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Abstract: Lithium-ion batteries are a crucial part of transportation electrification. Various battery
thermal management systems (BTMS) are employed in electric vehicles for safe and optimum battery
operation. With the advancement in power demand and battery technology, there is an increasing
interest in enhancing BTMS’ performance. Liquid cooling is gaining a lot of attention recently due to
its higher heat capacity compared to air. In this study, an air-cooled BTMS is replaced by a liquid
cooled with nanoparticles, and the impacts of different nanoparticles and flow chrematistics are
modeled. Furthermore, a unique approach that involves transient analysis is employed. The effects
of nanofluid in enhancing the thermal performance of lithium-ion batteries are assessed for two types
of nanoparticles (CuO and Al2O3) at four different volume concentrations (0.5%, 2%, 3%, and 5%)
and three fluid velocities (0.05, 0.075, and 0.1 m/s). To simulate fluid flow behavior and analyze the
temperature distribution within the battery pack, a conventional k-ε turbulence model is used. The
results indicate that the cooling efficiency of the system can be enhanced by introducing a 5% volume
concentration of nanofluids at a lower fluid velocity as compared to pure liquid. Al2O3 and CuO
reduce the temperature by 7.89% and 4.73% for the 5% volume concentration, respectively. From
transient analysis, it is also found that for 600 s of operation at the highest power, the cell temperature
is within the safe range for the selected vehicle with nanofluid cooling. The findings from this study
are expected to contribute to improving BTMS by quantifying the benefits of using nanofluids for
battery cooling under both steady-state and transient conditions.

Keywords: nanofluid; BTMS; time-dependent thermal management; lithium-ion battery

1. Introduction

Climate change is a complex challenge with different contributing factors, one of
which is emissions from transportation [1,2]. High energy demand and dependency on
fossil fuels have made transportation a primary source of CO2 and other greenhouse gas
emissions [3,4]. The transportation sector currently represents 24% of the world’s total
energy consumption, and it is projected to surge to 50% by 2035. Currently, transportation
stands as the world’s second most significant contributor to CO2 emissions, with 94% of its
energy consumption coming from fossil fuels [3,5]. Addressing the negative environmental
impact of transportation is thus crucial for tackling climate change.

Electric and hybrid vehicles are expected to play an important role in decarbonization
of the transport system. In electric vehicles (EVs), high-voltage batteries are the sole
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energy source, and they are critical in ensuring vehicle efficiency and functionality. Among
different types of battery technology, lithium-ion batteries are currently the main option for
EV applications. Despite various advantages of lithium-ion batteries, their functionality
is restricted by the battery operating temperature and voltage [6]. The ideal operational
temperature range for lithium-ion batteries falls within 20 to 40 ◦C [6]. Operation at
lower or higher temperatures can negatively impact the battery performance and/or the
battery lifetime. To manage the battery cell temperatures within this acceptable range,
efficient and reliable battery thermal management systems (BTMS) are required [7–10]. In
electric vehicles (EVs), thermal management must be meticulously designed to manage the
dissipation of heat in diverse operating conditions and maintain an optimal temperature
range within the battery pack [11–13]. Providing a homogenous temperature distribution
is also an important factor, and the temperature difference between battery cells should
not exceed 5 ◦C. A major difference in the temperature of the cells could potentially lead to
electrical imbalance [8]. As such, an efficient BTMS should manage the heat transfer while
being cost-effective and compatible with the vehicle’s size and mass [14].

Heat transfer and fluid flow principles need to be carefully considered in battery ther-
mal management [15–17]. Two different BTMS are available: direct and indirect, which are
categorized based on whether the cooling fluid encounters the battery surface or not [18].
On the other hand, the cooling systems can be classified into either active or passive de-
pending on the use of any external system for cooling down the batteries [19]. The latter has
low cooling efficiency and low temperature control, making it only suitable for low power
demands. The utilization of air cooling is a prevalent and cost-effective cooling method
in both vehicle and electronic industries. Its widespread implementation is attributed
to its simplicity and affordability [20,21]. Nevertheless, utilization of air cooling may re-
sult in reduced heat dissipation from the batteries due to the comparatively lower heat
transfer coefficient of the gas in contrast to liquid. Different simulation and experimental
studies are available for air cooling. For example, Fan et al. [22] analyzed an air-cooling
system for a 32-cell module of a lithium-ion capacitor. Their thermal management sys-
tem was tested within a modular hardware casing, with outcomes indicating the BTMS
cooling effectiveness was subject to flow behavior, fan positioning, hollow spaces, and
airflow velocities.

With the advancement in battery technology and power demand for EVs, the interest
in liquid cooling is increasing, and several automotive companies are adopting active
liquid cooling systems [23]. Liquid cooling is a promising thermal management strategy for
mitigating excessive heat in lithium-ion capacitors with low flow requirements. Though this
approach requires additional components such as liquid coolant, a heat exchanger, piping,
and a pump, it can often be configured compactly. However, liquid cooling systems may
be heavier than their air-based counterparts. Some liquid coolants, such as oils and liquid
metals, may also be more viscous and require higher power for recirculation. Furthermore,
the implementation of liquid coolants in the vicinity of high-voltage components within
lithium-ion capacitors may pose challenges, such as the necessity for protected insulation
between the coolant and live connectors to avert potential damage during operation or
wreck scenarios. Constant leakage sensing is also necessary during production, operation,
and maintenance. When designing a liquid cooling system, it is crucial to consider several
factors, including maintenance costs, reliability, and life cycle assessment [24–26].

The application of nanofluids can notably enhance the thermal efficiency of liquid
cooling systems. However, enhancement of coolant thermal conductivity by nanoparticles
may result in an accompanying rise in the required pumping power [27,28]. The nanofluid
consists of a base fluid with different nanoparticles (such as metallic, oxides, metals, and
carbon nanotubes) to enhance heat absorption [29]. Adding the nanoparticles into the fluid
results in substantial improvements to both the thermal conductivity and diffusivity of the
cooling medium [26,30,31]. Nanoparticles can further reduce the temperature compared to
the base coolant, which is suitable for automotive applications [32–35]. The effect of adding
Al2O3 into the base fluid was analyzed by Huo et al. [36]. Based on their findings, using a
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4% volume concentration of nanofluid can achieve a temperature reduction of up to 7% in
the cells. With an increase in battery applications and thermal runaway concerns, battery
arrangement, cooling system design, and thermal management will become increasingly
crucial, encouraging the manufacturers to redesign their systems [37]. Nanofluids can
be a promising option for substantially improving the cooling performance of thermal
management systems for batteries, but further studies are required to fully comprehend
their performance compared to air and pure liquid cooled systems [38,39]. Furthermore, as
the operation of the vehicle (and thus the discharge rate) is often unsteady, time-dependent
thermal management is an essential issue for battery thermal management. Most of the
available literature has been concentrated on steady-state applications, and there are limited
studies with transient analysis [9,40]. The main existing transient studies were on forced-
air cooling, [41], a hybrid cooling with PCM and forced-air cooling [42–44], and natural
and forced-air cooling comparison [45], but the nanofluid in transient conditions has not
been studied.

This research entails the redesign of an air-cooled thermal management system for bat-
teries, utilizing two distinct nanofluids. A three-dimensional simulation model is employed
to analyze the heat transfer properties of the proposed system under different concentra-
tions and flow velocities. Furthermore, the research is complemented by dynamic analysis
of the battery’s thermal behavior during a limited time based on the required mechanical
power output and corresponding current. Also, pumping power was considered, and the
proposed nanofluids are employed at low velocities to minimize the required power.

2. Model and Methodology

The simulation medium chosen for this study was the force convection heat transfer of
nanofluids inside a battery pack, which is comprised of 32 commercial cylindrical lithium-
ion batteries and is subject to a constant heat flux. Figure 1 illustrates the geometry and
boundary conditions utilized in this research. Initially, this configuration was experimen-
tally tested by Fan et al. [22] for an air-cooled system. Our model was validated against the
experimental data collected in this study. The validation process is discussed in Section 3 of
this paper. Then, the cooling air was replaced by the proposed liquid fluids for the purpose
of this study.

This study examines the cooling performance and temperature variations for Al2O3
and CuO nanofluids, with varying volume concentrations at two distinct discharge rates.
First, the battery cooling thermal performance was studied for a steady-state condition at a
2C discharge rate with a constant battery volumetric heat and different inlet velocities based
on Table 1. According to the specifications of the battery cell in Table 2, the 2C discharge
rate is assumed to be a moderate operation mode for a typical EV. At this discharge rate,
the heat flux of the battery cell is 48,000 watts per cubic meter without cooling. Therefore,
nanofluid is used to dissipate this heat and reduce the battery temperature until it reaches
the safe range of below 40 ◦C. Also, the optimum nanofluid volume concentrations were
found in moderate conditions (2C). Then, to evaluate the optimum nanofluid performance
in a transient condition, the battery pack was analyzed for the high power withdraw in
the transient condition, which is described in Section 2.3. The boundary conditions and
nanofluid properties employed in the simulation are also presented in Tables 1 and 2. In ad-
dition, it should be mentioned that in the chosen modeling approach, the nanofluid within
the channel exhibits Newtonian behavior, being incompressible, and it is characterized by
laminar flow dynamics. Throughout our analysis, the assumption was that the nanoparti-
cles maintained thermal equilibrium with the surrounding base fluid. The thermophysical
attributes of both pure water and the nanoparticles, recorded at a temperature of 25 ◦C,
have been meticulously presented in Table 3. It is noteworthy that the thermophysical prop-
erties of the nanofluid were assumed to remain reasonably constant, apart from variations
in density, which were effectively handled through the implementation of the Boussinesq
model. To assess the effective viscosity and effective thermal conductivity, the Brinkman
and Maxwell–Garnett models were employed, respectively.
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Table 1. Boundary conditions of the current investigation.

Boundary Conditions Value

The velocity of the liquid at the inlet in a 2C
(corresponds to vehicle moderate operation) 0.05, 0.075, 0.1 m/s

The velocity of the liquid at the inlet in
high-performance mode 0.1, 0.2, 0.3 m/s

Outlet condition Pressure outlet
The initial temperature of nanofluid 25 ◦C
Volumetric heat on batteries in 2C moderate
operation 48 kW/m3

Volumetric heat on batteries in
high-performance model 160 kW/m3

Other walls No-slip condition

Table 2. Specifications of the lithium-ion 18,650 battery.

Battery Specifications Type and Values

Model LG INR 18,650 MJ1
Chemical LiCoMnO2
Nominal voltage (V) 3.635
Nominal capacity (Ah) 3.50
Minimum capacity (Ah) 3.40
The nominal energy density (Wh/kg) 260
Maximum charge voltage (V) 4.2
Cut-off voltage (V) 2.5
Operating temperature during charge (◦C) 0–45

Table 3. Thermophysical and mechanical properties of nanofluids and materials.

Parameters SI Unit
Water
25 ◦C
[46]

Al2O3
[47] CuO

Density (ρ) kg/m3 997.1 3970 6450

Dynamic viscosity (µ) kg/ms 0.0008905 - -

Specific heat (Cp) J/kgK 3970 765 561

Thermal conductivity (K) W/mK 0.5948 40 20

Nanofluid volume
concentration - - 0.5, 2, 3, 5% 0.5, 2, 3, 5%

Computational fluid dynamics [48–50] was employed for developing this work, and
continuity, momentum, and energy equations were solved numerically. To obtain precise
solutions and high-quality results, a second-order upwind discretization method was
employed. The coupling of pressure and velocity fields was accomplished through the
SIMPLEC method, known for its superior performance with Newtonian and incompressible
flow. Additionally, all analyses were carried out using the Green–Gauss node-based method.
The convergence criteria were satisfied once the residual values of all equations were less
than 10 × 10−6.

2.1. Battery Thermal Model Analysis

The battery’s thermal behavior in different operating conditions was assessed us-
ing numerical simulations. Accordingly, the battery cell was simulated in Ansys-Fluent
2020R2 by the Multi-Scale Multi-Domain (MSMD) module. Therefore, the battery heat
flux at different C-rates for different depths of discharge was obtained. The Multi-Scale
Multi-Domain (MSMD) approach is an appropriate solution at particle, electrode, and cell
levels [51,52]. The Newman, Tiedemann, Gu, and Kim (NTGK) models were utilized to
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study the heat generation in batteries resulting from the number of discharges and the
impact of discharge intensity on heat production. This model has been proposed in many
articles due to its high accuracy in the thermal and electrochemical simulation of batteries.
Figure 2 depicts the methodology of this study for developing our CFD simulation model.
The battery parameters U and Y, presented in Equations (7) and (8), were obtained from the
experimental results [53,54].

Fluids 2023, 8, x FOR PEER REVIEW 6 of 25 
 

employed. The coupling of pressure and velocity fields was accomplished through the 
SIMPLEC method, known for its superior performance with Newtonian and incompress-
ible flow. Additionally, all analyses were carried out using the Green–Gauss node-based 
method. The convergence criteria were satisfied once the residual values of all equations 
were less than 10 × 10−6. 

2.1. Battery Thermal Model Analysis 
The battery’s thermal behavior in different operating conditions was assessed using 

numerical simulations. Accordingly, the battery cell was simulated in Ansys-Fluent 
2020R2 by the Multi-Scale Multi-Domain (MSMD) module. Therefore, the battery heat 
flux at different C-rates for different depths of discharge was obtained. The Multi-Scale 
Multi-Domain (MSMD) approach is an appropriate solution at particle, electrode, and cell 
levels [51,52]. The Newman, Tiedemann, Gu, and Kim (NTGK) models were utilized to 
study the heat generation in batteries resulting from the number of discharges and the 
impact of discharge intensity on heat production. This model has been proposed in many 
articles due to its high accuracy in the thermal and electrochemical simulation of batteries. 
Figure 2 depicts the methodology of this study for developing our CFD simulation model. 
The battery parameters U and Y, presented in Equations (7) and (8), were obtained from 
the experimental results [53,54]. 

 
Figure 2. Methodology for CFD modeling of this study.  

Figure 2. Methodology for CFD modeling of this study.

2.2. Battery Thermal and Electrical Field Models

Thermal diffusion fields were computed for a battery cell through the discretization of
energy equations [55]. The conservation of thermal and electrical equations for BTMS is
shown in Equation (1):

∂ρbCp,bT
∂t

= −∇.(kb∇Tb) = σ+|∇φ+|2 + σ−|∇φ−|2 +
.
qECh +

.
qshort (1)

Equations (2) and (3) were utilized to determine the current flux at the positive and
negative electrodes, respectively [56]:

∇.(σ+∇φ+) = −
(
jECh − jshort

)
(2)
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∇.(σ−∇φ−) =
(
jECh − jshort

)
(3)

It should be noted that without an internal short circuit, jshort and
.
qshort values were

zero. The current density and the depth of the discharge (DoD) were achieved by the
Equations (4) and (5), where V denotes cell voltage, and Y and U reveal the depth of dis-
charge processes. Also, Qnominal and Qref were obtained through experimental investigation
regarding the battery specifications [56].

jECh =
Qnominal
QrefVolb

Y[U−V] (4)

DoD =
Volb

3600Qnominal

∫ t

0
jdt (5)

Equation (6) designates an electrochemical heat response in which the differences
between U and V show heat generations concerning overpotential. Furthermore, the second
term in the brocket in this Equation was evaluated to reach the heat generated by entropic
heating. Also, the parameters of U and Y are demonstrated in Equations (7) and (8):

.
qECh = jECh

[
(U−V)− T

dU
dT

]
(6)

U = a0 + a1(DoD)1 + a2(DoD)2 + a3(DoD)3 + a4(DoD)4 + a5(DoD)5 (7)

Y = b0 + b1(DoD)1 + b2(DoD)2 + b3(DoD)3 + b4(DoD)4 + b5(DoD)5 (8)

2.3. High Performance of the EV Model

To calculate the battery temperatures, many approaches have been used by different
researchers [57]. In this study, the battery’s thermal behavior is studied for transient
conditions as well. We are looking at the battery’s thermal performance during a restricted
time based on the power demand and corresponding current. Therefore, we need to obtain
an estimation of the current passing through the batteries for a selected vehicle, and it was
assumed that the vehicle specifications are similar to a Tesla S series [58]. According to
Equation (9), it is possible to obtain the amount of power demand of the battery pack based
on the weight and acceleration of the vehicle:

F = ma ×υ⇒ F.υ︸︷︷︸
P

= ma.υ⇒
{

P = ma.υ
P = I×V

(9)

For our selected vehicle with a battery pack of 100 kWh, it takes about 4.1 s to reach 60
miles per hour in a fast-driving mode [58]. Hence, by converting the total power demand
for reaching the highest performance and knowing the voltage value of each cell, it is
possible to calculate the current at each time step. The amount of instantaneous heat flux is
obtained from the current, which can be expressed according to Equation (10). To define
the vehicle’s performance under maximal conditions (accelerating from 0 to 60 miles per
hour in 4.1 s), Equation (10) was developed. The objective was to ensure that the maximum
heat flux per second would swiftly approach its peak value within an approximate 4.1 s
interval and subsequently remain consistent. The value of the heat flux in the maximum
performance state was about 160,000 W/m3, and 445 kW battery power was needed for
high performance based on the calculations that were conducted for the selected vehicle
and the battery pack.

.
Qgen = 160, 000 +

(−5.196673e−13 − 160, 000)

(1 + ( t
0.00006044212 )

1.389359
)

(10)
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2.4. Liquid Cooled Model

The governing partial differential equations of fluid flow describe the conservation of
mass, momentum, and energy, which are presented as follows:

• Continuity equation [59,60]:

∂ρ

∂t
+

∂

∂xi
(ρui) = 0 (11)

• Momentum equation [59,60]:

∂

∂t
(ρui) +

∂

∂xi

(
ρuiuj

)
= − ∂p

∂xi
+

∂τij

∂xi
(12)

• Energy equation:

∂

∂t

[
ρ

(
h +

1
2

u2
i

)]
+

∂

∂xi

[
ρuj

(
h +

1
2

u2
i

)]
=

∂p
∂t

+
∂

∂xi

(
uiτij + λ

∂τ

∂xj

)
(13)

where enthalpy and stress tensor τij are expressed as follows:

τij = µ

(
∂ui

∂xj
+

∂uj

∂xi

)
− 2

3
µ

∂ui

∂xi
δij (14)

h = CpT (15)

These governing equations are non-linear coupled systems of PDE with five equations
and six fluid flow variables (P, ρ, u, v, w, and T). In addition, an extra equation is provided
from the relationship between T, P, and ρ defined by the gas or liquid state equation. The
standard k-ε model was selected for this study because of the good convergence as well as
lower calculation time compared to other turbulence models. The selection of a turbulent
flow regime in our study was grounded in a comprehensive evaluation of the system’s
characteristics. Notably, the Reynolds number consistently exceeds the threshold indicative
of turbulent flow throughout the entirety of the domain. Furthermore, an assessment of
velocity fluctuations and energy spectra at various locations within the domain consistently
exhibited attributes characteristic of turbulent flow behavior. It should be noted that
established empirical findings from analogous systems operating under similar conditions
corroborated the expectation of a turbulent flow regime. In consideration of these factors,
this assumption was chosen for the prevalence of turbulence across the entire domain. This
model showed a robust performance during the validation against the experimental data
for the current simulation, as demonstrated in Figures 3 and 4. Furthermore, the standard
k-ε turbulence model is commonly utilized and provides valid results for a broad range
of flows with high accuracy in heat transfer and flow analysis. It was also used by other
researchers who were presenting similar studies [61–67]. Below are the equations utilized
for turbulent kinetic energy and eddy viscosity:

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xj

[(
µ+

µt
σk

)
∂k
∂xj

]
+ Gk + Gb − ρε+ YM + Sk (16)

∂

∂t
(ρε) +

∂

∂xj

(
ρεuj

)
=

∂

∂xi

[(
µ+

µt
σε

)
∂ε

∂xj

]
+ ρC1Sε− ρC2

ε2

k +
√

vε
+ C1ε

ε

k
C3εGb + Sε (17)
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Figure 3. Comparison of the maximum temperature rise with an air inlet velocity of 0.6 m/s at a 2C
discharge rate between simulation and Fan et al. [22].
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Figure 4. Thermal performance of air cooling for the battery packs at different velocities in simulation
at a 2C discharge rate compared to Fan et al. [22].

The constant quantities are listed in Table 4, and the turbulent viscosity (µt) is calcu-
lated by integrating k and ε as follows:

µt = ρCµ
k2

ε
(18)

where Cµ is constant. The constants used in the turbulent model on the equations
are as follows.

Table 4. Constants used in the standard k-ε turbulent model.

Constants Cµ C1ε C2ε σk σε σt

Values 0.09 1.44 1.92 1.00 1.30 1.00

2.5. Thermophysical Properties of Nanofluid

The thermophysical properties of nanofluids, such as effective density, specific heat
capacity, thermal conductivity, and viscosity, were determined using empirical correlations
sourced from the literature, as presented in Table 5 below.
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Table 5. Thermophysical properties of nanofluids.

Properties of
Nanofluid Correlations Model

Effective density ρnf = (1−ϕ)ρbf + ϕρnp Pak [68]
Effective
Thermal
Conductivity

knf =

kbf

[
knp + 2kbf + 2(knp − kbf)ϕ
knp + 2kbf − (knp − kbf)ϕ

] Maxwell [69]

Effective
Viscosity µnf =

µbf

(1 − ϕ)2.5 Brinkman [70]

Specific
Heat
Capacity

Cp,nf =
(1 − ϕ)(ρCp)bf

+ ϕ(ρCp)np
ρnf

Xuan [71]

Effective properties of the nanofluid were calculated at four different concentrations
(ϕ), namely, 0.5%, 2%, 3%, and 5%. Here, the subscript “bf” indicates the base fluid (water),
“np” represents the nanoparticle, and “nf” denotes the nanofluid.

2.6. Data Reduction

The hydraulic diameter and the wall and bulk temperature were defined by:

Dh =
4Ac

P
(19)

Tw =
1
A

∫
TdA (20)

Tb(z) =

∫
Tρnf

∣∣∣∣V →dA
∣∣∣∣∫

ρnf

∣∣∣∣V →dA
∣∣∣∣ (21)

The Nusselt Number was computed for forced-air convection using Equation (22):

Nu =
hD
k

(22)

In the aforementioned equation, h represents the convective heat transfer coefficient
(in W/m2K), D denotes the diameter of the battery (in meters), and k signifies the ther-
mal conductivity of the fluid (in W/mK). The convective heat transfer coefficient was
determined using the following equation:

h =
q′′

Tw − Tb
(23)

where q′′, Tw, and Tb represent the uniform heat flux, wall temperature, and mean temper-
ature of the inlet and outlet of the channel.

3. Numerical Analysis
3.1. Numerical Validation

To validate the model, the change in surface temperature in each column, ∆Trise,i =
Tmax,i − Tinitial, where Tmax,i is the maximum temperature in each column, and Tinitial is
the initial temperature of battery cells (25 ◦C), was obtained from the simulation, and
this were compared with experimental data from Fan et al. [22]. That study was for an
air-cooling system with various inlet air velocities (ranging from 0.6 to 4 m/s) for a battery
module consisting of 32 lithium-ion batteries in eight columns. The results for different
battery configurations (such as aligned, staggered, and cross) were presented, and the
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aligned configuration was selected for validation purposes in this paper. In addition, the
current study was validated through an experimental approach via air, showcasing the
concurrence between numerical simulations and experimental data, thus establishing the
credibility of our computational framework. Following this, the focus was shifted to water
and nanofluids in the ongoing investigation, with an acknowledgment of the fluid-specific
distinctions in flow behavior.

The maximum temperature rises for batteries in each column at a discharge rate of 2C,
and an air inlet velocity of 0.6 m/s was compared between the simulation and experiment,
as shown in Figure 3. Furthermore, Figure 4 compares the maximum temperature rise
among all battery cells within the module between the simulation and experimental data at
different air inlet velocities. The maximum error was found to be 5.35%, indicating excellent
agreement between the simulation and experimental results, as shown in these figures.
Hence, it can be concluded that the simulated model using the standard k-ε turbulence
model for the air-cooling system can produce reasonably accurate results.

3.2. Grid Independence

To ensure grid independence, a study was conducted wherein the wall function and
independent assessment requirements for grid size were selected. Thereafter, structured
grids were produced using ANSYS Meshing for both the battery and fluid domains, as
illustrated in the following Figure 5.
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The numerical results can be deemed reliable since the average orthogonality number
falls within the range of 0.8 to 0.9. Additionally, Figure 5 demonstrates how the mesh was
refined around crucial regions, such as the inlet and batteries, highlighting the attention
given to the refinement of these areas. Different grid sizes were then selected to discretize
the model, and the result is plotted in Figure 6.
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The maximum temperature of each column using air tends to be stable for a grid with
a mesh count of 500,000. Based on the plot data, it is evident that the Nusselt number
remains constant at 60.5 for the final two meshes. Hence, to enhance the computational
performance and diminish the time taken for iterative calculations, the study employed a
mesh count of 500,000.

4. Results and Discussion

To assess the battery heat generation, a single cell is simulated at various C-rates.
Figure 7 presents the results of the battery thermal simulation for a single battery cell with-
out any cooling. As shown, at the discharge value of 2C 48,000 W/m3, heat was generated,
which agreed with the experimental work conducted by Fan et al. [22]. Transient battery
heat generation for higher C-rates (3C, 4C, 5C, and 6C) was obtained and is presented in
this figure.
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4.1. Effects of Nanoparticle Concentration on Thermal Characteristics of the Batteries

Figure 8 demonstrates the maximum temperature difference rise (∆Trise,Max) against
the velocity for different concentrations of Al2O3 and CuO nanofluids within the battery
pack velocities at a 2C discharge rate. According to this figure, by increasing the concen-
tration of Al2O3 and CuO and the velocity magnitude, ∆Trise,Max decreases. For example,
with a 0.5% solid volume fraction and 0.05 m/s velocity, ∆Trise,Max is found to be 12.4 ◦C
and 12.5 ◦C for Al2O3 and CuO nanofluids, respectively. This means about a 35% reduction
in ∆Trise,Max compared to the best air-cooling option at 4 m/s in Figure 4. For 5% concen-
tration and 0.1 m/s, the reductions will be 85% and 75% for Al2O3 and CuO nanofluids,
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respectively. This confirms the significant potential in cooling by replacing the air-cooled
system with nanofluid.
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Figure 8. The profile of the temperature rises for different concentrations of nanoparticles at different
velocities at a 2C discharge rate.

As indicated in Figure 8, by using Al2O3, ∆Trise,Max decreases significantly by increas-
ing the velocity from 0.05 m/s to 0.1 m/s. Table 6 demonstrates the influence of various
volume concentrations (ϕ) of the nanofluids and inlet velocities on ∆Trise,Max compared
to water. According to data presented in this Table, Al2O3 nanofluid led to a substantial
increment in the rate of heat transfer when compared to both CuO and water, primarily
due to the superior thermal conductivity exhibited by Al2O3.

Table 6. The reduced temperature by utilizing nanofluids with different volume fractions at velocities
compared to pure water at a 2C discharge rate.

Nanofluid
Concentrations

Al2O3 CuO
0.05 m/s 0.075 m/s 0.1 m/s 0.05 m/s 0.075 m/s 0.1 m/s

0.5% 3.34 9.93 10.50 2.10 4.62 10.10
2% 6.32 13.66 20.89 4.72 11.84 15.60
3% 25.93 37.46 47.26 8.44 18.13 19.31
5% 29.07 46.09 54.18 12.62 21.43 21.99

Figure 9 demonstrates the average temperature distribution along the battery cell
length for different battery columns at different velocities at a 2C discharge rate. When
the simulation was completed, surface integrals were used to calculate the maximum
temperature on a surface in Ansys Fluent software. In the CFD-Post processing, a line
along the battery surfaces was drawn, the temperature variation along the line for each
cell is obtained, and the variations were averaged for every column. Then, the average
temperature for batteries in every column was plotted in this figure, where the average
temperature was always the minimum for column 1 and the maximum for column 8. It is
also found from this figure that by increasing the velocities and nanofluid concentrations,
the average temperature was always reduced. The maximum temperature reduction
belongs to the batteries located in the center of the channel, especially for the first column,
and this happens due to the coolant contact at high-velocity flow with the first column of
the batteries.
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Figure 9. Temperature distribution along the batteries in different columns for two different nanopar-
ticles’ concentrations and three velocities at a 2C discharge rate.

Through steady-state numerical simulations and Equation (22), a correlation was
established to determine the average Nusselt numbers corresponding to different inlet rates
of the nanofluid. The temperature differences between the first and second columns were
utilized in calculating the average Nusselt number, which was then compared to that of the
rear batteries. The study also involved an investigation of the average Nusselt numbers for
various weight percentages of nanoparticles, and a comparison of results was carried out
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between Al2O3 and CuO nanofluids. Figure 10 presents the Nusselt variations for different
volume fractions of nanofluids relative to water as the base fluid at a 2C discharge rate.
Based on the results from this figure, an increase in the percentage of nanoparticles led
to a corresponding increase in the average Nusselt number, primarily attributed to the
rise in the convective heat transfer coefficient. The convective heat transfer was observed
to be higher for both Al2O3 and CuO nanoparticles compared to pure water, with Al2O3
exhibiting a superior performance over CuO. This is due to the possession of specific
properties that inherently enhance its convective heat transfer [72].
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Figure 10. Comparison of average Nusselt number for different concentrations of nanoparticles at
various velocities at a 2C discharge rate.

The uniform increment in the inlet velocities increases the Reynolds number and leads
to a rise in the average Nusselt number. These results revealed that liquid cooling nanofluid,
and therefore the Reynolds numbers, play a critical role in efficient heat transfer from the
battery pack. Thus, suitable nanofluid cooling and the Reynolds number are essential
for controlling the temperature within the battery pack. For Al2O3 and CuO nanofluid at
0.05 m/s, the difference in average Nusselt numbers for various volume concentrations was
not very significant. In contrast, with increasing the velocities to 0.075 m/s and 0.1 m/s,
the quantities of the average Nusselt number gradually increased, and this increase was far
more significant for Al2O3 than for CuO.

4.2. Effects of Nanoparticle Concentration on Pressure Drop

The drop in water and nanofluid pressure was calculated at various velocities, and
the outcomes are presented in Figure 11, which illustrates the pressure drop variation by
increasing the velocities for different Al2O3 and CuO volume concentrations compared to
the base fluid. Pressure drop could be a critical parameter that influences the axillary power
consumptions in studying the performance of batteries. The amount of power consumed
by the pump is directly proportional to the pressure drop within the channels. In situations
in which high pressure drops occur, the required pump size is typically large, leading
to an increment in pumping power consumption. This also results in higher cost, which
is not ideal.

As shown in Figure 11, the nanofluid flow in the cooling system did not add much to
the pressure drop, especially at low concentrations. However, there was a small increment
in the pressure drop for higher concentrations of the nanoparticles at higher velocities. At
0.05 m/s, an extra-low velocity of the nanofluid, the pressure drop difference between
different nanofluid volume concentrations of Al2O3 and CuO with the water was not
noticeable, whereas the pressure drop started to differentiate with increasing velocities. At
0.075 m/s, for the 0.5% and 2% concentration of Al2O3, the pressure drop in the cooling
systems was 62.82 Pa and 66.88 Pa, respectively, which is 1.26% and 7.81% greater than the
pressure drops of pure water. In addition, for Al2O3 at concentrations of 3% and 5%, the
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pressure drop increased by 8.16% and 12.3%; nevertheless, at 0.1 m/s, the pressure drop
was increased more compared to the other two velocities (0.05 and 0.075 m/s).
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Figure 11. Comparison of pressure drop with increasing velocity for different concentrations
of nanoparticles.

In Figure 11, at 0.1 m/s, the pressure drop increased by 1.40%, 6.28%, 8.84%, and 14.53%
for the different Al2O3 concentrations of 0.5%, 2%, 3%, and 5%, respectively, compared to
the base fluid. Furthermore, at 0.1 m/s, the values of the pressure drop increased by 2.96%,
12.64%, 17.71%, and 26.90% for CuO concentrations of 0.5%, 2%, 3%, and 5%, respectively.
The maximum pressure drop was for a 5% concentration of Al2O3 and CuO, in which the
drop was 184.216 Pa and 204.168 Pa, respectively. Due to the density differences, the CuO
pressure drop values were considerably higher compared to Al2O3 with the same volume
fraction. For situations with low inlet fluid velocities, despite the relatively high pressure
drop across the batteries compared to the channel flow, the advantages associated with
enhanced heat transfer outweigh the minor negative effects resulting from an increase in
pumping power.

Based on the observations from Figure 12, the velocity vectors displayed the formation
of vortex structures upon contact with the battery’s domain. Additionally, the velocity
profile revealed that as the nanofluid passes through the batteries, there is an increase in
fluid velocity among the rows of batteries, and a pressure drop is experienced behind the
batteries, primarily those located in the final column.

Fluids 2023, 8, x FOR PEER REVIEW 16 of 25 
 

increment in the pressure drop for higher concentrations of the nanoparticles at higher 
velocities. At 0.05 m/s, an extra-low velocity of the nanofluid, the pressure drop difference 
between different nanofluid volume concentrations of Al2O3 and CuO with the water was 
not noticeable, whereas the pressure drop started to differentiate with increasing veloci-
ties. At 0.075 m/s, for the 0.5% and 2% concentration of Al2O3, the pressure drop in the 
cooling systems was 62.82 Pa and 66.88 Pa, respectively, which is 1.26% and 7.81% greater 
than the pressure drops of pure water. In addition, for Al2O3 at concentrations of 3% and 
5%, the pressure drop increased by 8.16% and 12.3%; nevertheless, at 0.1 m/s, the pressure 
drop was increased more compared to the other two velocities (0.05 and 0.075 m/s). 

 
Figure 11. Comparison of pressure drop with increasing velocity for different concentrations of na-
noparticles. 

In Figure 11, at 0.1 m/s, the pressure drop increased by 1.40%, 6.28%, 8.84%, and 
14.53% for the different Al2O3 concentrations of 0.5%, 2%, 3%, and 5%, respectively, com-
pared to the base fluid. Furthermore, at 0.1 m/s, the values of the pressure drop increased 
by 2.96%, 12.64%, 17.71%, and 26.90% for CuO concentrations of 0.5%, 2%, 3%, and 5%, 
respectively. The maximum pressure drop was for a 5% concentration of Al2O3 and CuO, 
in which the drop was 184.216 Pa and 204.168 Pa, respectively. Due to the density differ-
ences, the CuO pressure drop values were considerably higher compared to Al2O3 with 
the same volume fraction. For situations with low inlet fluid velocities, despite the rela-
tively high pressure drop across the batteries compared to the channel flow, the ad-
vantages associated with enhanced heat transfer outweigh the minor negative effects re-
sulting from an increase in pumping power. 

Based on the observations from Figure 12, the velocity vectors displayed the for-
mation of vortex structures upon contact with the battery’s domain. Additionally, the ve-
locity profile revealed that as the nanofluid passes through the batteries, there is an in-
crease in fluid velocity among the rows of batteries, and a pressure drop is experienced 
behind the batteries, primarily those located in the final column. 

 

0

50

100

150

200

250

0.5% 2% 3% 5% 0.5% 2% 3% 5%

Water Al₂O₃ CuO

Pr
es

su
re

 d
ro

p 
(P

a)

0.05 m/s 0.075 m/s 0.1 m/s

Figure 12. A schematic diagram of makeup fluid flows around the battery.

Temperature contours are demonstrated in Figure 13 for 2% and 5% of both nanopar-
ticles at the minimum velocity of 0.05 m/s. The temperature contours revealed that the
minimum temperature happened at the inlet. The batteries positioned at the end of the
battery pack had the highest temperatures, although the temperature differences between
the inlet and outlet of the nanofluid were negligible.
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Moreover, the temperature reduction in the center of each battery cell was observed to
be higher compared to the upper and lower sections. This phenomenon can be attributed
to the higher velocity of the nanofluids at the center of the pack relative to the velocity near
the wall. Notably, the boundary conditions of the pack walls were defined based on the
standard wall function.

4.3. Effect of Nanoparticle Material

In the current investigation, two types of nanofluids, i.e., alumina and copper oxide,
were compared with the base water fluid for the heat transfer properties. Moreover, a
comparative analysis was performed to identify the optimal cooling approach. To obtain
the maximum temperature of each of the eight columns at various concentrations for
all selected velocities, the mean temperature of the battery pack was then calculated by
averaging all values. These results are illustrated in Figure 14, in which it is evident
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that Al2O3 nanofluid performed better than water and CuO nanofluid, as temperature
reductions were more accentuated for alumina.
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Figure 14. The maximum average temperature of the battery pack at a 2C discharge rate.

This means that overall, Al2O3 achieved better results with various velocities. Further-
more, Al2O3 nanoparticles are considered to be one of the most cost-effective nanoparticle
options available on the market. They can provide exceptional performance and stability [73].

As previously stated, an enhancement in the velocity and volume concentration of
the nanofluid caused a gradual reduction in the temperature of the batteries. From the
alumina results in Figure 14, it can clearly be understood that the average temperature
decreased by the velocity increment. For the minimum velocity of 0.05 m/s, the average
temperature was 36.07 ◦C for Al2O3 and 37.59 ◦C for CuO nanofluids. Compared to the
base fluid, the average temperature decreased by 6.9% for the Al2O3 and by 5.9% for CuO
nanofluid at the 0.05 m/s velocity. Furthermore, the maximum velocity of 0.1 m/s provides
an average temperature of 29.32 ◦C. In general, the effect of velocity is more prominent for
Al2O3 than CuO. The lowest velocity for CuO resulted in a higher temperature, because
at a lower velocity, the number of clustered particles increases, which leads to poor heat
transfer. When the velocity increases, these particles are less likely to cluster around the
surface, and the heat transfer improves.

4.4. Transient Analysis

As discussed in Section 2.3, by ignoring the conversion losses, the mechanical power
is assumed to be equivalent to electrical power, which can facilitate the calculation of
the battery heat flux corresponding to the battery discharge rate based on maximum
power extraction from the batteries. To evaluate the thermal management in the worst-
case scenario, a transient simulation was conducted to evaluate the battery’s thermal
behavior for real performance at the maximum discharge rate corresponding to the velocity
increase from 0–60 miles per hour in 4.1 s, and the transient battery’s thermal performance
is evaluated for the 5% volume concentrations of Al2O3 and CuO nanofluids’ cooling.
According to Figure 8, the best thermal performance of the nanofluid was achieved for
5% Al2O3 and CuO nanofluids. Therefore, a 5% volume concentration of nanofluids is
employed to evaluate the thermal performance of actual and high-performance EVs in
time-dependent situations during real-world operation. It could be estimated that for
this high-performance scenario for our selected vehicle [58], 445 kW of power is required
according to the calculations in Section 2.3. This is equal to a 5C discharge rate. Figure 15
presents the temperature and heat flux changes during the high-performance mode. As
shown in this figure, 445 kW power extraction for the first 4.1 s results in a heat flux of
160,000 W/m3 in the battery pack during this duration for a 5C discharge rate, as indicated
in Figure 7. Moreover, to evaluate the cooling performance and ensure the safety of the
battery pack, the heat flux is assumed to remain constant for approximately 1000 s, as
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shown in this figure. This time was assumed due to the delay in temperature response. The
conduction heat transfer from the interior of the batteries to the surface needs time, and
this was considered during the evaluation of the cooling performance.
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Figure 15. The heat flux and temperature changes during the high-performance mode of 100 kW of
the selected vehicle battery pack’s energy storage at a 5C discharge rate.

Figure 16 demonstrates the average of the temperature distribution along the bat-
teries in different columns during the first 100 s for the high-performance operation at a
5C discharge rate (see Figure 15) and the influence of two selected nanofluids at different
velocities in comparison with the base fluid. During the high-performance mode, the vehi-
cle’s battery pack will be under stressed heat, during which the high-power requirements
will cause elevated heat flux and temperature. As such, the thermal management system
should ideally preserve the batteries’ temperature below 40 ◦C. According to this figure,
5% of the Al2O3 and the CuO nanofluid caused a temperature reduction of up to 7.89% and
4.73% compared to pure water. It is noteworthy that when it comes to cooling purposes,
the differences in performance between the Al2O3 and CuO nanofluids may not be readily
apparent. However, in terms of achieving uniform temperature reduction across battery
cells in various columns, CuO exhibited excellent performance, as illustrated in Figure 16.

Figure 17 indicates the temperature changes for different time steps with a comparison
of the pure water and Al2O3 nanofluids’ effects. According to this figure, the influence of
Al2O3 is quite sensible, and the liquid cooling can prevent a steep increase in the batteries’
temperature after the time step of 600 s. As shown, using liquid cooling ensured that
the batteries remained in a safe temperature range. Also, after 600 s of operation under
high power demand, the temperature of the batteries continued to remain within the ideal
operating range.
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Figure 16. The temperature differences along the batteries in a different row during the time step of
100 s in Figure 15 at a 5C discharge rate.
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5. Conclusions

Developing enhanced cooling methods that will elongate battery life is in the interest
of research and the automotive industry. Nanofluids can improve the cooling perfor-
mance of the battery thermal management system (BTMS). Therefore, this research studied
the improvement in an air-cooled thermal management system by utilizing two distinct
nanofluids while looking at the transient operation. Fluid flow behavior and heat trans-
fer characteristics were investigated using a CFD simulation for liquid cooling with and
without nanofluids. First, validation was performed with a minimum error along with a
mesh independence study to confirm the reliability of the model for this case study. Then,
the application of liquid cooling was investigated, and the liquid cooling specifically with
alumina nanofluid was proven to be more effective for both lowering temperatures and for
uniformity. The main conclusions that arose from the results of this study are:

• Our results revealed that the utilization of nanofluids results in higher vortex develop-
ment and enhances heat transfer capabilities of the fluid. Through a comprehensive
analysis, we found that Al2O3 exhibited superior heat transfer performance compared
to CuO.

• In the case of alumina, we observed that increasing the volume fraction led to improved
performance. Similarly, for copper oxide, the performance showed an improvement
compared to the base fluid. However, it is worth noting that alumina outperformed
CuO, with an average enhancement of 4.37%.

• Due to the possibility of nanoparticle clustering, we found that the optimum per-
formance was achieved at a volume fraction of 5% for Al2O3. This indicates that
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lower volume fractions can exhibit the opposite effect, reducing the impact on the
heat transfer.

• Increasing the velocity of the fluid led to enhanced turbulence, which in turn improved
the heat transfer performance. However, this improvement came at the expense of a
higher pressure drop.

• During the transient analysis, it was observed that the utilization of 5% Al2O3 and
CuO nanofluids resulted in a reduction in the temperature of the batteries. Specifically,
the Al2O3 nanofluid exhibited a temperature reduction of 7.89% compared to the base
fluid, and the CuO nanofluid showed a reduction of 4.73%.

• In the high-performance mode, the temperature of the batteries was effectively main-
tained within a safe range through the utilization of liquid cooling. Furthermore,
even after operating under the highest power requirement for 600 s, the temperature
of the batteries remained within the designated safe range. This demonstrates the
effectiveness of the liquid cooling system in managing and controlling the temperature
of the batteries even during high demand operations.

• To ensure the batteries’ temperature remained within a safe range during moderate op-
eration mode (2C discharge rate), the maximum inlet coolant velocity considered was
set at 0.1 m/s. However, for the high-performance operation mode (5C discharge rate),
which depends on the specific conditions, it is necessary to increase the inlet coolant
velocity to 0.3 m/s. This adjustment is aimed at achieving improved temperature
uniformity and ensuring a safe temperature range.
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