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Abstract

Considering the application of wind-forecasting technology along the railway, it becomes an effective means to reduce the risk of
train derailment and overturning. Accurate prediction of crosswinds can provide scientific guidance for safe train operation. To ob-
tain more reliable wind-speed prediction results, this study proposes an intelligent ensemble forecasting method for strong winds
along the high-speed railway. The method consists of three parts: the data preprocessing module, the hybrid prediction module and
the reinforcement learning ensemble module. First, fast ensemble empirical model decomposition (FEEMD) is used to process the
original wind speed data. Then, Broyden-Fletcher-Goldfarb-Shanno (BFGS) method, non-linear autoregressive network with exoge-
nous inputs (NARX) and deep belief network (DBN), three benchmark predictors with different characteristics are employed to build
prediction models for all the sublayers of decomposition. Finally, Q-learning is utilized to iteratively calculate the combined weights
of the three models, and the prediction results of each sublayer are superimposed to obtain the model output. The real wind speed
data of two railway stations in Xinjiang are used for experimental comparison. Experiments show that compared with the single
benchmark model, the hybrid ensemble model has better accuracy and robustness for wind speed prediction along the railway. The
1-step forecasting results mean absolute error (MAE), mean absolute percentage error (MAPE) and root mean square error (RMSE) of
Q-learning-FEEMD-BFGS-NARX-DBN in site #1 and site #2 are 0.0894 m/s, 0.6509%, 0.1146 m/s, and 0.0458 m/s, 0.2709%, 0.0616 m/s,
respectively. The proposed ensemble model is a promising method for railway wind speed prediction.
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1. Introduction analyse the risk of rolling stock overturning in cross-wind, and
evaluated the influence of uncertainty parameters on stability.
Cheli et al. [8] studied the relationship between cross-wind ef-
fect, aerodynamic load and HSR operation stability through aero-
dynamic numerical optimization experiments. Dorigatti et al. [9]
developed a physical research model to compare the distribution
of aerodynamic loads generated by transverse wind on HSR under
static and dynamic conditions. Some aerodynamically optimized
structures that can counteract the effects of high wind loads are
explored.

Different from the above research ideas, some scientists have
found that the railway strong wind warning system is a feasible
means to effectively reduce train derailment accidents caused by
crosswinds. Wind speed forecasts help train operators to imple-
ment more reliable speed limit warning instructions [10]. Early
deceleration of trains can greatly reduce or even avoid rollovers
[11]. To better manage the safety of train operations in the envi-
ronment of large wind farms, research on wind speed prediction
models has been carried out all over the world in recent years
[12-14]. These systems measure the likelihood of overturning a
train by comparing the predicted cross-wind strength with the

The emergence of the high-speed railway (HSR) system has con-
nected different cities and accelerated the flow of talents and ma-
terials [1]. Convenient transportation makes the connection be-
tween cities closer, which greatly promotes the economic and cul-
tural development of the areas along the railway line. The HSR
technology has significant strategic significance [2]. However, the
stability of high-speed trains during operation is easily affected
by the environment, and the trains may overturn under the ac-
tion of strong crosswinds [3]. In fact, train overturning incidents
caused by strong crosswinds emerge in an endless stream, which
seriously threatens the safety of railway transportation [4].

In response to train derailment accidents, scientists have stud-
ied the strong wind resistance performance of HSR. Sanquer et al.
[5] designed an aerodynamic load measurement method based
on pressure fleld and used it to evaluate the influence of aero-
dynamic force caused by crosswind on train operation stability.
Cui et al. [6] calculated the safety domain conditions of the ulti-
mate wind speed to ensure the safe operation of HSR by analysing
the attitude changes of high-speed trains under the action of
crosswind. Carrarini [7] used multi-body simulation modelling to
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safety threshold. At present, wind speed prediction methods com-
monly used in railway systems include physical methods [15-18],
statistical methods [19, 20] and artificial intelligence (AI) methods
[12, 21, 22].

However, the existing prediction methods have certain lim-
itations. First of all, the original wind signal collected by the
anemometer has strong randomness, intermittency and volatil-
ity. If this kind of unstable noise is not preprocessed, it will bring
great difficulties to the prediction work [23]. Second, the perfor-
mance of a single Al model for wind speed prediction along rail-
way lines cannot always be satisfactory. Due to the difference in
adaptive characteristics, the model will show higher or lower pre-
diction accuracy when faced with different application scenarios.
The instability of its different ability to process data has brought
difficulties to the forecasting work [24].

Aiming at the above technical bottlenecks, we propose a
decomposition-prediction-ensemble framework in this study to
improve the railway wind speed early warning systems. This
model is designed to overcome the difficulty of volatility of origi-
nal data and the unstable prediction performance of individual Al
models. The main contributions of this paper can be summarized
as follows:

1) The proposed reinforcement learning hybrid ensemble
model combines the advantages of the fast ensemble empirical
model decomposition (FEEMD) data pre-processing method and
multiple basic predictors, and it can fully excavate the fluctuation
information at different levels in the wind speed time series.

2) A preprocessing module for wind speed non-stationary series
data is developed. The original non-stationary series processed by
FEEMD has independent oscillatory components and is easier to
predict. The randomness and volatility of wind speed data are ef-
fectively decomposed.

3) This study innovatively uses Q-learning to calculate the com-
bined weights of Broyden-Fletcher-Goldfarb-Shanno (BFGS) algo-
rithm, non-linear autoregressive network with exogenous inputs
(NARX) and deep belief network (DBN), thereby realizing the or-
ganic ensemble of multiple sub-predictors, which avoids the limi-
tations of a single model. The proposed Q-learning-FEEMD-BFGS-
NARX-DBN (Q-FEEMD-BND) model integrates the characteristics
of multiple models to show superior prediction accuracy in more
scenarios.

The structure for the rest of this study is as follows. Section 2
introduces the methodology. Section 3 analyses and discusses the
research area and the experimental case modelling results. Sec-
tion 4 summarizes the research work and puts forward future
prospects.

2. Methodology

2.1. Fast ensemble empirical model
decomposition

As a variant of ensemble empirical mode decomposition (EEMD),
the computation speed of FEEMD is improved and optimized [25].
In addition, FEEMD combines the idea of white noise and inte-
grated mean, which cleverly solves the mode mixing problem of
traditional algorithms, and it is suitable for solving non-stationary
nonlinear series decomposition [26]. The specific implementation
steps of FEEMD in this study are as follows:

1) Set the initial number of ensemble trials M.

2) Add a random Gaussian white noise signal nn,(t) into the
original unidirectional wind speed signal x(t) to get the noise-
enhanced signal X, (t).

Xin(t) = X(t) + 1 () )

where, m is the number of iterations.

3) Implement standard EMD procedures. The noise signal X, (t)
is decomposed into a series of intrinsic mode functions (IMFs) and
a residual.

Xm (t) = Z Ci,m(t) + On)‘Yl(t) (2)

where, ¢; , (t) is the i-th IMF of the m-th iteration, o, (t) is the resid-
ual of the m-th iteration and n is the total number of all IMFs.

4) Compare the magnitude of m and M. If m < M, update m =
m+ 1 andrepeat steps (2) and (3). Different white noise sequences
are added during each iteration of the loop.

5) Calculate the ensemble mean and residual for each IMF dur-
ing M iterations.

1 .
alt) =+ D am)i=123,..,nm=123,..M 3)
m=1

M
1
on(t) = 1 D onm(t) m=1,2,3,...M 4)
m=1

where, ¢;(t) represents the i-th IMF component and o, (t) represents
the final residual.

2.2 Broyden-Fletcher-Goldfarb-Shanno
quasi-Newton back propagation

The BFGS is evolved from multilayer feedforward perceptron
(MLP), and it is often used to solve the training optimization prob-
lem of the neural network [27]. The method has excellent conver-
gence, and it is better than the back propagation neural network
(BPNN) algorithm. The BFGS consists of input-hidden-output lay-
ers. Reasonable adjustment of the number of hidden layers and
neuron parameters of the network can improve the nonlinear
mapping ability. The BFGS network structure used in this study
is presented in Fig. 1.

2.3 Non-linear autoregressive network with
exogenous inputs
The NARX can overcome the influence of additional external in-
put on the model, thereby ensuring the prediction accuracy of
discrete-time series [28]. The NARX can simultaneously incorpo-
rate past states of the same series. Fig. 2 presents the model net-
work of NARX.
The specific model output value can be expressed as follows:

y(k+1) = F[y(R), y(k — 1), o y(k = do): X(k + 1), X(R), o X(k — )]
5)

where, k is the number of neurons in the input layer, y(k) repre-
sents the previous values of the target, X (k) represents the exoge-
nous associated series, and d; and d, represent the input and out-
put lags. The output results of proper activation functions fx(-)
with biases b+ can be given as follows [29]:

Yk +1) =
Np di

fo {Zwm . fh (ZLUX]X(]Q +1-— l) —+ Z Wyiy(k — l) —+ bh) + b0:|
i=1 =0 i=0fo

(6)

2.4 Deep belief network

The DBN is widely used in multiple fields, such as big data analy-
sis, computer vision, text classification and so on [30]. Restricted
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Fig. 2. The model architecture of NARX [32].

Boltzmann machines (RBMs) composed of multiple layers of ran-
dom variables and latent variables are stacked in series to form
a DBN, which enables top-down supervised learning. To avoid er-
rors caused by human interference in the feature extraction pro-
cess, the RBM intelligently converts the features in the original
space into abstract representations in another space, layer by
layer. Compared with the stacked autoencoder feature extraction
method, DBN can obtain more information while generating less
reconstruction error [33]. In this study, DBN is used for the task
of deep learning prediction. Fig. 3 shows the principle of the DBN
model.

2.5 Q-learning

Reinforcement learning emphasizes maximizing expected bene-
fits through actions that change with the environment [34]. The
reward and punishment mechanism can stimulate the agent to
move towards the direction that produces the greatest benefit in
the iterative process. As a typical efficient reinforcement learn-
ing method, Q-learning is used to solve the optimization prob-
lem of model fusion [24]. The Q reinforcement learning is used
to combine multiple benchmark models through weighted inte-
gration. The organic integration of multiple benchmark predictors
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can synthesize multiple advantages while alleviating the limita-
tions of a single predictor. In this study, Q-learning is used for the
weighted ensemble of BFGS, NARX and DBN.

To reasonably use the Q-learning algorithm, various parame-
ters and states need to be initially set, including learning rates
(0 < o < 1), work reward discounts y (0 < y < 1), work greedy pa-
rameters ¢, Q tables for ensemble learning, states S=3S, and
study strategies =. Take state S and action A as input to the Q
agent to obtain the expectation of long-term payoff. The state
S = w1, wy, w3] explains the composition of each specific state in
the learning process, where w1, w, w3 represent the weight coeffi-
cients of BFGS, NARX and DBN.

3

Zwuzl,ﬂwuxwuzo 7)
u=1

Perform action a; = 73(S;) based on the greedy strategy. After
the environment is affected by the action, a new state and reward
are returned to the agent.

G = (8) = Max (Qualue action), < (1-¢)
Randomly (Qualue action), € ¢
where, exploration probability ¢,0 < & < 1.
By setting punishment and reward mechanisms for the Q agent
to obtain rewards R and instant rewards ;.

e =R (St, ar) )

The reward and punishment mechanisms are set as follows:

_JAerror (S, @) — 1, (errorgg < eIrrorney)
"~ | Aerror (S, @) + 1, (erroryq > erroryey) (10)
AETTOT = eITOTo)q — €IT0Tney

The prediction error MAPE (loss function) obtained from the
weight coefficient and the old-new states is shown as follows:

N
AN\ 2
eITOIVAPE = 1/Ny Z (Yl' — Yi) (11)
i=1
where, ¥ represents the wind speed forecasting results, Y repre-
sents the real data and Ny represents the amount of data.

The Q table and state S are updated according to the newly
calculated evaluation function Q.

Q41 (St.ar) = Q: (St ar)
o (14 y maxQ (Sera, ) — Qr (St a)) (12)

The above process is performed until the predicted target is
reached or the number of iterations is terminated, and the final
combined weights are obtained.

2.6 Framework of the proposed hybrid
reinforcement learning model

Fig. 4 presents the details of the Q-learning integration process

and the framework design of the proposed model (Q-FEEMD-BND).

The model consists of three parts, which are the FEEMD data pre-
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Fig. 4. The framework of strong wind signal prediction model along the HSR.

processing module, the hybrid prediction module and the rein-
forcement learning ensemble module.

2.6.1 A module

The original wind speed time series data are highly volatile, in-
termittent and unstable. To overcome the negative effects of such
changes and build better prediction models, an improved decom-
position method FEEMD is used to disassemble the oscillatory
components of the dataset. This is to make the decomposed series
easy to be learned by the predictor so as to obtain more accurate
prediction results.

2.6.2 B module

The original wind speed data is sent to three predictors as in-
put after the data pre-processing. As three benchmark predictors
with different properties, BFGS, NARX and DBN can collect dif-
ferent wind speed change information. The benchmark predic-
tor predicts each of the decomposed subseries and superimposes
the subseries to obtain the final prediction result of the individual
model.

2.6.3 C module

The Q-learning is utilized to optimize the weights of the above
models iteratively. Finally, the new combined weights are used
to organically integrate each benchmark model to obtain a rein-
forcement learning hybrid ensemble forecasting model.

3. Results and discussions
3.1 Study zones and data descriptions

The Xinjiang Province (China) is located in the Gobi desert, and
its regional terrain is high in the north and low in the south. This
caused the cold air from Siberia and the Ural Mountains to con-
tinue to strengthen during the downward moving process, result-
ing in strong and even super strong winds. The safety of train op-
erations in a strong wind environment is greatly threatened. The
wind speed data of the Baili wind area of the Xinjiang Lanxin Rail-
way were used for experimental modelling, including total 6000
actual sampling data from two different wind measurement sta-
tions. Data from different sites verify the validity of the model.
The sampling interval of wind speed signal points is 3 s. The 1st
to 1200th sampling points of the original data are the training set,
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Fig. 5. The real wind speed dataset of (a) Site #1 and (b) Site #2.
Table 1. The wind speed forecasting results of each comparison model at Site #1.
. Evaluation indicator
Model Horizon
MAE (m/s) MAPE (%) RMSE (m/s)

BFGS 1-step 0.1996 1.4388 0.3571
2-step 0.3680 2.6326 0.5741
3-step 0.5206 3.7067 0.7587

NARX 1-step 0.2181 1.6252 0.4356
2-step 0.4310 3.2959 1.1212
3-step 0.5629 4.1386 0.8842

DBN 1-step 0.2027 1.4573 0.3530
2-step 0.3716 2.6578 0.5653
3-step 0.5229 3.7284 0.7439

FEEMD-BFGS 1-step 0.0932 0.6762 0.1214
2-step 0.1305 0.9492 0.1787
3-step 0.1919 1.4072 0.2435

FEEMD-NARX 1-step 0.0900 0.6552 0.1167
2-step 0.1246 0.9065 0.1703
3-step 0.1438 1.0587 0.2028

FEEMD-DBN 1-step 0.0980 0.7177 0.1261
2-step 0.1234 0.9001 0.1848
3-step 0.1482 1.0795 0.2166

Q-FEEMD-BND 1-step 0.0894 0.6509 0.1146
2-step 0.1124 0.8187 0.1631
3-step 0.1293 0.9498 0.1855

the 1201st to 2100th sampling points are the validation set and the
2101st to 3000th sampling points are the test set. Fig. 5 presents
the specific fluctuations and partitioning of the data.

3.2 Performance evaluation indicators

To validate and evaluate the status of the reinforcement learning
hybrid prediction model, three industry-accustomed error calcu-
lation metrics are used: mean absolute error (MAE), mean abso-
lute percentage error (MAPE) and root mean square error (RMSE).

MAE = (% Y, —YtD/Ny (13)

t=1
1 & N2
RMSE = | 1o ; (Yt - Yt) (14)

MAPE = (NZY (Y ?t)/YtD/Ny (15)

t=1

where, Y is the forecasting results, Y is the real data and Ny is the
number of the real data.

3.3 Experimental study on prediction model

To demonstrate the strong wind warning performance, two actual
Xinjiang wind speed forecasting datasets are used to design com-
parative experiments. First, BFGS, NARX and DBN predictors are
constructed as three benchmark models. Then, FEEMD is used to
perform data preprocessing. Finally, Q-learning is utilized to cal-
culate the ensemble weights of the above three decomposition-
prediction models to obtain the hybrid model. The comparative
experiments can clearly reflect the independent performance of
the models at each stage. The purpose of 1, 2 and 3 step predic-
tion (3's, 6 s and 9 s prediction) is to provide HSR system opera-
tors with more future wind speed prediction information to guide
them to make reasonable judgement of wind avoidance in time.
Tables 1 and 2 list the error indicators of the above seven mod-
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Table 2. The wind speed forecasting results of each comparison model at Site #2.

Evaluation indicator

Model Horizon
MAE (m/s) MAPE (%) RMSE (m/s)
BFGS 1-step 0.1559 0.8763 0.2554
2-step 0.3245 1.8154 0.5441
3-step 0.4990 2.7839 0.8346
NARX 1-step 0.1576 0.8871 0.2555
2-step 0.2412 1.3687 0.3355
3-step 0.3580 2.0223 0.5201
DBN 1-step 0.0799 0.4697 0.1075
2-step 0.1322 0.7769 0.1732
3-step 0.1814 1.0644 0.2373
FEEMD-BFGS 1-step 0.0496 0.2945 0.0664
2-step 0.0785 0.4694 0.1086
3-step 0.1394 0.8306 0.1811
FEEMD-NARX 1-step 0.0526 0.3089 0.0811
2-step 0.0723 0.4217 0.2437
3-step 0.0939 0.5470 0.2537
FEEMD-DBN 1-step 0.0487 0.2884 0.0620
2-step 0.0569 0.3383 0.0734
3-step 0.0651 0.3868 0.0848
Q-FEEMD-BND 1-step 0.0458 0.2709 0.0616
2-step 0.0558 0.3317 0.0705
3-step 0.0637 0.3780 0.0811
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Fig. 6. The 3-step prediction performance of each model at Site #1.

els, including MAE, MAPE and RMSE. Figs. 6 and 7 show the fitting
trend graph, scatter graph and error graph. The results and dis-
cussions are summarized as follows:

1) The BFGS, NARX and DBN do not accurately capture the fu-
ture wind fluctuations very well. The experimental results show
that the MAE, MAPE and RMSE of these three models are too large,
which is not satisfactory. This may be due to the simple structure,

poor adaptability and weak learning ability of a single base predic-
tor. The wind speed series itself has strong uncertainty, volatility
and instability. So the above benchmark model does not perform
well.

2) The FEEMD can significantly improve the prediction accuracy
of the benchmark models. The above three benchmark models
can well track the change of wind speed time series after FEEMD
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Fig. 9. Results of MAPE loss function during the iteration of Q-learning, GA, GWO, MVO and PSOGSA: (a) Site #1; (b) Site #2.
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Table 3. The computation time statistics of the proposed model.

. Time (s)
Site
Training Forecasting Computation
1 59.77 0.56 60.33
63.89 0.73 64.62

decomposition preprocessing. This may be because FEEMD de-
composes the original wind speed series into multiple highly sta-
ble subseries with independent oscillatory components. The de-
composed subseries are easier to predict. In this experiment, the
original series is decomposed into eight subseries with different
oscillation amplitudes, as shown in Fig. 8. After that, benchmark
predictors make the predictions for each subseries separately. The
predictions are then superimposed to obtain the output of a sin-
gle model, and the prediction results are shown in FEEMD-BFGS,
FEEMD-NARX and FEEMD-DBN in Tables 1 and 2. This approach
significantly reduces the prediction difficulty of the model.

3) The combined model after the Q-learning ensemble has the
most satisfactory prediction accuracy. It is obvious that the pre-
diction performance of several models is improved again after
the ensemble operation. The reason for this phenomenon may
be that reinforcement learning obtains the best model combina-
tion weights iteratively through a reasonable reward and punish-
ment mechanism. The organic model combination effectively ex-
erts the advantages of each benchmark model, thereby bursting
out the maximum performance. In conclusion, the proposed hy-
brid model performs bestin capturing the regularity of wind speed
variation.

In addition, to prove the superiority of the Q-learning ensem-
ble method, several meta-heuristic optimization algorithms are
used to carry out ensemble experiment comparisons of the same
group, including genetic algorithm (GA), grey wolf optimization
(GWO), multi-verse optimization (MVO) and particle swarm op-
timization and gravitational search algorithm (PSOGSA). The pre-
diction accuracy of the five different ensemble methods combined
FEEMD-BFGS, FEEMD-NARX and FEEMD-DBN is verified by exper-
iments. Fig. 9 illustrates the MAPE loss function of the ensemble
model during 50 optimization iterations. Fig. 10 shows the predic-
tion error of the combined model obtained by the above different
ensemble algorithms.

As can be seen from the comparison and verification results
in Figs. 9 and 10, the optimization ensemble effect of Q-learning
is better than the other four comparison algorithms under the
same number of iterations. The MAE, MAPE and RMSE of Q-
FEEMD-BND are the smallest. This may be because the more
scientific incentive and punishment mechanism of reinforce-
ment learning makes the ensemble weights of the model iter-
ate in a more scientific direction, so as to obtain a better weight
combination.

4. Time property

Itis necessary to consider constraints, such as computing time re-
quirements and computing hardware limitations when building
intelligent prediction models for wind along railway lines. In fact,
ensuring the coherence and integrity of railway field forecasting
is only meaningful when resources are limited. The modelling in
this paper is carried out on a desktop computer with Windows
10, Intel(R) Core (TM) i7-9700 K CPU @ 3.60 GHz, 16.0 GB RAM

and GTX 2070. Table 3 shows the model training time and pre-
diction time under this operation condition. It can be found that
the model training time of the two stations is 59.77 s and 63.89 s,
respectively. In engineering applications, the point prediction re-
sults of 900 samples (about 2700 s) can be obtained by training
such a model once, which can easily cover the modelling time
cost and ensure the continuity of training. In addition, the pre-
diction time is 0.56 s and 0.73 s respectively, which is significantly
less than the time interval of data points (3 s). This result shows
that the prediction process can predict the wind speed of 3 s in
the future in a very short time. In general, the model proposed
can perform the prediction work well under the computational
constraints.

5. Conclusions and future works

The purpose of this paper is to design a cross-wind overturning
risk prediction model for the HSR system to ensure the safety and
stability of train operation. The framework of the intelligent wind
prediction model along the railway is decomposition-prediction-
ensemble. Comparative experiments show that the combination
of the decomposition method and the multi-model ensemble
module can make the predictor more robust and accurate. The
FEEMD overcomes the difficulty of prediction caused by the unsta-
ble noise of the original wind speed signal. The ensemble method
of Q-learning reinforcement learning integrates the model char-
acteristics of BFGS, NARX and DBN by reasonable combination
weights, which makes the data processing performance of the en-
semble model better. The combined weight obtained by the Q en-
semble method is better than that obtained by GA, GWO, MVO
and PSOGSA. The accurate wind speed forecasting of the model
can provide scientific guidance for the safety of railway trans-
portation. Spatial correlation analysis methods of coupled spa-
tiotemporal elements can be considered in future work. Informa-
tion fusion of multiple sites in a region can avoid serious pre-
diction errors caused by information distortion at a single site.
In addition, the research on longer prediction steps and wind
direction vectors also plays a very positive role in wind speed
prediction.

Abbreviations
Al Artificial intelligence
BFGS: Broyden-Fletcher-Goldfarb-Shanno

BPNN: Back propagation neural network
DBN: Deep belief network

EEMD: Ensemble empirical mode decomposition

FEEMD: Fast ensemble empirical model decomposition

GA: Genetic algorithm

GWO: Grey wolf optimization

HSR: High-speed railway

IMFs: Intrinsic mode functions

MAE: Mean absolute error

MAPE: Mean absolute percentage error

MLP: Multilayer feedforward perceptron

MVO: Multi-verse optimization

NARX: Non-linear autoregressive network with exoge-
nous inputs

PSOGSA: Particle swarm optimization and gravitational
search algorithm

Q-FEEMD-BND:  Q-learning-FEEMD-BFGS-NARX-DBN

RBM: Restricted Boltzmann machine
RMSE: Root mean square error
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