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TCGNet: Type-Correlation Guidance for Salient

Object Detection

Yi Liu, Ling Zhou, Gengshen Wu, Shoukun Xu†, and Jungong Han†

Abstract—Contrast and part-whole relations induced by deep
neural networks like Convolutional Neural Networks (CNNs) and
Capsule Networks (CapsNets) have been known as two types
of semantic cues for deep salient object detection. However,
few works pay attention to their complementary properties in
the context of saliency prediction. In this paper, we probe into
this issue and propose a Type-Correlation Guidance Network
(TCGNet) for salient object detection. Specifically, a Multi-
Type Cue Correlation (MTCC) covering CNNs and CapsNets
is designed to extract the contrast and part-whole relational
semantics, respectively. Using MTCC, two correlation matrices
containing complementary information are computed with these
two types of semantics. In return, these correlation matrices are
used to guide the learning of the above semantics to generate
better saliency cues. Besides, a Type Interaction Attention (TIA)
is developed to interact semantics from CNNs and CapsNets
for the aim of saliency prediction. Experiments and analysis on
five benchmarks show the superiority of the proposed approach.
Codes has been released on https://github.com/liuyi1989/TCGNet.

Index Terms—Salient object detection, part-object relationship,
capsule network

I. INTRODUCTION

The task of salient object detection imitates the human

visual perception to automatically identify and segment at-

tractive regions or objects. It can help capture the informative

regions that contain the main scene semantics. On account of

its power, salient object detection has served for main scene

understandings, including autonomous driving perception [1–

3], image retrieval [4], video segmentation [5], image cropping

[6], semantic segmentation [7], and object recognition [8].

For example, in an autonomous driving vision system, salient

object detection can rapidly allocate the attention on the

important objects for scene parsing [1, 2, 9–11]. The earlier

salient object detection methods mostly extract the hand-

crafted features to mine the contrast regions [12]. The de-

velopment of deep learning has greatly broken the bottleneck
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Fig. 1: Problem statements. (a) Image; (b) GT; (c) Ours; (d)

POCINet [18]; (e) PWHCNet [19]; (f) TSPOANet [20]; (g)

ITSD [14]; (h) MINet [15]; (i) GateNet [16]; (j) EGNet [17].

The green, orange, and blue domains include the contrast

methods, the part-whole relational method, and the methods

combining contrast and part-whole relations, respectively.

[13] of hand-crafted approaches and will continue to bring

steady progress.

The deep learning based salient object detection methods

mostly rely on deep neural networks, especially Convolutional

Neural Networks (CNNs), to extract the discriminative features

and find the salient regions with high contrast over their

surroundings [13]. They have a genius for capturing the object

details. However, these methods compute the salient regions

within an image individually without considering the inter-

region relations, thereby damaging the object’s wholeness.

For this reason, the performance of previous contrast-based

salient object detectors heavily compromises when handling

real-world complex structures. As can be seen from Fig. 1, the

deep contrast saliency methods, including ITSD [14], MINet

[15], GateNet [16], EGNet [17], cannot produce good results

on complicated scenes, and mostly fail to achieve the object

completeness.

Alternative to the contrast pipeline of deep salient object

detectors, our previous works et al. [20, 21] put forward the

pipeline of part-whole relations for salient object detection

endowed by the Capsule Networks (CapsNets) [22], which can

well detect the object’s wholeness. Later on, other attempts,

e.g. ICON [23] and TSPORTNet [21], employ the CapsNets’

semantics as guidance to learn primitive features for saliency

inference. However, using part-whole relations alone will lead

to the loss of object details in complicated scenes, which

can be observed in Fig. 1 that the deep part-whole relational
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Fig. 2: Illustration for different interactions between con-

trast cues and part-whole relationships. (a) POCINet [18],

(b) PWHCNet [19], (c) Ours. POCINet [18] combines these

two cues in the decoder module. PWHCNet [19] adopts the

attention mechanism to integrate them before the decoder

module. Alternatively, we calculate the correlation to interact

these two types of semantics.

saliency method, i.e., TSPOANet [20], misses some inner

object details. In essence, contrast and part-whole relations

capture different semantics for the same salient object, e.g.,

contrast is able to highlight the local details while part-whole

relations are good at capturing the object’s wholeness. Clearly,

these two saliency cues can complement to each other for

better salient object detection. To this end, there are some

attempts in the progress. As shown in Fig. 2, PWHCNet [19]

proposes a mutual attention mechanism to integrate contrast

and part-whole relations to detect the more accurate salient ob-

ject. POCINet [18] combines these two cues in an upsampling

module to tackle the problem of camouflaged object detection.

Despite its preliminary success, it is still in its infancy, and

there are still some issues to be solved. For instance, due to

the lack of guidance after fusing contrast cues and part-whole

relations, PWHCNet [19] cannot ensure the integrity of salient

objects in the results. On the other hand, POCINet [18] always

causes a blurry border between foreground and background

because of the neglect of the relevance of these two cues.

In this paper, we delve into the coherence between these

two types of cues, and propose a type-correlation aware mech-

anism to enhance their representation power, as shown in Fig.

2(c). Specifically, we propose a Multi-Type Cues Correlation

(MTCC) module, in which the spatial correlation matrices,

including width and height correlations, dare computed. In

doing so, we intend to excavate the intrinsic relations of

the two saliency cues. On top of that, these two correlation

matrices are utilized to guide the intermediate contrast and

part-whole relational saliency results to generate more accurate

saliency priors, which are in return sreved as guidance to

learn better contrast and part-whole relational features for

saliency prediction. Besides, in the decoder, we develop a

Type Interaction Attention (TIA) to interact the semantics of

CNNs and CapsNets for saliency prediction, in which the

CNNs map is activated to be interacted with the CapsNets

map. Experiments indicate that our pipeline can adequately

engage contrast and part-whole relations for the task of salient

object detection, as can be shown in Fig. 1.

To sum up, the contributions of the paper can be described

as follows:

• In this work, we propose a novel framework termed Type-

Correlation Guidance Network (TCGNet) in the salient

object detection task. The proposed network digs into

the coherence between contrast and part-whole relational

saliency cues, thus improving the detection performance

via enhancing the representation power of two cues

simultaneously. To the best of our knowledge, this is the

first attempt to employ such type of coherence in deep

salient object detection.

• A novel Multi-Type Cues Correlation (MTCC) module

is proposed to obtain better saliency priors by integrating

the correlations of contrast and part-whole relational cues

from CNNs and CapsNets, thus improving the saliency

prediction performance.

• A novel Type Interaction Attention (TIA) mechanism in

the decoder is proposed to let the CNNs and CapsNets

maps interact and guide the generation of saliency maps,

which has been proven to improve performance of salient

object detection.

• Extensive experiments on five datasets show that the

proposed TCGNet can achieve superior performance,

compared to the state-of-the-art baselines, which further

consolidates our contributions.

The paper is organized as follows. Sec. II reviews the related

works. Sec. III describes the details of the proposed method.

Sec. IV evaluates and analyzes for understanding the proposed

method. Sec. V concludes the paper.

II. RELATED WORK

In this section, we will review the most related works,

including CNNs for salient object detection and CapsNets for

salient object detection.

A. CNNs for salient object detection

Deep CNNs have achieved a significant breakthrough in the

task of salient object detection [24–29]. At the beginning, an

Multi-Layer Perceptron (MLP) is employed to predict fore-

ground and background. Zhao et al. [30] used two pathways

to extract local and global context, which was fed into an

MLP for foreground and background classification. Wang et

al. [31] relied on an MLP to predict saliency scores from deep

segment-level features. Later on, the Fully Convolutional Net-

work (FCN) is adopted to solve the problem of salient object

detection. Luo et al. [26] combined deep local and global cues

for saliency detection. Wang et al. [32] recurrently refined the

saliency prediction from heuristic calculation or prediction of

previous time step. Wang et al. [33] used a stage-wise manner

to implement the coarse-to-fine saliency refinement. Liu et

al. [34] combined shallower features using recurrent layers

with intermediate deep supervision for saliency prediction. Su

et al. [35] solved the selectivity-invariance dilemma problem

of the salient object detection task with multiple branches.

At the stage of success of MLP and FCN for salient object

detection, they are combined into a unified framework for
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Fig. 3: Overview of our type-correlation guidance network (TCGNet), which consists of an encoder and a decoder. In the

encoder, given a three-channel RGB image, it is fed into an HRNet to extract multi-scale features, which are further to learn

rich context information with an ASPP module. After that, feature maps are fed into a TBIE module to get contrast cues

and part-object relationships, which will be subject to correlation analysis in the MTCC module. Besides, in the decoder, the

obtained contrast cues and part-object relationships will be integrated using a TIA module. Finally, a layer-by-layer manner is

employed for upsampling the saliency cues to get the output saliency map.

salient object detection with the aim of producing edge-

preserving detection using multi-scale context. Tang et al.

[36] integrated pixel-level generated by FCN and super-pixel-

level saliency for the final saliency prediction. Feng et al. [28]

detected object boundaries via an attentive feedback network

for better salient object detection. Recently, besides the need

for different networks, many works attempt to solve real-

life requirements for salient object detection, e.g., real time

and semantics understanding. For instance, Zhou et al. [14]

constructed a two-branch decoder and interact with them to

generate fast saliency. Liu et al. [37] explored the potential

of pooling for real-time salient object detection. Cheng et

al. [38] analyzed the semantic information of CNNs based

salient object detection models. Wang et al. [39] identified

the salient object with the guidance of human fixation. Wang

et al. [40] exploited the pyramid attention to focus on the

salient regions and salient edges detection to refine the object

boundaries. Wang et al. [41] learned top-down and bottom-

up inference for saliency prediction. Ke et al. [42] designed

a contour-saliency network with the purpose of enhancing the

edge quality of the salient object. Wang et al. [43] adopted

the boundary sensibility, content integrity, iterative refinement,

and frequency decomposition to enhance the performance for

salient object detection. Lee et al. [44] excluded multi-decoder

structures and minimized the learning parameters usage for

a computationally efficient salient object detector using the

attention guided tracing modules. Wu et al. [45] explored

the high-level feature learning for locating salient objects via

an intuitive extreme downsampling technique. Ma et al. [46]

improved the performance of salient object detection with

broader receptive fields. Jiao et al. [47] devised collaborative

content-dependent networks to find the discriminative objects

with a global context. More reviews about CNNs based salient

object detection can be referred to [13].

Different from these approaches that rely on the discrim-

inative contrast cues of CNNs for salient object detection,

our method involves the part-whole relations explored by

CapsNets to augment the salient object detection performance.

B. CapsNets for salient object detection

While CNNs-based salient object detection methods have

achieved breakthrough performance, they still encounter is-

sues. For example, CNNs mostly infer the saliency of each

region separately, which will cause failure in object wholeness.

To address this problem, our previous work [20] introduced

CapsNets [22], which can capture the spatial structures be-

tween different object parts, for the task of saliency pre-

diction, resulting in the task of part-whole visual saliency.

Instead of directly using CapsNets for saliency prediction, we

proposed a two-stream strategy to reduce the complexity of

CapsNets to tackle the dense salient object prediction. Later,

we consolidated our work with a correlation-aware capsule

routing for network training. On top of that, several efforts

are devoted to advocate CapsNets-based part-whole visual

saliency [21, 48]. To solve the heavy computation of the

part-whole relational saliency, Liu et al. [49] disentangled

the horizontal and vertical capsule routing within the capsule

routing algorithm for fast saliency prediction. Besides, a few

works have been devoted to the complementary of CNNs and

CapsNets. For example, [19] involved an attention mechanism

to interact CNNs features and CapsNets features for better

salient object detection. [23] used part-whole verification to

judge whether the part and whole objects are related. [50]

designed a multi-scale capsule-wise attention to aggregate

features and generate fine-grained prediction maps. Liu et al.
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[18] integrated the CapsNets semantics and CNNs features to

detect the eye-attracting objects in the concealed scene.

Different from the existing saliency detection methods in-

volving CapsNets and CNNs, we design a new interactive

mechanism for these two types of information. Specifically,

we compute the correlations between contrast cues from CNNs

and part-whole relational cues from CapsNets as the saliency

priors to learn better saliency cues. To this end, we develop a

novel attention mechanism to involve these two-type semantics

to infer the saliency.

III. METHODOLOGY

In this section, we will describe the details of the proposed

method.

A. Overview

The overview of the proposed TCGNet is illustrated in

Fig. 3. Given a three-channel RGB image, it is fed into

an HRNet [51] backbone to extract multi-scale and high-

resolution features, which are further fed into an ASPP module

[52] with different dilation rates (1, 6, 12 and 18) to capture

rich context information. Then we fuse all of the feature maps

to obtain the integrated feature maps (88×88×128), which are

rich in both fine details and semantic knowledge. Afterwards,

the feature maps are sent into the Two-Branch Information

Extraction (TBIE) module to grab contrast cues and part-whole

relationships, which will be subject to correlation analysis

in the Multi-Type Cues Correlation (MTCC) module. In our

decoder, the guided contrast cues and part-whole relationships

will be integrated in a Type Integration Attention (TIA).

Finally, a layer-by-layer manner is employed for upsampling

the decoded saliency cues to achieve the final output results.

B. Two-Branch Information Extraction (TBIE)

Fig. 4 details the architecture of TBIE, which is composed

of two parallel branches, including the CNNs branch for

contrast cues extraction and the CapsNets branch for part-

whole relational cues exploration.

1) CNNs branch: CNNs branch is composed of three

stages with the same structure, each of which contains one

convolution layer and ReLU. Each stage of CNN branch is

formulated as follows

Fout = ReLU(BN(Conv(Fin))), (1)

where Fin and Fout represent the input and output of the

convolution stage, respectively. Conv means the convolution

operation. The convolutions in the stage 1 and stage 2 adopt

a 3 × 3 convolution kernel with the stride of 2, while the

convolution in Stage 3 uses a 1 × 1 convolution kernel with

the stride of 1. Additionally, BN and ReLU mean Batchnorm

and ReLU operation, respectively. Finally, we get the contrast

saliency prediction FCS (22× 22× 1) via a 1× 1 convolution

operation on the output feature maps of stage 3.

Fig. 4: Framework of the TBIE module. Stage 1 is obtained

by fusing all the multi-scale feature maps. In the CNN branch,

Stage 2 and Stage 3, which are achieved successively by Stage

1 through the same convolution operation, generate saliency

map with contrast cues by one convolution with a kernel size

of 1 × 1. In the CapsNets branch, Stage 1 is sent into one

PrimaryCaps layers to get capsule features, which will be fed

into two ConvCaps layer to generate features with part-whole

relationships.

2) CapsNets branch: CapsNets branch is purposed to en-

hance the object wholeness of feature maps contained by

backbone. This is implemented by CapsNets [22]. To be

specific, we design one Primary Capsule (PrimaryCaps) layer,

one Convolutional Capsule (ConvCaps) layer, and one Class

Capsule (ClassCaps) layer to implement CapsNets1. Each

layer contains 8 types of capsules. The activation of the Class-

Caps output is used as the capsule features (22× 22× 8× 1),

which is further computed by a convolution to learn part-whole

relational saliency prediction FPO (22× 22× 1).

C. Multi-Type Cues Correlation (MTCC)

Using the TBIE module, we obtain the contrast and part-

whole relational cues with different saliency priors, which

prefer to learn the object details and object wholeness, re-

spectively. Therefore, the relation of these two saliency cues

will benefit the task of salient object detection. To this end,

Fig. 5 designs an MTCC module involving the correlations

of these two types of saliency predictions to improve their

saliency priors. In the following, we will illustrate the details.

1) Details of MTCC: Suppose I1 and I2 with the same

spatial resolution W ×H and the channel size of 1 represent

the two types of saliency prior, including contrast cues and

part-whole relational cues. The spatial correlation for these

two-type cues, including horizontal correlation and vertical

correlation, is chosen to measure the coherence between these

two types of saliency priors. The type correlation algorithm

consists of three steps, including spatial correlation computa-

tion, correlation guidance, and self-attention.

Step 1: Spatial correlation computation.

1PrimaryCaps, ConvCaps, and ClassCaps layers can be referred to
TSPOANet [20].
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Fig. 5: Framework of the proposed MTCC module. The

maps got from TBIE first obtains horizontal- and vertical-

level features through matrix multiplication, which are used

to guide the original feature map through the element-wise

multiplication and addition.

Spatial correlation contains horizontal correlation and ver-

tical correlation. The horizontal correlation can be computed

by

SCH ∈ ℜW×W = I1 × I
T
2
, (2)

where (·)
T

represents the transpose operation. Similarly, the

vertical correlation can be computed by

SCV ∈ ℜH×H = I
T
1
× I2. (3)

SCH and SCV reveal the spatial correlations between

two types of saliency priors implicitly along the horizontal

dimension and vertical dimension, respectively.

Step 2: Correlation guidance.

The spatial correlation SCH and SCV can be employed to

guide the saliency priors I1 and I2 to improve their saliency

properties. To this end, the guidance can be achieved by the

following computation, i.e.,

I1
′ ∈ ℜW×H = SCH × I1 × SCV ,

I2
′ ∈ ℜW×H = SCH × I2 × SCV .

(4)

With regard to I1 and I2, I′
1

and I′
2

are strengthened in

saliency extracting with the guidance of two-type correlation

guidance.

Step 3: Self-attention.

To improve the saliency property of two-type saliency

predictions, i.e., I1 and I2, they are self-attended by their

correlation-aware saliency priors, which can be formulated as

I1 = I1 + I1 ⊙ I1
′,

I2 = I2 + I2 ⊙ I2
′.

(5)

I′
1

and I′
2

improve the salient property by involving the

spatial correlation between two types of saliency predictions,

including I1 and I2.

Using Eq. (2), Eq. (3), Eq. (4), and Eq. (5), we can obtain

the type-correlation based saliency predictions F′

CS and F′

PO

from the contrast saliency prediction FCS and the part-whole

relational saliency prediction FPO, respectively.

2) Difference to SCMC [19] and POGU [18]: As shown

in Fig. 5, our MTCC differs from SCMC [19] and POGU

[18] by computing the mutual-type correlation as guidance for

two-type information integration rather than using the self-type

spatial correlation in SCMC [19] or the direct concatenation of

two cues in POGU [18]. Compared to SCMC [19] and POGU

[18], experiments in Sec. IV-C2 further demonstrate that the

correlation-guided integration strategy in the proposed MTCC

module can efficiently achieve the complementary of two types

of semantics for more accurate saliency inference.

3) Difference to PWHCNet [19]: The difference of our

MTCC and PWHCNet [19] lies in two folds.

First, our work focuses on the decision-level integration,

which is completely different from the feature-level inte-

gration of PWHCNet [19]. As shown in Fig. 5 of [19], the in-

puts for PWHCNet [19] are multiple channels of features maps

from contrast cues and part-whole relational cues. In contrast,

as shown in Fig. 5 of this paper, the inputs for our work are the

detection results with one channel inferred from contrast cues

and part-whole relational cues. It is obvious that PWHCNet

[19] focuses on the feature-level integration of these two

types of cues, while our work focuses on the decision-level

integration of these two types of cues. Compared with the

feature-level integration, our decision-level integration has

two advantages: i) The feature-level integration of PWHCNet

[19] is an intermediate-level integration, while our decision-

level integration is a high-level integration, which helps our

work to get more accurate saliency cues exploration when

integrating two types of cues; ii) The feature-level integration

of PWHCNet [19] integrates high-dimension feature maps,

which inevitably generates heavy computation, while our work

integrating two one-channel decision results, which will be

computational efficient, as will be verified in Table III.

Secondly, our MTCC implements the mutual correlation

for inter-type integration, which is ignored by the self-

type attention of PWHCNet [19]. As shown in the Fig. 5 of

[19], when integrating these two types of cues, PWHCNet [19]

computes two self-attentions, including self-channel attention

for one type of cues and self-spatial attention for the other

type of cues. In essence, since self-channel attention and self-

spatial attention are implemented within one individual type of

cues, named self-type attention, there is no inherent interaction

between these two types of cues. Differently, in our MTCC,

when integrating these two types of cues, we compute two

dimensions of interactive maps, including horizontal interac-

tive map and vertical interactive map, which are computed

by the mutual correlation between the contrast inference map

and part-whole relational inference map. These two interactive

maps are used to transform the contrast inference map and

part-whole relational inference map to new versions by matrix

multiplication, which have inherent interaction between these

two types of cues. Therefore, PWHCNet [19] cannot explore

the internal interaction between contrast cues and part-whole

relational cues, while our MTCC indeed catches the inherent

interaction between these two types of cues.
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D. Type Interaction Attention (TIA)

1) Motivation: On top of the MTCC module, two saliency

predictions F
′

CS and F
′

PO corresponding to contrast saliency

and part-whole relational saliency, respectively, are shown in

Fig. 6(d) and (e). It is obvious that F
′

CS in Fig. 6(d) tend

to be integrated, while the salient objects detected by F
′

PO

in Fig. 6(e) are more pronounced. But F
′

CS mainly focuses

on contrast cuts, while part-whole relationships dominate in

F
′

PO after guidance after the MTCC module. So F
′

CS and

F
′

PO can complement to each other. Subsequently, we aim to

utilize attention mechanisms to fuse these two feature maps to

enhance both types of information, which is achieved by TIA.

As shown in Fig. 6(c), the salient objects can be identified and

segment uniformly and wholly using TIA.

Fig. 6: Illustration for TIA. Comparison of saliency maps

before and after TIA. (a) Image; (b) Ground truth; (c) Saliency

maps after TIA; (d) CNN-based saliency maps (F′

CS
) before

TIA; (e) CapsNets-based saliency maps (F′

PO
) before TIA.

2) Details: By the MTCC module, we have obtained two

complementary feature predictions of contrast cues and part-

whole relationships, i.e., F′

CS and F′

PO. In the following, we

will interact these two types of information for better saliency

cues capture. Here, we design an attention mechanism, named

TIA, to this end. Specifically, as shown in Fig. 7, CNNs

saliency prediction map, i.e., F′

CS is followed by a global

average pooling, a convolution with kernel of 1 × 1, and the

Sigmoid activation function, to generate an attention, which

is used to guide the CapsNets prediction map, i.e., F′

PO. The

details of TIA can be formulated as

α = σ(Conv31D(GAP (F′

CS)), (6)

MO = α× F′

PO, (7)

where GAP (·) means global average pooling, Conv31D(·)
means 1D convolution with the kernel size of 3 and σ

represents the Sigmoid activation function. F′

CS and F′

PO

represent two types of feature prediction maps corresponding

to CNNs and CapsNets, respectively. MO means the output

map of TIA.

As shown in Fig. 3, different-scale outputs of TIA are

integrated and upsampled stage-wisely from deep to shallow

for the final saliency prediction.

Fig. 7: TIA module. CNNs Map and CapsNets Map represent

the saliency maps of contrast cues and part-whole relationships

obtained from the MTCC module, respectively. GAP, Conv1d

and Sigmoid are the operations of global average pooling, 1D

convolution and activation function, respectively.

3) Difference to ECA [53]: The difference between our TIA

and ECA [53] can be concluded as the following two folds.

First, ECA [53] absorbs multi-channel feature maps2 as inputs,

while our TIA treats two types of saliency prediction maps as

inputs. Secondly, ECA [53] enhances feature representation

by a self-attention mechanism, while our TIA manipulates the

interactive attention with respect to two types of semantics,

including CNNs map and CapsNets map, for saliency predic-

tion (See Fig. 7). Quantitative and visual advantages of our

TIA over ECA [53] can be found in Sec. IV-C.

4) Difference to PWHCNet [19].: When interacting con-

trast cues and part-whole relational cues, PWHCNet [19]

adopts the CapsNets cues as the self-spatial activation to

attend the CNNs cues, while our TIA activates the CNNs

cues to generate the self-channel activation, which is used to

attend the CapsNets cues. Due to the fact that the channel-

wise activation is efficient over the spatial-wise activation

in terms of computational efficiency, our work achieves a

computationally efficient mechanism over PWHCNet [19], as

can be seen from Table III.

E. Loss Function

In this work, we adopt both weighted BCE loss (Lwbce)

[54] and weighted IoU loss (Lwiou) [54] as our loss function

to train the network, i.e.,

Loss = Lwbce + Lwiou. (8)

2In this paper, “feature maps” means intermediate features with multiple
channels. In contrast, “saliency prediction map” means one-channel inference
map.



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 7

Lwbce and Lwiou can be calculated as follows:

Ls
wbce = −

H
∑

i=1

W
∑

j=1

(1 + γαij)
1
∑

l=0

1(gsij = l)logPr(psij = l|Ψ)

H
∑

i=1

W
∑

j=1

γαij

,

(9)

Ls
wiou = 1−

H
∑

i=1

W
∑

j=1

(gsij × psij)× (1 + γαs
ij)

H
∑

i=1

W
∑

j=1

(gsij + psij − gsij × psij)× (1 + γαs
ij)

,

(10)

where γ is a hyperparameter. 1(·) is a calibration function. psij
and gsij represent the saliency value of the location of each

pixel for saliency prediction and ground truth, respectively. Ψ
denotes all the parameters of the model and Pr(psij = l|Ψ) is

the predicted probability.

IV. EXPERIMENT

In this section, we will evaluate and take a deep study on

the proposed method with abundant experiments and analyses.

A. Setup Details

1) Datasets: Following previous works, we adopt five

public datasets for evaluation, including ECSSD [55], DUTS

[57], DUT-OMRON [58], PASCAL-S [56] and HKU-IS [24].

ECSSD [55] contains 1000 images with complicated struc-

tures, which are collected from the Internet.

PASCAL-S [56] contains 850 images, which can better

demonstrate the semantic segmentation capability of the net-

work.

DUTS [57] contains 10533 training images and 5019 test

images, which are with different scenes and various sizes.

DUT-OMRON [58] has 5168 images with different sizes

and complex structures.

HKU-IS [24] consists of 3000 training images and 1447

test images, which are with multiple disconnected objects.

We choose the training dataset of DUTS [57] to train the

model.

2) Evaluation Criteria: We evaluate the performance of

our model as well as other state-of-the-art methods from both

visual and quantitative perspectives. The quantitative metrics

include weighted F-measure (Fβ) [63], Mean Absolute Error

(MAE) [63], S-measure (Sm) [64], and E-measure (Em)

[65]. Given a continuous saliency map, a binary mask B̂ is

achieved by thresholding the saliency map B. Precision is

defined as Precision =
∣

∣

∣
B̂ ∩G

∣

∣

∣

/∣

∣

∣
B̂
∣

∣

∣
, and recall is defined

as Recall =
∣

∣

∣
B̂ ∩G

∣

∣

∣

/

|G|.

F-measure is an overall performance indicator, which is

computed by

Fβ =

(

1 + β2
)

Precision×Recall

β2Precision+Recall
. (11)

As suggested in [63], β2 = 0.3.

MAE is defined as

MAE =
1

Ŵ × Ĥ

∑

i

|B (i)−G (i)|, (12)

where Ŵ and Ĥ are the width and height of the image,

respectively.

S-measure (Sm) [64] is computed by

Sm = αSo + (1− α)Sr, (13)

where So and Sr represent the object-aware and region-aware

structure similarities between the prediction and the ground

truth, respectively. α is set to 0.5 [64].

E-measure (Em) [65] combines local pixel values with

the image-level mean value to jointly evaluate the similarity

between the prediction and the ground truth.

3) Implementation Details: The proposed model is imple-

mented with PyTorch and trained for 35 epochs with a batch

size of 10 using an NVIDIA GeForce RTX 3090 GPU (24G

memory). We adopt HRNet [51], pretrained on ImageNet [66],

to initialize the parameters of our backbone. The input images

have been resized to 352× 352 resolution and enhanced with

random horizontal rotation and color smoothing. We choose

the SGD optimizer [67] with a momentum of 0.9 and weight

decay of 0.0005. The learning rate is set to 0.001 and adjusted

by a poly strategy with a power of 0.9. The training time of

the model is 12.5 hours.

B. Comparison with the States-of-the-arts

To better evaluate the performance of our model, we com-

pare the proposed architecture with 21 state-of-the-art SOD

methods, including 14 CNNs based methods (AFNet [28],

BASNet [59], PoolNet [60], ASNet [39], PAGE [40], TDBU

[41], MINet [15], ITSD [14], F3Net [54], PFSNet [61], LGSL

[62], RCSBNet [42]) TRACER [44] and MEMNet [43], 1

Transformer based method (VST [29]), and 6 CapsNet based

methods (TSPOANet [68], PWHCNet [19], POCINet [18],

DCR [49], ICON [23]).

1) Quantitative Comparisons: Table I lists Fw
β , Sm,

maxEm and MAE values of different methods. It is obvious

that our method outperforms other methods on almost all the

datasets regarding these four metrics. Especially, we perform

best in terms of all metrics on ECSSD [55]. Besides, our

method achieves three best metrics on complicated DUTS [57]

and DUT-OMRON [58]. Compared with the best compared

method, i.e., MEMNet [43] which achieves 6 best metrics, our

model achieves 13 best metrics, which indicates our model has

the superiority on various scenes over MEMNet [43] and other

methods.

2) Visual Comparisons: Visual comparisons between our

model and other methods are shown in Fig. 8. To make the

comparison more sufficient, we display various scenes, in-

cluding strong contrast, small objects, high similarity between

foreground and background, strong light, and night scape. It is

obvious that most the state-of-the-art methods cannot handle

all the listed scenes with introductions of noise or incomplete

shapes. By contrast, our proposed method not only locates

the salient objects accurately, but also ensures the integrity in
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TABLE I: Quantitative comparison of our TCGNet with other SOD methods. Red, green and blue represent for the top three

methods, respectively.

Model
ECSSD [55] PASCAL-S [56] DUTS [57] HKU-IS [24] DUT-OMRON [58]

Fw
β

↑ maxEm ↑ Sm ↑ MAE↓ Fw
β

↑ maxEm ↑ Sm ↑ MAE↓ Fw
β

↑ maxEm ↑ Sm ↑ MAE↓ Fw
β

↑ maxEm ↑ Sm ↑ MAE↓ Fw
β

↑ maxEm ↑ Sm ↑ MAE↓

CNNs based methods

AFNet19 [28] 0.908 0.947 0.913 0.042 0.815 0.894 0.848 0.072 0.792 0.910 0.867 0.046 0.889 0.950 0.906 0.036 0.739 0.861 0.826 0.057

BASNet19 [59] 0.880 0.951 0.916 0.037 0.771 0.886 0.838 0.076 0.791 0.903 0.866 0.048 0.898 0.951 0.908 0.033 0.756 0.872 0.836 0.057

PoolNet19 [60] 0.910 0.948 0.917 0.042 0.806 0.897 0.852 0.072 0.799 0.918 0.879 0.042 0.894 0.954 0.912 0.033 0.737 0.869 0.832 0.056

ASNet19 [39] 0.875 0.954 0.915 0.047 0.786 0.908 0.861 0.070 0.728 0.893 0.843 0.061 0.871 0.955 0.905 0.041 - - - -

PAGE19 [40] 0.906 0.947 0.912 0.042 0.806 0.887 0.842 0.076 0.777 0.896 0.854 0.052 0.884 0.951 0.904 0.036 0.736 0.858 0.825 0.062

TDBU19 [41] 0.880 0.954 0.918 0.041 0.775 0.899 0.850 0.071 0.767 0.914 0.865 0.048 0.880 0.955 0.908 0.037 0.739 0.885 0.837 0.061

MINet20 [15] 0.924 0.957 0.925 0.034 0.829 0.903 0.856 0.064 0.823 0.917 0.875 0.039 0.906 0.955 0.914 0.030 0.741 0.856 0.822 0.057

ITSD20 [14] 0.875 0.949 0.914 0.040 0.773 0.902 0.856 0.068 0.798 0.919 0.877 0.042 0.891 0.951 0.907 0.035 0.745 0.866 0.829 0.063

F3Net20 [54] 0.925 0.955 0.924 0.033 0.835 0.904 0.861 0.062 0.840 0.927 0.888 0.036 0.910 0.958 0.917 0.028 0.766 0.872 0.839 0.053

PFSNet21 [61] 0.932 0.959 0.930 0.031 0.837 0.907 0.860 0.063 0.846 0.931 0.892 0.036 0.918 0.962 0.924 0.026 0.774 0.878 0.843 0.055

LGSL21 [62] 0.931 0.956 0.928 0.032 0.838 0.923 0.858 0.067 0.865 0.942 0.900 0.033 0.920 0.962 0.924 0.027 0.793 0.894 0.853 0.050

RCSBNet22 [42] 0.927 0.956 0.922 0.034 0.848 0.906 0.860 0.059 0.856 0.925 0.881 0.035 0.924 0.959 0.919 0.027 0.779 0.866 0.835 0.049

TRACER22 [44] 0.922 0.959 0.925 0.031 0.842 0.918 0.867 0.056 0.855 0.945 0.892 0.031 0.915 0.963 0.919 0.027 0.787 0.888 0.847 0.047

MEMNet23 [43] 0.932 0.956 0.928 0.031 0.855 0.914 0.871 0.056 0.873 0.943 0.901 0.028 0.926 0.966 0.926 0.026 0.789 0.879 0.850 0.047

Transformer based methods

VST21 [29] 0.920 0.964 0.932 0.033 0.829 0.918 0.871 0.061 0.818 0.939 0.896 0.037 0.900 0.967 0.929 0.029 0.756 0.888 0.850 0.058

CapsNets based methods

TSPOANet19 [20] 0.887 0.920 0.868 0.052 0.812 0.877 0.814 0.075 0.797 0.888 0.820 0.048 0.880 0.930 0.866 0.040 0.703 0.826 0.769 0.064

TSPORTNet21 [21] 0.914 0.946 0.913 0.041 0.820 0.891 0.850 0.071 0.809 0.912 0.871 0.043 0.901 0.954 0.909 0.032 0.744 0.860 0.823 0.058

PWHCNet21 [19] 0.885 0.962 0.932 0.031 0.765 0.910 0.866 0.062 0.824 0.940 0.898 0.035 0.911 0.966 0.929 0.026 0.771 0.885 0.850 0.055

POCINet21 [18] 0.917 0.953 0.922 0.040 0.817 0.897 0.854 0.071 0.808 0.920 0.879 0.043 0.903 0.955 0.915 0.033 0.747 0.877 0.838 0.057

DCR22 [49] 0.919 0.947 0.914 0.038 0.821 0.888 0.845 0.070 0.824 0.912 0.870 0.041 0.905 0.949 0.907 0.032 0.746 0.853 0.821 0.055

ICON22 [23] 0.918 0.953 0.919 0.036 0.834 0.911 0.861 0.064 0.827 0.924 0.878 0.043 0.905 0.957 0.915 0.032 0.755 0.879 0.833 0.065

Ours 0.936 0.966 0.937 0.028 0.845 0.919 0.872 0.056 0.856 0.946 0.901 0.031 0.919 0.968 0.927 0.025 0.789 0.896 0.856 0.046

Fig. 8: Visual comparison of other state-of-the-art models. From top to bottom: Strong contrast, small objects, high similarity

between foreground and background, strong light, and night scape.

TABLE II: Ablation study for the proposed method. The best method is marked by red.

Model
ECSSD [55] PASCAL-S [56] DUTS [57] HKU-IS [24] DUT-OMRON [58]

Fw
β

↑ maxEm ↑ Sm ↑ MAE↓ Fw
β

↑ maxEm ↑ Sm ↑ MAE↓ Fw
β

↑ maxEm ↑ Sm ↑ MAE↓ Fw
β

↑ maxEm ↑ Sm ↑ MAE↓ Fw
β

↑ maxEm ↑ Sm ↑ MAE↓

i) Sec. IV-C1: Effectiveness of components.

TBIE 0.924 0.949 0.915 0.039 0.841 0.905 0.857 0.062 0.858 0.935 0.885 0.035 0.911 0.953 0.905 0.033 0.779 0.885 0.842 0.047

TBIE + MTCC 0.933 0.958 0.926 0.033 0.848 0.910 0.861 0.060 0.870 0.942 0.897 0.032 0.920 0.961 0.917 0.028 0.785 0.900 0.855 0.047

TBIE + TIA 0.931 0.957 0.925 0.032 0.844 0.908 0.863 0.059 0.867 0.943 0.898 0.031 0.918 0.961 0.918 0.028 0.783 0.895 0.852 0.047

TBIE + MTCC + TIA 0.936 0.966 0.937 0.028 0.845 0.919 0.872 0.056 0.856 0.946 0.901 0.031 0.919 0.968 0.927 0.025 0.789 0.896 0.856 0.046

ii) Sec. IV-C2: Integration mechanisms for contrast and part-whole relations.

SCMC [19] 0.930 0.957 0.925 0.033 0.843 0.912 0.865 0.057 0.865 0.945 0.900 0.030 0.915 0.961 0.918 0.028 0.785 0.888 0.847 0.047

POGU [18] 0.927 0.959 0.926 0.033 0.845 0.912 0.868 0.058 0.846 0.937 0.893 0.034 0.911 0.960 0.916 0.029 0.782 0.898 0.853 0.047

MTCC 0.936 0.966 0.937 0.028 0.845 0.919 0.872 0.056 0.856 0.946 0.901 0.031 0.919 0.968 0.927 0.025 0.789 0.896 0.856 0.046

iii) Sec. IV-C3: TIA vs. ECA.

ECA [53] 0.929 0.959 0.927 0.033 0.841 0.912 0.863 0.060 0.859 0.942 0.893 0.033 0.919 0.962 0.917 0.029 0.788 0.891 0.849 0.047

TIA 0.936 0.966 0.937 0.028 0.845 0.919 0.872 0.056 0.856 0.946 0.901 0.031 0.919 0.968 0.927 0.025 0.789 0.896 0.856 0.046

iv) Sec. IV-C4: CNNs map (TIA) vs. CapsNets map for attention (TIA∗).

TIA∗ 0.923 0.958 0.925 0.034 0.837 0.913 0.868 0.059 0.851 0.940 0.894 0.033 0.912 0.959 0.915 0.029 0.789 0.894 0.853 0.046

TIA 0.936 0.966 0.937 0.028 0.845 0.919 0.872 0.056 0.856 0.946 0.901 0.031 0.919 0.968 0.927 0.025 0.789 0.896 0.856 0.046

v) Sec. IV-C5: Coarse map vs. feature maps for MTCC.

MTCC-FM 0.922 0.959 0.928 0.035 0.829 0.911 0.866 0.065 0.841 0.935 0.889 0.037 0.918 0.966 0.923 0.028 0.776 0.895 0.850 0.054

MTCC 0.936 0.966 0.937 0.028 0.845 0.919 0.872 0.056 0.856 0.946 0.901 0.031 0.919 0.968 0.927 0.025 0.789 0.896 0.856 0.046

vi) Sec. IV-C6: MTCC vs. addition/mulltiplication.

Addition 0.925 0.959 0.926 0.034 0.838 0.914 0.867 0.060 0.849 0.941 0.895 0.033 0.911 0.961 0.916 0.029 0.782 0.894 0.850 0.047

Multiplication 0.921 0.958 0.925 0.035 0.834 0.910 0.863 0.061 0.848 0.943 0.896 0.033 0.908 0.960 0.916 0.030 0.785 0.896 0.852 0.046

MTCC 0.936 0.966 0.937 0.028 0.845 0.919 0.872 0.056 0.856 0.946 0.901 0.031 0.919 0.968 0.927 0.025 0.789 0.896 0.856 0.046

every situation. This gets benefit from the primitive interaction

mechanism for contrast from CNNs and part-whole relations

from CapsNets in our model.

C. Ablation Studies

We conduct the ablation experiments to verify the contri-

butions of our main components. All these models described

below are trained on the same DUTS training datasets under

the same implementation details described in IV-A3.

1) Effectiveness of components: We verify the performance

of each component by testing various simplified versions of

our model. Table IV-C-i) lists performance of different ver-

sions of the proposed model. As shown in Table IV-C-i), only

using TBIE without other two modules can well tackle the task

of saliency detection with good performance. The combina-

tions of “TBIE + MTCC” and “TBIE + TIA” both surpass the

baseline TBIE, which proves the effectiveness of the proposed

MTCC and TIA. Ulteriorly, the whole model covering TBIE,

MTCC, and TIA achieves a further performance gain. As

shown in Fig. 9, on top of the baseline, i.e., TBIE, MTCC

enhances the object shapes capture (e.g., rows 1 & 3) and

object details (e.g., row 4), and TIA strengthens the object
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Fig. 9: Visual comparisons of different components. (a) Image,

(b) GT, (c) TBIE, (d) TBIE + MTCC, (e) TBIE + TIA, (f)

TBIE + MTCC + TIA.

wholeness (e.g., row 1). The joint force of MTCC and TIA

predicts the salient maps close to the ground truth. In summary,

the proposed MTCC and TIA contribute significantly to the

whole model for the task of saliency prediction.

2) Integration mechanisms for contrast and part-whole re-

lations: Our MTCC integrates contrast cues and part-whole

relational cues for saliency prediction. To study its superiority,

we compare our MTCC with two related integration mech-

anisms for contrast and part-whole relationships, including

SCMC [19] and POGU [18]. For fair comparisons, we replace

our MTCC with these two mechanisms in our framework for

training. As Table IV-C-ii) shows, under the same setting, our

MTCC beats SCMC [19] and POGU [18]. Visually in Fig.

10, our MTCC achieves better object wholeness (e.g., top

three rows) and inner details (e.g., bottom row), compared

with SCMC [19] and POGU [18]. This indicates our MTCC

interact more efficiently contrast and part-whole relations than

SCMC [19] and POGU [18].

3) TIA vs. ECA [53]: To take a deep study on our TIA,

we compare it with a related work, i.e., ECA [53]. Specially,

we replace our TIA with ECA [53] within the proposed

network architecture for fair comparisons. As represented in

Table IV-C-iii), TIA beats ECA with a significant gap. As

shown in Fig. 11, our TIA performs better for salient object

detection in terms of objects wholeness and details. These

observations prove that our TIA attends those primitive CNNs

features and part-whole relations from CapsNets with a more

intelligent attention mechanism compared with ECA [53] for

salient object detection.

4) CNNs map vs. CapsNets map for attention: In our

TIA, CNNs prediction map is activated to attend CapsNets

prediction map. To take a deep insight into TIA, we compare

our TIA with a modified version, named TIA∗, in which

CapsNets prediction map is activated to attend the CNNs

prediction map. As listed in Table IV-C-iv, our TIA beats TIA∗

by a lot. Visually in Fig. 12, the saliency maps learned by our

TIA obtain better object wholeness and inner details than those

Fig. 10: Visual comparisons of different module versions. (a)

Image; (b) GT; (c) SCMC [19]; (d) POGU [18]; (e) OURS

(MTCC).

Fig. 11: Visual comparisons of different module versions. (a)

Image; (b) GT; (c) ECA [53]; (d) OURS (TIA).

of TIA∗. The improvements of TIA over TIA∗ demonstrates

the superiority of the attention mechanism of our TIA for

saliency prediction.

5) Coarse map vs. feature maps for MTCC: To study the

effectiveness of the coarse maps of CNNs and CapsNets in

MTCC, we compare our framework with a modified version,

named MTCC-FM, in which the feature maps instead of

coarse maps of CNNs and CapsNets are employed for MTCC.

As listed in Table IV-C-v), our MTCC performs better than

MTCC-FM by a large margin. Besides, Fig. 13 describes some

visual results of MTCC and MTCC-FM. It can be found

that MTCC-FM produces much noise in the saliency map,

while our MTCC predict the accurate salient objects. This is

because that multiple channels of feature maps in MTCC-

FM inevitably contain some noisy channels, which causes
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Fig. 12: Visual comparisons of different module versions. (a)

Image; (b) GT; (c) TIA∗; (d) OURS (TIA). TIA∗ means a

modified TIA version, in which CapsNets prediction map is

activated to attend the CNNs prediction map.

the degradation of performance. By contrast, the coarse maps

learned from multiple feature maps in MTCC has cleared the

noise to some extent, which improves the performance a lot.

6) MTCC vs. addition/multiplication: To explore the role

of MTCC for the interaction of CNNs prediction map and

CapsNets prediction map, we compare it with two modi-

fied versions, named MTCC-A and MTCC-M, which are

implemented by directly integrating CNNs prediction map

and CapsNets prediction map via addition and multiplication,

respectively. As listed in Table IV-C-vi), our MTCC is superior

over MTCC-A and MTCC-M, which indicates that the inter-

type correlation guidance strategy of MTCC performs better

than the simple addition and multiplication guidance strategies.

Besides, as depicted in Fig. 14, our MTCC produces the

saliency maps close to the ground truth, while MTCC-A and

MTCC-M predict poor ones.

7) Complexity: To study the computational complexity of

our model with respect to the related CapsNets based salient

detectors, Table III lists FLOPs and inference time of different

CapsNets based methods. It shows that our model achieves the

lowest FLOPs and second best inference time. That proves

that our model shares a good efficiency within the scope of

CapsNets based saliency detection.

D. Failure case

Despite our method achieves promising performance, there

are still many challenges. Fig. 15 depicts some failure cases.

The salient objects in images of Fig. 15 are characterized with

some scene semantics instead of simply high-contrast regions,

which challenge our framework. In the future, we will take into

Fig. 13: Visual comparisons of different module versions. (a)

Image; (b) GT; (c) MTCC-FM; (d) OURS (MTCC). MTCC-

FM employs the feature maps instead of coarse maps of CNNs

and CapsNets for MTCC.

Fig. 14: Visual comparisons of different module versions.

(a) Image; (b) GT; (c) MTCC-A; (d) MTCC-M; (e) OURS

(MTCC). MTCC-A and MTCC-M, are implemented by di-

rectly integrating CNNs prediction map and CapsNets predic-

tion map via addition and multiplication, respectively.

account the salient semantics [38, 69] to improve our model

on the real-world scene understanding.

V. CONCLUSION

In this paper, we have proposed a framework to extract

the coherence between contrast cues and part-whole relations
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TABLE III: Complexity comparison with CapsNets saliency

methods. Top two methods are marked by red and green,

respectively.

Method Input size FLOPs (G) Time (s)
TSPOANet [20] 352 × 352 197.78 0.32

TSPORTNet [21] 352 × 352 267.50 0.35
POCINet [18] 352 × 352 332.30 0.1

DCR [49] 352 × 352 60.78 0.06
ICON [23] 352 × 352 64.90 0.013

PWHCNet [19] 256 × 256 137.64 0.167
Ours 352 × 352 50.55 0.05

Fig. 15: Failure cases. From top to bottom: Image; GT;

Saliency maps.

for salient object detection. Our key idea is integrating the

correlations of these two cues from CNNs and CapsNets and

let them interact. For more in-depth interaction, we have also

developed an attention mechanism involving these two types

of semantics to infer saliency. The evaluation of our model on

five datasets has shown our excellent performance compared

with other state-of-the-art methods. In the future, we will

take into account salient semantics for high-level saliency

understanding.
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