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Abstract
Regional modeling of landslide hazards is an essential tool for the assessment and management of risk in mountain environ-
ments. Previous studies that have focused on modeling earthquake-triggered landslides report high prediction accuracies. 
However, it is common to use a validation strategy with an equal number of landslide and non-landslide samples, scattered 
homogeneously across the study area. Consequently, there are overestimations in the epicenter area, and the spatial pattern of 
modeled locations does not agree well with real events. In order to improve landslide hazard mapping, we proposed a spatially 
heterogeneous non-landslide sampling strategy by considering local ratios of landslide to non-landslide area. Coseismic 
landslides triggered by the 2008 Wenchuan Earthquake on the eastern Tibetan Plateau were used as an example. To assess 
the performance of the new strategy, we trained two random forest models that shared the same hyperparameters. The first 
was trained using samples from the new heterogeneous strategy, and the second used the traditional approach. In each case 
the spatial match between modeled and measured (interpreted) landslides was examined by scatterplot, with a 2 km-by-2 
km fishnet. Although the traditional approach achieved higher AUC ROC (0.95) accuracy than the proposed one (0.85), the 
coefficient of determination  (R2) for the new strategy (0.88) was much higher than for the traditional strategy (0.55). Our 
results indicate that the proposed strategy outperforms the traditional one when comparing against landslide inventory data. 
Our work demonstrates that higher prediction accuracies in landslide hazard modeling may be deceptive, and validation 
of the modeled spatial pattern should be prioritized. The proposed method may also be used to improve the mapping of 
precipitation-induced landslides. Application of the proposed strategy could benefit precise assessment of landslide risks 
in mountain environments.
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1 Introduction

Landslides are major mountain hazards that have been 
threatening mountain communities around the globe (Pet-
ley 2012; Kirschbaum et al. 2015). Landslides induced by 
an earthquake event could severely increase total casu-
alties compared to earthquakes alone (Yin et al. 2009). 
Mapping regional landslide hazards is indispensable and 
paramount for managing landslide risks. Predicting where 
landslides will occur has been very challenging because 
landslides have been recognized as stochastic processes 
(Larsen and Montgomery 2012; Emberson et al. 2016). 
Although countless efforts have been made on selections 
of optimal features and models, few practical results have 
been produced in earthquake-triggered landslide modeling. 
Regional landslide hazard results are much too general to 
be used for regional landslide risk analysis.

Landslide hazard mapping should show the temporal 
and spatial probability of a landslide of a given magni-
tude. Landslide hazard characteristics include landslide 
velocity, volume, depth, and other characteristics that 
may determine the potential of its hazardous influence on 
the exposed elements, such as people, roads, buildings, 
and so on (Fell et al. 2008). By considering triggering 
factor intensity (intensity of seismicity or precipitation), 
landslide hazard mapping is different from susceptibility 
mapping by bearing temporal probabilities (van Westen 
et al. 2008). For earthquake-triggered landslides, temporal 
probability is determined by the recurrence time of a given 
seismic intensity. As there is high uncertainty in estimat-
ing landslide magnitudes, major efforts have been made to 
examine the spatial probability of landslides.

Machine learning models are a type of mainstream 
methods to assess earthquake-triggered landslide hazards 
(Chen et al. 2018; Qi et al. 2021). Most landslide hazard 
assessment models follow the logic of using feature layers 
that include landslide influencing and triggering factors as 
independent variables to predict landslide hazards (as the 
dependent variable). Influencing factors are variables that 
affect the susceptibility to landslides. Land cover type, 
roads, elevation, slope, aspect, lithology, fault density, and 
annual precipitation are some of the most frequently used 
environmental factors (Shu et al. 2019; Tanyas et al. 2022). 
Urban areas, for example, are more prone to precipitation-
induced landslides (Johnston et al. 2021). In landslide haz-
ard models, the intensity of triggers with probability of 
exceedance of a given time period is also considered as 
an input layer. Different feature layers have been designed 
and tested in landslide hazard and susceptibility modeling. 
Elevation, slope, aspect, land cover type, and lithology are 
the most frequently used layers in many landslide hazard 
and susceptibility models.

Efforts on regional landslide hazard mapping have also 
been focused on the selection of different machine learning 
models. Most existing machine learning algorithms have 
been tried in regional landslide hazard modeling. Logistic 
regression models, support vector machine, artificial neural 
networks, and random forest models are among the most 
frequently used machine learning models in regional land-
slide hazard mapping (Xu et al. 2012). In recent years, deep 
learning models have become more popular and have also 
been used in landslide mapping (Wang et al. 2020). Because 
inputs for these models are tabular data, the advantage of 
deep learning in automatic feature extraction is limited in 
landslide hazard modeling. Thus, improvement of landslide 
hazard mapping by using the best machine learning models 
is limited.

Positive (landslide) and negative (non-landslide) sam-
ples are indispensable data inputs for machine learning 
models. Dividing landslide/non-landslide samples into 
training and validating subsets is a commonly used way to 
evaluate the performance of landslide hazard models. Most 
hazard modeling results are tested by using the accuracy of 
the area under the receiver operating characteristic (ROC) 
curve (Wang et al. 2020; He et al. 2021), balanced accuracy 
(Nowicki Jessee et al. 2018), or other statistical goodness-
of-fit metrics (Nowicki et al. 2014; He et al. 2021). These 
validation criteria are good indicators to show the robustness 
of machine learning models, yet they have revealed little 
on the validity of the mapping results. Direct comparisons 
between modeled landslide hazards and truly distributed 
landslides have seldom been mentioned. Almost all maps 
from existing earthquake-triggered landslide hazard studies 
show exaggeratedly high hazard values in epicentral areas 
and unanimously low hazard values in areas far from the 
epicenters, which is of limited use for decision makers (All-
stadt et al. 2018).

Sampling of landslide/non-landslide points in space could 
affect the mapping results of the spatial pattern of landslide 
hazards (Tanyas et al. 2019; Pokharel et al. 2021). In gen-
eral, sampling of the factors that influence landslides occurs 
within landslide-polygons, with subtle difference between 
selecting either their geometry feature points (Lombardo 
et al. 2019; He et al. 2021) or points that have the high-
est elevation (Jones et al. 2021). A commonly used non-
landslide sampling strategy is to select the same number of 
randomly distributed non-landslide points. There are some 
studies that have tried to randomly select distributed non-
landslide points with numbers proportional to the areal ratio 
of non-landslide areas in their study area. Because earth-
quake-triggered landslides are spatially heterogeneous and 
most are located in the epicenter area, randomly distributed 
non-landslide sampling points would underrepresent stable 
slopes in the epicenter area and overrepresent stable slopes 
further away. These spatially biased sampling strategies are 
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a major reason for the inaccuracy in traditional landslide 
hazard mapping. Some existing studies have addressed the 
issue that the quantity of non-landslide samples could affect 
the accuracy of the landslide modeling results (Shao et al. 
2020; Liu et al. 2021; Yang et al. 2022). However, it remains 
a challenge to select landslide/non-landslide samples to 
achieve a reliable hazard identification result.

This study aimed to propose a new non-landslide sam-
pling strategy by considering the spatial heterogeneous 
distribution of earthquake-triggered landslides. Samples 
produced by the new strategy were used in a random for-
est model to map landslide hazards for the 2008 Wenchuan 
Earthquake. The landslide hazard map was further compared 
with results produced by using the traditional landslide/non-
landslide balanced sampling strategy.

2  Data

In this study, we selected the mountainous part of the 2008 
Wenchuan Earthquake-affected areas as the study area 
(Fig. 1), located in the northeastern part of the Tibetan Pla-
teau, bordering the Sichuan Basin to the east. We selected 
this region for four reasons: (1) The Wenchuan Earthquake 
triggered the highest known number of earthquake-triggered 
landslides in the world. Xu et al. (2014) interpreted approxi-
mately 200,000 coseismic landslides spread over an area of 

about 110,000  km2, and the total area of these coseismic 
landslides is greater than 1,000  km2 (Cui et al. 2012); (2) 
The Mw 7.8 earthquake caused massive casualties (about 
100,000), a great number of which (about 20,000) were 
attributed to earthquake-triggered landslides (Yin et al. 
2009); (3) Various sizes of landslides from a few square 
meters to mega-landslides as large as 10  km2 (Huang and 
Fan 2013); and (4) Our selected study area is very large, 
which ensures that it has various climates, lithology, and 
landforms to test the models’ performances. These charac-
teristics make this study area an ideal place to model earth-
quake-triggered landslides.

We selected eight layers to perform the landslide hazard 
analysis (Table 1). We used the 30-m resolution AW3D30 
digital elevation model (DEM). Slope and aspect data are 
derivatives of the DEM, calculated with the ArcGIS soft-
ware. The 1:2,500,000 geological data were produced by Ye 
et al. (2017) and released by the China Geological Survey. 
Lithology and faults in the geological data were used in this 
study. Land cover type was produced with the Copernicus 
Global Land Service, which was derived from the European 
Space Agency’s (ESA) Sentinel-2 satellite images. The spa-
tial resolution of the land cover data is 100 m. Peak ground 
acceleration (PGA) of the 2008 Wenchuan Earthquake was 
downloaded from the United States Geological Survey 
(USGS) earthquake catalogue. Annual precipitation data 
were obtained from the U.S. National Aeronautics and Space 

Fig. 1  The study area on the eastern Tibetan Plateau (a) covering a major part of the earthquake-affected area with MMI VIII or greater intensity 
(b) DEM: Digital elevation model
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Administration (NASA) Global Precipitation Measurement 
(GPM). The spatial resolution of the GPM data is 0.1°. The 
annual precipitation was calculated using the monthly data. 
We selected these parameters because they are some of the 
most frequently used factors in previous landslide hazard 
modeling (Shu et al. 2019; Tanyas et al. 2022). These fac-
tors include both environmental factors (DEM, slope, aspect, 
land cover type, lithology, fault density, annual precipitation) 
and the triggering factor (PGA). These layers cover major 
factors that influence the occurrence of landslides from dif-
ferent aspects. In addition, the main objective was to com-
pare different sampling strategies, as long as they use the 
same layers.

3  Method

In the first part of this section, we outline our two sampling 
strategies for generating landslide and non-landslide sam-
ples. Particular attention is given to detailing the production 
of non-landslide samples, as it shares the same methodol-
ogy with landslide samples. In the second part, we elucidate 
the underlying principles and critical parameters utilized in 
our machine learning model. Finally, in the third part, we 
expound upon the methods employed to validate the perfor-
mance of the two sampling strategies.

3.1  Two Strategies for Selecting Non‑landslide 
Samples

To train a machine learning model for landslide hazard anal-
ysis, we had to select landslide and non-landslide sampling 
points, which are used to extract positive and negative sam-
ples. For the 2008 Wenchuan Earthquake, Xu et al. (2014) 
interpreted about 200,000 coseismic landslides. Among these 
landslides, 23,561 have an area of more than 10,000  m2. The 
geometry centers of these landslide polygons were selected as 
landslide sampling points. Among them, we deleted landslide 
points that fall outside the landslide polygons, which usually 

occur in long-shaped landslides (He et al. 2021). We used two 
datasets to train and validate random forest models. Both data-
sets have the same landslide points but different non-landslide 
points.

Non-landslide samples in both strategies were selected as 
points and had to meet two criteria: (1) they had to be more 
than 30 m from the boundaries of any landslide polygons; and 
(2) they had to be more than 100 m from any non-landslide 
points. The minimum distance from non-landslide points to 
landslide boundaries was set at 30 m because it avoids possible 
errors caused by misinterpretation of the landslide bounda-
ries from remote sensing images. For landslide interpretation, 
the spatial resolution of the remote sensing images used by 
Xu et al. (2014) ranged from 0.5 to 15 m. The 30 m distance 
ensures that there are at least two pixels from landslide poly-
gons even in the 15 m images. The distance between non-
landslide points was set at 100 m to ensure feature differences 
in neighboring non-landslide samples. Because the spatial 
resolution of the feature layers is 30 m, a distance of 100 m 
ensures that the nearest non-landslide samples are in two dif-
ferent pixels.

The first non-landslide sampling strategy is a traditional 
way frequently used by previous studies. In this strategy, we 
randomly generated the same number of non-landslide points 
as landslide samples. These non-landslide samples are ran-
domly scattered within the study area.

To carry out the second non-landslide sampling strategy, 
we first used a 2 km-by-2 km fishnet to segment the study area 
into grids of the same area. Second, we singled out grids that 
have landslide points. Third, we calculated the areal percent-
age of all landslides within each grid. Fourth, we divided all 
the grids that have landslide points into five classes according 
to the areal percentages of landslides. For each class, Nnls,i 
non-landslide points were randomly produced within their 
respective spatial extent. 

(1)N
nls,i

=

A
nls,i

A
ls,i

× N
ls,i

Table 1  Layers used for the landslide hazard modeling in the 2008 Wenchuan Earthquake study area on the eastern Tibetan Plateau

Data Provider Spatial resolution Source

1 DEM AW3D30, JAXA 30 m https:// www. eorc. jaxa. jp/ ALOS/ en/ datas et/ 
aw3d30/ aw3d30_ e. htm

2 Slope AW3D30 DEM 30 m Derived from the AW3D30 DEM
3 Aspect AW3D30 DEM 30 m Derived from the AW3D30 DEM
4 Land cover Copernicus 100 m https:// land. coper nicus. eu/ global/ produ cts/ lc
5 Peak ground acceleration USGS 30 m https:// earth quake. usgs. gov/ earth quakes/ search/
6 Annual precipitation NASA GPM 0.1° https:// gpm. nasa. gov/
7 Lithology Ye et al. (2017) 1:2,500,000 https:// doi. org/ 10. 12029/ gc201 7Z103
8 Faults Ye et al. (2017) 1:2,500,000 https:// doi. org/ 10. 12029/ gc201 7Z103

https://www.eorc.jaxa.jp/ALOS/en/dataset/aw3d30/aw3d30_e.htm
https://www.eorc.jaxa.jp/ALOS/en/dataset/aw3d30/aw3d30_e.htm
https://land.copernicus.eu/global/products/lc
https://earthquake.usgs.gov/earthquakes/search/
https://gpm.nasa.gov/
https://doi.org/10.12029/gc2017Z103
https://doi.org/10.12029/gc2017Z103
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 where, Nls,i is the number of landslide points in the ith grid; 
and Als,i and Anls,i are areas of all landslides and non-land-
slides in the ith grid, respectively. To make it easy to pro-
cess, we divided all 2 km squares that have landslide points 
into five classes. Squares of the same class are merged to a 
large polygon. We calculated non-landslide points within 
each polygon and scattered these points evenly within them.

After landslide and non-landslide points were produced, 
these two datasets were used to extract samples used to train 
random forest models. There is an equal number of 23,688 
landslide and non-landslide samples in the first strategy. The 
number of landslide samples is the same for both strate-
gies, whereas there are many more non-landslide samples 
(202,230) produced in the second strategy.

3.2  Random Forest Models

Random forest model is an ensemble model that integrates 
multiple uncorrelated decision trees and is very popular in 
landslide mapping (Chen et al. 2018; He et al. 2021). Bias 
and overfitting can be overcome by many uncorrelated indi-
vidual trees. These decision trees are grown by randomly 
selecting different samples and features. A random subset of 
features is used to grow a decision tree. To train the model, a 
testing sample is set with replacement, which is also known 
as the out-of-bag (OOB) sample. This strategy is employed 
to increase the difference among decision trees and reduce 
their correlations. Random forest model can be used in both 
classification and regression problems. In this study, the 
classification model was used, in which multiple decision 
trees predict either landslide or non-landslide targets. The 
final results are determined by majority voting. Random 
forest algorithms have three main hyperparameters, which 
need to be set before training. These include node size, the 
number of trees, and the number of features sampled. We 
used the same hyperparameters for both models with 100 
trees, and other parameters as default.

The main steps of the random forest algorithm are as fol-
lows: (1) Make a sample pool with N samples. Select N 
samples from the pool to form a dataset of training samples. 
During this process, any single sample may be selected mul-
tiple times. Those samples that were not selected are called 
OOB data. These OOB data will be used to evaluate the 
performance of the model. (2) For each training sample, a 
decision tree is generated. Assume there are M features in 
the sample. Then randomly choose the number of F features 
(F = sqrt(M)) from the M features to form F nodes in the 
tree. (3) Decision trees are generated using the Classifica-
tion and Regression Tree (CART) algorithm, each of which 
grows freely without pruning. (4) Repeat the above steps k 
times to obtain a total of k training sets and k decision trees. 
Accordingly, there are k OOB data. (5) These k decision 
trees are formed into a random forest, which can be used 

for classification in new data. The final result is decided by 
voting of k trees in the random forest. In this study, there 
are 100 trees and a total of 8 features. All other parameters, 
such as the maximum depth of the decision tree (which is the 
number of split nodes of the tree), the minimum number of 
samples, are set by default. To use the random forest model 
for landslide hazard mapping, we first produced landslide/
non-landslide samples using our proposed strategy. Then, 
we split these samples into training (70% of all samples) and 
validation (30%) subsamples.

3.3  Validation

We used two validation methods to test the performance of 
both models. The first method was to use the receiver operat-
ing characteristic (ROC) curve, which is a plot between true 
positive and false positive rates. The area under the receiver 
operating characteristic curve (AUC ROC) can be used to 
quantitatively measure a model’s performance, which ranges 
from 0.5 to 1. An AUC near 0.5 indicates that the model 
predicts with random values, whereas 1 indicates perfect 
prediction. The AUC ROC has been very popular and used in 
most landslide hazard/susceptibility models.

We also used a second validation method to measure the 
spatial match between landslide hazards and interpreted 
landslides based on the direct comparison of interpreted 
landslides and predicted landslide hazards in a 2 km-by-2 
km fishnet. For each grid of the fishnet, we calculated the 
mean landslide hazards predicted by both models and com-
pared them with the landslide areal percentage.

4  Results

The results are presented in three subsections. First, we dis-
play the landslide and non-landslide points within 2 km-by-2 
km grids, which are generated using the two distinct sam-
pling strategies. Second, we present the outcomes of our 
earthquake-triggered landslide hazard modeling. Last, we 
showcase the validation results for both sampling strategies.

4.1  Landslide and Non‑landslide Points in 2 
km‑by‑2 km Grids

We produced a 2 km-by-2 km fishnet for the Wenchuan 
Earthquake-affected area. By using the landslide inventory 
of the Wenchuan Earthquake (Xu et al. 2014), we calcu-
lated landslide areal percentages for each grid of the fishnet 
(Fig. 2). The landslide percentage of each grid shows the 
probability of that grid being affected by a landslide, and it 
shows which grid is more hazardous than others. Figure 2 
shows the extremely uneven landslide distribution in the 
study area. Note that, even grids with the highest landslide 
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percentage have non-landslide slopes, whereas some grids 
that are far from the epicenter have landslides. Most land-
slides concentrate along active faults. The southern section 
of the study area has more landslides than the northern sec-
tion. Figure 2 shows five classes of landslide percentage. 
Although landslides triggered by the 2008 earthquake are 
distributed in a large region of about 110,000  km2, most 
landslides cluster along the active faults of the earthquake. 
High landslide percentage grids are located close to the seis-
mogenic faults and the epicenter area, whereas low landslide 
percentage grids (less than 0.13) are located in peripheral 
regions that are scattered around the periphery of the study 
area.

Figure 2 also shows that there are more stable slopes 
(non-landslide) than landslides for most grids. The highest 
landslide percentage is less than 0.85, indicating that there 
are more than 15% non-landslide landscapes even in these 

most extensive landsliding grids; 99.5% of the grids have 
landslide percentages of less than 50% and more than half of 
the grids (55.6%) have the lowest density of less than 0.05; 
more than 96% of the grids have less than 37% landslide 
percentages in area.

We used the proposed spatially heterogeneous non-land-
slide sampling strategy to produce non-landslide points. 
Figure 3 shows landslide and non-landslide samples in 
five selected 2 km-by-2 km grids to represent five classes 
of landslide areal percentages. For each class, the ratio of 
landslide and non-landslide samples is proportional to their 
areal ratio. From grid a to grid e, the number of landslide 
samples (also the areal percentage) decreases, whereas the 
number of non-landslide samples increases. In comparison 
to grids b−e, grid a exhibits a higher percentage of area 
covered by landslides, resulting in a larger number of land-
slide samples. Conversely, grids b−e have lower landslide 

Fig. 2  Landslide areal density 
(the value within each grid) of 
the 2008 Wenchuan Earthquake 
on a fishnet of 2 km-by-2 km 
in the study area on the eastern 
Tibetan Plateau. Landslide poly-
gons were manually interpreted 
by Xu et al. (2014) from high 
spatial resolution remote sens-
ing images

Fig. 3  Landslide and non-land-
slide samples in five classes of 
landslide areal density
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areal percentages and consequently fewer landslide samples. 
As shown in Fig. 2, more than 99.5% of the grids have less 
than 50% landslide areal percentage, almost all grids have 
more non-landslide samples. The number of non-landslide 
samples is much larger than the number of landslide samples 
in this study area.

4.2  Earthquake‑Triggered Landslide Hazard 
Modeling

Figure 4 shows landslide hazard mapping results from both 
random forest models trained with the two datasets pro-
duced by different sampling strategies. The spatial patterns 
of higher hazard values from the two models are similar: the 
southern section has higher hazard values than the northern 
section, and high values concentrate along active faults and 
in the epicenter. Landslide hazards produced by both models 
range from 0 to 1. Figure 4a has more high landslide hazard 
values than Fig. 4b. There is a much larger area of hazard of 
more than 0.9 in the first map, whereas the area with hazard 
of more than 0.7 is much smaller in the second map. A large 
area near the epicenter has hazard values of more than 0.9. 
In addition, near the epicenter of the earthquake, high values 
in Fig. 4a are homogeneous, whereas there are some low 
hazard values among high hazard values in Fig. 4b.

4.3  Hazard Modeling Validation

We selected three subregions to examine the difference 
between the modeling results from the two different non-
landslide sampling strategies. Figure  5-(1, 3, 5) were 

produced by the strategy to randomly select the same num-
ber of landslide/non-landslide samples for the entire study 
area. Non-landslide samples in other subpanels (Figs. 5-(2, 
4, 6) were produced by an unbalanced number of landslide/
non-landslide samples. Except for the non-landslide sam-
ples, the hyperparameters of the random forest models and 
landslide samples of both models are the same. There are 
many more non-landslide samples in our proposed sampling 
strategy (Figs. 5-(2, 4, 6).

The colored maps of Fig. 5 are landslide hazards pro-
duced by the random forest models fed by the same land-
slide points but two different non-landslide samples. Hazard 
results produced by the two models in these three selected 
subregions are very different. In all subpanels of Fig. 5, most 
landslide polygons overlap with high landslide hazard val-
ues. The area of high hazard values in Figs. 5-(1, 3, 5) is 
much larger than that of Figs. 5-(2, 4, 6). The distribution 
of high landslide hazards (more than 0.7) produced by the 
second sampling strategy matches the interpreted landslides 
by Xu et al. (2014) better than the results from the traditional 
sampling strategy.

Figure 6 shows the modeled results for the two largest 
landslides, the Daguangbao landslide (7.3  km2) and the 
Wenjiagou landslide (2.9  km2). The first model consistently 
overpredicted landslide hazard for these two subareas near 
the landslides. Not all parts of the Daguangbao landslide 
have high hazard values in the map produced by our pro-
posed method. This may be because the mechanism of the 
mega-landslide is distinctly different from other earthquake-
triggered landslides (Hu et al. 2019). Higher landslide haz-
ard values can be found in the middle and upper parts of the 

Fig. 4  Landslide hazard maps 
(1−10) produced for the study 
area on the eastern Tibetan Pla-
teau by two different non-land-
slide sampling strategies with 
the same landslide inventory 
and machine learning models. 
a By the strategy to randomly 
select the same number of land-
slide/non-landslide samples; b 
By an unbalanced number of 
landslide/non-landslide sam-
ples. Pixel values are landslide 
probabilities predicted by land-
slide hazard models. Selection 
of non-landslide samples is the 
only difference between the two 
landslide hazard models



643International Journal of Disaster Risk Science

1 3

Wenjiagou landslide, where the landslide geometric center 
is located. The lowest landslide hazards are found at the toe 
of the Wenjiagou landslide, which is impacted by the flow 
of the landslide material.

The samples were randomly divided into two subdata-
sets with 70% as training data and the remaining 30% as 
validation data. The two random forest models were applied 
in their respective validating datasets to estimate landslide 
probabilities. These predicted landslide probabilities were 
then compared with their known labels to determine the 
predictive skills of these two models. Figure 7 shows the 
ability of these two models to predict landslide hazards. We 
used the ROC curves to measure the performance of the two 
models. We calculated the area under the curve (AUC). The 
AUC of the first model (0.95) is much higher than that of the 
second model (0.853), indicating that the performance of the 
second model is lower than the first. Both AUCs are larger 
than 0.85, indicating that both models performed well in the 
validating datasets. In addition, the AUCs for the training 
datasets of the two models are 0.97 and 0.87, respectively, 
which are very close to their performances in the validating 
datasets. These high and stable AUCs of the two models 
indicate the robustness of both models in landslide hazard 
modeling.

We further calculated the mean landslide hazard values of 
both models within each grid of the 2 km-by-2 km fishnet. 
The mean hazard values of both models in the fishnet are 
compared with the landslide areal percentage to assess the 
accuracy of both models in locating high landslide hazards. 
Figure 8 shows that the coefficient of determinant of the first 
model  (R2 = 0.55) is much lower than that of the second 
model  (R2 = 0.88). Although both models overestimated 
landslide hazards, the relation between the landslide areal 
percentage and the modeled landslide hazards of the second 
model is much closer to the 1:1 line than the first model. In 
addition, there is an upturn tail for high landslide hazard val-
ues in the first model, indicating that the distribution of the 
predicted values of the first model is nonlinear. Compared to 
high landslide hazards, overestimations of landslide hazards 
in lower values are much worse.

5  Discussion

This section primarily focuses on analysis and discussion, 
divided into three parts. First, we examine the enhancement 
in accuracy of landslide hazard mapping resulting from the 
implementation of the new strategy. Second, we explore the 

Fig. 5  Distribution of landslide 
and non-landslide samples 
produced by two different sam-
pling strategies in three selected 
subregions of the study area on 
the eastern Tibetan Plateau. The 
colors show landslide hazards 
predicted by the random forest 
models of the same hyperpa-
rameters. Locations of subpan-
els 1−6 are shown in Fig. 4
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potential future applications of the new strategy in rainfall-
induced and global earthquake-triggered landslide hazard 
mapping. Last, we identify and discuss the limitations of 
the new strategy, as well as propose possible avenues for 
improvement in the future.

5.1  Improvement of Landslide Hazard Predictions

Machine learning models have been extensively used in 
landslide hazard analysis (Xu et al. 2012; Chen et al. 2018; 

Qi et al. 2021). Efforts on earthquake-triggered landslide 
hazard analysis have been made on designing optimal fea-
ture layers and selecting the best machine learning models 
(Tanyas et al. 2019), yet few have been devoted to optimiz-
ing landslide/non-landslide sampling strategies (Shao et al. 
2020; Liu et al. 2021; Yang et al. 2022). In this study, we 
proposed a strategy to produce spatially heterogeneous non-
landslide points. Compared to the traditional landslide haz-
ard map with all epicentral areas having high hazard values 
(Allstadt et al. 2018), our landslide hazard map shows more 

Fig. 6  Modeled landslide haz-
ard for the two largest landslides 
(the areas of the Daguangbao 
and Wenjiagou landslides are 
7.3 and 2.9  km2, respectively) 
in the study area on the eastern 
Tibetan Plateau. Locations of 
subpanels 7−10 are shown in 
Fig. 4

Fig. 7  Receiver operating char-
acteristic (ROC) curves of the 
two models with two different 
sampling strategies
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details in the epicentral area. The fact that there is a large 
portion of the Earth’s surface unaffected by earthquake-
triggered landslides even in the most severely landslide-
affected region (Fig. 2) indicates that traditional landslide 
hazard models have overestimated the hazard. In addition, 
there is a significant improvement  (R2 from 0.55 to 0.88) in 
the match between the spatial pattern of predicted landslide 
hazard values and interpreted landslides. These results indi-
cate that our strategy to select non-landslide points is very 
effective in predicting the location of earthquake-triggered 
landslides at the local scale.

Our model’s capability to depict more details in the epi-
central area is attributed to our strategy to select non-land-
slide points. The epicentral area has the largest landslide 
areal percentage and many landslide points. In the traditional 
sampling strategy, non-landslide points are randomly dis-
tributed. A large number of landslide points and very few 
non-landslide points in the epicenter would overrepresent 
landslide hazards. Our strategy fully considered the spatial 
pattern of landslides and solved the problem of underpresen-
tation of non-landslides in the epicentral area, which is evi-
denced by the contributions of the used layers (Fig. 9). Fig-
ure 9 shows feature importance in the two models. Lithology 
is the most important feature in both models. In the first 
model, distance to faults has high ranks, whereas slope and 
land cover type ranked low. Fault data were derived from a 
1:2,500,000 geological map and contain no detailed infor-
mation. At this scale, distance to fault is correlated to the 

spatial pattern of earthquake-triggered landslides, that is, 
more landslides are located near faults than far from the 
faults. In the second model, slope and land cover type ranked 
second and fourth, respectively. Both slope and land cover 
type data are more site-specific and their high ranks in the 
second model explain well their detailed depiction of high 
landslide hazard values in the epicentral area.

The difference in feature importance of the two models 
indicates that our proposed non-landslide sampling strat-
egy captured subtle differences on slope scale. This is dif-
ferent from the traditional sampling strategy, which only 
ensures reasonable spatial patterns of earthquake-triggered 
landslides.

Existing studies show that there are no intrinsic differ-
ences between different machine learning models. Compared 
to other machine learning models, random forest works 
better in dealing with categorical variables (He 2008; Cao 
2014) and for nonlinear relationships (Youssef et al. 2015). 
Variables do not need to be rescaled with the random forest 
model (Ham et al. 2005). By building multiple unrelated 
decision tree models, the performance of random forest 
could be more robust, which leads to high accuracy in land-
slide hazard modeling (Hong et al. 2017; Liao et al. 2022). 
Despite the fact that random forest can be computationally 
intensive for large datasets, it handles nonlinear relation-
ships well (Breiman 2001; Micheletti et al. 2013; Cheng 
et al. 2021). In addition, it needs fewer samples and is less 
prone to over-fitting than deep learning models (Catani et al. 

Fig. 8  Scatterplots of landslide 
areal density and landslide 
hazards, predicted by random 
forest models with two different 
sampling strategies. Each dot 
represents the landslide areal 
density and mean landslide 
hazard value within a grid of the 
2 km-by-2 km fishnet

Fig. 9  Feature importance 
ranked by random forest models 
with two different sampling 
strategies
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2013; Bui et al. 2020). Similar to other machine learning 
models, random forest is a black-box algorithm (Breiman 
2001; Marteau 2021).

5.2  Implications for Regional Landslide Hazard 
and Risk Analysis

Our proposed non-landslide sampling strategy results in 
more reasonable landslide hazard maps, characterized by 
the good match between high hazard slopes and interpreted 
landslides. Especially the mean landslide hazard values 
within the fishnet grids are linearly correlated with land-
slide areal percentages. The well-matched spatial pattern 
between the modeled landslide hazard and interpreted land-
slides means that the result may be directly used by relevant 
stakeholders.

Using interpreted landslide inventory, Jibson et al. (2000) 
counted the percentage of failed pixels within a calculated 
Newmark displacement. They used that percentage as the 
probability of each pixel impacted by earthquake-triggered 
landslides. Their model is a hybrid one and requires detailed 
engineering geology parameters and landslide inventory. In 
addition, their percentage of failed pixels for a given New-
mark displacement may not work for another earthquake. 
To improve its performance, many other earthquakes that 
triggered landslides should be used, which would require 
more detailed engineering geology parameters and known 
landslide inventories. In comparison, we used a much sim-
pler way in landslide hazard modeling, which only requires 
easy-to-access data, such as the DEM and lithology maps. 
This will save lots of time and resources for on-site data 
collection but achieve high spatial accuracy. The sampling 
strategy proposed by this study may also be applied to pre-
cipitation-induced landslides. Precise landslide hazard map-
ping could also benefit landslide risk analysis.

5.3  Limitations

Although we used a fishnet to calculate landslide areal per-
centage within each 2 km-by-2 km grid, we did not produce 
non-landslide points at the grid level. Instead, we divided all 
grids into five categories according to their landslide areal 
percentages. This simplification reduces the effectiveness 
of the strategy. Despite this, our results are still significantly 
better than the hazard map produced with the traditional 
sampling strategy (Fig. 8). In the future, we call for a cus-
tomized design of non-landslide points by considering the 
landslide areal percentage of each grid.

Another caveat is that the size of the grid used in this 
study may not be optimal. The 2 km-by-2 km size of the 
fishnet was selected subjectively by referring to the size of 
the landslides induced by the Wenchuan Earthquake (Xu 
et al. 2014). According to the coseismic landslide inventory 

interpreted by Xu et al. (2014), the largest landslide in our 
study area is 7.8  km2 with a maximum width of 2.2 km. 
Of the 200,000 coseismic landslides, less than 10 land-
slides have areas larger than 1  km2. Therefore, our fishnet 
of 2 km-by-2 km could ensure that almost no grid is fully 
occupied by landslides, which means all grids could have 
proportions for both landslides and non-landslides. Smaller 
grids may be suitable for precipitation-triggered landslides, 
which are usually much smaller in size. In addition, use of 
other irregular divisions (such as the widely used slope unit) 
(Tanyas et al. 2019) other than the squared grids may also be 
tried. The partition of squared grids probably cannot repre-
sent the natural difference of neighboring grids.

Our study did not differentiate landslide types and differ-
ent parts of landslides (van Westen et al. 2006). It is possible 
that the proposed method may be more suitable for transla-
tional landslides and avalanches but not perfect for debris 
flows. In addition, we may expect a better performance by 
solely modeling landslide sources rather than runout paths. 
These ameliorations would require better landslide inventory 
data to differentiate landslide source and runout areas. Other 
predisposing factors should also meet commensurable qual-
ity. For example, higher spatial resolution and accuracy of 
topographic data are recommended.

This study only used one event and its interpolations 
to other earthquakes await further testing. Based on our 
improvement in the modeling performance, we argue that 
previous overprediction of landslide hazards for the global 
earthquake-triggered landslide model is not caused by the 
large number of landslides of the Wenchuan Earthquake 
(Allstadt et al. 2018). In the future, a global earthquake-
triggered landslide hazard map may be produced and vali-
dated by incorporating global earthquake-triggered landslide 
inventories.

The random forest model excelled at modeling nonlinear 
relationships. The AUC ROC for the second model is much 
lower than for the first one, which indicates that current 
globally available layers are good at capturing the general 
spatial pattern of earthquake-triggered landslides but have 
difficulty depicting subtle differences between landslides and 
non-landslides at the slope scale. Further improvements of 
earthquake-triggered landslide hazard models should include 
causative layers.

In this study, the spatial resolution of the product is 30 
m, which is consistent with topographic layers (DEM and 
its derivatives). All other data have much coarser resolutions 
and were resampled at 30 m. In particular the scale of the 
fault and lithology data is 1:2,500,000, which is approxi-
mately equivalent to a spatial resolution of 660 m. Higher 
spatial resolution of lithology and faults could probably help 
in producing more refined hazard maps, but we are mainly 
concerned with how to obtain optimal modeling results with 
the same accessible data. Despite the huge differences in the 
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spatial resolution of these datasets, we could still carry out a 
fair comparison between two sampling strategies.

6  Conclusion

Landslide and non-landslide sampling strategies could 
significantly influence landslide hazard mapping. Our pro-
posed spatially heterogeneous non-landslide sampling strat-
egy significantly improved the spatial pattern prediction of 
landslide hazards. The ratio of landslide to non-landslide 
sampling points should be proportional to their areal ratio at 
the local scale, which will ensure a balanced representation 
of landslides and non-landslides. The traditional strategy of 
randomly selecting non-landslides in an earthquake-affected 
area should be abandoned. Without a reasonable sampling 
strategy, further design of feature layers or improving 
machine learning models will offer little help for regional 
landslide modeling.

Previously used validation methods such as AUC ROC 
or model prediction accuracy are ways to assess the per-
formance of landslide hazard models, but not the spatial 
validity of landslide hazard predictions. Higher values in 
these metrics do not guarantee good matches between high 
landslide hazard values and interpreted landslides. There-
fore, direct comparison of predicted landslide hazard val-
ues with earthquake-triggered landslide inventory is highly 
recommended.
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