature point/node is 1. Other techniques do exist

3. QICu is a variant of QIC that allows for the correlation in the data but is not adequate for selecting a working correlation structure [41]
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robust to the impact of misspecifying the distribution of 

the random effects in most situations considered previ-

ously [45], even when the cluster size is informative [46].

The goodness-of-fit of a statistical model is a crucial 

part of building an optimal regression model for practi-

cal uses. Appropriate goodness-of-fit methods for CSMs 

have been extensively studied in the literature whereas 

goodness-of-fit methods for PAMs are few. The early 

goodness-of-fit methods for GEE-based models involve 

partitioning the covariates space into separate groups 

and then calculating their score statistics which are 

approximately Chi-square distributed [47, 48]. This strat-

egy is an extension to that of Tsiatis [49] and Hosmer and 

Lemeshow [50] for uncorrelated outcomes. This strategy 

was found to produce different results in different statis-

tical software because the partitioning is subjective to the 

software used [51], and this problem may likely extend to 

population average models for analysing correlated out-

comes [41].

Pan (2001) [41] proposed a goodness-of-fit method 

for PAMs that mimics Akaike’s Information Criterion 

(AIC) known as the Quasi-likelihood information crite-

rion (QIC). While AIC is based on maximum likelihood, 

QIC is based on quasi-likelihood under an independence 

working correlation structure in GEE1. The results of the 

simulation study conducted in the paper showed that the 

AIC was more efficient than the proposed QIC, however, 

the performance of the QIC was remarkable. The author 

did not clearly state if this criterion applies to GEE2 but 

noted that using the GEE2 approach to estimate the 

scale parameter included in their criterion is difficult. A 

goodness-of-fit method exists for GEE2 in McCullagh 

and Nelder (1989) [52]. To the best of our knowledge, the 

method is not available in standard statistical packages at 

the time of authoring this current paper.

Pan (2002) [53] further proposed two other tests for 

a logistic population average model; the Pearson chi-

square G and the unweighted sum of squares U tests 

which are based on the Normal distribution with means 

and variances (using unstructured working correlation). 

When analysing a correlated binary outcome if the model 

has at least one continuous covariate, it becomes difficult 

to apply goodness-of-tests that are based on Chi-square 

distribution, because the partitioning of the continuous 

covariate would result in a situation where the total num-

ber of the distinct groups is bigger than the sample size. 

Hence, the Pan (2002) developed these two tests (Pearson 

chi-square G and the unweighted sum of squares U) to 

circumvent this problem.

QIF’s goodness-of-fit method is based on an objective 

function that is approximately chi-square distributed 

with appropriate DoF. It shares similar asymptotic prop-

erties to that of the likelihood ratio test, which is negative 

twice the log-likelihood [ −2 × (log(l(.)) ] [6]. This is one 

of the advantages QIF has over GEE1 [6, 8, 9]. The QIF’s 

objective function can be constructed from models with 

a working correlation structure different from the inde-

pendence, unlike the GEE1’s QIC which is only based on 

an independence working correlation structure [41].

Description of the four CRCT datasets
PoNDER trial [54]

The PoNDER CRCT aimed to assess the effect of two 

psychologically informed interventions by health visi-

tors on postnatal depression in postnatal women who 

have recently given birth. One hundred and one general 

practices (clusters) in the Trent region of England were 

included in the trial. The general practices were ran-

domised in a 2:1 ratio to the Intervention group (n = 63 

clusters) or the control group (n = 38 clusters). Health 

visitors in the intervention clusters were trained to iden-

tify depressive symptoms at six to eight weeks postna-

tally using the Edinburgh postnatal depression scale 

(EPDS) and were also trained in providing psychologi-

cally informed sessions based on cognitive behavioural 

or person-centred principles for an hour a week for eight 

weeks. Health visitors in the control group provided 

usual care.

The primary outcome was the score on the EPDS at 

six months follow-up. The EPDS consists of 10 ques-

tions and generates a score on a 0 to 30 scale with higher 

scores indicating a great risk of depression. For the PoN-

DER trial, this outcome was dichotomised into a binary 

outcome of EPDS score < 12 vs ≥ 12 with women with 

a score of 12 or more classified as “at risk” of postnatal 

depression. One hundred (n = 63 intervention, n = 37 

control) clusters and n = 2659 new mothers (1745 Inter-

vention: 913 Control) provided valid primary outcome 

data at 6 months. Also, one of the secondary outcomes in 

the PoNDER trial “the mean EPDS score at six months” 

was used as a continuous outcome in this study. In the 

original study, both outcomes were analysed using GEE1 

and an exchangeable correlation structure with robust 

standard errors. The descriptive statistics of the trial size 

are presented in Table 2 below.

Informed choice trial [55]

This study was aimed at investigating the impact of a set 

of 10 pairs of evidence-based leaflets – The Midwives’ 

Information and Resource Service (MIDIRS) and NHS 

Centre for Reviews and Dissemination informed choice 

leaflets through a survey. The study was designed to cover 

8 of the 10 MIDIRS decision points in everyday maternity 

care. Conducted in 12 large maternity units in Wales, the 

maternity units were grouped into 10 clusters. Pairs of 

clusters were randomly assigned to the intervention arm 
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and control arm based on their annual numbers of deliv-

eries to achieve balance,  and undertook an unmatched 

analysis.

The primary objective was to improve the management 

of women during pregnancy and childbirth, by assess-

ing the effect of an intervention that promotes informed 

choice. The primary binary outcome was the change 

in the proportion of women who reported exercising 

informed choice (yes or no). For illustration, one of the 

secondary outcomes "the average of the women’s lev-

els of knowledge” on the 10 topics covered in the survey 

was used as a continuous outcome in this current study. 

Knowledge of the topics was assessed on a 1 (poor) to 10 

(good) scale. Two samples of different women were sur-

veyed: the antenatal and postnatal samples. The antenatal 

sample is made up of all women who reached 28 weeks’ 

gestation within six weeks and were receiving antenatal 

care in any setting. The questionnaire used for the cohort 

covered three decision points that the women may have 

encountered. The postnatal sample was made up of all 

women who delivered live babies during a six-week 

period.

A questionnaire that covered the remaining five deci-

sion points was used to survey the women postnatally. The 

postnatal sample had a total of 3,288 women, who were 

cross-sectionally surveyed before (n = 1,741) and after the 

intervention was administered (n = 1,547). However, to 

demonstrate the fitting of the statistical methods in this 

study only the follow-up (i.e., after the intervention) post-

natal sample was used and reported. Only women who 

delivered in all settings and above the age of 16 years were 

included. Random effects models (i.e., GLMM) were used 

to analyse the outcomes in the original study. A summary 

of the trial size is presented in Table 2.

Bridging the age gap trial [56]

Bridging the Age Gap CRCT investigated the effects of 

two decision support interventions (DESIs) to support 

treatment choices in older women (aged ≥ 70 years) with 

operable breast cancer [56]. Forty-six breast cancer units 

(clusters) in England and Wales were included in the 

trial. The breast cancer units were randomised to have 

access to the DESI (Intervention group n = 21 clusters) or 

to continue with usual care (Control group n = 25 clus-

ters). The DESI comprised an online algorithm, booklet, 

and brief decision aid to inform choices between surgery 

plus adjuvant endocrine therapy versus primary endo-

crine therapy, and adjuvant chemotherapy versus no 

chemotherapy.

The primary outcome was the global health status/

quality of life (QoL) score (questions 29 and 30) on the 

cancer-specific patient-reported outcome of the Euro-

pean Organisation for the Research and Treatment of 

Cancer (EORTC) QoL questionnaire (QLQ)-C30 at 

6  months post-baseline. The EORTC QLC-C30 global 

health status/QoL scale is scored on a 0 to 100 scale with 

a higher score representing a better QoL. Forty-three 

clusters (n = 19 intervention, n = 24 control), and n = 748 

patients (359 Intervention: 389 Control) provided valid 

primary outcome data at 6 months.

The primary endpoint was a continuous outcome 

“Global health status quality of life score” measured 

6  months after diagnosis and was analysed using GEE1 

with sandwich (robust) standard errors and an exchange-

able working correlation matrix. The total number of 

participants included in the trial is 748 distributed across 

43 clusters and the cluster size ranged from size 1 to 73. 

A summary of the trial size is provided in Table 2.

The Nourishing Start for Health (NOSH) trial [57]

The NOSH CRCT assessed the effect of an area-level 

financial incentive (shopping vouchers) on breastfeeding 

among new mothers (and their baby(ies)) in areas with 

low breastfeeding prevalence [57]. Ninety-two electoral 

ward areas (clusters) in England were included in the trial 

with baseline breastfeeding prevalence at 6 to 8  weeks 

postnatally of less than 40%. The areas were randomised 

to the financial incentive plus usual care (n = 46 clus-

ters) or usual care alone (n = 46 clusters). All 92 clusters 

provided breastfeeding outcome data on 9,207 mother-

infant pairs (4,973 in the NOSH group, 4324 in the con-

trol group) (Table 2).

The primary outcome was the electoral ward area-level 

6 to 8 weeks breastfeeding prevalence, as assessed by cli-

nicians at the routine 6 to 8 weeks postnatal check. This 

was derived from the number of new mothers who were 

Table 2 A summary of the sample size of the four CRCTs analysed in this study

Trial No. of clusters No. of clusters 
missing

No. of
subject

Missing n (%) Average
cluster size

(Min, Max) 
cluster size

Median 
cluster 
size

PoNDER 101 1 2659 35 (1) 27 (1, 101) 21

Informed Choice 10 0 1547 108 (7) 155 (74, 308) 145

Bridging the Age Gap 43 0 748 36 (5) 18 (1, 73) 16

NOSH 92 0 9207 0 (0) 100 (12, 333) 75
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breastfeeding or not at 6  weeks in each local authority 

area/cluster. A cluster-level approach was used to analyse 

the primary outcome after obtaining a summary measure 

for each cluster. Specifically, a weighted multiple linear 

regression model was used in the original study.

Analysis

The sample size characteristics of our case studies are 

summarised using frequencies and percentages, and all 

the models were fitted using complete cases. Across the 

case studies, the range of the missing data was from 0 to 

7% which is negligible, hence no sensitivity analysis was 

conducted. In clinical trials, it is not uncommon to fit 

both unadjusted and adjusted regression models [58]. We 

fitted both unadjusted and adjusted models with the four 

analytical approaches – GLMM (with MLE and REML), 

GEE1, GEE2, and QIF. The unadjusted models contained 

only the indicator variable x1i for the randomised treat-

ment arms as a covariate. While the adjusted models 

included other known prognostic covariates XT
pij (with 

the treatment arm indicator inclusive), such as baseline 

outcome values, age, and sex. There are several known 

benefits from adjusting for prognostic covariates in an 

adjusted analysis, such as protection against imbalance in 

baseline participant prognostic covariates among groups 

[59], increased power and precision for linear models [1, 

59, 60], to obtain an estimate of the intervention effect 

that has a closer individual level interpretation, and to 

account for special features of the study design like strati-

fication and subgroup consideration [61]. A study used 

simulations to show that adjusting for prognostic and 

non-prognostic covariates led to increased and reduced 

power, respectively [59].

To analyse the outcome data from the trials with few 

clusters we fitted a GLMM (with REML). Most small 

sample corrections are not compatible with MLE, hence 

REML was used with Satterthwaite (SAT) correction 

[62] applied to correct its DoF of the GLMM. Correc-

tions on the DoF of a parameter estimate only affect the 

P-value and CI, but the point estimate of the intervention 

effect remains the same as that of the uncorrected ver-

sion [21]. For GEE1, Fay and Graubard (FG) correction 

[63] was applied to correct the robust SE of the estimate 

of the intervention effect, which consequently affected its 

P-value and CI. All the corrections used are available in 

R and SAS. Although small sample corrections exist for 

GEE2 [16] and QIF [64], they are not readily available 

or easy to implement in standard statistical packages, 

respectively, as at the time of authoring this paper.

Software

SAS (version 9.4) and R (version 1.4.1717) statistical 

software packages were used for this study. GLMM and 

QIF models were fitted using SAS while GEE1 and GEE2 

models were fitted using R. The SAS syntax and R codes 

for fitting all the statistical models applied to one case 

study (the PoNDER trial) are provided (see, Additional 

file 4).

The GLMM models were fitted using the GLIMMIX 

procedure in SAS and we set the quadrature points 

(nodes) to 10 for the AGHQ algorithm. Higher nodes 

increase the complexity of the AGHQ procedure but 

produce more reliable results than lower nodes [26]. SAS 

PROC GLIMMIX does not produce a value for the ICC, 

so we calculated it using the estimates of the between 

cluster variation and individual variation from the PROC 

GLIMMIX GLMM output.

The QIF models were fitted using the qif macro in 

SAS. In the GEE2 models, no covariate was adjusted 

for the working correlation and scale parameters. The 

link function for the mean structure was either identity 

for a continuous or logit for a binary outcome, for the 

scale structure it was the identity, and for the correlation 

structure modified Fisher’s z transformation was used. 

GEE1 models were fitted using the geeglm function of R’s 

geepack package with an exchangeable correlation struc-

ture, and so was GEE2 using the geese function.

Results
We assumed an exchangeable working correlation struc-

ture for all PAMs in this study, which is reasonable for a 

CRCT design, and it is the most assumed working cor-

relation structure in CRCTs [31, 65]. Although the LMM 

was used to analyse all continuous outcomes, we labelled 

its results as GLMM for simplicity. In each analysis, 

we consider a P -value < 0.05 to mean that the result is 

statistically significant. The results for each of the four 

CRCTs are presented below.

PoNDER trial

It is worth noting the key features of the PoNDER trial 

[54]. The PoNDER trial had many clusters (~ 100) with 

an average cluster size of twenty-seven. Two outcomes 

were analysed, the mean EPDS score at six months (con-

tinuous) and EPDS score < or ≥ 12 at six months (binary), 

multiple covariates were adjusted for in the adjusted 

modelling including the baseline outcome covariate. The 

focus is to investigate and discuss (see, Discussion Sec-

tion for more) the impact of these features on the param-

eter estimates from the different statistical methods.

The mean age of all the women in the control and inter-

vention groups was the same (32 ± 5yrs, respectively), 

and the maximum age for all women was 46 years. The 

proportion of women with EPDS score  ≥ 12 at 6 months 

was 16% (150/914) in the control arm and 12% (205/1745) 

in the intervention arm. For the continuous outcome 
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“the mean EPDS score at six months”, was 6.4(SD = 5.0) 

vs. 5.5(SD = 4.9) for the control vs the intervention arms, 

respectively. It is worth noting that for both outcomes, 

smaller is better. The estimates of the unadjusted inter-

vention effect from the analysis of the continuous pri-

mary outcome are the same across the models (mean 

difference = -1.00), except for QIF (-0.94). After adjust-

ments were made for the baseline EPDS 6  weeks score, 

living alone, previous history of major life events, and 

previous history of postnatal depression, the estimates of 

the intervention effect became the same across the mod-

els (mean difference = -0.8, 1 d.p).

The SEs of the intervention effect estimates were the 

same across the models, 0.3, for the unadjusted models 

and 0.2 for the adjusted models. The intervention effect 

estimates across the models were significant as evidenced 

by the small P-values (< 0.05) and the confidence inter-

vals which excluded zero. Similar results were obtained 

from the binary outcome analysis, the odds ratio was 

approximately 0.7 across unadjusted and adjusted mod-

els, except for the adjusted QIF model (Odds ratio = 0.6). 

All the results were statistically significant, suggested by 

their small P-values and CIs that excluded one (Table 3). 

Adjusting covariates in the logistic models did not affect 

the magnitude of the estimates of the intervention effect 

from the different models, except QIF (though slightly). 

These results are graphically compared using forest plots 

and shown in Fig. 2(a, b) and Fig. 3(a, b). Looking at the 

plots all the point estimates for the intervention effect 

and the associated 95% confidence intervals (CIs) are to 

the left-hand side of zero favouring the intervention arm. 

The width of the whiskers that represent the 95% CIs is 

approximately the same for all the models.

Informed choice trial

The Informed Choice trial had a few clusters (ten clus-

ters) with a large average cluster size (cluster mean = 155). 

The analysed outcomes were “proportion of those who 

answered yes about making an informed choice (binary)” 

and “the averaged level of a woman’s knowledge about 

informed choice (continuous)”, and several covariates 

were adjusted for but none was the baseline outcome 

variable as this was not measured [55]. Here the interest 

is the impact of a small number of clusters on the esti-

mates from the different models. In the intervention arm, 

59% (477/816) of the women reported having exercised 

informed choice while using the maternity service com-

pared to 57% (346/612) in the control arm. The mean 

Table 3 A summary of the results obtained from fitting the different statistical models to the PoNDER trial data (N = 2659)

a Model adjusted for EPDS score at 6 weeks, living alone (no or yes), previous history of major life events (no or yes), and any previous history of postnatal depression 

(no or yes). Note that SE Standard error, CI Confidence interval, ICC Intracluster correlation coefficient. GLMM Generalized linear mixed model, mGLM Marginal 

generalized linear model, GEE Generalized estimating equations, QIF Quadratic inference function

1. EPDS score at 6 months postnatally. The EPDS is scored on a 0 to 30 scale with higher scores indicating a greater risk of PND

2. Dichotomised EPDS score at 6 months postnatally of < 12 or ≥ 12

3. The intervention effect for the continuous outcome is the difference in the mean 6-month EPDS scores between the intervention and control groups; with a 

negative mean difference favouring lower scores (better outcomes) in the intervention group. The intervention effect for the binary outcome is the odds ratio for 

an EPDS score of 12 or more in the intervention group compared to the control group with an odd ratio < 1 favouring better outcomes (lower odds of PND) in the 

intervention group

Continuous outcome1 Binary outcome2

Parameter Type of 
modelling

GLMM GEE1 GEE2 QIF GLMM GEE1 GEE2 QIF

Intervention 
effect3

Unadjusted -0.97 -0.98 -0.98 -0.94 0.67 0.67 0.67 0.66

Adjusteda -0.78 -0.78 -0.78 -0.84 0.67 0.67 0.67 0.62

SE Unadjusted 0.25 0.28 0.28 0.28 0.13 0.14 0.14 0.14

Adjusteda 0.20 0.21 0.21 0.20 0.13 0.13 0.13 0.13

P‑value Unadjusted 0.0002 0.0005 0.0005 0.0009 0.0025 0.0032 0.0032 0.0019

Adjusteda 0.0001 0.0001 0.0001  < 0.0001 0.0019 0.0019 0.0019 0.0001

95% CI Unadjusted -1.47 to -0.47 -1.53 to -0.43 -1.53 to -0.43 -1.50 to -0.39 0.51 to 0.86 0.51 to 0.87 0.51 to 0.87 0.51 to 0.86

Adjusteda -1.17 to -0.39 -1.18 to -0.38 -1.18 to -0.38 -1.24 to -0.44 0.52 to 0.86 0.52 to 0.86 0.52 to 0.86 0.48 to 0.79

ICC Unadjusted 0.0167 0.0191 0.0382 0.0191 0.0167 0.0063 0.0126 0.0063

Adjusteda 0.0077 0.0081 0.0162 0.0081 0.0000 -0.0018 -0.0036 -0.0018

Number of 
subjects

Unadjusted 2659 2659 2659 2659 2659 2659 2659 2659

Adjusteda 2624 2624 2624 2624 2624 2624 2624 2624

Number of 
clusters

Unadjusted 100 100 100 100 100 100 100 100

Adjusteda 100 100 100 100 100 100 100 100
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knowledge of the 10 topics covered in the survey was 

3.6 (SD = 1.62) for the intervention arm compared to 3.3 

(SD = 1.60) for the control arm.

The results of the unadjusted and adjusted models 

from the analysis of the continuous and binary outcomes 

are presented in Table  4 and visualised in Fig.  2(c,d) 

and Fig.  3(c,d), respectively. For the continuous out-

come, the unadjusted intervention effect estimates were 

the same for the three models (mean difference = 0.20, 

SE = 0.11), except for QIF (0.03, SE = 0.05). Similarly, the 

adjusted intervention effect estimates were the same 

0.22 (SE = 0.1) for all the models except for QIF 0.05 

(SE = 0.02). The intervention effect estimate from the QIF 

model is far more inconsistent with the observed data 

(difference in mean score = 0.3). The unadjusted inter-

vention effects were not significant (i.e., P > 0.05), but the 

adjusted intervention effects were somewhat significant 

(i.e., P < 0.05 ) except for GLMM.

Similarly, for the binary outcome, the unadjusted 

odds ratio of women who reported exercising informed 

choice in the intervention arm compared to the control 

arm was the same for all the models (odds ratio = 1.12, 

SE = 0.10 to 0.11) except for QIF (1.17, SE = 0.04). The 

adjusted odds ratios from all the models are the same 

(odds ratio = 1.1, SE = 0.10 to 0.11). The unadjusted 

and adjusted odds ratio were not significant for all the 

models except that of QIF which was highly significant 

(P < 0.0001) (see, Table 4).

The results of applying small sample corrections are 

summarised in Table  5. When compared to the results 

from the uncorrected version in Table 4, the differences 

lie in the P-values and 95% CIs of the treatment effect 

estimates, for both the continuous and binary outcomes. 

The corrected P-values are bigger, and the CIs are wider 

(Table 5).

Bridging the age gap trial

The key features of Bridging the Age Gap trial are, a mod-

erate number of clusters (forty-three clusters) with an 

average size of eighteen, the continuous outcome meas-

ured was global health status/quality of life at six months 

(measured at baseline and follow-up periods) [56]. The 

focus is on how the moderate number of clusters (and 

moderate average cluster size) and baseline outcome val-

ues affected the estimates from the four different statisti-

cal methods.

Fig. 2 Forest plots showing the intervention effect estimate and its associated 95% CI for the four statistical models fitted using the continuous 

outcomes of three of the four CRCTs, where plots (a) & (b) are the unadjusted and the adjusted models fitted on the outcome data from PoNDER 

trial respectively, (c) and (d) is that of Informed choice and (e) & (f) is that of Bridging the Age Gap trial. The electronic version is in colour
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Table  6 presents the results from the analysis of the 

continuous outcome data, which is graphically shown 

in Fig.  2(e,f ). The mean global health status/quality of 

life (QoL) score at the 6-month follow-up was 68.9 (SD 

19.6) for the control arm against 69.0 (SD 19.5) for the 

intervention arm. The unadjusted models produced dif-

ferent estimates of the intervention effect ranging from a 

mean difference of -0.28 to 0.12 but became stable and 

changed direction after the baseline QoL variable (ql 

scale) was adjusted for; the mean difference became 1.71 

for all the models except QIF (mean difference = 1.46). 

However, the SEs of the treatment effect estimates from 

GEE1 and GEE2 increased while that of the GLMM 

and QIF reduced after the baseline outcome covariate 

adjustment. The SEs are approximately the same for the 

adjusted models (1.40) except for QIF (1.20). All the SE 

estimates from QIF were lesser compared to the other 

three models, lesser SE is indicative of better precision 

provided that the method is not biased towards the null 

[66]. Hence, the results from QIF should be interpreted 

with caution, because QIF produced different estimates 

of the intervention effect compared to the other three 

models which could be indicative of biasedness. None-

theless, none of the intervention effect estimates was sig-

nificant (i.e., P > 0.05).

The NOSH trial

In this study, only binary outcome was measured 

(i.e., the prevalence of breastfeeding in the electoral 

ward assessed during the routine 6–8  week postnatal 

check), and the number of clusters randomised was 

large (Ninety-two clusters) [57]. The adjusted models 

included cluster-level baseline outcomes and local gov-

ernment areas as covariates. The unique feature of this 

trial is that only cluster-level covariates were adjusted 

for.

The results from the unadjusted and adjusted models 

are presented in Table 7 and are graphically presented 

in Fig.  3(e, f ). Overall, 36% (1869/4973) of mothers in 

the 46 clusters of the NOSH group were breastfeeding 

Fig. 3 Forest plots showing the intervention effect estimate and its associated 95% CI for each of the statistical model fitted on the binary 

outcomes of three cluster trials datasets where plots (a) & (b) are the unadjusted and the adjusted models fitted to the outcome data from PoNDER 

trial respectively, (c) and (d) is that of the Informed Choice trial, and (e) & (f) is for the NOSH trial. Electronic version is in colour
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at 6  weeks compared to 30% (1299/4324) in the 46 

clusters of the control group. The odds ratios that 

the mothers were breastfeeding at the end of the trial 

were approximately the same for all the unadjusted 

(1.40) and adjusted (1.30) models and were statisti-

cally significant. However, it is only in this trial that 

the intervention effects of GEE1 and GEE2 were differ-

ent, in the other trials presented previously they were 

the same. The SEs of the unadjusted intervention effect 

estimate (SEs, 0.08) and the adjusted version (SEs, 

0.07) were the same for all the models, except for the 

adjusted GEE2 (0.05).

Table 4 A summary of the results obtained from fitting the different statistical models to Informed Choice postnatal trial data 

(N = 1547)

a Model adjusted for mother’s age, age mother left education, parity, and delivering style. Note that SE Standard error, CI Confidence interval, ICC Intracluster 

correlation coefficient, GLMM Generalized linear mixed model, mGLM Marginal generalized linear model, GEE Generalized estimating equations, QIF Quadratic 

inference function

1. Knowledge of informed choice leaflets score at 8 weeks postnatally. Knowledge is scored on a 0 to 10 scale with higher scores indicating greater knowledge of the 

leaflets

2. Proportion of women who answered “yes” to the question “Have you had enough information and discussion with midwives or doctors to make a choice together 

about all the things that happened during maternity care?” with the options “yes,” “partly,” “no,” “there was no choice,” and “did not apply”

3. The intervention effect for the continuous outcome is the difference in the mean 6-week knowledge scores between the intervention and control groups; with a 

positive mean difference favouring (better outcomes) in the intervention group. The intervention effect for the binary outcome informed choice (yes or no) is the odds 

ratio for yes to overall informed choice in the intervention group compared to the control group with an odds ratio > 1 favouring better outcomes (higher odds of an 

informed choice) in the intervention group

Continuous outcome1 Binary outcome2

Parameter Type of 
modelling

GLMM GEE1 GEE2 QIF GLMM GEE1 GEE2 QIF

Intervention 
effect3

Unadjusted 0.20 0.20 0.20 0.03 1.12 1.12 1.12 1.17

Adjusteda 0.22 0.22 0.22 0.05 1.08 1.06 1.06 1.12

SE Unadjusted 0.11 0.11 0.11 0.05 0.11 0.06 0.06 0.04

Adjusteda 0.10 0.10 0.10 0.02 0.11 0.05 0.05 0.07

P-value Unadjusted 0.1030 0.0730 0.0731 0.5306 0.3178 0.0647 0.0647  < 0.0001

Adjusteda 0.0676 0.0324 0.0324 0.0158 0.5206 0.2175 0.2175  < 0.0001

95% CI Unadjusted -0.05 to 0.46 -0.02 to 0.41 -0.02 to 0.41 -0.07 to 0.13 0.88 to 1.43 0.99 to 1.27 0.99 to 1.27 1.10 to 1.26

Adjusteda -0.02 to 0.46 0.02 to 0.42 0.02 to 0.42 0.01 to 0.09 0.84 to 1.38 0.97 to 1.16 0.97 to 1.16 1.08 to 1.15

ICC Unadjusted 0.0042 0.0027 0.0055 0.0027 0.0000 -0.0029 -0.0058 -0.0029

Adjusteda 0.0029 0.0018 0.0036 0.0018 0.0000 -0.0036 -0.0072 -0.0032

Number of sub‑
jects

Unadjusted 1534 1534 1534 1534 1485 1485 1485 1485

Adjusteda 1474 1474 1474 1474 1439 1439 1439 1439

Number of 
clusters

Unadjusted 10 10 10 10 10 10 10 10

Adjusteda 10 10 10 10 10 10 10 10

Table 5 A summary of the results from GLMM and GEE1 in conjunction with small sample corrections applied to the Informed Choice 

cRCT data (with ten clusters)

a Model adjusted for mother’s age, age mother left education, parity, and delivering style. Note that SE Standard error, CI Confidence interval, GLMM Generalized linear 

mixed model, GEE Generalized estimating equations, QIF Quadratic inference function, Sat Satterthwaite, FG Fay & Graubard

1. Knowledge of informed choice leaflets score at 8 weeks postnatally. Knowledge is scored on a 0 to 10 scale with higher scores indicating a greater knowledge of the 

leaflets

2. Proportion of women who answered “yes” to the question “Have you had enough information and discussion with midwives or doctors to make a choice together 

about all the things that happened during maternity care?” with the options “yes,” “partly,” “no,” “there was no choice,” and “did not apply.”

Continuous outcome1 Binary outcome2

Method Type of modelling Intervention 
effect

SE P-value 95% CI Intervention 
effect

SE P-value 95% CI

GLMMSat Unadjusted 0.20 0.11 0.1371 (-0.09, 0.52) 1.12 0.11 0.4796 (0.29, 4.31)

Adjusteda 0.22 0.10 0.0930 (-0.05, 0.52) 1.08 0.11 0.6234 (0.27, 4.26)

GEE1FG Unadjusted 0.20 0.11 0.1853 (-0.13, 0.53) 1.12 0.06 0.3229 (0.79, 1.61)

Adjusteda 0.22 0.10 0.1086 (-0.06, 0.50) 1.06 0.05 0.5495 (0.80, 1.38)
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Table 6 A summary of the results from the models fitted to the continuous outcome data from Bridging the Age Gap trial 1 (N = 748)

a Model adjusted for global QoL baseline outcome values. Note that SE Standard error; CI Confidence interval, ICC Intracluster correlation coefficient, GLMM 

Generalized linear mixed model, mGLM Marginal generalized linear model, GEE Generalized estimating equations, QIF Quadratic inference function

1. Global QoL score on the EORTC-C30 at 6 months post-baseline. The EORTC-C30 Global scale is scored on a 0 (poor) to 100 (good health) scale

2. The intervention effect for the continuous outcome is the difference in the mean 6-month Global QoL scores between the intervention groups; with a positive mean 

difference favouring higher scores (better outcomes) in the intervention group

Unadjusted model Adjusted modela

Parameters GLMM GEE1 GEE2 QIF GLMM GEE1 GEE2 QIF

Intervention effect2

0.12 -0.19 -0.19 -0.28 1.71 1.71 1.71 1.46

SE

1.43 1.26 1.26 1.23 1.40 1.37 1.37 1.20

P-value

0.9343 0.8818 0.8810 0.8175 0.2294 0.2127 0.2127 0.2230

95% CI

-2.77 to 3.00 -2.65 to 2.28 -2.65 to 2.28 -2.69 to 2.12 -1.12 to 4.53 -0.98 to 4.39 -0.98 to 4.39 -0.89 to 3.80

ICC

0.0000 -0.0068 -0.0135 -0.0068 0.0042 0.0028 0.0056 0.0028

Number of subjects

748 748 748 748 712 712 712 712

Number of clusters

43 43 43 43 43 43 43 43

Table 7 A summary of the results obtained from fitting the different statistical models to the binary outcome data from NOSH 

CRCT(N = 9207)

a The statistical models were adjusted for the cluster-level baseline breastfeeding rate and local government area. Note that SE Standard error, CI Confidence interval, 

ICC Intracluster correlation coefficient, GLMM Generalized linear mixed model, mGLM Marginal generalized linear model, GEE Generalized estimating equations, QIF 

Quadratic inference function

1. The binary outcome was if the mother was breastfeeding her baby at 6 weeks postnatally (response value = 1) or not (response value = 0)

2. The intervention effect for the binary outcome is the odds for breastfeeding at 6 weeks postnatally in the NOSH intervention group compared to the odds of 

breastfeeding in the control group with an odds ratio > 1 favouring better outcomes (higher odds of breastfeeding) in the intervention group

Unadjusted model Adjusted modela

Parameters GLMM GEE1 GEE2 QIF GLMM GEE1 GEE2 QIF

Intervention effect2

1.37 1.36 1.36 1.36 1.31 1.31 1.27 1.28

SE

0.08 0.08 0.08 0.08 0.07 0.07 0.05 0.07

P-value

0.0002  < 0.0001  < 0.0001 0.0009 0.0002  < 0.0001  < 0.0001 0.0002

95% CI

1.16 to 1.60 1.17 to 1.58 1.17 to 1.58 1.17 to 1.59 1.14 to 1.51 1.14 to 1.49 1.15 to 1.41 1.12 to 1.46

ICC

0.0262 0.0192 0.0383 0.0192 0.0162 0.0098 0.0042 0.0098

Number of subjects

9207 9207 9207 9207 9207 9207 9207 9207

Number of clusters

92 92 92 92 92 92 92 92
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Discussion
In this paper, four different approaches for analysing 

CRCTs with clustering in the treatment arms have been 

described. The four approaches GLMM, GEE1, GEE2, 

and QIF have been applied to four case studies with dif-

ferent features to demonstrate their implementation and 

evaluate their use in practice. To the best of our knowl-

edge, this is the first study to comparatively evaluate 

these four methods in the context of CRCTs.

The initial plan was to fit all the models using free 

and open software such as R, but we observed that the 

qif command in the R’s qif package (CRAN—Package qif 

(r-project.org)) could not fit the QIF model to data with 

clusters size of one. The PoNDER and Bridging Age Gap 

trials have clusters of size one, the error message suggests 

that it is a problem of the incompatibility of the matrices 

in the matrix multiplication procedure. So, we switched 

to using SAS which was able to overcome the problem. 

We communicated our observation to one of the devel-

opers of the two QIF’s functions of both software pack-

ages (i.e., R and SAS), Peter X.K.  Song, through email 

correspondence and Song promised to investigate it. 

Also, the lmer command for fitting linear mixed effects 

model to continuous outcomes in the lme4 package in R 

does not have AGHQ as an option but glmer for gener-

alized linear mixed modelling does. The SAS procedure, 

GLIMMIX, has AGHQ as an option for mixed effects 

models for both continuous and binary outcomes.

There are previous reviews that are similar to our cur-

rent methodological review, but some differences still 

exist. A good example is the review by Murray et al., [67] 

where they discussed recent methodological advances in 

the design and analysis of group randomised trials [67]. 

They looked at a  five years span starting from 1999 to 

2004, and they identified and discussed advances in ana-

lytical methods such as the mixed effects models with 

parameters estimated by MLE/REML, GEE1, Bayesian 

mixed effects models, survival models based on MLE 

and Cox methods (with robust SE), and  randomisation 

tests. Their paper was updated in 2017 by Turner et al., 

of which additional methods such as augmented GEE1 

(AU-GEE1), QIF, TMLE, and permutation tests were 

identified [68].

Our current review is more consistent with the find-

ings of Turner et al., [68] than that of Murray. Our review 

was a scoping methodological review making it more 

comprehensive, we also employed systematic searching 

techniques which resulted in more methods for analysing 

outcome data from CRCTs being identified (27 unique 

methods), such as quantile GEE1 [69], generalized least 

squares [70], AUGEE1—inverse probability weighted 

(AUGEE-IPW) [71], weighted jack-knife [70]. Under 

methods used to analyse time to event outcome, we 

found a quantile estimator [72], hierarchical likelihood 

[73], hierarchical likelihood Laplace [73], and two-stage 

estimator [74] (Table S1, see Additional file 3).

Another review focused on methods used in the analy-

sis of outcome data from stepped wedge CRCT design 

[75]. Similarly, Arnup et  al. [76] review was focused on 

crossover CRCT design and was a practice review [76], 

whereas, own current review was a methodological 

review encompassing all the different types of CRCT 

designs with a focus on all the available and appropriate 

methods. A recent methodological review by Caille et al., 

[77] considered only methods for analysing time-to-event 

outcome data in CRCTs. Hence the authors identified 

more survival methods than our current review, such 

as the log-rank test, Kaplan–Meier plots, Gray’s model, 

competing risk model, and Fine & Gray’s cumulative 

incidence curve model adjusted for clustering [77]. The 

case studies considered have small estimates for the ICC 

which are consistent with those reported in primary care 

[78] and community-based trials [29]. The observed ICCs 

were less than 0.05 and three out of the four studies had 

an ICC less than 0.02. This indicates that there was a low 

clustering of outcomes as expected from primary care 

and community-based CRCT [29, 78]. Three studies had 

negative estimates for the ICC, from GEE1, GEE2, and 

QIF methods (i.e., from all PAMs).

Upon reading the documentation of the functions for 

fitting the population average models, geeglm (for GEE1), 

geese (for GEE2) functions in R, and the qif macro in 

SAS we could not ascertain which of the estimators (i.e., 

Eq. (6) or [7]) that is being used in computing their ICC 

estimates. However, it is more likely that the population 

average models are using Eq.  (7) or a method similar to 

[7], which could be the reason why negative ICC esti-

mates were obtained. From a sample survey perspective, 

sampling error due to finite sample cluster size compared 

to the population cluster size which is assumed to be 

infinite could be the cause of the negative ICC estimates 

[79]. Another reason is when there are large discrepan-

cies in the allotment of trial resources within the clusters, 

this would cause large variations in the observed out-

comes [32], in other words, there is competition among 

the experimental units for the limited available resources 

resulting in the large variations observed within clusters.

Our results showed that estimates for the interven-

tion effect, SE, P-value, and 95% CI were the same for 

GEE1 and GEE2 models in almost all cases, they only dif-

fer in their estimates for the ICC. This means that both 

methods fit the same models regardless of whether the 

correlation parameter is estimated or considered as a 

nuisance within the methods formulations, however, in 

GEE2 models the ICC parameter is explicitly modelled 

which could be recourse to producing a more consistent 
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ICC estimate (i.e., adequately accounting for clustering) 

compared to GEE1 [10, 13], especially if the correlation 

is substantial.

If the observed ICC is anticipated to be large or var-

ies by cluster sizes, it is recommended that models that 

allow for heterogenous correlation structure should be 

considered, such as GEE2, because it is likely to improve 

inference [10]. This happens to be the major merit of 

Yan & Fines’ 3EE GEE2 model [13] over GEE1. Hence, it 

would be worth investigating to know which of the two 

methods is adequately modelling the correlation within 

clusters, since if the correlation is large and misspecified 

it could cause some loss in efficiency of the intervention 

effect estimate (i.e., having treatment effect estimates 

within bigger SEs). This can be achieved through simula-

tion studies, where the true ICC value is known. Accurate 

estimates of the ICC are needed for planning future clus-

ter trials [61, 80]. Our four case studies exhibited some 

common features of CRCT design that are unique to pri-

mary care and community-based CRCTs. The impact of 

these key features on the estimates from the four statisti-

cal models is evident in the results obtained.

For example, the PoNDER trial was conducted in a pri-

mary care setting and hence had a large sample size (both 

in the number of clusters and cluster sizes, 100 clusters 

with an average cluster size of 26). Hence, the unad-

justed and adjusted intervention effect estimates from 

the different methods were the same for the continuous 

and binary outcomes analyses, that of QIF were slightly 

different. The odds ratios obtained possibly showed the 

noncollapsible feature of the logistic regression model 

(with a logit link) – where including a baseline covariate 

changes the size of the intervention effect estimate, if the 

covariate is a strong predictor of the outcome, even if it is 

not related to the treatment conditions [81]. Since in this 

particular case the estimated intervention effect did not 

change upon inclusion of the baseline covariates in the 

adjusted analysis, except for QIF, possibly indicating that 

the covariates are not strong predictors of the outcome.

On the aspect of hypothesis testing, the conclusions 

reached were the same regardless of the statistical models 

used and it is consistent with findings of the original anal-

ysis by Morrell et al., [54]; a significant benefit of training 

health visitors to adequately manage women with post-

natal depressive symptoms (i.e., favouring the interven-

tion arm). The ICC estimates were small as expected [29, 

78], and that of the population average logistic models 

were negative (i.e., GEE1, GEE2, and QIF). These results 

are consistent with the findings of Adam et al. [78], they 

reanalyse thirty-one CRCTs conducted within primary 

care settings and provided ICC estimates for several 

common variables. Their median unadjusted ICC was 

0.01 while the adjusted was 0.005. Similarly, our results 

are consistent with previous simulation studies, the 

studies found that both cluster-specific models (typi-

fied by GLMM) and population average models (typified 

by GEE1) produced similar results for CRCTs that have 

many clusters and small ICC with binary [18] or continu-

ous outcomes analysed [21]. Hence, for large trials with 

low correlation within clusters, any of the four modelling 

approaches (GLMM, GEE1, GEE2, and QIF) could be 

used. Therefore, the choice of which model to use would 

be based on other factors like the aim of the research.

Informed Choice trial had a few clusters (10 clus-

ters) with a large average cluster size (median clus-

ter size = 145). In the original study, a cross-sectional 

repeated measurement approach was used, so the esti-

mate for the intervention effect was the interaction effect 

term between the treatment group (group) and time of 

measurement (time). However, for demonstration, we 

used only the “after intervention” postnatal sample. Both 

cluster and individual-level covariates were included in 

the adjusted models. Three of the methods produced 

the same estimates which differed from that of QIF, for 

both continuous and binary outcomes. The most obvi-

ous difference occurred in the P-values, CIs, and SEs 

(continuous outcome analysis only). For the continuous 

outcome, the adjusted P-value of GEE1 (including GEE2, 

and QIF) was significant whereas that of the GLMM was 

not (Table  4). This could indicate that the few clusters 

had more impact on the population average models com-

pared to the cluster-specific model (typified by GLMM).

For binary outcome, the unadjusted and adjusted 

P-values of QIF were significant but that of the other 

three methods were not. This could be indicative of a 

possible inflated test size, and bias in the estimated inter-

vention effect. This result is consistent with the findings 

of previous studies [15–17]. The QIF’s 95% CI of the 

intervention effect estimates were narrower compared 

to the other methods. Westgate and Braun [15] found 

that the impact of the interplay between the small num-

ber of clusters, covariates, and cluster size imbalance was 

more severe on QIF than GEE1. A correction was pro-

posed to improve the empirically estimated covariance 

matrix that causes the QIF to be poorly behaved [17]. 

Also, GLMM was found to perform better than GEE1 in 

maintaining the nominal Type I error and power in tri-

als with few clusters ( ≤ 20) for both continuous [21] and 

binary outcomes [23]. The results from this present study 

are consistent with these previous findings; however, it 

is more likely that the differing results from the QIF are 

due to the impact of the small number of clusters (which 

is a recipe for large cluster variations). Given these find-

ings, it is likely that the QIF is severely affected by few 

to moderate numbers of clusters, followed by GEE1 then 

GLMM. Although, no simulation study has been carried 
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out to compare these three methods in this regard, to 

reach a definite conclusion.

Informed Choice trial had a small number of clusters – 

ten clusters. Studies with small numbers of clusters have 

a higher risk of imbalance in covariates and outcomes 

across treatment arms/clusters [1, 15, 21]. Hence, for a 

study with a continuous outcome and clusters ≤ 20, small 

sample corrections are required to maintain the nominal 

5% Type I error and a reasonable power [21]. Similarly, 

if the study measured a binary outcome and the num-

ber of clusters randomised is ≤ 30, a small sample cor-

rection should be applied to the DoF of GLMM, which 

is the number of clusters minus cluster-level parameters 

estimated [23]. We only applied small sample correc-

tions in conjunction with GLMM and GEE1. Although 

there are recommended corrections for GEE2 [64] and 

QIF [16], however, they are not readily available or easy 

to implement in standard statistical packages, respec-

tively. The employed small sample corrections resulted in 

bigger P-values and wider CIs of the intervention effect 

estimates. Our small sample correction findings are con-

sistent with those of other studies [21, 23, 24].

Bridging the Age Gap trial had a moderate sample 

size (43 clusters with an average cluster size of 18 indi-

vidual subjects), and small ICC estimates. Negative ICC 

estimates were associated with negative treatment effect 

estimates from the three PAMs. Theoretically, the ICC is 

bounded between 0 and 1. But in practice, negative ICCs 

can be realised from real-world data with finite samples. 

The GLMM model truncates the ICC to zero instead of 

producing a negative ICC, effectively fitting a generalized 

linear model (GLM) [82], but that is not the same for the 

other three population average models – GEE1, GEE2, 

and QIF [79]. Our results confirmed this, only the PAMs 

produced negative ICC estimates, this occurred in trials 

with a small to moderate number of clusters (Table 4 and 

Table 6). Regardless of the size of the ICC, it is ideal to 

use an analytical method that accounts for clustering in a 

CRCT. Across the four statistical models, the unadjusted 

intervention effect estimates were unstable ranging from 

-0.28 to 0.12 but became stable after the baseline out-

come covariate was adjusted for (mean difference = 1.78), 

except for QIF (mean difference = 1.46) which also had 

the smallest SE estimates. This elucidates the importance 

of accounting for relevant prognostic factors in clinical 

trials, especially the baseline outcome covariate [1]. How-

ever, for linear models, covariate adjustment does not 

change the intervention effect estimate, although it does 

increase its precision (i.e., reduce the SE of the interven-

tion effect estimate) [1]. In the case of a nonlinear model, 

covariates adjustment does affect the estimate of the 

intervention effect and also leads to reduced precision 

[60]. In general, for a balanced trial with a continuous 

outcome, the unadjusted and adjusted analyses would 

produce equivalent estimates, but the adjusted analysis 

will be more precise, especially when the covariates are 

strongly correlated with the outcome [1]. Hence, in most 

cases, for both linear and nonlinear models, adjusted 

analysis is mostly encouraged, however, the two are often 

reported [1, 60].

This was similar for the SEs and the 95% CIs of the 

treatment effect estimate. QIF appeared to be slightly 

more precise than the other methods (i.e., had smaller 

SEs). However, this result should be interpreted with cau-

tion since the estimate of its intervention effect could be 

biased – methods that are biased toward the null hypoth-

esis often tend to have smaller SEs [66]. Studies by West-

gate confirmed this possibility of QIF being negatively 

biased for trials with small to moderate clusters [16]. Sim-

ilarly, studies have found that the GLMM with param-

eters estimated by REML performs better than GEE1 in 

maintaining the nominal Type I error rate and power, 

for continuous [21] and binary outcomes [23] when the 

number of clusters is moderate or small. Nonetheless, all 

four statistical models resulted in the same inference and 

are consistent with that of the original analysis which was 

“no significant difference in the Global QoL between the 

control and the intervention arms” [56].

Lastly, for the NOSH trial with only binary outcome 

measured, and a large sample size (92 clusters with an 

average cluster size of 100 individual subjects). The 

parameter estimates from the four statistical approaches 

are the same in almost all cases, hence, their performance 

was equivalent. A unique finding here is that it is only in 

this case study that GEE2 produced a different adjusted 

intervention effect estimate compared to GEE1 (1.27 

vs. 1.31) with SEs of 0.05 vs. 0.07, consequently, their 

95% CIs were different. The key feature of the NOSH 

trial which is different from other case studies is that in 

NOSH, only cluster-level covariates were adjusted for, 

maybe this feature had a differing impact on the GEE1 

and GEE2. Further studies are needed to confirm this.

Our results revealed some insight into the possi-

ble simulation studies that should be conducted to 

investigate the operating characteristics of these four 

analytical approaches. Simulation studies involve gener-

ating pseudo-random numbers from computer-designed 

experiments that mimic different settings of CRCT 

design [66]. For example, two of the trials had small and 

moderate numbers of clusters. This feature affected QIF 

differently – QIF had smaller estimates for the interven-

tion effect and its SE. A simulation study where the true 

parameters are known and varied to cover a reasonable 

parameter range should be conducted. The parameters 

that could be varied include the number of clusters, lev-

els of ICC, effect sizes (i.e., the true intervention effect), 
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cluster sizes, types of outcomes, and distribution of the 

cluster random. This will help create different scenar-

ios that are needed to investigate the independent and 

combined impact of the varied parameters on the per-

formance of the methods. Another possible simulation 

study that is similar to the one stated above, but with a 

focus on the impact of small numbers of clusters ( ≤ 30 

clusters), and the methods would include both the uncor-

rected and corrected versions (corrected of the effect of 

small sample) of the four methods. This study will deter-

mine how well the corrected versions of the methods 

perform both absolutely and relatively.

Limitations

This study employed a formal systematic search of rel-

evant literature to capture most of the related work con-

ducted. However, this was not an exhaustive review of all 

work in this area.

We have used four case studies that have arisen from 

our work as applied medical statisticians in clinical trial 

research. The results and inferences made apply to data 

from CRCTs with similar properties to our case stud-

ies. For example, our investigation focused on binary 

and continuous endpoints, studies with observed ICCs 

similar to trials conducted within primary care and com-

munity-based settings, used complete cases, and some 

having few clusters. However, this data limitation (i.e., 

missing data) might not result in adverse consequences 

since the proportions that were missing were small. 

Although, the other data limitations (i.e., a small number 

of clusters) might be.

While a small number of clusters, and incomplete 

data are issues in many real-world data sets, to increase 

the generalisability of our results to trials with different 

characteristics to our case studies, we hope to conduct 

a simulation study soon. The study will explore how our 

findings might change when the following parameters: 

cluster sizes, ICC, and number of clusters are varied.

Conclusion
In summary, we analysed outcome data from four 

CRCTs to demonstrate the applications of four statisti-

cal methods that are appropriate for analysing CRCTs. 

The characteristics of the four case studies covered 

some common settings in CRCTs; however, the gen-

eralizability of our findings should be limited to stud-

ies with similar characteristics as our case studies. In 

most cases, the modelling approaches produced simi-

lar results which are consistent with the original anal-

yses. This is not uncommon, because our case studies 

typified primary care and community based with low 

clustering and common sample sizes (i.e., small, mod-

erate, and large).

In some cases, QIF produced differing estimates com-

pared to the other three approaches. These differences 

are noticeable for studies with a small to moderate 

number of clusters (i.e., ≤ 43). Although the four statis-

tical methods were compared to each other, we cannot 

determine a superior method using only this example 

data analysis. Nonetheless, we recommend that for tri-

als with a small to moderate number of clusters, cau-

tion should be exercised when QIF is used without 

small sample correction. It is necessary to conduct fur-

ther research based on simulation studies to compre-

hensively evaluate the performances of the analytical 

approaches.
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