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Abstract. Verifying learning robotic systems is challenging. Existing
techniques and tools for verification of an artificial neural network (ANN)
are concerned with component-level properties. Here, we deal with robotic
systems whose control software uses ANN components, and with prop-
erties of that software that may depend on all components. Our focus is
on trained fully connected ReLU neural networks for control. We present
an approach to (1) modelling ANN components as part of behavioural
models for control software and (2) verification using traditional and
ANN-specific verification tools. We describe our results in the context
of RoboChart, a domain-specific modelling language for robotics with
support for formal verification. We describe our modelling notation and
a strategy for automated proof using Isabelle and Marabou, for example.
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1 Introduction

Artificial neural networks (ANN) are effective, powerful, and widely used [20].
They have been proposed for use in control software for robotic systems, per-
forming various tasks such as collision detection [2, 1], and path finding [16].
When ANN components are used instead of non-ML components, they can in-
crease time and space efficiency [20]. In addition, ANN-based systems are highly
adaptable to new data and environments [7]. On the other hand, the behaviour
of an ANN is highly dependent on the training data used in its development.
There is, therefore, great interest in several forms of verification to ensure that
an ANN-based system satisfies key properties of concern.

Existing formal-verification work focuses on ANN components. The other
components are either considered informally to generate a specification [6, 19],
or not at all. Here, we define a framework to model and verify the entire control
software; we refer to such properties as module-level properties.

Several domain-specific languages support model-based software engineering
in robotics [27]. Most, however, are not focused on verification. RoboChart [25]
is distinctive in its support for verification by model checking and theorem prov-
ing. Our framework uses a denotational process-algebraic semantics for ANN
components that integrates with the RoboChart semantics. We use it to enable
verification mechanised using Isabelle/UTP [12] and Marabou [22], for instance.
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The semantics of RoboChart is described in the CSP process algebra [32].
CSP enables verification via model checking [13], but is also a front-end to a
predicative alphabetised relational theory described using the Unifying Theories
of Programming [14] (UTP) for theorem proving.

We introduce novel ANN components in RoboChart, giving them a CSP
semantics. To support tractable verification, we model fully connected ReLU pre-
trained ANNs [28]. Our semantics, however, supports any activation function,
allowing additional tool integration. For proof, we use the UTP encoding of CSP.

In summary, our contributions are as follows. First, we describe a (RoboChart)
ANN component with formal semantics. Second, we present an approach to ver-
ification that can be mechanised using Isabelle/UTP and Marabou in combina-
tion. In a recent survey [4], we have found that Marabou proved a collection
of properties we identified twice as fast when compared with 13 other tools.
To cater for numerical uncertainty, we use a new notion of conformance with a
precision parameter defined in terms of refinement.

Next, in Sect. 2, we provide the background to our work. Sect. 3 presents
our ANN components in RoboChart. Sect. 4 describes a semantics, and Sect. 5
discusses verification. Sect. 6 concludes and considers related and future work.

2 Background

We introduce in this section two concepts essential to our work. Sect. 2.1 briefly
introduces ANNs, and Sect. 2.2 introduces CSP and UTP.

2.1 ANNs

An ANN is an abstraction of a nervous system of interconnected neurons: cells
with multiple forms and components in biological neural networks. Information is
stored at synapses: contact points between different neurons. The basic function
of a neuron is to receive several electrical signals from other neurons through
dendrites and then to produce an output signal to send to other neurons through
an axon. The neuron’s body determines the output signal sent by the axon.

ANN’s approximate biological neurons through nodes (artificial neurons),
graphically represented in Figure 1. Dendrites are modelled by input channels
from other nodes. Synapses are modelled by assigning a separate weighting for
each node connection. The axon is modelled by a single output value from the
nodes. The cell body is modelled by a function assigned to each node, referred
to as an activation function, which models the output value decision-making.

In a deep neural network, nodes are arranged in layers. Each node is also
assigned a value referred to as a bias. The weights and the biases are parameters
of the ANN learnt from training data. Figure 2 shows the overall structure of an
ANN, with each line representing a connection from the left to the right layer.
The weights of each layer can be represented as a matrix, with one value for the
connection of a node in the layer to a node in the previous layer. The bias of a
layer can be represented as a vector, with a value for each node.
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Fig. 1. A basic biological neuron from [26] and a basic node from [31]; w represents
the synapses, the input connections represent the dendrites, f represents the cell body,
and the output connection represents the axon.

Fig. 2. An abstract neural network from [21].

We can consider an ANN as the definition of a function F : Rn → Rm

based on training data. (Any training process can be used.) Every node takes
the weighted sum of the outputs of nodes of the previous layer and applies a bias
and a non-linear activation function to this result. This work considers only the
ReLU activation function: f (x ) = max (0, x ).

The ReLU activation function is faster to train, easier to optimise, and per-
forms and generalises well [28]. ReLU is also piecewise linear, which can be viewed
as the composition of multiple linear functions. Piecewise linearity has positive
implications in implementation, optimisation and verification as opposed to fully
non-linear functions such as sigmoid or tanh. Furthermore, ReLU can eliminate
the vanishing gradient problem (preventing the weight from changing value), is
widely used, and can achieve state-of-the-art results [23].

2.2 CSP and UTP

Communicating Sequential Processes (CSP) [15] is a notation for modelling,
validating, and verifying reactive programs via refinement.

A CSP model describes a set of processes defining interaction patterns of a
mechanism. Processes interact with each other and their environment via atomic
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Table 1. CSP Operators. Here, we use P and Q as metavariables to stand for processes,
cs to stand for a channel set, defining a set of events potentially based on channels,
e to stand for an event, i for an index, and T for a finite type. In addition, for the
replicated (iterated) operators, a(i) stands a set of events identified by an index, and
similarly, P(i) is a process identified by the index i .

Symbol Name Symbol Name

Skip Skip e → P Prefix

P |[ cs ]|Q Parallel Composition ‖ i : T • [a(i)]P(i) Replicated Parallel

P ||| Q Interleaving ||| i : T • P(i) Replicated Interleaving

PΘcsQ Exception P \ cs Hiding

and instantaneous events representing channel communications. The set of all
events a process can engage in is named Σ [33]. We present the CSP operators
we use in Tab. 1; they are further described as we use them.

UTP is a semantic framework to describe concepts to give denotational se-
mantics to a wide range of computational paradigms. UTP is based on a pred-
icative alphabetised relational calculus. In UTP, a theory describes a semantic
domain, characterising relations by predicates with a given alphabet and satis-
fying given healthiness conditions. Theories can be combined to define the se-
mantics of richer languages. So, there is support to extend our work to consider
languages other than RoboChart that define reactive behaviours, but perhaps
also include notions of continuous time [9] and probability [39], for instance.

All UTP theories describe relations between observations of variables. The
change in an observation x is captured by the relation between the before value
of the observation (named x ) and its after value (named x ′).

We use the UTP theory of reactive contracts [10], which gives semantics to
state-rich CSP processes and has a large set of algebraic laws for verification.
The observational variables of this theory are st , st ′, ok , ok ′, wait , wait ′, tt ,
ref , and ref ′. The variables st and st ′ record the programming state of the
process: its variables. The Boolean variables ok and ok ′ record the process’s sta-
bility. The Boolean variables wait and wait ′ identify when the process is waiting
for interaction with the environment. So, ok ′ and ¬ wait ′ indicate termination.

The sequence tt describes the trace of events in the life of the process up to
the moment of observation: it is the difference between the trace of all events at
the moment of observation and the trace as it was at the initiation of the current
process. There is no tt ′ because tt is defined as tr ′ − tr , where tr and tr ′ record
the traces of the process. The set ref ′ records the events that the process cannot
perform when it next makes visible progress. This set is known as the process’s
refusals. A healthiness condition makes the value of ref irrelevant, as a process
cannot depend on what was being refused before it started.

Reactive contracts take the form [ R1[tt , st ] ` R2[tt , st , ref ′] | R3[tt , st , st ′] ].
The square brackets define the observational variables to which each predicate
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can refer. The precondition, R1, describes conditions on the pre-state st and the
trace tt . The postcondition R3 describes a condition on the state st , the state
update st ′, and the final value of tt . In addition, we have a third predicate R2,
which is called a pericondition. It captures the observations that can be made
of a process when in a quiescent but not final state, that is, when it awaits its
environment’s interaction. The pericondition defines a condition on the pre-state
st , the value of the trace tt , and which events are refused by referring to ref ′.

Here, in defining reactive contracts, we use operators E [t ,E ] and Φ[t ], which
are simplified versions of those in Def. 4.6 from [11], where we consider that
a CSP process does not have state variables. With E [t ,E ], we can construct
a pericondition stating that t has been observed and the events in E are not
refused. On the other hand, Φ[t ] constructs a postcondition, stating that the
final trace observed is characterised by t . Finally, we use {| c |} to denote the
set of all events for the channel c, communicating values according to type of c.

Next, we introduce our novel ANN components in RoboChart.

3 Modelling ANN Components in RoboChart

RoboChart is a diagrammatic modelling language that can be used to define
a simple component model and behaviour of control software for robotics. In
RoboChart, the overall software of is represented by a module block, which
identifies one or more controllers interacting with a robotic platform. The block
for a robotic platform specifies an abstraction of the hardware and its embedded
software via events and operations representing services provided by the robot
and used by the software. A controller block defines a thread of control, engaging
in events, calling platform operations, and communicating with other controllers.
One or more (parallel) state machines define the behaviour of a controller.

In our work, we extend RoboChart with a new form of controller defined by
an ANN block. In Fig. 3, we present a RoboChart module for a Segway robot
that includes an ANN component AnglePIDANN. This module, called Segway,
contains a robotic platform SegwayRP, a standard controller SegwayController,
and an ANN controller AnglePIDANN. SegwayRP has events representing data
provided by the segway sensors and operations to control movement via the
segway motors. SegwayController describes the behaviour of this system, defined
through three state machines: BalanceSTM, RotationPID and SpeedPID.

As shown in Fig. 3, the block SegwayController has three blocks that repre-
sent references to its state machines, which are omitted here, but are available
in [3]. SegwayController has a cyclic behaviour defined by BalanceSTM, which
updates the motor speeds using the outputs of the PID machines and of the
AnglePIDANN controller to keep the segway upright. In the original version of
this example, there is a third state machine AnglePID. In our version here, we
have an ANN instead, with the same interface. Just like AnglePID, the ANN
component AnglePIDANN accepts as input the events anewError and adiff and
communicates its output through the event angleOutputE.
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Fig. 3. A parallel version of the Segway model with an ANN component.

Legend: : Module, : controller definition, : connection, : constant, :

robotic platform reference, : state machine reference, : ANN component.

The block for an ANN component (marked using the symbol ) has its
behaviour defined by the following parameters. First, we have the ANN’s input
and output sizes, representing the sizes of the vector the ANN is trained on
for input and output. Next, we specify a parameter file that defines the layer
structure, giving, for each layer, the weights and bias, and the activation function.

An ANN controller operates as a slave component. It can communicate with
other controllers via events. The types of the events are restricted: they can either
contain one event for every input and output, providing a scalar representation of
the ANN, or precisely two events, capturing a vector representation for the inputs
and outputs. In our example, we define multiple events (that communicate scalar
values) to represent the inputs and output, as our ANN is low-dimensional. We
declare two input events anewError and adiff, as the Input Size of AnglePIDANN
is 2, and one output event angleOutputE, as the Output Size is 1.

The metamodel for our RoboChart extension is very simple; details are given
in [3]. Principally, we have a class ANNController to represent a controller defined
using an ANN. It defines the parameters of an ANN so that we have specifications
for the values of six properties: insize, the input size of the ANN; outsize, the



Modelling and Verifying Robotic Software that uses Neural Networks 7

output size of the ANN; layerstructure, defining the size of each layer, and weights
and biases, defining the weights and biases of the ANN. RoboChart’s type system
is based on Z [38, 35]. Hence, we can represent real numbers using the approach
in [30]. Although different layers of an ANN can use different functions, we
assume all layers use just one function. Extending our work to consider additional
functions and different functions in different layers is straightforward.

The following section discusses the semantics of ANNControllers.

4 CSP Semantics

Our semantics defines constants to capture the metamodel. They are insize : N,
outsize : N, and layerstructure : seqN. In addition, layerNo : N and maxSize : N
record properties of layerstructure: its length, and its largest element. Finally,
we have weights : seq(seq(seq(Value))) and biases : seq(seq(Value)).

Value is a type that represents the data communicated by our ANN. This
is defined based on the types used in the ANN component in RoboChart. Some
examples of the types that can be used are floating-point, integer, or binary
values. If there are various ANN components, there is a definition of a type
Value for each of them. Equally, constants such as layerstructure, maxSize, and
the others mentioned here are defined for each component.

The semantics of an ANN component is a process presented in Fig. 4. It is
defined by parallel composition of processes representing nodes and layers.

We use two channels. The first layerRes : {0 . . layerNo}.{1 . .maxSize}.Value
is used to communicate with other processes in the RoboChart semantics and for
inter-layer communications. An event layerRes.l .n.v represents the communica-
tion of a value v to or from the process for the nth node in the process for the lth
layer. The channel nodeOut : {1 . . layerNo}.{1 . .maxSize}.{1 . .maxSize}.Value
is for intra-node communication; nodeOut .l .n.i .v refers to the layer, node and
value as for layerRes. The additional index value i identifies the node in the
following layer (of index l + 1) that receives this communication.

In our semantics, we treat inputs to the ANN process as events on the chan-
nel layerRes, with 0 as the first argument’s value. In this way, events layerRes.0
represent inputs to the ANN process from other components in the RoboChart
model. All other communications on layerRes represent results from layer pro-
cesses. Events layerRes.layerNo represent the outputs of the ANN.

Fig. 4 presents the specification of a process ANN , defining the semantics
for an ANNController. It terminates (Skip) on the occurrence of a special event
end , as determined using the exception operator Θend . This is an event raised by
other controllers when all state machines terminate. An ANN does not terminate
in any other way, so termination is determined by the other controllers.

The operator P |[ cs ]|Q describes the process whose behaviour is defined by
those of P and Q , synchronising on all events in the set cs. Also, P \ cs defines
a process that behaves as P , but its events from the set cs are hidden. ANN
composes in parallel the processes HiddenLayers and OutputLayer , then repeats
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ANN =
((HiddenLayers |[ {| layerRes.(layerNo − 1) |} ]|OutputLayer) \ ANNHiddenEvts
Θend Skip);
ANN

ANNHiddenEvts = Σ \ {| layerRes.0, layerRes.layerNo, end |}

HiddenLayers = ‖ i : 1 . . layerNo − 1 • [ {| layerRes.(i − 1), layerRes.i |} ]

HiddenLayer(i , layerSize(i), layerSize(i − 1))

HiddenLayer(l , s, inpSize) = ‖ i : 1 . . s • [{| layerRes.(l − 1) |}]Node(l , i , inpSize)

Node(l ,n, inpSize) =

( (||| i : 1 . . inpSize • NodeIn(l ,n, i))

|[ {| nodeOut .l .n |} ]|
Collator(l ,n, inpSize) ) \ {| nodeOut |}

NodeIn(l ,n, i) = layerRes.(l − 1).n?x → nodeOut .l .n.i !(x ∗ weight)→ Skip

Collator(l ,n, inpSize) = let
C (l ,n, 0, sum) = layerRes.l .n!(ReLU (sum + bias))→ Skip
C (l ,n, i , sum) = nodeOut .l .n.i?x → C (l ,n, (i − 1), (sum + x ))

within
C (l ,n, inpSize, 0)

OutputLayer = ‖ i : 1 . . layerSize(layerNo) • [ {| layerRes.(layerNo − 1) |} ]

Node(layerNo, i , layerSize(layerNo − 1))

Fig. 4. CSP ANN Semantics - General.

via a recursive call. Since the OutputLayer communicates only with the last
hidden layer, these processes synchronise on the events layerRes.(layerNo − 1).

All events in ANNHiddenEvts are hidden. This includes all events (Σ), except
those of layerRes.0, representing inputs, layerRes.layerNo, representing outputs,
and end . These define the visible behaviour of an ANNController.

We define the process HiddenLayers via an iterated alphabetised parallel
composition (‖) over an index i for hidden layers ranging from 1 to layerNo−1.

For each i , the layer-process HiddenLayer(i , layerSize(i), layerSize(i − 1)) for
the ith layer is associated with the alphabet containing the set of events on
layerRes.(i − 1) and layerRes.i . In an iterated alphabetised parallelism, the
parallel processes synchronise on the intersection of their alphabets. So, a layer-
process HiddenLayers synchronises with the process for the previous layer on
layerRes.(i − 1) and the process for the following layer on layerRes.i . So, the
output events of each layer are used as the input events for the next layer.

The second argument layerSize(i) passed to a layer process is the value of
the i -th element of layerstructure, that is, the number of nodes in the i -th layer
if i is greater than 0, and insize when i is 0. Similarly, the third argument



Modelling and Verifying Robotic Software that uses Neural Networks 9

layerSize(i − 1) concerns the layer i − 1. In our example, layerNo − 1 is 1, and
there is a single HiddenLayer process, instantiated with arguments 1, 1, and 2.
These are the values of insize and layerstructure(1) for the example.

HiddenLayer(l , s, inpSize) is also defined by an iterated alphabetised par-
allelism: over an index i ranging from 1 to s, to compose s node processes
Node(l , i , inpSize) interacting via events in {| layerRes.(layer − 1) |}. This set
contains all events the previous layer’s node processes use for output because a
node process requires the outputs from all nodes in the previous layer.

The Node(l ,n, inpSize) process represents the nth node in the layer l , which
has inpSize inputs. We define Node(l ,n, inpSize) as the parallel composition of
interleaved NodeIn(l ,n, i) processes, with i ranging over 1 to inpSize, and a
Collator(l ,n, inpSize) process. Interleaved processes (|||) do not synchronise.

NodeIn(l ,n, i) captures a weight application to an input. A NodeIn pro-
cess receives inputs via layerRes.(l − 1).n and communicates its output through
nodeOut .l .n.i . The output of NodeIn(l ,n, i) is its input weighted by the con-
stant weight , which is given by the expression weights l n i . After engaging in
this output event, NodeIn terminates (Skip).

An input of a value x via a channel c can be specified in CSP using the
prefixing construct c?x → P , which defines the process that engages in an event
c.x and behaves like P . This process accepts inputs x over the channel c’s
type. The output prefix c!v → P is a process that outputs (synchronises) on
the specific event c.v and then behaves like P . Collator(l ,n, inpSize) sums all
values output by the NodeIn processes and applies the bias value, given by
biases l n. The output of Collator(l ,n, inpSize) on layerRes is the output of
the node process. The definition of Collator(l ,n, inpSize) uses a local recursive
process C (l ,n, i , sum); its extra argument is the accumulated sum of the outputs.
In the base case C (layer ,node, 0, sum), we have an output sum, with the bias
term applied, subject to the activation function ReLU . In the recursive case
C (layer ,node, i , sum), we get an input x via nodeOut .l .n.i , and a recursive call
whose arguments are a descending index i − 1, and the sum of x and sum.

Finally, the definition of OutputLayer is similar to that of HiddenLayer .

The visible events of an ANN process are used to define its connection to other
components of the RoboChart semantics and for defining termination. In our
example, these are the events layerRes.0, layerRes.2, and end . We rename the
visible events of our ANN semantics to match the CSP events used to represent
the events defined in the RoboChart model. For our example, as mentioned in
Sect. 3, these events are anewError, adiff, and angleOutputE.

The RoboChart semantics defines a CSP process for the module by compos-
ing processes for each controller, each state machine, and memory, holding values
for local variables. The semantics of an ANN component fits in the semantics
of a RoboChart module as that of a controller process. With this semantics, we
can prove the properties of the RoboChart module in terms of the events and
operations of the robotic platform rather than just the inputs of the ANN.

For a primary validation of our semantics, we have used a CSP model checker
to compare the semantics of the AnglePIDANN to that of the machine AnglePID
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of the original version of the segway model. For the latter, we have used the
semantics automatically generated by the RoboChart tool1. We have used a
discretised neural network to make model checking feasible. In this setting, we
have been able to show refinement (in both directions) automatically. Further
validation has been provided by implementing our semantics in Java using the
JCSP package [29]. This has enabled simulation and assertion-based reasoning
via JML in a setting where values are floating-point numbers.2

In general, however, we require a proof approach that caters for use of real
numbers. Next, we describe our proof approach based on UTP.

5 Automated verification using UTP

In this section, we define UTP reactive contracts that capture the semantics
of our ANN components presented in Sect. 4 and an approach to verification.
In Sect. 5.1, we describe a general pattern of UTP reactive contracts for ANN
components. In Sect. 5.2, we present a pattern for the semantics of standard
RoboChart controllers that we use as specification. Finally, in Sect. 5.3, we
present our notion of conformance for ANN components, a verification conditions
to prove properties combining Isabelle/UTP and Marabou, for example.

5.1 General Pattern

Def. 1 below provides a pattern for contracts corresponding to an optimised ver-
sion of the CSP process ANN in Fig. 4. The pattern is for the process defining one
iteration of the ANN : the parallelism between HiddenLayers and OutputLayer .
So, we consider one application of the ANN. With that, compositional reasoning
allows us to make direct deductions about the overall ANN process.

To optimise reasoning, we eliminate the interleavings that allow inputs and
outputs to be received and offered in any order, and internal computations among
and inside the layers to occur in any order. Our highly parallel semantics captures
the common use of parallelisation to optimise the performance of implementa-
tions of ANNs. We have proved, however, that the different interleavings produce
equivalent outputs once the internal events are hidden.

First, the model of the ANN is deterministic, and hiding the events repre-
senting the communications between the nodes (and the layers) introduces no
nondeterminism. This means that the internal order of computation (as sig-
nalled by the events) in the layers and their nodes is irrelevant. Second, if we
add a wrapper process that keeps that responsiveness for the inputs but feeds
them to ANN in a fixed order, the values and responsiveness of outputs are
maintained. With this, we have rigorous evidence that parallelisation is a valid
implementation strategy and that we can use a simpler model for reasoning.

1 Available at robostar.cs.york.ac.uk/robotool/
2 All the artefacts related to this validation work are available at github.com/UoY-

RoboStar/robochart-ann-components/.
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For brevity, in Def. 1, the contract is defined using a sequence input contain-
ing only the events representing inputs extracted from the trace tt . Formally,
input = tt � {| layerRes.0 |}. (We use � for sequence filtering.)

Definition 1 (ANN Component General Contract).

GeneralANNContract =̂
[ truer
` #input < insize ∧ E [input , {| layerRes.0.(#input + 1) |}]
∨
#input = insize ∧
∃ l : 1 . . layerNo • ∃n : 1 . . layerSize(l) •
E [ front ◦ layeroutput(l ,n), { last ◦ layeroutput(l ,n) }]

| #input = insize ∧ Φ[layeroutput(layerNo, layerSize(layerNo))]
]

The pattern in Def. 1 is for contracts that require that the process does not
diverge: the precondition is truer . This is appropriate as no ANN diverges.

To define the pericondition and the postcondition, we specify the valid obser-
vations using the predicate operators E and Φ. The pericondition characterises
the stable intermediate states of the ANN where some or all inputs have been
received. We identify these states by considering the size of inputs. When some
of the inputs are available (#input < insize), the trace is input , and the next
input event layerRes.0.(#input + 1) is not refused.

When all inputs are available (#input = size), we specify the trace of
layerRes interactions up to where layerRes.l .n has occurred using a function
layeroutput(l ,n), where l and n are layer and node indices. In the pericondition,
we consider all layer indices l and all node indices n in l , from 1 to layerSize(l).
The function layeroutput(l ,n) encodes the specification of the ANN, in terms
of its structure, into a trace-based specification. For instance, for an ANN with
input size 2, with two nodes in its first layer, like in our example, if tt defines
the input sequence as 〈layerRes.0.1.1, layerRes.0.2.1〉, then layeroutput(1, 2) is
〈layerRes.0.1.1, layerRes.0.2.1, layerRes.1.1.(1.75), layerRes.1.2.(1.80)〉. This re-
flects the fact that the inputs are taken first, and then the output of each node is
the weighted sum of these inputs. Here, we consider all weights to be 0.5, the bias
value of the first node to be 0.75, and of the second node to be 0.8. The output
of the first node is captured by the event layerRes.1.1.(1.75), where the value
1.75 communicated is the result of the calculation ((1 ∗ 0.5) + (1 ∗ 0.5)) + 0.75;
the output 1.8 for the second node results from considering the bias 0.8.

With layeroutput(l ,n), we define the entire trace up to and including the
result of the calculation of the node n on the layer l , which is the last element
of layeroutput(l ,n). Therefore, the trace in the case #input = size, where all
inputs have been received, includes all elements in layeroutput(l ,n) but the last,
denoted using the front function. We define the set of accepted events as the
singleton containing the event last ◦ layeroutput(l ,n).
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To specify the postcondition, we use layeroutput(layerNo, layerSize(layerNo))
for when the trace for the last node (that of index layerSize(layerNo)) of the
last layer (that of index layerNo) has occurred.

For conciseness, we omit here the definition of layeroutput . It can be found
in [3], along with all other definitions and proofs omitted here.

Using laws of reactive contracts and the definition of the CSP operators [10],
we can prove that the pattern in Def. 1 captures the RoboChart ANN semantics.

5.2 Cyclic Memoryless RoboChart controllers

An ANN cannot implement reactive behaviour, where events are interspersed ac-
cording to environmental interactions. So, we consider specifications that define
a cyclic controller, whose events can be classified as inputs or outputs, and whose
control flow alternates between taking inputs and producing outputs, never ter-
minating and without memory across cycles. (This is the flow of simulations, for
example.) For such controllers, the RoboChart semantics of one iteration can be
captured by a reactive design of a particular format. A reactive design defines
a relation via just a precondition and a postcondition, which, however, specifies
both intermediate final observations. In other words, a reactive design combines
the pericondition and the postcondition in a single predicate.

In the case of the segway, as already mentioned, the inputs of the AnglePID
are anewError and adiff, and the output is angleOutputE as indicated by the con-
nections to the SegwayController (see Fig. 3). The reactive design for AnglePID
captures the behaviour of one iteration of the state machine: it receives inputs
anewError and adiff and produces an output via angleOutputE . It has precon-
dition truer and the following postcondition, where the local variables of the
RoboChart model are quantified and defined according to that model in terms
of constants P and D . (In spite of its name, AnglePID is a PD controller.)

∃ currNewError , currDiff , currAngleOut : Value |
currAngleOut = P ∗ currNewError + D ∗ currDiff •

wait ′ ∧ ( (tt = 〈〉 ∧ anewError .currNewError /∈ ref ′) ∨
(tt = 〈anewError .currNewError〉 ∧ adiff .currDiff /∈ ref ′) ∨
(tt = 〈anewError .currNewError , adiff .in.currDiff 〉 ∧

angleOutputE .currAngleOut /∈ ref ′) )
∨
¬ wait ′ ∧ tt = 〈anewError .currNewError , adiff .currDiff ,

angleOutputE .currAngleOut〉

The postcondition comprises two parts: either the process is waiting on inter-
action (wait ′), or not (¬ wait ′). When wait ′ holds, there are three cases dis-
tinguished by the trace contribution tt : no input events have happened, just
anewError has been provided, or both anewError and adiff have been pro-
vided. In each case, the next event is not refused, that is, it does belong to ref ′.
When wait ′ is false, tt contains all inputs and the output. In this case, the value
of ref ′ is irrelevant and not specified, since the process has terminated.
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The design for the AnglePID follows the pattern defined below for a cyclic
controller, where we consider inp and out to be the lists of input and output
events. For every event, we have a quantified variable: x1 to x#inp for inputs, and
y1 to y#out for outputs. We also consider a predicate p to capture the permissible
values these variables can take, according to the RoboChart model.

Definition 2 (Cyclic RoboChart Controller Pattern).

Cyclic RC Controller =̂
[ truer
`
∃ x1, . . . , x#inp ; y1, . . . , y#out : Value | p •

wait ′ ∧ (∃ i : dom inp • tt = a/ j : 1..(i − 1) • 〈inp(j ).xj 〉 ∧
inp(i).xi /∈ ref ′)

∨
(∃ i : dom out • tt = a/n : dom inp • 〈inp(n).xn〉a

a/ j : 1 . . (i − 1) • 〈out(j ).yj 〉 ∧
out(i).yi /∈ ref ′)

∨
¬ wait ′ ∧
tt = a/ i : dom inp • 〈inp(i).xi〉aa/ j : dom out • 〈out(j ).yj 〉

]

The reactive design for AnglePID is an instance of Cyclic RC Controller above,
where we have two inputs: x1 is currNewError and x2 is currDiff . The output
y1 is currAngleOut . So, dom inp is {1, 2}, and dom out is {1}. The predicate p
characterises values for the outputs in terms of local variables xi and yi .

In Def. 2, in the wait ′ case, we have a disjunction of two existential quantifi-
cations. In the first, the quantification on i ranges over dom inp, and we define
a value for tt in terms of a distributed concatenation (a/), that is, the con-
catenation of a sequence of sequences. The concatenation comprises singleton
sequences 〈inp(j ).xj 〉, with j ranging over 1 . . (i − 1). These represent all in-
put events before the i -th input given by the event inp(i).xi . So we get tt = 〈〉
for i = 1, or tt = 〈anewError .currNewError〉 for i = 2 and j = 1. For the
definition of ref ′, we specify that the input event inp(i).xi , which is either
anewError .currNewError or adiff .currDiff , is not refused. This corresponds to
the first two disjuncts in the wait ′ case of the postcondition for AnglePID.

The second quantification is on i from dom out , with tt formed of two dis-
tributed concatenations. The first is of sequences 〈inp(n).xn〉, like in the first
quantification, but now n ranges over the whole dom inp, so we get all input
events. The second is of sequences 〈out(j ).yj 〉, representing proper prefixes of
the sequences of all output events. Our example has one output, so this sequence
resolves to the empty trace. The refusal does not include the following output.
For our example, we accept out(i).yi , which is angleOutputE .currAngleOut .

In the terminating case, that is, ¬ wait ′, we define tt as the concatenation of
all input events followed by all output events. In our example, we get the trace
〈anewError .currNewError , adiff .currDiff , angleOutputE .currAngleOut〉.
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A reactive design that instantiates the pattern in Def. 2 defines one iteration
of a cyclic RoboChart controller. In the full model of the controller, that design is
the body of a loop with the weakest fixed-point semantics. Since the precondition
is truer , the weakest fixed-point operator transfers to the postcondition [10].

Besides structural differences in the patterns in Def. 1 and 2, we have a
substantial difference in how outputs are defined regarding the inputs. In an
ANN contract, the results are determined by a deterministic function based on
the parameters of an ANN. In the pattern for a cyclic controller, the inputs
and outputs are related by the predicate p. We can, for example, define even
nondeterministic behaviour with this predicate. Finally, the alphabet of events
in the patterns is different: one is based on the layerRes events and the other on
RoboChart application-specific events to represent inputs and outputs.

We next consider how to verify an ANN component against a cyclic controller.

5.3 Conformance

In our approach to verification, we take a RoboChart standard controller as the
specification for an ANN component. So, our goal is to prove that the ANN is
correct with respect to the RoboChart controller. ANN components, however,
contain numerical imprecision, so we allow an error tolerance on the values com-
municated by the output events of an ANN component. Formally, we define a
conformance relation Q conf (ε) P that holds if, and only if, Q is a refinement
of P , where the value of P ’s outputs can vary by at most ε as formalised below.

Definition 3 (Conformance Relation).

Q conf (ε) P ⇔
∃ s : seq Event ; a : PEvent | tt seqapprox (ε) s ∧ (αP \ ref ′) setapprox (ε) a •

P [s, (αP \ a)/tt , ref ′] v Q

We say that Q conf (ε) P if, and only if, Q is a refinement of P [s, αP \a/tt , ref ′],
that is, we accept P as a specification that restricts the trace s and the refusals
αP \a, instead of tt and ref ′, where s and a are approximations of tt and the set
a of acceptances as captured by relations seqapprox (ε) and setapprox (ε). Here,
αP is the set of events used in P , and \ is the set difference operator, so that
αP \ ref ′ is the set of events that P is not refusing, that is, its acceptances.
Moreover, s1 seqapprox (ε) s2 relates sequences s1 and s2 if, and only if, s1 differs
from s2 just in that its output values are within ε of those of s2. Similarly,
A1 setapprox (ε) A2 if, and only if, their input events are the same, but although
the output events are the same the communicated values differ by at most ε.

Our verification approach starts with an abstract RoboChart model. That
model can be refined using the structural rules of RoboChart justified by its
CSP semantics and refinement relation. (These rules are out of scope here, but
we refer to [24] for examples of the kinds of laws of interest.) In particular,
refinement may need to be used to derive the specification of a cyclic controller
for implementation using an ANN. In our example, we have used refinement
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to justify transformations to extract the AnglePID state machine out of the
SegwayController where it was originally and obtain the Segway module in Fig. 3.

With a refined model, we can identify a controller to be implemented by an
ANN and prove conformance according to conf (ε). The following result justifies
the joint use of refinement (nondeterminism reduction) and conf (ε).

Theorem 1. P v Q ∧ R conf (ε) Q ⇒ R conf (ε) P

This ensures that the ANN conforms to the original specification. So, the ANN
may have removed nondeterminism present in the original controller, and exhibit
some numeric imprecision bounded by ε, but that is all.

The following theorem identifies verification conditions that are sufficient
to prove conformance for instances of our patterns. In Theorem 3, we further
instantiate the verification conditions to consider conformance proofs using the
semantics of standard and ANN controllers in RoboChart.

Theorem 2. Q conf (ε) P provided

[Q2 ⇒ ∃ s : seq Event ; a : PEvent | tt seqapprox (ε) s ∧ (αP \ ref ′) setapprox a •
P2[s, αP \ a/tt , ref ′]]

and

[Q3 ⇒ ∃ s : seq Event | tt seqapprox (ε) s • P3[s/tt ]]

where Q and P are instances of the patterns in Definitions 1 and 2.

In short, Theorem 2 gives two verification conditions that distribute conformance
over the pericondition and postcondition of Q . For any reactive contract RC ,
we use RC2 and RC3 to refer to its pericondition and to its postcondition. The
first verification condition requires the periconditions P2 and Q2 to be related by
conf (ε). The second condition makes the same requirement of the postconditions
P3 and Q3 and is simpler because postconditions do not restrict ref ′.

In the context of our work, the proof of conformance is in the following form.

(Q \ ANNHiddenEvts)[inp/layerRes.0, out/layerRes.layerNo] conf (ε) P (1)

Here, Q is a reactive contract that instantiates the pattern in Def. 1, and P
captures the semantics of a cyclic controller described using the pattern in Def. 2.
As said, our general contract for ANN components does not capture the hiding
in the CSP semantics (Figure 4), so we add it to Q above. Moreover, the pattern
is concerned with layerRes events and the specification with RoboChart events.
So, we substitute layerRes.0 and layerRes.layerNo with the inputs and outputs.

For our example, the conformance requirement is based on AnglePIDANN ,
the reactive contract for AnglePIDANN. Besides hiding the layerRes.1 events,
we rename layerRes.0.1 and layerRes.0.2 to currNewError and layerRes.0.2 to
curradiff , and layerRes.2.1 to currangleOutput . With this, we can discharge the
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verification conditions identified in Theorem 2 using Isabelle and the laws of
UTP to prove the properties of the segway. For instance, we have proved that
“when P is non-zero, other PID constants are 0, and values greater than or
equal to -maxAngle and less than or equal to maxAngle are communicated by the
event angle, the values set by setLeftMotorSpeed() and setRightMotorSpeed() are
equal to the value communicated by angle multiplied by P”, using the original
model of the segway with the AnglePID state machine. With our proof of (1),
we can obtain the same result for the version of the segway software that uses
AnglePIDANN, although we need to accept a tolerance for the values set.

For the particular case where the conformance that is being proved is of the
form (1) above, the following theorem maps both conditions to set reachability
conditions that can be discharged by ANN verification tools and, in particular, by
Marabou. The compromise is that while we can carry out proofs for any input
values in Isabelle, Marabou does not have facilities for dealing with universal
quantification over real-valued sets. So, we approximate the input range with
intervals and form properties based on these intervals.

Theorem 3.

¬ ∃ x1, . ., xinsize : Value • ∃ y1, . ., youtsize : Value | p • ∃ i : 1 . . outsize •
{annoutput(layerNo, i , 〈x1, . ., xinsize〉)} ∩ {x : R | |x − yi | < ε} = ∅

⇒ [(Q2 \peri ANNHiddenEvts)[inp/layerRes.0, out/layerRes.layerNo]⇒
∃ s : seq Event ; a : PEvent | tt seqapprox (ε) s ∧ (αP \ ref ′) setapprox (ε) a •

P2[s, (αP \ a)/tt , ref ′]]
∧
[(Q3 \post ANNHiddenEvts)[inp/layerRes.0, out/layerRes.layerNo]⇒
∃ s | tt seqapprox (ε) s • P3[s/tt ]]

provided Q2 is an ANN’s pericondition, Q3 is its postcondition, P2 is a cyclic
RoboChart controller’s pericondition, P3 is its postcondition, and inp and out
are sequences of events with #inp = insize and #out = outsize.

Theorem 3 states that if we show that there is no combination of input and out-
put values for which there is an output yi whose error, as defined by comparison
to annoutput(layerNo, i , 〈x1, . ., xinsize〉), is greater than ε, then our verification
conditions are discharged. By requiring that the intersection between the sin-
gleton set {annoutput(layerNo, i , 〈x1, . ., xinsize〉)} and {x : R | |x − yi | 6 ε}
is empty, we require the output yi to be in range. The error refers to the dif-
ference between the ANN’s output annoutput(l ,n, 〈x1, . ., xinsize〉) and the cyclic
RoboChart controller’s output, captured by the variables yi and the predicate
p. The ANN’s output value is characterised using annoutput(l ,n, in), which de-
termines the value communicated by the output event of the n-th node of layer
l , given a sequence in of inputs to the ANN.

We provide an example below of the reachability conditions we obtain using
Theorem 3, based on our AnglePID example.
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Example 1. The antecedent of Theorem 3 for our example is the following ver-
ification condition. (Here, i takes just the value 1).

¬ ∃ currNewError , currDiff : Value •
∃ currAngleOut | currAngleOut = P ∗ currNewError + D ∗ currDiff •
{annoutput(layerNo, 1, 〈currNewError , currDiff 〉)} ∩
{x : R | |x − currAngleOut | < ε} = ∅

The verification condition can be encoded as a set of reachability conditions if
we define Value to be a set MValue defined in terms of a minimal value min
and a natural number c as:

⋃
{n : 0 . . c • [min + n × c,min + (n + 1) × c] }.

Given these constants, we can obtain finite conditions to prove in Marabou if
we accept this limitation, as illustrated by the lemma below.

Lemma 1. The antecedent of Theorem 3 for AnglePIDANN is as follows.

¬ ∃n1,n2 : 0 . . c • ∃ currNewError , currDiff : R •
min + n1 × c 6 currNewError 6 min + (n1 + 1) × c ∧
min + n2 × c 6 currDiff 6 min + (n2 + 1) × c ∧
annoutput(layerNo, 1, 〈currNewError , currDiff 〉) 6

(P ∗ (min + n1 × c) + D ∗min + n2 × c)− ε
∨
min + n1 × c 6 currNewError 6 min + (n1 + 1) × c ∧
min + n2 × c 6 currDiff 6 min + (n2 + 1) × c ∧
annoutput(layerNo, 1, 〈currNewError , currDiff 〉) >

(P ∗ (min + (n1 + 1) × c) + D ∗min + (n2 + 1) × c) + ε

This verification condition amounts to proving (c + 1)× (c + 1) conditions: one
for each value of n1 and n2. If any of these conditions fail, Marabou produces
a counterexample, where we identify the assignment of input variables xi that
causes the error. This tells us exactly where the failure is, and the ANN can be
retrained using this counterexample, using a similar approach to that in [7]. We
choose the value of ε based on the needs of the system. So, even though Marabou
cannot find a least upper bound for ε, in our work, this is not necessary.

Lemma 1’s constraints form a hyper-rectangle in the domain of an ANN,
and form a convex polytope, in inequality form, in the range. We can use these
sets to specify properties in other tools [34, 36] as well as in Marabou as we have
done. In particular, we can use tools that are able to handle non-linear activation
functions, such as tanh and sigmoid, as well as ReLU.

6 Conclusions

As far as we know, we have proposed the first verification technique for robotic
software in which an ANN is viewed as a white-box component whose reliabil-
ity can and should be established. We guarantee properties, specified by state
machines, of software that is implemented using instead trained, feed-forward,
fully connected ReLU ANNs of any size or shape.
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We have defined an ANN as a controller-like component in RoboChart and
have validated the semantics via model checking using FDR [37], for discretised
versions of the ANN, and via simulation using JCSP [29]. We have also presented
a refinement-based method to prove ANN properties. We cater for an ANN
component’s numerical instability and provide a notion of conformance that can
be used to justify replacing an existing RoboChart controller with an ANN if
the error bound is accepted. We have identified sufficient verification conditions
to establish conformance and shown how to combine ANN-specific (Marabou)
and general theorem-proving tools (Isabelle) to discharge them. For illustration,
we have applied our technique to a PID controller.

The work by Brucker and Stell in [5] is closely related to ours: they use
Isabelle/HOL to verify the properties of feed-forward ANNs. They use their
framework to demonstrate the properties of image-classification networks not
considered here. Their goal, however, is component-level verification. It is feasible
to use their results instead of Marabou to automate our proofs using only Isabelle
and avoid input and output value restrictions.

Dupont et al. [8] define approximate notions of refinement for continuous
systems. Their work considers two different views of conformance: upwards ap-
proximation, where an approximated system is refined to an exact system, and
downwards approximation, the inverse. Our approach uses upward approxima-
tion: we refine an approximate system into an exact system. We, however, are
concerned with ANN outputs, not trajectories of a continuous system.

An immediate goal is to generalise the ANN components. Our metamodel
and semantics can easily accommodate several activation functions and can be
extended to cater for convolutional neural networks with minor changes. Various
tools and techniques remain applicable because the layer function is piecewise
linear. Recurrent neural networks require more changes; fewer techniques and
tools are available, although some are emerging [18].

Our second future goal is to define a toolchain of ANN-specific tools, so
that, instead of relying on discharging our proof obligations using just a single
tool, we have a collection of tools available. This requires techniques to reduce
the search space and prove properties using complete techniques. This toolchain
would allow us to verify more extensive and complex ANNs.

Finally, another future goal is to consider use of an ANN for perception,
where the availability of a specification is not immediate. Developing meaningful
specifications for such components is challenging, but there is a growing body of
relevant work to address this [17] that we plan to consider.
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