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Abstract 

Considering the application of wind-forecasting technology along the rail w ay, it becomes an effecti v e means to r educe the risk of 
tr ain der ailment and overturning. Accur ate pr ediction of cr osswinds can pr ovide scientific guidance for safe tr ain oper ation. To ob- 
tain more reliable wind-speed prediction results, this study proposes an intelligent ensemble forecasting method for strong winds 
along the high-speed rail w ay. The method consists of three parts: the data pr e pr ocessing module, the hybrid prediction module and 

the reinforcement learning ensemble module . F irst, fast ensemble empirical model decomposition (FEEMD) is used to process the 
original wind speed data. Then, Broyden-Fletcher-Goldfarb-Shanno (BFGS) method, non-linear autor egr essi v e network with e xo ge- 
nous inputs (NARX) and deep belief network (DBN), three benchmark predictors with different c har acteristics are employed to build 

prediction models for all the sublayers of decomposition. Finally, Q-learning is utilized to iterati v el y calculate the combined weights 
of the three models, and the prediction results of each sublayer are superimposed to obtain the model output. The real wind speed 

data of two rail w ay stations in Xinjiang are used for experimental comparison. Experiments show that compared with the single 
benchmark model, the hybrid ensemble model has better accuracy and robustness for wind speed prediction along the rail w ay. The 
1-ste p for ecasting r esults mean a bsolute err or (MAE), mean a bsolute percenta ge err or (MAPE) and r oot mean squar e err or (RMSE) of 
Q-learning-FEEMD-BFGS-NARX-DBN in site #1 and site #2 are 0.0894 m/s, 0.6509%, 0.1146 m/s, and 0.0458 m/s, 0.2709%, 0.0616 m/s, 
r especti v el y. The pr oposed ensemb le model is a pr omising method for rail w ay wind speed pr ediction. 

Ke yw ords: wind speed forecasting, high-speed rail w ays, signal decomposition, reinforcement learning, ensemble model 
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1. Introduction 

The emergence of the high-speed railway (HSR) system has con- 
nected different cities and accelerated the flow of talents and ma- 
terials [ 1 ]. Convenient transportation makes the connection be- 
tween cities closer, which greatly promotes the economic and cul- 
tur al de v elopment of the ar eas along the r ail wa y line . T he HSR
technology has significant strategic significance [ 2 ]. Ho w ever, the 
stability of high-speed trains during operation is easily affected 

by the environment, and the trains may overturn under the ac- 
tion of str ong cr osswinds [ 3 ]. In fact, train overturning incidents 
caused by strong crosswinds emerge in an endless stream, which 

seriousl y thr eatens the safety of r ail way tr ansportation [ 4 ]. 
In response to train derailment accidents, scientists have stud- 

ied the strong wind resistance performance of HSR. Sanquer et al.
[ 5 ] designed an aerodynamic load measurement method based 

on pr essur e field and used it to e v aluate the influence of aero- 
dynamic force caused by crosswind on train operation stability.
Cui et al. [ 6 ] calculated the safety domain conditions of the ulti- 
mate wind speed to ensure the safe operation of HSR by analysing 
the attitude changes of high-speed trains under the action of 
cr osswind. Carr arini [ 7 ] used m ulti-body sim ulation modelling to 
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nalyse the risk of rolling stock overturning in cross-wind, and
 v aluated the influence of uncertainty parameters on stability.
heli et al. [ 8 ] studied the relationship between cross-wind ef-

ect, aerodynamic load and HSR operation stability through aero- 
 ynamic n umerical optimization experiments. Dorigatti et al. [ 9 ]
e v eloped a physical r esearc h model to compare the distribution
f aerodynamic loads generated by transverse wind on HSR under
tatic and dynamic conditions. Some aer odynamicall y optimized 

tructures that can counteract the effects of high wind loads are
xplored. 

Differ ent fr om the abov e r esearc h ideas , some scientists ha ve
ound that the r ail way str ong wind warning system is a feasible

eans to effectiv el y r educe tr ain der ailment accidents caused by
ross winds . Wind speed forecasts help train operators to imple-
ent mor e r eliable speed limit warning instructions [ 10 ]. Earl y

eceleration of trains can greatly reduce or even avoid rollovers
 11 ]. To better manage the safety of train operations in the envi-
 onment of lar ge wind farms, r esearc h on wind speed pr ediction
odels has been carried out all over the world in recent years

 12–14 ]. These systems measure the likelihood of overturning a
rain by comparing the predicted cross-wind strength with the 
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afety threshold. At present, wind speed prediction methods com-
only used in railway systems include physical methods [ 15–18 ],

tatistical methods [ 19 , 20 ] and artificial intelligence (AI) methods
 12 , 21 , 22 ]. 

Ho w e v er, the existing prediction methods have certain lim-
tations. First of all, the original wind signal collected by the
nemometer has strong randomness, intermittency and volatil-
ty. If this kind of unstable noise is not pr epr ocessed, it will bring
reat difficulties to the prediction work [ 23 ]. Second, the perfor-
ance of a single AI model for wind speed prediction along rail-
ay lines cannot always be satisfactory. Due to the difference in
da ptiv e c har acteristics, the model will show higher or lo w er pre-
iction accuracy when faced with different application scenarios.
he instability of its different ability to process data has brought
ifficulties to the forecasting work [ 24 ]. 

Aiming at the above technical bottlenecks, we propose a
ecomposition-pr ediction-ensemble fr ame work in this study to

mpr ov e the r ail way wind speed early warning systems . T his
odel is designed to overcome the difficulty of volatility of origi-

al data and the unstable prediction performance of individual AI
odels . T he main contributions of this paper can be summarized

s follows: 
1) The proposed reinforcement learning hybrid ensemble

odel combines the adv anta ges of the fast ensemble empirical
odel decomposition (FEEMD) data pr e-pr ocessing method and
 ultiple basic pr edictors, and it can full y excav ate the fluctuation

nformation at different levels in the wind speed time series. 
2) A pr epr ocessing module for wind speed non-stationary series

ata is de v eloped. The original non-stationary series pr ocessed by
EEMD has independent oscillatory components and is easier to
r edict. The r andomness and volatility of wind speed data are ef-
ectiv el y decomposed. 

3) This study innov ativ el y uses Q-learning to calculate the com-
ined weights of Br oyden-Fletc her-Goldfarb-Shanno (BFGS) algo-
ithm, non-linear autor egr essiv e network with exogenous inputs
NARX) and deep belief network (DBN), ther eby r ealizing the or-
anic ensemble of multiple sub-predictors, which avoids the limi-
ations of a single model. The proposed Q-learning-FEEMD-BFGS-
ARX-DBN (Q-FEEMD-BND) model integrates the characteristics
f multiple models to show superior prediction accuracy in more
cenarios. 

The structure for the rest of this study is as follows. Section 2
ntroduces the methodology. Section 3 analyses and discusses the
 esearc h ar ea and the experimental case modelling results. Sec-
ion 4 summarizes the r esearc h work and puts forw ar d future
rospects. 

. Methodology 

.1. Fast ensemble empirical model 
decomposition 

s a variant of ensemble empirical mode decomposition (EEMD),
he computation speed of FEEMD is impr ov ed and optimized [ 25 ].
n addition, FEEMD combines the idea of white noise and inte-
r ated mean, whic h cle v erl y solv es the mode mixing problem of
raditional algorithms, and it is suitable for solving non-stationary
onlinear series decomposition [ 26 ]. The specific implementation
teps of FEEMD in this study are as follows: 

1) Set the initial number of ensemble trials M . 
2) Add a random Gaussian white noise signal n m 

(t) into the
riginal unidirectional wind speed signal x ( t ) to get the noise-
nhanced signal X m 

(t) . 
X m 

(t) = x (t) + n m 

(t) (1)

here, m is the number of iterations. 
3) Implement standard EMD pr ocedur es . T he noise signal X m 

(t)
s decomposed into a series of intrinsic mode functions (IMFs) and
 residual. 

X m 

(t) = 

n ∑ 

i =1 

c i,m 

(t) + o n,m 

(t) (2)

here, c i,m 

(t) is the i -th IMF of the m -th iteration, o n,m 

(t) is the resid-
al of the m -th iteration and n is the total number of all IMFs. 

4) Compare the magnitude of m and M . If m < M , update m =
 + 1 and repeat steps (2) and (3). Different white noise sequences

re added during each iteration of the loop. 
5) Calculate the ensemble mean and residual for each IMF dur-

ng M iterations. 

c i ( t) = 

1 
M 

M ∑ 

m =1 

c i,m 

( t) , i = 1 , 2 , 3 , ..., n, m = 1 , 2 , 3 , ..., M (3)

o n ( t) = 

1 
M 

M ∑ 

m =1 

o n,m 

( t) , m = 1 , 2 , 3 , ..., M (4)

her e, c i (t) r epr esents the i -th IMF component and o n (t) r epr esents
he final residual. 

.2 Broyden-Fletcher-Goldfarb-Shanno 

quasi-Newton back pr opa gation 

he BFGS is e volv ed fr om m ultilay er feedforw ar d per ceptron
MLP), and it is often used to solve the training optimization prob-
em of the neural network [ 27 ]. The method has excellent conver-
ence, and it is better than the back propagation neural network
BPNN) algorithm. The BFGS consists of input–hidden–output lay-
rs. Reasonable adjustment of the number of hidden layers and
eur on par ameters of the network can impr ov e the nonlinear
apping ability. The BFGS network structure used in this study

s presented in Fig. 1 . 

.3 Non-linear autoregressi v e network with 

exogenous inputs 

he NARX can overcome the influence of additional external in-
ut on the model, thereby ensuring the prediction accuracy of
iscrete-time series [ 28 ]. The NARX can simultaneously incorpo-
ate past states of the same series. Fig. 2 presents the model net-
ork of NARX. 
The specific model output value can be expressed as follows: 

 (k + 1) = F [ y (k ) , y (k − 1) , ..., y (k − d o ) ; X(k + 1) , X(k ) , ..., X(k − d i ) ] 

(5)

here, k is the number of neurons in the input layer, y (k ) repre-
ents the pr e vious v alues of the tar get, X(k ) r epr esents the exoge-
ous associated series, and d i and d o r epr esent the input and out-
ut lags . T he output results of pr oper activ ation functions f ∗(·)
ith biases b∗ can be given as follows [ 29 ]: 

y (k + 1) = 

f o 

⎡ 

⎣ 

N h ∑ 

i =1 

w oi · f h 

⎛ 

⎝ 

d i ∑ 

i =0 

w xi X 

(
k + 1 − i 

) + 

∑ 

i =0 d o 

w yi y (k − i ) + b h 

⎞ 

⎠ + b o 

⎤ 

⎦ 

(6)

.4 Deep belief network 

he DBN is widely used in multiple fields, such as big data analy-
is, computer vision, text classification and so on [ 30 ]. Restricted
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F ig. 1. The netw ork structure of BFGS [ 31 ]. 

Fig. 2. The model arc hitectur e of NARX [ 32 ]. 
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Boltzmann machines (RBMs) composed of multiple layers of ran- 
dom variables and latent variables are stacked in series to form 

a DBN, which enables top-down supervised learning. To avoid er- 
rors caused by human interference in the featur e extr action pr o- 
cess, the RBM intelligently converts the features in the original 
space into abstract representations in another space , la y er b y 
layer. Compared with the stacked autoencoder feature extraction 

method, DBN can obtain more information while generating less 
r econstruction err or [ 33 ]. In this study, DBN is used for the task 
of deep learning prediction. Fig. 3 shows the principle of the DBN 

model. 
.5 Q-learning 

einforcement learning emphasizes maximizing expected bene- 
ts through actions that change with the environment [ 34 ]. The
 e w ar d and punishment mechanism can stimulate the agent to
ove to w ar ds the dir ection that pr oduces the gr eatest benefit in

he iter ativ e pr ocess. As a typical efficient reinforcement learn-
ng method, Q-learning is used to solve the optimization prob-
em of model fusion [ 24 ]. The Q reinforcement learning is used
o combine multiple benchmark models through weighted inte- 
r ation. The or ganic integr ation of m ultiple benc hmark pr edictors
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Fig. 3. The model fr ame work of DBN [ 35 ]. 
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an synthesize multiple advantages while alleviating the limita-
ions of a single predictor. In this study, Q-learning is used for the
eighted ensemble of BFGS, NARX and DBN. 
To r easonabl y use the Q-learning algorithm, v arious par ame-

ers and states need to be initially set, including learning rates
(0 < α < 1) , work r e ward discounts γ (0 < γ < 1) , work greedy pa-
ameters ε, Q tables for ensemble learning, states S = S 0 and
tudy strategies π . Take state S and action A as input to the Q
gent to obtain the expectation of long-term pa yoff. T he state
 = [ ω 1 , ω 2 , ω 3 ] explains the composition of each specific state in
he learning pr ocess, wher e ω 1 , ω 2 , ω 3 r epr esent the weight coeffi-
ients of BFGS, NARX and DBN. 

3 ∑ 

u =1 

ω u = 1 , ∃ ω u × ω u ≥ 0 (7) 

Perform action a t = π3 ( S t ) based on the greedy strategy. After
he environment is affected by the action, a new state and rew ar d
r e r eturned to the a gent. 

a t = π3 ( S t ) = 

{ 

Max ( Qval ue act ion ) , ∈ ( 1 − ε ) 
Randomly ( Qval ue act ion ) , ∈ ε 

(8) 

her e, explor ation pr obability ε, 0 < ε < 1 . 
By setting punishment and r e w ar d mechanisms for the Q agent

o obtain r e w ar ds R and instant r e w ar ds r t . 

r t = R ( S t , a t ) (9) 
The r e w ar d and punishment mec hanisms ar e set as follows: 

R = 

{ 

�error ( S , ω ) − 1 , ( error old < error new ) 
�error ( S , ω ) + 1 , ( error old ≥ error new ) 

�error = error old − error new 

(10)

The pr ediction err or MAPE (loss function) obtained from the
eight coefficient and the old-new states is shown as follows: 

error MAPE = 1 

/ 

N Y 

N ∑ 

i =1 

(
Y i − ˆ Y i 

)2 
(11)

her e, ˆ Y r epr esents the wind speed for ecasting r esults, Y r epr e-
ents the real data and N Y represents the amount of data. 

The Q table and state S are updated according to the ne wl y
alculated e v aluation function Q. 

Q t+1 ( S t , a t ) = Q t ( S t , a t ) 

+ α
(
r t + γ max 

a 
Q t ( S t+1 , a t+1 ) − Q t ( S t , a t ) 

)
(12)

T he abo v e pr ocess is performed until the predicted target is
 eac hed or the number of iterations is terminated, and the final
ombined weights are obtained. 

.6 Fr ame w ork of the proposed hybrid 

reinforcement learning model 
ig. 4 presents the details of the Q-learning integration process
nd the fr ame work design of the pr oposed model (Q-FEEMD-BND).
he model consists of three parts, which are the FEEMD data pre-
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Fig. 4. The fr ame work of strong wind signal prediction model along the HSR. 
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processing module, the hybrid prediction module and the rein- 
forcement learning ensemble module. 

2.6.1 A module 
The original wind speed time series data are highly volatile, in- 
termittent and unstable. To overcome the negative effects of such 

changes and build better prediction models, an improved decom- 
position method FEEMD is used to disassemble the oscillatory 
components of the dataset. This is to make the decomposed series 
easy to be learned by the predictor so as to obtain more accurate 
pr ediction r esults. 

2.6.2 B module 
The original wind speed data is sent to three predictors as in- 
put after the data pr e-pr ocessing. As thr ee benc hmark pr edictors 
with different properties, BFGS, NARX and DBN can collect dif- 
ferent wind speed change information. The benchmark predic- 
tor predicts each of the decomposed subseries and superimposes 
the subseries to obtain the final prediction result of the individual 
model. 
.6.3 C module 
he Q-learning is utilized to optimize the weights of the above
odels iter ativ el y. Finall y, the ne w combined weights are used

o or ganicall y integr ate eac h benc hmark model to obtain a rein-
orcement learning hybrid ensemble forecasting model. 

. Results and discussions 

.1 Study zones and data descriptions 

he Xinjiang Province (China) is located in the Gobi desert, and
ts r egional terr ain is high in the north and low in the south. This
aused the cold air from Siberia and the Ural Mountains to con-
inue to strengthen during the do wnw ar d moving process, result-
ng in strong and even super strong winds . T he safety of train op-
rations in a strong wind environment is greatly threatened. The
ind speed data of the Baili wind area of the Xinjiang Lanxin Rail-
 ay w ere used for experimental modelling, including total 6000
ctual sampling data from two different wind measurement sta- 
ions. Data fr om differ ent sites v erify the v alidity of the model.
he sampling interval of wind speed signal points is 3 s . T he 1st
o 1200th sampling points of the original data are the training set,
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Fig. 5. The real wind speed dataset of (a) Site #1 and (b) Site #2. 

Table 1. The wind speed forecasting results of each comparison model at Site #1. 

Model Horizon 
Ev alua tion indica tor 

MAE (m/s) MAPE (%) RMSE (m/s) 

BFGS 1-step 0 .1996 1 .4388 0 .3571 
2-step 0 .3680 2 .6326 0 .5741 
3-step 0 .5206 3 .7067 0 .7587 

NARX 1-step 0 .2181 1 .6252 0 .4356 
2-step 0 .4310 3 .2959 1 .1212 
3-step 0 .5629 4 .1386 0 .8842 

DBN 1-step 0 .2027 1 .4573 0 .3530 
2-step 0 .3716 2 .6578 0 .5653 
3-step 0 .5229 3 .7284 0 .7439 

FEEMD-BFGS 1-step 0 .0932 0 .6762 0 .1214 
2-step 0 .1305 0 .9492 0 .1787 
3-step 0 .1919 1 .4072 0 .2435 

FEEMD-NARX 1-step 0 .0900 0 .6552 0 .1167 
2-step 0 .1246 0 .9065 0 .1703 
3-step 0 .1438 1 .0587 0 .2028 

FEEMD-DBN 1-step 0 .0980 0 .7177 0 .1261 
2-step 0 .1234 0 .9001 0 .1848 
3-step 0 .1482 1 .0795 0 .2166 

Q-FEEMD-BND 1-step 0 .0894 0 .6509 0 .1146 
2-step 0 .1124 0 .8187 0 .1631 
3-step 0 .1293 0 .9498 0 .1855 
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he 1201st to 2100th sampling points are the validation set and the
101st to 3000th sampling points are the test set. Fig. 5 presents
he specific fluctuations and partitioning of the data. 

.2 Performance e v alua tion indica tors 

o validate and evaluate the status of the reinforcement learning
ybrid pr ediction model, thr ee industry-accustomed err or calcu-

ation metrics are used: mean absolute error (MAE), mean abso-
ute percentage error (MAPE) and root mean square error (RMSE).

MAE = 

( 

N Y ∑ 

t=1 

∣∣∣Y t − ˆ Y t 

∣∣∣
) / 

N Y (13) 

RMSE = 

√ √ √ √ 

1 
N Y 

N Y ∑ 

t=1 

(
Y t − ˆ Y t 

)2 
(14) 

MAPE = 

( 

N Y ∑ 

t=1 

∣∣∣( Y t − ˆ Y t ) / Y t 

∣∣∣
) / 

N Y (15) 
here, ˆ Y is the forecasting results, Y is the real data and N Y is the
umber of the real data. 

.3 Experimental study on prediction model 
o demonstrate the strong wind warning performance, two actual
injiang wind speed forecasting datasets are used to design com-
ar ativ e experiments. First, BFGS, NARX and DBN pr edictors ar e
onstructed as thr ee benc hmark models . T hen, FEEMD is used to
erform data pr epr ocessing. Finall y, Q-learning is utilized to cal-
ulate the ensemble weights of the above three decomposition-
rediction models to obtain the hybrid model. The compar ativ e
xperiments can clearly reflect the independent performance of
he models at each stage . T he purpose of 1, 2 and 3 step predic-
ion (3 s, 6 s and 9 s prediction) is to provide HSR system opera-
ors with more future wind speed prediction information to guide
hem to make reasonable judgement of wind avoidance in time.
ables 1 and 2 list the error indicators of the abov e se v en mod-
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Table 2. The wind speed forecasting results of each comparison model at Site #2. 

Model Horizon 
Ev alua tion indica tor 

MAE (m/s) MAPE (%) RMSE (m/s) 

BFGS 1-step 0 .1559 0 .8763 0 .2554 
2-step 0 .3245 1 .8154 0 .5441 
3-step 0 .4990 2 .7839 0 .8346 

NARX 1-step 0 .1576 0 .8871 0 .2555 
2-step 0 .2412 1 .3687 0 .3355 
3-step 0 .3580 2 .0223 0 .5201 

DBN 1-step 0 .0799 0 .4697 0 .1075 
2-step 0 .1322 0 .7769 0 .1732 
3-step 0 .1814 1 .0644 0 .2373 

FEEMD-BFGS 1-step 0 .0496 0 .2945 0 .0664 
2-step 0 .0785 0 .4694 0 .1086 
3-step 0 .1394 0 .8306 0 .1811 

FEEMD-NARX 1-step 0 .0526 0 .3089 0 .0811 
2-step 0 .0723 0 .4217 0 .2437 
3-step 0 .0939 0 .5470 0 .2537 

FEEMD-DBN 1-step 0 .0487 0 .2884 0 .0620 
2-step 0 .0569 0 .3383 0 .0734 
3-step 0 .0651 0 .3868 0 .0848 

Q-FEEMD-BND 1-step 0 .0458 0 .2709 0 .0616 
2-step 0 .0558 0 .3317 0 .0705 
3-step 0 .0637 0 .3780 0 .0811 

Fig. 6. The 3-step prediction performance of each model at Site #1. 
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els, including MAE, MAPE and RMSE. Figs. 6 and 7 show the fitting 
tr end gr a ph, scatter gr a ph and err or gr a ph. The r esults and dis-
cussions are summarized as follows: 

1) The BFGS, NARX and DBN do not accur atel y ca ptur e the fu- 
ture wind fluctuations very well. The experimental results show 

that the MAE, MAPE and RMSE of these three models are too large,
which is not satisfactory. This may be due to the simple structure,
oor adaptability and weak learning ability of a single base predic-
or. The wind speed series itself has strong uncertainty, volatility
nd instability. So the above benchmark model does not perform
ell. 
2) The FEEMD can significantl y impr ov e the pr ediction accur acy

f the benchmark models . T he abo ve three benchmark models
an well tr ac k the c hange of wind speed time series after FEEMD
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Fig. 7. The 3-step prediction performance of each model at Site #2. 

Fig. 8. The decomposition results of FEEMD in (a) Site #1, and (b) Site #2. 
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Fig. 9. Results of MAPE loss function during the iteration of Q-learning, GA, GW O, MV O and PSOGSA: (a) Site #1; (b) Site #2. 

Fig. 10. The 3-step prediction error of Q-learning (Model 1), GA (Model 2), GWO (Model 3), MVO (Model 4) and PSOGSA (Model 5) ensemble methods: (a) 
MAE, Site #1; (b) MAPE, Site #1; (c) RMSE, Site #1; (d) MAE, Site #2; (e) MAPE, Site #2; (f) RMSE, Site #2. 
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Table 3. The computation time statistics of the proposed model. 

Site 
Time (s) 

Training Forecasting Computation 

1 59.77 0.56 60.33 
2 63.89 0.73 64.62 
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ecomposition pr epr ocessing. T his ma y be because FEEMD de-
omposes the original wind speed series into m ultiple highl y sta-
le subseries with independent oscillatory components . T he de-
omposed subseries are easier to predict. In this experiment, the
riginal series is decomposed into eight subseries with different
scillation amplitudes, as shown in Fig. 8 . After that, benchmark
redictors make the predictions for each subseries separately. The
r edictions ar e then superimposed to obtain the output of a sin-
le model, and the pr ediction r esults ar e shown in FEEMD-BFGS,
EEMD-NARX and FEEMD-DBN in Tables 1 and 2 . This a ppr oac h
ignificantl y r educes the pr ediction difficulty of the model. 

3) The combined model after the Q-learning ensemble has the
ost satisfactory prediction accuracy. It is obvious that the pre-

iction performance of se v er al models is impr ov ed a gain after
he ensemble operation. The reason for this phenomenon may
e that reinforcement learning obtains the best model combina-
ion weights iter ativ el y thr ough a reasonable rew ar d and punish-

ent mechanism. The organic model combination effectively ex-
rts the adv anta ges of eac h benc hmark model, ther eby bursting
ut the maximum performance. In conclusion, the proposed hy-
rid model performs best in capturing the regularity of wind speed
ariation. 

In addition, to pr ov e the superiority of the Q-learning ensem-
le method, se v er al meta-heuristic optimization algorithms ar e
sed to carry out ensemble experiment comparisons of the same
roup, including genetic algorithm (GA), grey wolf optimization
GWO), m ulti-v erse optimization (MVO) and particle swarm op-
imization and gravitational search algorithm (PSOGSA). The pre-
iction accuracy of the five different ensemble methods combined
EEMD-BFGS, FEEMD-NARX and FEEMD-DBN is verified by exper-
ments. Fig. 9 illustrates the MAPE loss function of the ensemble

odel during 50 optimization iterations. Fig. 10 shows the predic-
ion error of the combined model obtained by the above different
nsemble algorithms. 

As can be seen from the comparison and verification results
n Figs. 9 and 10 , the optimization ensemble effect of Q-learning
s better than the other four comparison algorithms under the
ame number of iterations . T he MAE, MAPE and RMSE of Q-
EEMD-BND are the smallest. This may be because the more
cientific incentive and punishment mechanism of reinforce-
ent learning makes the ensemble weights of the model iter-

te in a more scientific direction, so as to obtain a better weight
ombination. 

. Time property 

t is necessary to consider constr aints, suc h as computing time re-
uirements and computing har dw are limitations when building

ntelligent prediction models for wind along r ail wa y lines . In fact,
nsuring the coherence and integrity of railway field forecasting
s only meaningful when resources are limited. The modelling in
his paper is carried out on a desktop computer with Windows
0, Intel(R) Core (TM) i7-9700 K CPU @ 3.60 GHz, 16.0 GB RAM
nd GTX 2070. Table 3 shows the model training time and pre-
iction time under this operation condition. It can be found that
he model training time of the two stations is 59.77 s and 63.89 s,
 espectiv el y. In engineering a pplications, the point pr ediction r e-
ults of 900 samples (about 2700 s) can be obtained by training
uch a model once, which can easily cover the modelling time
ost and ensure the continuity of training. In addition, the pre-
iction time is 0.56 s and 0.73 s r espectiv el y, whic h is significantl y

ess than the time interval of data points (3 s). This result shows
hat the prediction process can predict the wind speed of 3 s in
he future in a very short time. In general, the model proposed
an perform the prediction work well under the computational
onstraints. 

. Conclusions and future works 

he purpose of this paper is to design a cross-wind overturning
isk prediction model for the HSR system to ensure the safety and
tability of train operation. The framework of the intelligent wind
rediction model along the railway is decomposition-prediction-
nsemble. Compar ativ e experiments show that the combination
f the decomposition method and the multi-model ensemble
odule can make the predictor more robust and accurate . T he

EEMD overcomes the difficulty of prediction caused by the unsta-
le noise of the original wind speed signal. The ensemble method
f Q-learning reinforcement learning integrates the model char-
cteristics of BFGS, NARX and DBN by reasonable combination
eights, which makes the data processing performance of the en-

emble model better. The combined weight obtained by the Q en-
emble method is better than that obtained by GA, GWO, MVO
nd PSOGSA. The accurate wind speed forecasting of the model
an provide scientific guidance for the safety of railway trans-
ortation. Spatial corr elation anal ysis methods of coupled spa-
iotemporal elements can be considered in future work. Informa-
ion fusion of multiple sites in a region can avoid serious pre-
iction errors caused by information distortion at a single site.
n addition, the r esearc h on longer prediction steps and wind
ir ection v ectors also plays a v ery positiv e r ole in wind speed
rediction. 

bbreviations 

I: Artificial intelligence 
FGS: Br oyden-Fletc her-Goldfarb-Shanno 
PNN: Bac k pr opa gation neur al network 
BN: Deep belief network 
EMD: Ensemble empirical mode decomposition 

EEMD: Fast ensemble empirical model decomposition 

A: Genetic algorithm 

WO: Grey wolf optimization 

SR: High-speed r ail way 
MFs: Intrinsic mode functions 

AE: Mean absolute error 
APE: Mean absolute percentage error 
LP: Multilay er feedforw ar d per ceptron 

VO: Multi-verse optimization 

ARX: Non-linear autor egr essiv e network with exoge-
nous inputs 

SOGSA: Particle swarm optimization and gravitational
search algorithm 

-FEEMD-BND: Q-learning-FEEMD-BFGS-NARX-DBN 

BM: Restricted Boltzmann machine 
MSE: Root mean square error 
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