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Review Article
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Sleep promotes memory consolidation: the process by which newly acquired memories

are stabilised, strengthened, and integrated into long-term storage. Pioneering research

in rodents has revealed that memory reactivation in sleep is a primary mechanism under-

pinning sleep’s beneficial effect on memory. In this review, we consider evidence for

memory reactivation processes occurring in human sleep. Converging lines of research

support the view that memory reactivation occurs during human sleep, and is functionally

relevant for consolidation. Electrophysiology studies have shown that memory reactiva-

tion is tightly coupled to the cardinal neural oscillations of non-rapid eye movement

sleep, namely slow oscillation-spindle events. In addition, functional imaging studies have

found that brain regions recruited during learning become reactivated during post-learn-

ing sleep. In sum, the current evidence paints a strong case for a mechanistic role of

neural reactivation in promoting memory consolidation during human sleep.

Introduction
After initial learning, newly formed memories undergo a period of consolidation, which broadly refers
to the strengthening and stabilisation of memory traces over time. Sleep, a state where sensory input is
diminished, appears to be conducive to memory consolidation processes [1–5]. Beyond passively pro-
tecting memory traces, however, recent work has indicated that sleep plays an active role in consolida-
tion [6–8]. The neurophysiological mechanisms underpinning this memory function of sleep have
thus been the focus of numerous empirical studies in recent years.
Memory reactivation, especially during non-rapid eye movement (NREM) sleep, has emerged as a

leading candidate mechanism underpinning sleep’s beneficial effect on memory [9]. Landmark studies
in rodents have shown that patterns of neuronal firing observed at learning are replayed during sleep
in temporally compressed sequences, primarily in hippocampus but also in coordination with
learning-related cortical sites [10–14]. The phenomenon of replay has been linked to post-sleep behav-
ioural performance. Not only are the amount of replay events correlated with pre- to post-sleep
memory improvement [12], but techniques such as optogenetics have found that disrupting memory
replay leads to a selective disruption of the consolidation of that memory [15–17].
The influential Active Systems Consolidation (ASC) framework posits that memory reactivation in

hippocampus and neocortex during sleep supports the integration of newly acquired memories into
long-term storage [18,19]. This hippocampal-neocortical dialogue is facilitated by a finely tuned inter-
play of three neural oscillations that characterise NREM sleep: high-frequency (∼200 Hz in rodents,
∼80–150 Hz in humans) hippocampal ripples, thalamocortical spindles (∼10–16 Hz), and global slow
oscillations (SOs; ∼1 Hz) [9,20] (Figure 1). In hippocampus, ripples encompass reactivation events
and are nested into the troughs of spindles, which in turn induce synaptic plasticity in learning-related
circuits [21]. A subset of these spindle-ripple events are enwrapped in the excitable rising phase
(upstate) of global SOs, which act as a pacemaker for information transfer between hippocampus and
neocortex [22].
This hippocampal-cortical dialogue appears to follow a cortical-hippocampal-cortical loop in

rodents, with the engagement of task-relevant cortical sites preceding associated reactivation in hippo-
campus [23–25]. It has been suggested that initiation by cortex ensures that the cortical sites are in a
state that is conducive to plasticity [26]. Hippocampal-cortical connectivity is then sustained for a
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period following hippocampal reactivation, allowing for a spindle-mediated transfer of memory traces from
hippocampus back to neocortex [26,27]. These findings emphasise the importance of not just the hippocampus
in memory reactivation processes, but also the role that learning related-cortical sites play in initiating a cross-
regional dialogue.
Rodent models have made a substantial contribution to our understanding of the neurophysiological

mechanisms underpinning sleep-associated memory processing. This review aims to examine recent efforts to
translate these findings into humans. We will first consider evidence for the coupling of ripples, spindles, and
SOs during human NREM sleep. We will then turn our attention to evidence that the temporal coordination
between these neural oscillations promotes memory reactivation and information transfer between hippocam-
pus and neocortex. Finally, we will review evidence that specific brain regions that are involved in learning
become reactivated during human sleep.

Coupling of neural oscillations during human sleep
Traditional scalp electroencephalography (EEG) has been widely used to study coupling between cortical SOs
and spindles. These studies have consistently shown that a subset of spindles preferentially couple to the rising
phase of SOs [28–32]. Correlational studies have reported that the memory benefits of sleep are best when spin-
dles consistently couple to the peaks of SOs [33–40]. Furthermore, these SO-coupled spindles are significantly
better predictors of memory than uncoupled spindles [41–44], highlighting the importance of oscillatory coup-
ling in memory consolidation. Moving beyond correlational evidence, electrical and acoustic stimulation has
been used to enhance SO-spindle coupling [45,46], leading to improvements in memory [47,48].
Scalp EEG is limited by its spatial resolution, meaning that it is not possible to reliably detect signals coming

from deep brain sources such as hippocampus. Therefore the triple-coupling of ripples, spindles and SOs (a
key tenet of ASC) cannot be assessed. The only way to reliably detect human hippocampal ripples is via intra-
cranial EEG (iEEG), where depth electrodes are directly implanted into hippocampus. This invasive procedure
is only justified in clinical cases, such as assisting in the treatment of medication-resistant epilepsy. Studies in
this patient group have confirmed the triple-coupling of ripples, spindles and SOs during human NREM sleep
[49,50]. Furthermore, these coupled oscillations drive firing rates of individual hippocampal neurons [51],
offering a putative mechanism through which neural oscillations facilitate the reactivation of newly formed
memory traces in NREM sleep.
Oscillatory coupling has also been shown to facilitate information transfer during sleep, both within the

medial temporal lobe [51] and between hippocampus and neocortex [27,52]. This cross-regional communica-
tion appears to be mediated by spindle activity that is locked to hippocampal ripples [27,52], suggesting that
spindles serve to synchronise mnemonic processing across cortical and subcortical structures [27,53]. In line
with rodent work, it appears that this spindle-ripple mediated, hippocampal-neocortical dialogue is initiated in
neocortex, with connectivity sustained until after the ripple has terminated, allowing for the transfer of reacti-
vated memory traces back to cortex [27,52]

Figure 1. How neural oscillations support memory reactivation during sleep.

Neural sequences coding for specific memories are reactivated during hippocampal sharp-wave ripples. Ripples nest into the

excitable trough of sleep spindles: thalamocortical oscillations that facilitate information transfer between hippocampus and

neocortex. Spindles in turn couple to the upstate of global slow oscillations, which reflect periods of brain-wide depolarisation,

offering a critical time window for this hippocampal-cortical dialogue to occur.

© 2023 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and the Royal Society of Biology and distributed under the Creative Commons

Attribution License 4.0 (CC BY).

2

Emerging Topics in Life Sciences (2023)

https://doi.org/10.1042/ETLS20230109

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://p

o
rtla

n
d
p
re

s
s
.c

o
m

/e
m

e
rg

to
p
life

s
c
i/a

rtic
le

-p
d
f/d

o
i/1

0
.1

0
4
2
/E

T
L
S

2
0
2
3
0
1
0
9
/9

5
2
3
0
9
/e

tls
-2

0
2
3
-0

1
0
9
c
.p

d
f b

y
 U

K
 u

s
e
r o

n
 1

3
 D

e
c
e
m

b
e

r 2
0
2
3



A recent breakthrough study was able to causally link these oscillatory dynamics to the behavioural benefits
of sleep for memory [54]. Using a deep brain stimulation protocol, the researchers timed the delivery of elec-
trical stimulation in pre-frontal cortex to the excitable upstates of ongoing SOs. Compared with sham stimula-
tion, electrical stimulation increased neuronal spiking during SO upstates and amplified temporal coupling
between ripples, spindles, and SOs [54]. Remarkably, upstate stimulation also enhanced picture recognition
accuracy the following day, as compared with the sham condition [54]. As an important control condition, the
researchers stimulated during the SO downstate, a period of neuronal quiescence that should not be conducive
to memory consolidation [9]. This is indeed what they found, with downstate stimulation not leading to any
improvement in memory performance. Thus, not only does the triple coupling of ripples, spindles and SOs
exist in humans, it directly promotes memory consolidation.
Both scalp and intracranial EEG have verified the presence of oscillatory coupling during human NREM

sleep and have linked this to memory consolidation. We next turn our attention to research demonstrating that
memory content is reactivated during human sleep.

Electrophysiological evidence for memory reactivation

during sleep
In human models, the reinstatement of neural activity that was present at learning is taken as evidence of
memory reactivation [55]. As such, machine learning decoding approaches are often used to assess evidence of
memory reactivation in the sleeping human brain [56–58]. In such analyses, neural signatures of learning are
delineated during wakefulness and this information is used to determine if and when the same content
emerges during sleep. For example, suppose EEG is monitored while an individual views images of objects and
scenes; the machine learning algorithm can be trained on this EEG data to differentiate neural activity patterns
unique to viewing objects and scenes. The machine learning training parameters (obtained from object and
scene viewing) can then be applied to sleep EEG data obtained after learning to predict if and when object
and/or scene memories are reactivated.
Although there is evidence that sleep-associated memory processing unfolds throughout the night [59], a

major challenge for researchers is to determine where to look for memory reactivation. Two approaches have
been adopted to address this issue. The first concerns endogenous memory reactivation, where researchers look
for evidence of memory reactivation that emerges spontaneously. Analyses are focused around the time of
ripple-spindle-SO events on the basis that this co-ordinated neural activity represents an electrophysiological
correlate of offline memory processing. One challenge of investigating endogenous memory reactivation is that
researchers have limited control over which memories are reactivated. This can be addressed with the second
approach, known as targeted memory reactivation (TMR). With TMR, odours or sounds that are associated
with newly learned materials prior to sleep are then re-presented to individuals during sleep in a bid to reacti-
vate specific memories. Both approaches provide a precise timeframe for researchers to isolate evidence of mne-
monic processing in sleep.

Endogenous memory reactivation
Studies in rodents have documented reactivation of neuronal firing patterns in temporally compressed
sequences during sleep. Extending this finding to humans, a patient case study recently reported evidence of
memory reactivation during sleep at the level of single neurons in motor cortex [60]. It was shown that neural
sequences associated with motor learning were re-expressed at a rate significantly above chance in sleep, and
there was also evidence that memory reactivation was temporally compressed [60].
A recent scalp EEG study employed the machine learning decoding approach outlined above to test for

memory reactivation during SO-spindle events. In line with the idea that SO-spindle coupling promotes
memory reactivation, category-level features of previously encoded memories (objects or scenes) could be reli-
ably discriminated near the peak of the ongoing SO (Figure 2A). Moreover, the magnitude of this category-level
memory reactivation correlated with the precision of SO-spindle coupling and the benefits of sleep for memory
retention [61]. Consistent with the putative function of coupled SO-spindle events in memory reactivation
during sleep, evidence of category-level reactivation was not observed when the analyses were performed on
either spindles or SOs in isolation.
Utilising iEEG, another study reported similar findings within hippocampus [62]. Here, the spontaneous

re-emergence of wakeful learning patterns was detected throughout both quiet waking rest and NREM sleep.

© 2023 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and the Royal Society of Biology and distributed under the Creative Commons
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However, the behavioural benefits of sleep for memory were only correlated with reactivation that occurred
during hippocampal ripples in NREM sleep. Together, these findings provide evidence of memory reactivation
emerging spontaneously in the sleeping brain, and that reactivation supports overnight memory consolidation.

Targeted memory reactivation
TMR biases memory reactivation towards memories that are associated with a sound or odour cue presented
during sleep [63], leading to improved memory for cued relative to non-cued information [64]. TMR cues lead
to a robust increase in sleep spindle activity, with the magnitude of this enhanced spindle response predicting
the behavioural benefit of TMR [65–70]. This shows that TMR evokes patterns of neural oscillatory activity
associated with memory reactivation and consolidation.
Recent studies have combined TMR protocols with machine learning methods to provide evidence of

memory reactivation in sleep. This approach is based on the idea that, if a TMR cue elicits reactivation of a spe-
cific memory, then the evoked neural patterns should match the learning patterns for that memory, as com-
pared with other memories associated with different cues. Using this approach, it has been demonstrated that
categorical features (objects or scenes) of memories cued by TMR can be reliably decoded during the evoked
spindle response [71] (Figure 2B). This timing is important, as it provides further evidence that sleep spindles
are centrally involved in memory reinstatement processes. The magnitude of this effect also correlated with the
behavioural benefit of TMR, thus linking memory reinstatement with behaviour. This basic finding, that
memory content can be decoded following TMR cues, has been replicated several times across different
domains of memory [72–75].
TMR cues are typically presented without consideration of what is occurring in the background EEG.

However, as already discussed, memory reactivation appears to be optimal around the peak of the SO [61], and

Figure 2. Electrophysiological evidence for memory reactivation in human sleep.

(A) Endogenous memory reactivation. Top: Time frequency representation showing that spindle power (yellow blob at ∼15 Hz)

is maximal around the peak of the SO (black line in bottom panel). Bottom: Machine-learning classification approaches can

identify evidence of category-level memory reactivation during NREM sleep. Significant (i.e. above chance level) classification

is highlighted with a black contour. Note the close alignment of significant classification to the SO peak [61]. (B) Targeted

memory reactivation (TMR). Top: Following re-exposure to a memory cue in NREM sleep, there is a larger sleep spindle

response than that emerging from previously unheard control cues, consistent with memory reactivation. Bottom: At the same

time as this evoked spindle response, evidence of category-specific memory reactivation emerges in the EEG data [71]. All

figure reproductions made under a Creative Commons Attribution 4.0 International License.
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electrical stimulation applied during the SO upstate enhances memory, whereas stimulation in the downstate
does not [54]. These findings would suggest that memory reactivation evoked by TMR cues should be optimal
when TMR cues are presented during the SO upstate, as this is a critical time window for endogenous memory
processing. Post-hoc analyses, which compare the behavioural benefit of TMR presented within different SO
phases are equivocal on this point. One re-analysis found that only upstate TMR cues improved memory rela-
tive to no TMR, however the difference between upstate and downstate TMR was not statistically significant
[76]. A different research group concluded that TMR cues presented during the SO downstate were more effect-
ive at improving memory compared with cues presented in the upstate [77]. A recent study experimentally
manipulated the delivery of TMR cues to either the SO upstate or downstate, and found that neural reinstate-
ment of memory content only occurred when cues were presented during the SO upstate [78]. While this
finding is in line with theoretical predictions, it is clear that more work is needed to confirm the relationship
between TMR effectiveness and ongoing neural oscillations
In sum, there is accumulating evidence from electrophysiological studies that memory reactivation occurs

during human sleep, and this re-emergence of memory content is tightly coupled to SO-spindle-ripple events.
In the next section, we turn to evidence from functional imaging methods, including functional magnetic res-
onance imaging (fMRI), which can more precisely detail reactivation in learning-related brain regions and
networks.

Functional imaging evidence for memory reactivation

during sleep
Techniques such as fMRI or positron emission tomography (PET) offer unique insights into memory reactiva-
tion processes. First, it is possible to non-invasively measure hippocampal activity, which is not possible with
scalp EEG. This is important, given the central role of the hippocampus in memory reactivation [9]. Second,
rodent studies have emphasised the importance of learning-related cortical sites in both initiating reactivation
sequences [24], and the subsequent expression of spindles at those cortical sites for inducing LTP and synaptic
plasticity [21,79–82]. Compared with EEG, fMRI can more precisely measure where in the brain reactivation is
occurring, allowing researchers to confirm whether learning-related sites are reactivated in human sleep.
In a landmark PET study, hippocampal activation observed during spatial navigation was observed again

during post-learning sleep [83]. Hippocampal activity during sleep was higher than control groups who either
performed no pre-sleep learning task, or engaged in non-hippocampal dependent learning, indicating that the
observed hippocampal reactivation was selective for the spatial memories that recruited hippocampus during
learning [83]. Many subsequent studies (primarily fMRI), have repeatedly shown that brain regions engaged at
learning are re-engaged during subsequent sleep, with the level of re-engagement correlating with the behav-
ioural benefits of sleep for memory consolidation [84–93].
Neuroimaging researchers have also documented reactivation of learning-related cortical regions during

sleep. In one experiment where participants consolidated either a face or maze learning task, it was possible to
discriminate which task was being consolidated based on reactivation within task-relevant regions [89]
(Figure 3A). While both tasks led to reactivation in areas of visual cortex, consolidation of the face task
uniquely led to reactivation in the fusiform face area (FFA). In contrast, the maze task promoted reactivation in
parahippocampal regions.
A growing number of studies have utilised the power of simultaneous EEG-fMRI recordings to examine

fMRI-derived neural reactivation that co-occur alongside sleep spindles detected in the concurrent EEG. This
can address the question of whether memory reactivation emerges alongside the neural oscillations that are
linked to memory reprocessing during sleep. In one such study, participants learned paired face-scene associ-
ates or performed a non-learning control task before sleeping in an MRI scanner with combined EEG record-
ings [85]. Results showed that activation in specific brain regions associated with processing of faces (FFA) and
scenes (parahippocampal place area) re-emerged during sleep spindles. Similar findings have been reported for
non-declarative procedural memories, whereby brain regions within a stratio-cerrobello-cortical network that
are recruited during a motor sequence learning task are reactivated during post-learning sleep, also time-locked
to sleep spindles [86,87].
TMR has also been combined with fMRI to elucidate memory reactivation during sleep. Using an

odour-TMR paradigm, researchers paired each of four odours with four distinct categories (buildings, faces,
animals, and tools). Two of the odours were re-represented during subsequent NREM sleep [88]. During odour

© 2023 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and the Royal Society of Biology and distributed under the Creative Commons
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re-presentation, it was possible to decode the memory category originally paired with the re-presented odour,
implying category-level reactivation of the associated memories. Using the high spatial resolution offered by
fMRI, they found reactivation occurred most strongly within the ventromedial pre-frontal cortex (vmPFC) and
posterior fusiform cortex (Figure 3B). Importantly, category-level discrimination during wake was also localised
to vmPFC, again highlighting the close spatial overlap between brain regions involved in learning and brain
regions reactivated during sleep. The extent to which the odours reactivated the associated category was also
predictive of memory recall performance after sleep, tying neural reactivation to the behavioural benefits of
sleep for memory.
This finding of category-level reactivation during sleep is in agreement with findings observed in EEG

studies [61,71]. It is important to highlight here how the EEG and fMRI results complement each other. The
high temporal resolution and direct recording of neural oscillations available with EEG have demonstrated that
memory reactivation is clocked by SO-spindle coupling events, in line with the primary predictions of ASC
theory [9]. On the other hand, the high spatial precision of fMRI has confirmed rodent observations of
memory reactivation in the learning-related cortical areas [24], pinpointing the brain regions that participate in
reactivation with a level of specificity not possible with EEG.

Future directions
Impressive progress has been made in detecting neural reactivation during human sleep. Complementary lines
of evidence have confirmed that brain areas involved in memory encoding reactivate during subsequent sleep.
Reactivation events occur most strongly during ripple-spindle-SO events, and numerous studies have linked the
degree of reactivation to behavioural metrics of sleep-associated consolidation, implying a functional role of
reactivation in enhancing memory. Despite this, several open questions remain.
First, work in rodents emphasises the temporally compressed sequential reactivation of learning-related cells

in facilitating memory consolidation [10]. In humans, memory reactivation has been detected at broader spatial
scales using MVPA techniques (e.g. [60,89]), but the temporal structure of the reactivation is still unknown.
Sequential reactivation of single neurons in humans has been demonstrated to be feasible in principle [60], but
future studies with multiple participants are needed to link such events to memory improvement. Future

Figure 3. Functional imaging evidence for memory reactivation in human sleep.

(A) Selective reactivation of learning-related brain regions during sleep. During the consolidation of a face task, there was

selective reactivation of face-related brain areas, such as the fusiform face area. Conversely, during consolidation of a maze

task, there was reactivation in brain areas associated with spatial navigation, such as parahippocampal cortex. Both tasks

elicited reactivation in visual processing areas [89]. (B) Following the presentation of an odour-based TMR cue, category-level

reactivation (i.e. discriminating between objects and scenes) was localised to pre-frontal and fusiform cortex regions,

implicating these brain regions in the reactivation of category-level memory representations in sleep [88]. All figure

reproductions made under a Creative Commons Attribution 4.0 International License.
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research could also consider employing tasks that have a sequential component to them (e.g. learning a
sequence of pictures corresponding to different categories). Utilising a TMR protocol and MVPA analyses, it
would be possible to examine sequential reactivation of the sequence following a TMR cue (e.g. if a learning
sequence went object→ scene→ face, evidence for sequential reactivation would be obtained if an MVPA clas-
sifier trained on objects peaked first following the cue, followed by a classifier trained on scenes, then finally a
classifier trained on faces). Evidence for time compression could also be evaluated by comparing the time
courses of the reactivation during sleep with the activation patterns seen during wake, which would speak to
the temporal compression seen in rodents.
Second, ASC places a heavy emphasis on oscillatory coupling in promoting memory consolidation. However,

in humans at least, only a subset of spindles couple to SOs. The mnemonic function (if any) of uncoupled
spindles has yet to be established, and more work is needed to understand the relative contributions of coupled
and uncoupled spindles to offline memory processing. Relatedly, theoretical and empirical work has focused on
the ‘fast’ spindle subtype (∼13–15 Hz). So-called ‘slow’ spindles (∼10–12 Hz) exhibit distinct topographies and
SO-coupling profiles compared with fast spindles [28,30,41]. Although some work has shown that fast spindles
are uniquely involved in memory consolidation [41,61], other research has indicated a mnemonic function of
slow spindles [94]. Moreover, whereas scalp EEG is agnostic to the generator sources of detected sleep spindles,
some iEEG work reported that slow spindles only emerge in cortex [49]. Fast spindles on the other hand occur
in both cortical and subcortical structures, including the hippocampus. This preliminary work suggests that
only fast sleep spindles exhibit the properties necessary to facilitate the cross-regional dialogue required by
active systems consolidation theory. Therefore, the current ASC framework fails to consider the full dynamics
of human sleep spindles, and future work is needed to refine our understanding of exactly which neural events
best support memory consolidation.
With the growing evidence of memory reactivation in human sleep, a pertinent question is which memories

are most likely to be reactivated. It is well known that long-term memory is biased in favour of personally or
emotionally salient information [95–98], and some studies suggest that these kinds of memories are prioritised
for consolidation during sleep [89,99] (though see [100]). Weakly encoded memories also appear to be reacti-
vated preferentially during quiet wakefulness [101], receive the largest benefit from TMR in sleep [102,103], and
are preferentially consolidated during SO-coupled spindles [41,104]. The mechanisms that underly selectively in
consolidation are largely unknown. Based on the current ASC framework, it would be predicted that memory
reactivation during SO-spindle events should be biased in favour of certain types of memories. This hypothesis
could be tested using machine learning approaches to detect biased reactivation of highly salient information. By
using a category-level learning paradigm (e.g. objects and scenes), researchers could tag the object category by
informing participants that the retrieval of objects is associated with a high financial bonus. If this biases reacti-
vation in favour of the high-reward category (objects in this example) a classifier should more frequently identify
object-specific processing during SO-spindle complexes relative to scene-specific processing.
Relatedly, the hippocampal-cortical dialogue emphasised by ASC would suggest that hippocampal-

dependent, associative memories would benefit the most from the mechanisms described by ASC. There is evi-
dence that associative memories receive the largest behavioural benefit of sleep [105], and the degree of
memory reactivation correlates with associative, but not recognition, memory performance [61]. These findings
are not universal, however. Although recognition memory may benefit less from overnight consolidation, at
least one study has linked memory reactivation in sleep to recognition memory performance [78]. Additionally,
non-hippocampal procedural memories appear to be strengthened via the same oscillatory coupling mechan-
isms as declarative memories [42,43], suggesting that hippocampus is involved in memory consolidation even if
it is not involved in encoding. Indeed, amnesic patients with hippocampal lesions can successfully learn a non-
hippocampal task, but fail to consolidate it [106]. It appears therefore that multiple different memory systems
are responsive to memory reactivation during sleep, but more research is required to better delineate potential
differences between the consolidation of hippocampal and non-hippocampal forms of memory.
Finally, information transfer from hippocampus to neocortex during sleep is thought to facilitate the integra-

tion of related experiences into semantic knowledge, allowing us to draw on past experiences to make predic-
tions about the future. As of yet, however, memory reactivation during human sleep has not been linked to
such behavioural outcomes, with researchers primarily focusing on memory strengthening. Interestingly,
category-level reactivation during sleep has been localised to vmPFC [88], a brain region which also acts as a
hub for memory integration [107,108]. A recent study linked sleep spindles to the restructuring and integration
of overlapping memory representations within vmPFC [108]. As such, one possibility is that category-level
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reactivation during sleep facilitates the integration of memories with shared categorical features, a process
mediated by vmPFC. Such hypotheses should be explored in future work.

Conclusions
The burgeoning literature on neural reactivation in human sleep has largely supported and translated findings
from animal studies. Memory reactivation during sleep is facilitated by a finely tuned interplay of hippocampal
ripples, thalamocortical spindles, and global SOs. This triple coupling supports a hippocampal-neocortical dia-
logue, allowing for the co-ordinated reactivation of memory traces in both hippocampus and neocortex, as well
as facilitating information transfer in service of long-term storage. Future work should now start to address
exciting questions regarding the potential selective nature of memory reactivation, and how memory reactiva-
tion sculpts long-term changes in neural memory representations.

Summary
• Overwhelming evidence suggests that sleep benefits memory, leading to a strong interest in

understanding the neural mechanisms underpinning this effect.

• Rodent studies have demonstrated memory reactivation to be a key mechanism underlying

sleep’s beneficial effect on memory, with reactivation occurring in tandem with cardinal non-

rapid eye movement sleep oscillations.

• These findings have now started to be translated to humans. A growing number of studies

have documented the re-emergence of memory content during sleep, with reactivation being

closely linked to slow oscillation-spindle coupling events.

• Similarly, brain regions that are activated during the learning of new information are reactivated

again during post-learning sleep, suggestive of learning-related memory reactivation.

• Future work now needs to better understand whether some memories are more likely to be

reactivated than others, and what the long-term consequences of memory reactivation during

sleep are on wakeful retrieval.
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