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Generalized probabilistic theories (GPTs) provide a framework in which a range of possible theories can be
examined, including classical theory, quantum theory, and those beyond. In general, enlarging the state space of
a GPT leads to fewer possible measurements because the additional states give stronger constraints on the set of
effects, the constituents of measurements. This can have implications for information processing. In box world,
for example, a GPT in which any no-signaling distribution can be realized, there is no analog of a measurement
in the Bell basis and hence the analog of entanglement swapping is impossible. A comprehensive study of
measurements on multiple systems in box world has been lacking. Here we consider such measurements in
detail, distinguishing those that can be performed by interacting with individual systems sequentially (termed
wirings), and the more interesting set of those that cannot. We compute all the possible box-world effects for
cases with small numbers of inputs, outputs, and parties, identifying those that are wirings. The large state space
of box world leads to a small effect space and hence the effects of box world are widely applicable in GPTs.
We also show some possible uses of nonwirings for information processing by studying state discrimination,
nonlocality distillation, and the box-world analog of nonlocality without entanglement. Finally, we connect our
results to the study of logically consistent classical processes and to the composition of contextuality scenarios.
By enhancing understanding of measurements in box world, our results could be useful in studies of possible
underlying principles on which quantum theory can be based.

DOI: 10.1103/PhysRevA.108.062212

I. INTRODUCTION

Standard textbook presentations of the postulates of quan-
tum mechanics usually begin with a list of mathematical
axioms with relatively little accompanying explanation. This
is in contrast to relativity theory, for example, which can
be based on the premise that the laws of physics are frame
independent. Whether or how we can formulate quantum
theory in a similar way remains open in spite of significant
investigation (see, e.g., [1–6]). Quantum theory has some
counterintuitive features such as the presence of nonlocal
correlations that seemingly defy classical explanation [7]. A
general framework to study these features in the context of
quantum theory and possible alternatives is that of general-
ized probabilistic theories (GPTs) [8]. Beyond classical and
quantum theory one well-studied GPT is box world, which
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allows arbitrary no-signaling distributions to be realized. It
is known for instance that particular cryptographic tasks re-
main possible even against adversaries that have access to
box-world systems [9–12]. In a further line of work that tries
to single out quantum correlations within a range of alterna-
tive theories (see, e.g., [13–16]), box world is a useful foil
theory. In spite of these results, the structure of multisystem
measurements in box world has not been developed in detail,
but understanding these is important to fully characterize the
information processing power of box world. Furthermore, al-
though we refer to effects in box world throughout this paper,
the measurements we find are applicable to a range of GPTs
(see Sec. VII E).

Further motivation for the study of multisystem measure-
ments comes from the recent trend for studying information
processing in quantum networks [17–21]. It is likely that
simple quantum networks will be built in the near future,
hence, it is useful to explore the possibilities these networks
bring. GPTs provide a useful means to form a more general
understanding of this. To compare what is possible in quantum
theory as opposed to other GPTs it is furthermore necessary
to understand the structure of multisystem measurements in
the latter. Such comparison furthermore informs the question
of in what sense quantum theory is optimal for information
processing [22]. In this work, we thus explore such multisys-
tem measurements. In addition, we connect our results to the
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study of logically consistent classical processes [23] and of
composition of contextuality scenarios [24,25], pointing to a
new kind of composition in the latter case.

Our study of the set of possible measurements in box
world proceeds using the set of effects, the constituent parts
of measurements (see later). The large set of possible states
in box world comes at the expense of having a smaller set of
effects than in theories with weaker correlations. In this work
we will be interested in the set of possible measurements that
can be performed with access to several systems in box world.
One type of such measurements are the wirings [8], which
correspond to processes in which a measurement is applied
to one system, then to a second depending on the result, and
so on (or convex combinations of such processes). Wirings
are hence implementable using local operations and classi-
cal communication (LOCC) when the individual systems are
separated.1 It is well known that in quantum theory not all
measurements are of this form. For example, a measurement
in the Bell basis as used in teleportation cannot be realized
by wiring together measurements on individual systems. For
single and bipartite systems in box world, all measurements
are wirings [8], while this is no longer true for three or more
systems [26]. One of the aims of this paper is to find the multi-
system measurements that are not wirings and investigate their
significance for information processing.

We classify scenarios by the number of systems, and the
number of inputs and outputs for the boxes of each system.
One way to find the set of all extremal effects in a given
scenario is using vertex enumeration (all the extremal no-
signaling distributions act as facets since the inner product of
each such state with any valid effect must be greater than 0
and less than 1). However, directly performing vertex enu-
meration is slow, except in the smallest scenario [27]. To
circumvent this we exploit an alternative method for finding
extremal effects that starts with different ways to represent
the identity effect. By breaking down these identity effects we
can find the extremal effects in various scenarios. We sepa-
rately consider deterministic and nondeterministic effects and
classify the effects into wirings and nonwirings before investi-
gating the significance of the latter for state discrimination and
nonlocality distillation, showing the advantages of nonwiring
measurements. We also discuss how our findings relate to
the phenomenon of quantum nonlocality without entangle-
ment [28], which is the existence of measurements comprising
product effects that cannot be performed by LOCC. The
nonwiring-type measurements of this paper serve as a box-
world analog of these, and we find a set of product states in
box world that can be perfectly distinguished with a nonwiring
measurement, but not with any wiring.

Understanding measurements in GPTs is also useful to
gain insight into which features of quantum theory make it
special with respect to other theories, which in turn may help
find underlying principles on which quantum theory can be
based. Box world is known to have only separable measure-
ments [26] (i.e., those for which all effects can be expressed
as a sum of product effects), which in a sense makes it inferior
to other GPTs. However, this property also makes box world a

1More precisely, wirings only require one-way LOCC.

suitable example for studying the difference between separa-
ble measurements that can be done using LOCC and those that
cannot, and of the information processing capabilities enabled
by the latter, an understanding that will likely carry over to
arbitrary GPTs. Further insights into this difference are also
desirable in the quantum case [29–32].

The rest of the paper proceeds as follows. We first give a
short introduction to GPTs, before introducing the notation
and technical background in Sec. III. In Sec. IV, we present
technical results underlying the algorithms for generating all
extremal effects in box world; these algorithms are presented
in Sec. V. In Sec. VI we apply our algorithm to various
scenarios of up to four inputs and up to four outputs and
demonstrate the application of these results in information
processing tasks in Sec. VII. Finally, we connect our work
to logically consistent classical processes and to composition
of contextuality scenarios in Sec. VIII before making a few
concluding remarks in Sec. IX.

II. BACKGROUND

We briefly outline the framework for GPTs that will be
used throughout this paper. In a GPT, states are represented
as vectors in a vector space V . We use S ⊆ V to denote the
set of all possible states (note that the state space depends
on the size of the system), and we typically assume S is
convex and compact. An effect is a linear map from a state
to a probability. Effects can be taken as vectors in the vector
space dual to V , which we call E , and the map from states
to probabilities is then formed by taking the inner product
between the state and the effect. Given a state space, a valid
effect e must satisfy 0 � 〈e, s〉 � 1 for all s ∈ S . Under the no

restriction hypothesis [33], which we will assume here, this
necessary condition is taken to be necessary and sufficient for
an effect to be valid.

The state space of a composite system is formed by tak-
ing some kind of tensor product between the individual state
spaces. A minimal requirement is that if sA ∈ SA is a state of
system A and sB ∈ SB is a state of system B, then sA ⊗ sB is
a state of AB. If all joint states have this form, or are convex
combinations of states of this form, then the joint state space
is said to be the minimal tensor product of the individual state
spaces. Taking the composite system effect space to obey the
no restriction hypothesis, the min tensor product state space
corresponds to forming the effect space by taking the maximal
tensor product of the individual effect spaces.

One way to specify a state is via the probabilities of the
outcomes of a set of fiducial measurements [2], i.e., a set that
is sufficient to completely characterize the state. We will work
with systems that have a finite set of fiducial measurements,
each of which has a finite number of outcomes. This means
that a state can be specified using a vector whose entries
contain the probabilities of outcomes for the fiducial measure-
ments. For simplicity, we consider cases in which the number
of outcomes of each fiducial measurement is the same. For
instance, if for a single system there are two two-outcome
fiducial measurements, we write the state as

(P(0|0), P(1|0) | P(0|1), P(1|1)), (1)

where P(i| j) is the probability of output i given input j.
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Although this is a four-dimensional vector, due to normal-
ization there are only two independent parameters. For later
convenience we stick with the larger representation rather than
suppressing the redundant parameters.

In this work we assume local tomography [34], i.e., that
the state of a joint system can be determined from the statis-
tics of local fiducial measurements (called the global state
assumption in [8]). This means that a state of N parties (where
for each single system there are two two-outcome fiducial
measurements) has a similar representation:

(P(0 . . . 0|0 . . . 0), . . . , P(1 . . . 1|0 . . . 0) | . . . |

P(0 . . . 0|1 . . . 1), . . . , P(1 . . . 1|1 . . . 1)) (2)

(the ordering is such that first for input 00 . . . 0 the outcomes
increase counting in binary, and then the inputs increase
counting in binary).

For every system there is an identity effect, i.e., an effect u

such that 〈u, s〉 = 1 for all s ∈ S . In our notation there are sev-
eral ways to write this effect. For a single system we can write
uR = (1, 1|0, 0), uR = (0, 0|1, 1), uR = (1, 1|1, 1)/2, etc. Al-
though written differently, these all represent the same effect,
the notation uR meaning a representation of the effect u. In
general, we identify two vectors as representing the same
effect if they have the same inner product with all elements
of the state space.

The set of vectors that can be added to any effect vector
without changing the effect it represents we term no-signaling

moves because they each arise as a result of the state space S

only containing no-signaling distributions (or as a result of the
normalization). For instance, for all valid states, P(00|00) +

P(10|00) − P(00|10) − P(10|10) = 0, which represents the
impossibility of Alice’s choice of measurement affecting
Bob’s outcome when Bob makes input 0. This no-signaling
condition can be encoded using a vector r such that 〈r, s〉 = 0
for all s ∈ S . Thus, if eR is a vector representing a valid effect,
then eR + r represents the same effect. We use {ri} to denote
a complete set of generators of all such vectors, so that any
no-signaling move can be written as a linear combination of
vectors from {ri}. A measurement is a collection of effects
that sum to the identity effect, i.e., given state space S , the
set of effects {e1, . . . , em} form a measurement on S if for
each i = 1, . . . , m we have 0 � 〈ei, s〉 � 1 for all s ∈ S and if
∑m

i=1 ei = u.
In this work we will be interested in the effect space when

the state space comprises all no-signaling distributions (also
known as box world). Because box world has large multi-
partite state spaces, the set of possible effects is comparably
restricted. Box-world effects are therefore valid in a wide
range of GPTs. We consider the effect spaces for various small
numbers of inputs, outputs, and parties (larger cases become
too computationally intensive). Due to linearity, the effect
space is convex, and can hence be characterized in terms of
a set of extremal effects. There are a finite number of these,
generating a convex polytope; our aim is to have a procedure
that can generate the vertices of this polytope.

In the two-party case, the complete set of extremal effects
was computed in [27]. It was found that there are 82 such
effects. These were computed by vertex enumeration start-
ing from the facet description of the effect space. This facet

FIG. 1. Illustration of a wiring effect in the bipartite case.
An input x1 is made generating outcome a1, then x2 is taken
as a function of a1 giving outcome a2. The final output a is
then a function of a1 and a2. For instance, if x1 = 0, x2 =

a1, and a = a1 ⊕ a2 then the effect corresponding to a = 0 is
ea=0 = (1, 0, 0, 0|0, 0, 0, 1|0, 0, 0, 0|0, 0, 0, 0) and the effect corre-
sponding to a = 1 is ea=1 = (0, 1, 0, 0|0, 0, 1, 0|0, 0, 0, 0|0, 0, 0, 0).

description says that to be a valid effect 0 � 〈e, si〉 � 1 for all
extremal states si (in the present case there are 24 extremal
states: 16 local deterministic states and 8 PR-box-type states).
In this work we use a different method that allows us to treat
cases for which our computational tools for vertex enumera-
tion are prohibitively slow.

We will also be interested in a special type of effect called a
wiring. Wirings are effects that can be implemented by convex
combinations of procedures of the following form: choose
one of the states and choose a measurement to make on that
state, take its output, and apply a function to it to choose
the next state and the measurement on the next state, and
so on, where at each step all the previous outputs are used
as arguments of the function that selects the next state and
the measurement performed on it. The final output is then
formed by taking a function of all the individual measurement
outcomes (see Fig. 1 for an illustration). The extremal wirings
are effects of this type that cannot be represented as convex
combinations of others. These box-world measurements are
of particular interest since they correspond to classical pro-
cessing of inputs and outcomes and are thus applicable in any
operational theory allowing classical processing. In particular,
they are applicable irrespective of the type of system under
consideration and can be used, for instance, for nonlocality
distillation, which in turn may have applications for device-
independent information processing. This is discussed further
in Sec. VII C.

III. PRELIMINARIES

Let nI be the number of inputs and nO be the number of out-
puts per party with N parties. A state can then be represented
as a (nI nO)N -dimensional vector, whose entries are the condi-
tional probabilities of every set of outputs given every set of
inputs. Given a subset V of the set [N] := {0, 1, 2, . . . , N − 1}

of parties, we use XV as the random variable representing their
inputs (elements of [nI ]|V |) and AV as that for their outputs
(elements of [nO]|V |).

We will now define our state space SNS. To be elements
of this we require three conditions to hold: no signaling,
positivity, and normalization, which we detail below. The
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no-signaling condition is that no subset of parties should be
able to signal to any other subset of parties. In other words, for

any disjoint subsets V and W of [N], the parties in V cannot
signal to those in W . Mathematically, this means

∑

aV

PAW AV |XW =xW ,XV =0(aW , aV ) =
∑

aV

PAW AV |XW =xW ,XV =x′
V

(aW , aV )

for all aW ∈ {0, 1, 2, . . . , nO − 1}|W |, xW ∈ {0, 1, 2, . . . , nI − 1}|W |, and x′
V ∈ {0, 1, 2, . . . , nI − 1}|V |. (3)

A smaller subset of this set of conditions is sufficient to
generate the whole set, namely, it suffices that no party can
signal to the collection of all the others. This is stated formally
in the following lemma.

Lemma 1. The set of conditions implied by (3) for all dis-
joint subsets V and W of [N] is implied by demanding that (3)
holds for the subset of conditions where V is a singleton and
W = [N] \ V .

The conditions where V is a singleton and W = [N] \ V

can be represented by a set of vectors {ri}, such that 〈ri, sR〉 =

0 for all s ∈ SNS, and where each ri contains nO elements with
value 1, nO elements with value −1, and the remaining entries
are 0. The number of such conditions is N (nOnI )N−1(nI − 1).
These are not all linearly independent: the dimension of the
space of un-normalized no-signaling distributions is [nI (nO −

1) + 1]N [35,36].
A valid state must also have positive entries since each

entry represents a probability, i.e.,

PAS |XS
(a|x) � 0 for all a, x, (4)

where S = [N].
The remaining condition for a vector to be an element of

SNS is that
∑

aS

PAS |XS=0(aS ) = 1, (5)

where S = [N]. Note that, given the no-signaling conditions,
if (5) holds for XS = 0 := 0 . . . 0 then it also holds for XS = xS

for any other xS ∈ [nO]|S|. Furthermore, together with (4) this
implies that no entry can exceed 1 (so conditions that each
probability is at most 1 do not need to be added).

An important set of states are the local deterministic states.
These correspond to deterministically assigning one of the
outcomes for every possible input of every party. Thus, they
are states of the form

PA|X=x(a) = PA1|X1=x1 (a1)PA2|X2=x2 (a2) . . . PAN |XN =xN
(aN ),

and where PAi|Xi
∈ {0, 1} in all cases. We denote these sL,i,

where i runs from 1 to (nI nO)N . The linear span of the
set of local deterministic states is the same as that of the
no-signaling distributions (being local does not confer any
additional equality constraints over being no signaling). Thus,
given two vectors representing effects, we can check whether
they represent the same effect by checking whether both vec-
tors have the same inner product with all local deterministic
distributions.2

2In general, a subset of these would also suffice.

An important symmetry class for a given state or effect is
that of the relabelings. We can relabel the parties, the inputs
for each party, or the outputs for each input of each party.
Thus, the total size of the symmetry group of relabelings is
[(nO!)nI nI !]N N!.

IV. EXTREMAL EFFECTS

We are interested in finding the extremal effects for a
given scenario, i.e., for a given (N, nI , nO). As mentioned
before we use a representation that has some redundancy in
that the constraints arising from the no-signaling moves and
normalization are not used to reduce the parameters. (Such a
reduction would typically be done when trying to solve this
problem directly by means of vertex enumeration.) Instead,
the technical results of this section show that the redundant
representation employed has a convenient structure that al-
lows us to find extremal effects in a different way, which
will be the basis of the algorithms we present in Sec. V. We
start with the following observation, expressed in terms of a
standard basis vector (SBV), by which we mean a vector with
all components 0 except for one 1.

Lemma 2. Every (nI nO)N -dimensional SBV is a represen-
tation of an extremal effect.

Proof. To see that SBVs all represent effects, note that the
inner product of such a vector eR with a state s ∈ S gives
a single probability, hence, 0 � 〈eR, sR〉 � 1 for all s ∈ S ,
making eR a representation of a valid effect. By considering
a state satisfying 〈e, s〉 = 1, it is clear that αe is not an effect
for any α > 1, hence, e is on the boundary of the effect space.
To see that it is extremal, suppose e = αe1 + (1 − α)e2 for
two effects e1 and e2 and 0 < α < 1. Then

〈e, s〉 = α〈e1, s〉 + (1 − α)〈e2, s〉.

Now suppose s1 is a state with 〈e, s1〉 = 1. Since e1 and e2 are
effects, it follows that 〈e1, s1〉 = 〈e2, s1〉 = 1. Similarly, if s0 is
a state with 〈e, s0〉 = 0, it follows that 〈e1, s0〉 = 〈e2, s0〉 = 0.
Because the local deterministic distributions are {0, 1} valued,
if s is local deterministic it satisfies 〈e, s〉 ∈ {0, 1}. It follows
that both e1 and e2 have the same action on any local determin-
istic distribution as e does. Since the set of local deterministic
distributions span the space of no-signaling distributions, e1

and e2 must have the same action as e for any s ∈ SNS. Thus,
e1, e2, and e must be the same effect and e is extremal. �

The {0, 1}-valued representations of the identity effect will
be important because these are the class that can be used to
generate all wirings (as well as some nonwirings).

Lemma 3. Let uR be a {0, 1}-valued vector representing the
identity effect. Any vector eR formed from uR by replacing
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any number of the 1 entries with 0s is a representation of an
extremal effect.

Proof. First, since uR represents the identity effect we have
〈uR, sR〉 = 1 for all s ∈ S . Since uR is a {0, 1}-valued vector
we can write it in terms of the SBV effects {ei} as u =

∑

i λiei,
where λi ∈ {0, 1}. We can also write eR =

∑

i λ
′
ie

R
i , where

λ′
i ∈ {0, 1} and {i : λ′

i = 1} ⊂ {i : λi = 1}. It follows that 0 �

〈e, s〉 � 〈u, s〉 = 1 for all s ∈ S , so e is a valid effect.
To see that it is extremal, consider writing e = αe1 + (1 −

α)e2 for two effects e1 and e2 and 0 < α < 1. Since eR is a
{0, 1}-valued representation of e, and all local deterministic
states have a {0, 1}-valued representation, for a local deter-
ministic state s we have 〈e, s〉 ∈ {0, 1}. Hence, by the same
argument as in Lemma 2, e must be extremal. �

Lemma 4. Any extremal wiring has a representation that
can be formed by taking the {0, 1}-valued representation of the
identity effect corresponding to all parties making the input 0,
applying no-signaling moves in such a way that it remains
{0, 1} valued, and replacing some of the entries that are 1
with 0.

Proof. Consider first the case N = 1. In this case the ex-
tremal wirings are the effects formed by choosing one of the
nI measurements and then applying a deterministic function
from {0, 1, . . . , nO − 1} to {0, 1, . . . , nO − 1} to the outcome.
In this case the no-signaling moves3 take us from the identity
for input 0 to that for all other choices of measurement so the
statement holds.

Now assume by induction that the statement holds for
N − 1 parties and consider N parties. The first step in an
extremal wiring is to choose one of the N boxes and make
a fixed input to that box. Up to symmetry, we can assume
the first box is chosen and input 0 is made (relabeling parties
or inputs does not change whether an effect is a wiring or
not). In this case, the effect can only have nonzero entries
where these correspond to elements of the state of the form
P(a1a2 . . . anI

|0x2 . . . xnI
), i.e., where x1 = 0. For each out-

come we can then consider the N − 1 party effect that is
performed conditioned on x1 = 0 and the value of a1. By as-
sumption, each of these subeffects can be formed by taking the
{0, 1}-valued representation of the identity effect correspond-
ing to N − 1 parties making the input 0, applying no-signaling
moves in such a way that it remains {0, 1} valued, and replac-
ing some of the entries that are 1 with 0. Let us ignore the
replacement of 1 entries with 0s for the moment and consider
only the representation of identity. Up to no-signaling moves
each of the subeffects corresponds to all parties measuring
0, and, up to symmetry the measurement on the first box
corresponds to x1 = 0. Thus, up to no-signaling moves, the
identity is that corresponding to all parties measuring 0, and
the effect is then formed by zeroing entries of this. �

Lemma 5. Every effect can be represented by a (nI nO)N -
dimensional vector in which every entry is non-negative.

Proof. This is proven as part of Theorem 7 in [8]. We
give the argument for completeness. Consider the cone of
non-normalized states in our representation, i.e., the set of

3The term no signaling does not make sense for N = 1, but
the mathematical conditions are well defined and take the form
∑

a PA|X=x (a) =
∑

a PA|X=x′ (a) for all x, x′.

(nI nO)N -dimensional vectors

V = {v : 〈ei, v〉 � 0 ∀ i, 〈r j, v〉 = 0 ∀ j},

where {ei} are the SBV effects and r j are vectors repre-
senting the no-signaling moves. We can rewrite 〈r j, v〉 = 0
as 〈r j, v〉 � 0 and 〈−r j, v〉 � 0. The dual cone is then that
formed by the conic hull of {ei}i ∪ {r j} j ∪ {−r j} j . Thus, any
effect can be written as

∑

i tiei +
∑

j w jr j , where ti � 0, but
w j can be negative. Since 〈r j, v〉 = 0 for all v ∈ V , one rep-
resentation of the effect is when the values of {w j} are set to
zero. Thus, any effect can be written in the form

∑

i tiei where
ti � 0. �

It is helpful to consider the set of (nI nO)N -dimensional
identity effects that have positive entries. These form a con-
vex polytope since they are defined by the vectors uR for
which every element is positive and such that 〈sL,i, uR〉 = 1
where i runs over all local deterministic distributions. There
are hence (nI nO)N equality constraints and (nI nO)N inequality
constraints. We call the extreme points of this polytope the
extremal representations of the identity effect, and these can
be computed using vertex enumeration.

Lemma 6. Every extremal effect has a representation as a
vector that can be formed by taking an extremal representation
of the identity effect and replacing some of the nonzero entries
with 0s.

Proof. Let e be an effect and f = u − e. By Lemma 5, we
can represent e and f using (nI nO)N -dimensional vectors eR

and f R whose entries are non-negative. Write eR =
∑

i λiei

and f R =
∑

i μiei, where {ei} are the SBV effects and {λi}

and {μi} are non-negative. Thus, uR =
∑

i(λi + μi )ei is a
representation of the identity effect.

We claim that if e is extremal, then for each i either λi = 0
or μi = 0. Suppose by contradiction that there is some j for
which 0 < λ j < λ j + μ j . Then,

eR = λ je j +
∑

i �= j

λiei =
λ j

λ j + μ j

⎛

⎝(λ j + μ j )e j +
∑

i �= j

λiei

⎞

⎠

+

(

1 −
λ j

λ j + μ j

)

∑

i �= j

λiei

=
λ j

λ j + μ j

(eR + μ je j ) +

(

1 −
λ j

λ j + μ j

)

(eR − λ je j ).

Both eR + μ je j and eR − λ je j represent effects [for the for-
mer, note that eR + μ je j = uR − ( f R − μ je j )]. Hence, we
have decomposed e as a convex combination of other effects,
contradicting the assumption that e is extremal. Note that this
implies that for any extremal effect, there exists a representa-
tion of it and its complement that are orthogonal.4 Hence, we
have shown that if e is extremal, it can be formed by zeroing
entries from a representation of an identity effect. It remains
to show that nonextremal representations of the identity effect
need not be used.

4In fact, what we have shown is even stronger: there is a represen-
tation in which the elementwise product of eR and f R is zero.
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Suppose uR is a nonextremal representation of the identity
effect, so uR =

∑

i νiu
R
i with {uR

i } being extremal representa-
tions of the identity effect, νi � 0,

∑

i νi = 1 and at least two
νi > 0. Let Z be a map that zeroes some of the entries and
suppose eR = Z (uR ) =

∑

i νiZ (uR
i ). If there are two or more

values of i for which both νi > 0 and Z (uR
i ) �= 0, then eR is

not extremal. If there is only one i such that both νi > 0 and
Z (uR

i ) �= 0, then eR is also not extremal (but is proportional
to the zeroing of an extremal representation of the identity
effect). �

V. COMPUTING EXTREMAL EFFECTS

Our method for computing extremal effects is suggested by
Lemma 6. The first step is to identify all extremal representa-
tions of the identity effect by means of a vertex enumeration.
Specifically, the condition 〈u, s〉 = 1 for all elements of the
state space can be imposed by requiring 〈u, s〉 = 1 for all local
deterministic s since the linear span of the local deterministic
states covers the state space. This means that the set of iden-
tity effects for N parties can be expressed using 4N equality
constraints and 4N inequality constraints (positivity of the
individual entries). This problem is more tractable than per-
forming the full vertex enumeration to compute all extremal
effects directly. Instead, the extremal effects are obtained from
the identity effects by considering subeffects (see Lemma 6).

Computing the set of all extremal effects scales badly with
the parameters of the scenario and hence we do not compute
all in most cases (although our algorithm would in principle
allow this). In several scenarios we instead compute the deter-
ministic extremal effects, which include all extremal wirings.

A. Computing deterministic extremal effects

Our method for computing all deterministic extremal ef-
fects is suggested by Lemma 3. This algorithm recovers all
deterministic extremal effects, which includes all wirings (cf.
Lemma 4).

We first find all the {0, 1}-valued representations of the
identity effect. This can be done by the following algorithm:

Algorithm 1: generate {0, 1}-valued identity effects

(1) Let S = {uR
1 } where uR

1 is any {0, 1}-valued represen-
tation of the identity effect. [The algorithm can also be started
with any initial set of {0, 1}-valued representations of the
identity effect.]

(2) Generate S′ = {s j ± ri}i, j , where s j are elements of S

and ri are a complete set of generators of the no-signaling
moves taking values {−1, 0, 1} (cf. Lemma 1).

(3) Remove elements of S′ with negative entries and set
S = S′.

(4) Repeat Steps (2) and (3) until S stops increasing.
(5) Output S.
Algorithm 1 is a subalgorithm of our main routine:

Algorithm 2: generate all {0, 1}-valued effects

(1) Use Algorithm 1 to generate all representations of the
identity effect.

(2) For each representation of the identity, form a new set
of effects containing all effects that are obtained by deleting
any number of 1s from each of the representations.

(3) Take the union of all the sets generated.

(4) For each element ei in this union, compute (ei, L(ei )),
where L(ei ) = (〈ei, sL,1〉, 〈ei, sL,2〉, . . .) and generate a list
S = ((e1, L(e1)), (e2, L(e2)), . . . ) of all these pairs.

(5) Go through the list checking whether L(ei ) = L(e j )
where i �= j. If so, remove one of the two elements from S.

(6) Output S.

Note that each identity effect has nN
O elements with value

1, so there are 2nN
O ways of deleting 1s for each representation

of the identity effect in Step (2) (hence this algorithm does
not scale well as the number of parties increases). Taking
the union of the sets involves removing any duplicate rep-
resentations. However, at this point there remain different
representations of the same effect in our set. The use of L(ei )
is a convenient way to remove such different representations.

We are also interested in classifying the extremal effects as
either wirings or nonwirings. We first classify a set of wiring

representations using the following algorithm (cf. Lemma 4):

Algorithm 3: classify a representation of an effect as

wiring representation

This algorithm takes as input a representation eR of an
effect.

(1) If the number of parties is 1, return 1.5

(2) Run over all exchanges of party 1 with each other
party, and exchanges of input labels for the chosen party until
the resulting effect (after the exchanges) has zero elements
wherever x1 �= 0. If no such case is found, return 0.

(3) For each of the possible outcomes a1 compute the N −

1 party effect conditioned on x1 = 0 and the value of a1 (there
are nO instances to compute).

(4) Recursively run the same algorithm on each of these
N − 1 party effects. If all cases return 1 then return 1, other-
wise return 0.

Algorithm 3 outputs 0 if its input is not a wiring representa-
tion and outputs 1 if it is. An effect is a wiring if and only if it
can be expressed as a convex combination of effects that have
wiring representations. An extremal effect is hence a wiring if
and only if it has a wiring representation.

To connect Algorithm 3 to the previously mentioned notion
of a wiring, consider the first step in an extremal wiring. This
involves choosing one of the boxes to make an input to as well
as the value of the input. Consider the case where this is the
first box and the input made is x1 = 0. In this case, eR will
have zeros for the elements corresponding to any probabilities
conditioned on other values of x1. Hence, if eR is a wiring,
there must exist a permutation � of parties and of input labels
such that �eR has zero elements wherever x1 �= 0. For each
of the possible outcomes a1 we can consider the N − 1 party
effect conditioned on x1 = 0 and the value of a1 (that each
of these are an effect follows by considering the set of states
that are a tensor product of the deterministic state that always
outputs a1 for x1 = 0 with any N − 1 party state on the re-
maining systems). We can check that all these smaller effects
have an analogous property in the same way and recurse. If the
required label permutation exists at all levels, we can conclude
that the effect corresponds to a wiring.

5See later for an explanation as to why we can increase the number
of parties to 2 in this step.
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Suppose we run Algorithm 3 on a particular {0, 1}-valued
representation eR of an effect e. If we get output 1 then we
know that e can be implemented as a wiring. However, if we
get 0, it could be that there is an alternative representation of e

that is a wiring representation. To understand which effects are
wirings or not we can modify Steps (4) and (5) of Algorithm
2 to the following:

(4′) For each element ei in this union, compute
(ei, L(ei ),W (ei )), where L(ei ) is as before and W (ei )
is whether the representation is a wiring represen-
tation or not and generate a list S = (e1, L(e1),
W (e1)), (e2, L(e2),W (e2)), . . . ) of all these pairs.

(5′) Go through the list checking whether L(ei ) = L(e j )
where i �= j. If so, check whether W (ei ) = 1. If so, remove
element j from the list, otherwise remove element i.

With this modified algorithm, we can identify effects as
either wirings or nonwirings as they are found.

VI. RESULTS

A. Two inputs and two outputs per party

In this section we discuss cases with nI = 2 and nO = 2 for
N = 2, 3, 4.

1. N = 2

This case was already computed in [27] using a different
procedure. The output of our algorithm in this case agrees with
that of [27]. In particular, there are 82 extremal effects. We
break these down into 7 classes (two effects are in the same
class if they are equivalent up to relabelings, where we can
relabel the parties, the inputs for each party, and the outputs
for each input of each party).6 All of the effects are wirings,
which was already known from [26]. That all of the effects are
wirings means we can alter Step (1) of Algorithm 3 to “if the
number of parties is 2, return 1.”

In this case the deterministic effects are sufficient for de-
scribing the full effect polytope, so the more general case is
omitted here.

2. N = 3

A complete description of all deterministic effects was not
known for this case, although in [26] it was noted that for
three parties not all effects are wirings. We have computed
all the {0, 1}-valued extremal effects for this case, finding
28 886 effects of which 2048 are nonwirings. These extremal
effects break down into 66 classes of which 3 correspond to
nonwirings. They are collected in the online Supplemental
Material [37]. Representatives of each of the classes of non-
wirings are as follows:

〈e1, s〉 = P(000|100) + P(001|010) + P(110|001),

〈e2, s〉 = P(000|100) + P(001|010) + P(110|001)

+ P(010|000),

〈e3, s〉 = P(000|100) + P(001|010) + P(110|001)

+ P(010|000) + P(101|000).

Performing a vertex enumeration using the software PORTA

[38], we are also able to find all the extremal representations
of the identity effect. It turns out that there are 710 760 of
these, of which 744 are {0, 1} valued (and 680 of the latter
are wiring representations). These extremal representations of
the identity effect break down into 307 classes, of which 9 are
{0, 1} valued (and 8 of the latter are wiring representations).
Representatives of each of the 307 classes can be found in the
Supplemental Material [37].

In principle, these representations can be used to generate
all extremal effects as suggested by Lemma 6. However, this
computation is prohibitively time consuming because many
of the classes of extremal representations of the identity effect
have 27 nonzero entries, and for these there are 227 candidate
effects that can be formed by zeroing various entries (by con-
trast, the {0, 1}-valued extremal representations of the identity
effect have only 8 nonzero entries, which is why we could
solve this case). Nevertheless, to illustrate that this can in
principle be done we have taken two of the identity effects
with a smaller number of nonzero entries, namely, uR

1 and uR
2

satisfying

〈

uR
1 , s

〉

= 1
3 (P(000|101) + 2P(000|110) + P(001|010) + P(001|011) + P(001|100) + P(010|010) + P(010|011)

+ P(010|101) + P(011|100) + 2P(011|111) + P(100|100) + 2P(100|111) + P(101|010) + P(101|011)

+ P(101|101) + P(110|010) + P(110|011) + P(110|100) + P(111|101) + 2P(111|110)),

〈uR
2 , s〉 = 1

2 [P(000|011) + P(000|101) + P(001|011) + P(001|101) + P(010|101) + P(010|110) + P(011|010)

+ P(011|101) + P(100|011) + P(100|100) + P(101|011) + P(101|110) + P(110|100) + P(110|111)

+ P(111|010) + P(111|111)],

and computed all the subeffects from these (up to symmetry), using a linear program to remove any that are convex combinations
of the extremal deterministic effects we already found. The output of this computation is given in the Supplemental Material

6Note that in [27] they classify differently into 5 classes.
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[37]. The following are two examples:

〈e4, s〉 = 1
3 [P(001|010) + P(001|100) + P(010|011) + P(101|010) + P(111|101) + 2P(111|110)]

〈e5, s〉 = 1
2 [P(000|011) + P(001|011) + P(010|110) + P(011|010) + P(100|100) + P(111|010)].

3. N = 4

In this case computing all the extremal representations of
the identity effect is not feasible in reasonable time using
PORTA. Furthermore, the number of extremal effects is too
large to directly use our previous technique for the {0, 1}-
valued extremal effects. Instead, we can compute all the
{0, 1}-valued extremal effects by computing one representa-
tive of each symmetry class. The computation works in the
same way as before, but we remove symmetries at every step.

In particular, in Algorithm 1 we add a step between Steps
(3) and (4) that removes elements of S that are equal to oth-
ers under relabeling symmetries. In Algorithm 2, rather than
using the list of local values L(ei ) we generate a canonical
form of these by generating L(ei ) for every symmetry of ei

and then storing the first of all of these according to some
ordering function [e.g., since each list L(�ei ) is {0, 1} valued,
they can be ordered as a binary number]. We run Algorithm
2 with the modification to classify into wiring or nonwiring
representations (i.e., using Steps (4′) and (5′)).

Overall we find 168 301 classes of extremal {0, 1}-valued
effect, of which 124 698 are wiring representations. By gen-
erating all the symmetries of each, we can then compute the
total number of {0, 1}-valued effects to be 7 940 781 474, of
which 4 729 832 866 are wiring representations. Because of
the size, we only supply supplemental files with an element of
each class in this case [37].

B. Generalizations: More inputs and outputs

In the cases nI = 2 and nO = 2 we were only able to par-
tially solve the cases with N = 3 and 4. Increasing the number
of inputs and outputs further increases the complexity, but we
can make a few remarks. First, consider the case N = 2. It was
proven in [26] that the bipartite effect spaces also only contain
wirings. Using our code we enumerate the number of classes
for the first few cases, as well as the total number of effects
(see Table I). Data with the full set of extremal effects for
these cases can be found in the Supplemental Material [37].

TABLE I. Numbers of classes and effects for two parties with
various numbers of inputs and outputs. (We use a dash to indicate
that we did not compute this case). The number of classes in the case
nO = 2 will remain at 7 for any nI .

nO 2 3 4

Classes nI = 2 7 44 523
Classes nI = 3 7 48 −

Classes nI = 4 7 − −

Total nI = 2 82 8930 2977858
Total nI = 3 248 43400 −

Total nI = 4 562 − −

In the case N = 3, the only additional case we attempt is
nI = 3, nO = 2. Here we use the previous method to compute
the {0, 1}-valued effects, obtaining 79 classes of such effect
of which 76 are wirings and 3 are nonwirings. In total the
number of {0, 1}-valued effects is 505 136 which breaks down
as 449 840 wirings and 55 296 nonwirings. Again, these cases
can be found in the Supplemental Material [37].

Our codes can also be used for the enumeration of all
extremal effects in these scenarios (within the computational
limitations). We omit explicit characterizations here.

VII. APPLICATIONS OF NONWIRINGS

In this section we discuss some applications of nonwiring
measurements, focusing on those that outperform wirings.

A. State discrimination

Given a black box that outputs one of two possible (known)
states s1 and s2, with probability 1/2 each, the task is to choose
a measurement that gives the highest probability of correctly
guessing which state was produced given just one copy. When
trying to discriminate between two probability distributions
PX and QX , the guessing probability is

1
2 [1 + DC(PX , QX )],

where DC is the total variation distance (the subscript C
indicating classical), i.e., DC(P, Q) = 1

2

∑

x |PX (x) − QX (x)|.
In the case of two quantum states ρ1 and ρ2, this optimal
guessing probability is

1
2 max

E1,E2

[1 + DC({tr(E1ρ1), tr(E2ρ1)}, {tr(E1ρ2), tr(E2ρ2)})]

= 1
2

[

1 + DQ(ρ1, ρ2)
]

,

where {E1, E2} form a positive operator-valued measure
(POVM) and DQ is the trace distance (the subscript Q in-
dicating quantum), i.e., DQ(ρ1, ρ2) = 1

2 tr|ρ1 − ρ2| (see, e.g.,
[39,40]).

The analogous formula for box world is that the optimal
probability is

1
2 max

e1,e2

[1 + DC({〈e1, s1〉, 〈e2, s1〉}, {〈e1, s2〉, 〈e2, s2〉})]

= 1
2 max

e1

(1 + |〈e1, s1〉 − 〈e1, s2〉|),

where the first maximization is over all measurements {e1, e2}

and the second is over all effects e1. The optimum will always
be achieved by an extremal effect, hence, in cases where
we have computed all extremal effects, we can calculate it
by running over all of these. By analogy with the quan-
tum and classical cases, it is natural to define DB(s1, s2) :=
maxe1 |〈e1, s1〉 − 〈e1, s2〉| (it is not clear how to remove the
maximization from this expression in this case). The quantity
DB also satisfies the requirements of a distance measure [41].
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There are pairs of states that can be perfectly distinguished
with nonwirings, but for which the same is not true when only

wirings are considered. Examples for three two-input, two-
output systems are the states7

s1 = (177, 0, 183, 177, 183, 177, 0, 183, 88, 89, 0, 360, 184, 176, 92, 91, 184, 88, 176, 89, 92, 0, 91, 360, 52, 220, 36, 229,

54, 38, 222, 229, 0, 88, 92, 184, 360, 89, 91, 176, 52, 36, 54, 222, 220, 229, 38, 229, 54, 52, 38, 220, 222, 36, 229,

229, 34, 72, 72, 186, 72, 186, 186, 272)/1080, (6)

s2 = (177, 0, 183, 177, 183, 177, 0, 183, 88, 89, 360, 0, 175, 185, 92, 91, 175, 88, 185, 89, 92, 360, 91, 0, 227, 36, 221, 53,

229, 223, 38, 53, 360, 88, 92, 175, 0, 89, 91, 185, 227, 221, 229, 38, 36, 53, 223, 53, 229, 227, 223, 36, 38, 221, 53,

53, 269, 187, 187, 72, 187, 72, 72, 34)/1080. (7)

The optimal8 nonwiring effect, which perfectly distinguishes these, is the deterministic effect

e1 = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

[which satisfies 〈e1, s〉 = P(110|000) + P(011|001) + P(111|010) + P(100|100) for a general state s] from which one can
verify that 〈e1, s1〉 = 1 and 〈e1, s2〉 = 0. By running over all wiring effects find that the maximum guessing probability for
these two states using wirings is 5/6. This best possible distinguishing probability for wirings is achieved by the wiring

e′
1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

As the nonwiring extremal effects naturally split into those that are deterministic and those that are not, a natural question
is whether the advantages that the deterministic nonwiring e1 above exhibits for state discrimination can also be found for
nondeterministic ones. We find that this is the case, in the sense that there are pairs of states that can be perfectly distinguished
only by a nondeterministic nonwiring. Such examples are the states

t1 = (736, 753, 223, 1367, 1370, 205, 904, 922, 644, 845, 745, 845, 730, 845, 136, 1690, 455, 429, 504, 1691, 806, 1127,

1468, 0, 884, 0, 505, 1690, 243, 1690, 623, 845, 416, 471, 1127, 804, 1690, 487, 0, 1485, 887, 0, 241, 1690, 487, 1690,

640, 845, 416, 429, 1127, 846, 845, 1127, 845, 845, 0, 845, 1128, 845, 1127, 845, 0, 1690)/6480,

t2 = (124, 124, 279, 0, 0, 275, 137, 141, 0, 248, 98, 181, 94, 181, 278, 0, 305, 124, 98, 0, 0, 0, 137, 416, 0, 429, 98, 0, 0, 0,

372, 181, 124, 305, 0, 0, 0, 94, 416, 141, 0, 429, 0, 0, 94, 0, 376, 181, 124, 124, 0, 181, 181, 0, 235, 235, 0, 248, 0,

181, 0, 181, 470, 0)/1080

which are perfectly distinguished by the nonwiring defined by

f1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1,

1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)/2.

Using wirings and deterministic nonwirings we can only
correctly guess which of these two states is present with
probability at most 2423/2592 ≈ 0.935.

We can turn this problem around and ask which nonwirings
are advantageous for state discrimination (meaning that they
outperform wiring effects for some pair of states). For any
nonwiring effect e, this question can be answered, using a lin-
ear program. Let s1 and s2 be the two states to be distinguished

7See (2) for the ordering of the components.
8Note that we cannot run over all nonwiring effects in this case

because we have not computed them all. However, because we can
find a nonwiring effect that distinguishes with probability 1, this must
be optimal.

and μ be fixed. The linear program is

mins1,s2,ν ν

subject to s1, s2 � 0,

vNs1 = 1, vNs2 = 1,

MNS s1 = 0, MNS s2 = 0,

e(s1 − s2) = μ, MW(s1 − s2) � ν,

where vN is a vector that encodes the normalization con-
straints, and MNS and MW are matrices encoding the
nonsignaling constraints9 and wirings, respectively. (An

9The rows of MNS are the generators {ri} of the no-signaling moves,
for instance.
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inequality between a vector and a number is interpreted
elementwise.) A nonwiring e is advantageous if ν < μ. In the
case of perfect distinguishability, μ is set to 1. In order to find
any separation, μ could be taken as a variable that is optimized
and μ − ν maximized instead.

We have implemented this program in MATLAB, relying
on YALMIP [42] and MOSEK [43] to solve the linear pro-
grams. Using this program, various examples analogous to
the ones above can be found. Checking all effects mentioned
in Sec. VI A 2 with this program, we find that there are
also examples of nonwirings that only allow for distinguish-
ing states perfectly that can also be perfectly distinguished
with wirings. In addition, many of the effects outper-
form wirings with respect to the distinguishing probabilities
they achieve for some states, but without reaching perfect
distinguishability.

B. Nonlocality without entanglement

The phenomenon of quantum nonlocality without entan-

glement [28] describes the situation in which a set of product
effects are combined to make a measurement that cannot be
implemented by local operations and classical communica-
tion. In a sense these measurements are the quantum analog of
nonwirings. Analogously to [28], we construct a set of eight
states and an eight-outcome measurement that can perfectly
distinguish these, while they are not perfectly distinguishable
with wirings. Our states are

s1 = t3 ⊗ t4 ⊗ t2, s2 = t1 ⊗ t4 ⊗ t2, s3 = t4 ⊗ t2 ⊗ t3,

s4 = t4 ⊗ t2 ⊗ t1, s5 = t1 ⊗ t1 ⊗ t3, s6 = t1 ⊗ t3 ⊗ t1,

s7 = t3 ⊗ t1 ⊗ t4, s8 = t3 ⊗ t1 ⊗ t2,

where t1 = (1, 0 | 1, 0), t2 = (1, 0 | 0, 1), t3 = (0, 1 | 1, 0),
t4 = (0, 1 | 0, 1) following the notation from (1). These can
be perfectly distinguished by the measurement defined by the
effects that for any state s behave as

〈e1, s〉 = P(110|000), 〈e2, s〉 = P(011|001),

〈e3, s〉 = P(111|010), 〈e4, s〉 = P(100|100),

〈e5, s〉 = P(001|000), 〈e6, s〉 = P(010|001),

〈e7, s〉 = P(101|010), 〈e8, s〉 = P(000|100).

To show that no wiring can achieve perfect distinguishability
of these eight states, we have enumerated all deterministic
eight-outcome wiring measurements. We find that the maxi-
mum guessing probability achievable with a wiring when the
states are chosen uniformly is 7/8. This is achieved by the
wiring with effects satisfying10

〈e1, s〉 = P(110|000), 〈e2, s〉 = P(010|000),

〈e3, s〉 = P(111|010), 〈e4, s〉 = P(100|100),

〈e5, s〉 = P(001|000), 〈e6, s〉 = P(011|000),

〈e7, s〉 = P(101|010), 〈e8, s〉 = P(000|100).

10This corresponds to input x3 = 0, if a3 = 0, input x2 = 0 then
x1 = a2 ⊕ 1, while if a3 = 1, input x1 = 0 then x2 = a1.

Our example disproves Observation 1 from [44]. Indeed
we show that these eight states cannot be perfectly dis-
tinguished with one-way LOCC in box world, while a
global measurement achieves this. We see this as an in-
dication that it is not the local indistinguishability within
pairs of local states that causes this phenomenon in this
example but rather the existence of separable but global
measurements.

Note that, on the other hand, an analog to the bipartite
(nine-state) example from [28,45] cannot be constructed since
all bipartite measurements in box world (even in higher di-
mensions) are wirings [26]. In box world all measurements
are separable so a distinction between separable and en-
tangled measurements cannot be made. That we can still
demonstrate that separable measurements outperform wiring
measurements suggests that in some contexts, comparing sep-
arable and wiring measurements may be more natural than
comparing separable and entangled measurements, although
in others, e.g., when considering teleportation, entangled mea-
surements are required.

C. Nonlocality distillation

Consider two parties, Alice and Bob, who hold parts of t

bipartite systems, with each subsystem having two inputs and
two outputs. For simplicity, take these t systems to be identical
(with state ŝ). A nonlocality distillation protocol seeks to use
these t systems to give a larger violation of a Bell inequality
than is possible with only 1. The most general strategy is for
each party to associate a t-system two-outcome measurement
with each possible input. Such measurements have the form
{e, u − e} and so can be expressed in terms of one effect.
Thus, the overall strategy can be expressed using four effects
that act on t systems (one for each of Alice’s inputs and one
for each of Bob’s inputs). Because the individual states are
identical, the overall starting state is the t-fold tensor product
s = ŝ⊗t . If ex are the effects associated with outcome 0 when
Alice’s input is x, and fy are likewise those for Bob, then the
outcome probabilities are given by P′(00|xy) = 〈ex ⊗ fy, s〉,
P′(01|xy) = 〈ex ⊗ (u − fy), s〉, etc., where the tensor factors
need to be matched appropriately (s ∈ SA1B1A2B2...At Bt

, ex ∈

EA1A2...At
, and fy ∈ EB1B2...Bt

). That the overall effect is a ten-
sor product reflects the independence of Alice’s and Bob’s
operations. The idea of nonlocality distillation is to choose
the four effects e0, e1, f0, and f1 so as to maximize the
violation of a Bell inequality in the resulting distribution
P′(ab|xy). Figure 2 depicts this intuitively for three shared
systems.

For systems with two inputs and two outputs, the only
extremal Bell inequality (up to symmetry) is the Clauser-
Horne-Shimony-Holt (CHSH) inequality, which we can
express as CHSH[P(ab|xy)] = E00 + E01 + E10 − E11, with
Exy = P(a = b|xy) − P(a �= b|xy). We hence use this as our
measure of nonlocality. Since optimizing over all effects for
one party is a linear program, we can run over all extremal
effects for Alice and do a linear program for Bob to determine
the optimal strategy for CHSH-value distillation given three
shared systems [46] (in principle we could also do four, but,
given the number of effects, the computation time is pro-
hibitive).
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FIG. 2. Illustration of nonlocality distillation in the case t = 3.
The gray boxes represent the identical initial bipartite states. The
outer black frame represents the final correlations P′. The dashed
ovals indicate the systems the measurements are performed on (left
for Alice; right for Bob).

We perform the optimization for states taken from two
two-dimensional cross sections of the set of nonsignaling
distributions. To describe these cross sections, we use
PL

i (ab|xy) = δa,μx⊕ν δb,σy⊕τ for μ, ν, σ, τ ∈ {0, 1}, i = 1 +

τ + 2σ + 4ν + 8μ, to enumerate the set of 16 local determin-
istic boxes, and PNL

i (ab|xy) = 1
2δa⊕b,xy⊕μx⊕νy⊕σ for μ, ν, σ ∈

{0, 1}, i = 1 + σ + 2ν + 4μ, to denote the set of eight ex-
tremal no-signaling boxes [1,35]. In terms of these, the cross
sections we have examined are

CS I : ωPNL
1 +

η

2

(

PL
1 + PL

6

)

+ (1 − ω − η)PO,

(8)
CS III : ωPNL

1 +
η

2

(

PL
1 + PL

9

)

+ (1 − ω − η)PO,

where PO = 3/4PNL
1 + 1/4PNL

2 is local and η, ω � 0 with
η + ω � 1. The labeling of these cross sections is chosen to
follow [46], and the reason we use them is because they have
been considered previously.

For the case t = 3, the effects found to give rise to CHSH
distillation are given below (expressed in terms of their inner
product with an arbitrary tripartite state, represented by the
ovals in Fig. 2). On Alice’s side

〈e0, s〉 = P(000|000) + P(011|000) + P(101|000)

+ P(110|000),

〈u − e0, s〉 = P(001|000) + P(010|000) + P(100|000)

+ P(111|000),

〈e1, s〉 = P(111|011) + P(100|101) + P(001|110)

+ P(010|111),

〈u − e1, s〉 = P(011|011) + P(110|101) + P(000|110)

+ P(101|111), (9)

while on Bob’s

〈 f0, s〉 = P(011|011) + P(110|101) + P(000|110)

+ P(101|111),

〈u − f0, s〉 = P(111|011) + P(100|101) + P(001|110)

+ P(010|111),

〈 f1, s〉 = P(101|000) + P(000|001) + P(110|010)

+ P(011|100),

〈u − f1, s〉 = P(010|000) + P(001|001) + P(100|010)

+ P(111|100). (10)

Note that e1, f0, and f1 are not wirings. Referring again to
Fig. 2, three systems characterized by identical states, each
corresponding to coordinates (η, ω) in CS I or CS III and
initial nonlocality CHSHi = 2(1 + ω), get distilled through
the protocol consisting of the effects (9) and (10), and the final
nonlocality (that of the P′ correlations) is

CHSHI
f = 1

32 [7ω3 − 15η3 + 33ω2 + 57ω + 3η2(7 + 11ω)

+ 3η(9 + 26ω + 13ω2) + 31], (11)

CHSHIII
f = 1

32 [7ω3 + 5η3 + 33ω2 + 57ω + η2(13 + 25ω)

+ 3η(5 + 18ω + 9ω2) + 31]. (12)

The distillable region (where CHSHf > CHSHi) for the pro-
tocol is shown in Fig. 3 for the two cross sections, CS I and
CS III.

D. Limitations for information processing with wirings

and box world’s nonwiring operations

Despite the advantages we managed to demonstrate above,
access to nonwirings in box world does not unlock the same
potential as access to measurements that cannot be imple-
mented as local measurements and classical communication
in quantum mechanics does. In particular, all measurements
in box world are separable [26] (i.e., can be expressed as a
sum of product effects), which leads to various restrictions.
For instance, teleportation and entanglement swapping are
impossible in box world [8,26,27]. This directly implies that
entanglement swapping is also not possible in the multipartite
setting (i.e., with nonwirings). A direct proof of this, which
also applies to other GPTs, is obtained by following the same
lines of reasoning as Lemma 2 of [50].

E. Box-world effects in other GPTs

Wirings correspond to a classical processing of inputs and
outcomes from measurements and as such the inputs and
outcomes of any GPT can be connected by wirings. We show
here that from the effects derived in this work, including non-
wiring effects, we can indeed construct valid effects for any
other GPT.

Consider a single system that is fully characterized
by nI inputs and nO outcomes and call the SBV effects
e1,1, . . . , enI ,nO

, where ei, j is the effect that has an entry 1
for the ith input and jth outcome and is zero otherwise. For
N parties, the effects {ei1, j1 ⊗ · · · ⊗ eiN , jN }i1,...,iN , j1,..., jN span
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FIG. 3. The red lines show the boundary of the distillable regions using our nonwiring protocol, in different cross sections of the (2,2,2)
no-signaling polytope. The dotted curves represent the boundary of the quantum realizable correlations. On the left, the blue curve represents
the boundary of the distillable region using the XOR protocol of [47], while the green one represents correlations that can be distilled through
the OR protocols of [46]. The red shaded area shows where our nonwiring protocol achieves higher final CHSH values than the protocols of
[46–49] (for the protocol of [49], the comparison has been made with both its two-copy and three-copy versions). Note that in CS III there is
no two-copy protocol that can distill any of the states [46].

the effect cone of all box-world effects. Thus, the effects we
derived above for N parties can be written in terms of the local
effects as

e =

nI
∑

i1,...,iN =1

nO
∑

j1,..., jN =1

λi1,...,iN , j1,..., jN ei1, j1 ⊗ · · · ⊗ eiN , jN ,

where λi1,...,iN , j1,..., jN are some coefficients (which can be taken
to be positive, cf. Lemma 5). Now, as we know that any valid
effect is valid on any valid state, i.e., 0 � 〈e, s〉 � 1, we also
have

0 �

nI
∑

i1,...,iN =1

nO
∑

j1,..., jN =1

λi1,...,iN , j1,..., jN P( j1, . . . , jN |i1, . . . , iN )

� 1,

where P( j1, . . . , jN |i1, . . . , iN ) is any no-signaling distribu-
tion. This holds because the state space in box world is in 1:1
correspondence with the set of all no-signaling distributions of
which the effects {ei1, j1 ⊗ · · · ⊗ eiN , jN }i1,...,iN , j1,..., jN essentially
just pick out elements.

Performing local measurements on N-party states leads
to nonsignaling correlations in any GPT since nonsignaling
is one of the underlying assumptions. This implies that the
correlations arising from performing any local measurements
on an N-party system are mapped to a probability by the map
defined by the coefficients {λi1,...,iN , j1,..., jN }i1,...,iN , j1,..., jN . This
means that for any GPT we can build valid effects from the
ones we derived for box world, namely, using these same
coefficients:

f =

nI
∑

i1,...,iN =1

nO
∑

j1,..., jN =1

λi1,...,iN , j1,..., jN fi1, j1 ⊗ · · · ⊗ fiN , jN ,

where the fi, j are local effects in the GPT of interest.

Note that a special case of the above is that in any GPT in
which SBVs are valid local effects, all the effects found by
our algorithms are directly valid. Furthermore, the state space
of a GPT can always be expressed in terms of the outcome
probabilities of a set of fiducial measurements. Having made
the transformation needed for this representation, the SBVs
are local effects.

VIII. THE SIGNIFICANCE OF WIRING AND NONWIRING

OPERATIONS BEYOND GPTS

The polytope spanned by all identity effects in box world
in any (N, nI , nO) scenario is of interest beyond the scope
of box world and even beyond the scope of GPTs. This is
illustrated with the following two connections to other areas of
quantum foundations. This means that our Algorithm 2 may
be of more general interest in the future in the sense that it
allows us to construct logically consistent classical processes
without causal order as well as compositions of contextuality
scenarios.

A. Logically consistent classical processes

We also remark that the polytope of all identity effects
in box world is equivalent to that of the logically consistent
classical processes, which was computed in [23].11 Since ex-
tremal effects for a single system in box world are SBVs in
the (nI nO)N -dimensional representation (and coarse graining
of these), operationally, any extremal local measurement can
be performed by choosing an input and then potentially coarse

11This includes not only the {0, 1}-valued identity effects but the
whole polytope.
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graining the outcome, which is a classical process.12 This
explains the correspondence between performing multisys-
tem measurements on box-world systems and the ways these
classical local operations can be consistently connected. This
correspondence extends: for any number of inputs and outputs
the logically consistent classical processes can be understood
in terms of the (identity) measurements of a GPT, namely, box
world. This operational way of thinking about the logically
consistent operations may aid our understanding of such op-
erations.

B. Composing contextuality scenarios

Contextuality is a notion that captures the lack of prede-
termined outcomes in quantum measurements, as these may
depend on the context in which the measurements are per-
formed. There are various approaches capturing this notion,
starting from the original work of Kochen and Specker [51]. In
[25], the composition of contextuality scenarios was analyzed,
following the approach to contextuality from [24]. Accord-
ing to this approach, a contextuality scenario is represented
by a hypergraph (W, M ), where the vertices e ∈ W repre-
sent events of a specific outcome occurring and hyperedges
m ∈ M correspond to collections of events that make up a
measurement.13 These edges may overlap on some vertices,
meaning that the respective event can occur as part of several
measurements. In a noncontextual model, each vertex can be
assigned a probability since the event occurs with the same
frequency no matter which of the measurements it is part of
is performed (in a contextual model the probability will in
general also depend on the measurement). The probabilistic
models that are allowed then further depend on the underlying
theory (e.g., classical, quantum, or more general).

These contextuality scenarios can then also be considered
in the multiparty regime, meaning that independent contex-
tuality scenarios for several independent systems are turned
into a single scenario for the joint system. This means that for
two systems A, B for each of which a contextualtiy scenario
(WA, MA), (WB, MB) is given, a joint scenario (WAB, MAB) with
events eAB = (eA, eB) ∈ WAB, eA ∈ WA, eB ∈ WB is constructed
in a way that the probabilistic models defined on the hyper-
graph satisfy the nonsignaling principle. Depending on the set
MAB that is constructed for this purpose, we speak about a
different product. While in the case of two contextuality sce-
narios there is a unique way to compose them [52], namely, by
means of the Foulis-Randall (FR) product, in [24,25] different
ways to compose more than two such scenarios, all respecting
the nonsignaling principle, were proposed.

Our multipartite {0, 1}-valued effects can be seen as ways
to combine products of deterministic local effects into mul-
tipartite measurements for our (nonsignaling) GPT systems,
which indeed amounts to the same mathematical problem

12Note that in the language of [23] a process being classical does
not necessarily mean that the theory considered is classical in the
GPT sense, i.e., classical probability theory.

13In graph theory, vertices are usually V and edges E ; the notation is
different here because in a noncontextual model vertices correspond
to effects and hyperedges to measurements.

as composing contextuality scenarios. Local deterministic ef-
fects correspond to the events v and the identity effects to
the edges e in these multiparty scenarios. Thus, our Algo-
rithm 1 can be seen as a way to construct compositions of
contextuality scenarios. Specifically, this algorithm constructs
a product known as the disjunctive FR product in [25]. The
subset of wiring effects identified by Algorithm 3 constructs
the maximal FR product from [25].

The existence of extremal identity effects that are not {0, 1}

valued further show that there is a more general way to com-
bine single-system effects compatibly with nonsignaling. This
reasoning could also be applied to the events in a contextuality
scenario. This suggests that the hypergraph formalism for
describing contextuality scenarios needs to be extended to
include a new concept that generalizes the notion of a hyper-
edge. This generalization requires a weight for each element
of the hyperedge. [This can be easily added within the matrix
representation of the hypergraph which works as follows.
Each column corresponds to a vertex and each row denotes
a hyperedge with a 1 meaning the vertex of the corresponding
column is in the hyperedge and a 0 meaning it is not. In the
generalization, the matrix is no longer restricted to contain
only elements of {0, 1}.] It would be interesting to explore the
significance of this for noncontextuality in more detail.

IX. CONCLUSION

Characterizing measurements in theories beyond quantum
theory allows us to better explore the possibilities for in-
formation processing in such theories and, in turn, helps us
understand what is special about quantum theory itself. In this
paper we have explored ways to generate all the effects present
in a maximally nonlocal alternative theory, box world. We
have been able to find all the deterministic effects in several
scenarios, dividing them into wirings and nonwirings, and
also found many classes of nondeterministic effect. Although
we have focused on box world, theories with fewer states have
fewer constraints on allowed effects (under the no-restriction
hypothesis) and hence the effects we have found are applica-
ble in a wide range of GPTs (see Sec. VII E).14

The effects we have found are also relevant for studies of
logically consistent classical processes and for compositions
of contextuality scenarios, where our findings suggest the
need to extend the hypergraph formalism for dealing with
these. We have applied our findings to several applications,
demonstrating advantages of both deterministic and nondeter-
ministic nonwirings. In particular, we showed that, contrary
to previous claims, examples of nonlocality without entan-
glement also appear in box world. We remark here that the
existence of further examples of quantum nonlocality without
entanglement has recently been shown in the literature, using
a construction based on classical processes without causal
order [54,55]. Due to the correspondences we establish in
Secs. VIII A and VII E, any such example can likely be turned
directly into an example for other GPTs.

In quantum theory there is often focus on entangled mea-
surements, but there are other types of joint measurement

14Removing states can also lead to nonseparable effects [53].
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(see, e.g., [28]) whose power would be useful to explore.
Since box world has no nonseparable effects and is somewhat
limited with respect to its reversible dynamics [56], it would
be interesting to complement our investigations with those of
possible measurements in no-signaling theories with restricted
nonlocality.

Aspects of this work appeared in GE’s Ph.D.
thesis [57].
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