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Elizabeth J Cross1 and Keith Worden1

Abstract

Population-based structural health monitoring (PBSHM) expands structural health monitoring (SHM) from a single struc-

ture to a group of structures, allowing inferences to be made within and between populations by transferring knowledge
across them. Within the populations of interest, the similarity of structures, via their corresponding data, should be

assessed to successfully implement PBSHM. This paper focusses on using distance metrics to assess similarity at the very

start of the analysis chain, to discover information about a population for which there is little prior knowledge and
before any analysis has taken place on individual structures. By doing so, it is possible to quickly and automatically iden-

tify abnormalities within the population, group similarly behaving structures together, and inform further decisions. The

suitability of several candidate metrics that are not widely employed in SHM are tested using a number of commonly
occurring feature behaviours, such as varying amplitudes and temporary mean shifts. The effect of data normalisation/

standardisation on the metrics is also explored to identify interesting behaviours within the data. A case study is then

presented where distance metrics are used to discover similarities and dissimilarities within temperature data from
turbines in an offshore wind farm.

Keywords

Population-based structural health monitoring, similarity, distance metrics, wind turbines

Introduction

In civil and aerospace structures such as bridges and

wind turbines, the presence of damage can be costly;

damage can lead to failures that cause expensive

downtimes, or in extreme cases, put lives at risk.

Understandably, developing methods to identify dam-

age and predict its progression is immensely important

in order to avoid catastrophic failures. In general, cur-

rent techniques address these tasks via regular manual

inspections and expert engineering knowledge, which is

time consuming and expensive to undertake. Structural

health monitoring (SHM), seeks to detect and diagnose

damage automatically from monitoring data collected

from structures, reducing the manual burden on own-

ers. The aim of SHM is to reduce unnecessary regular

inspections and gain insights and predict behaviours

using data and model-based methods. Ideally, this task

would be formed as a supervised learning problem,

where models are trained on damage-state labelled

data. However, this necessitates measurements of a

structure in different possible damage states, which

may include multiple-site and multiple types of dam-

age. In reality, it is rare that monitoring data are avail-

able from structures in any of their damage states;

typically, measurement systems that capture damage

are rare, defects are usually repaired prior to damage

to reduce risk to users, and, more importantly, data

from a single structure is unlikely to contain all types

of damage it can possibly experience – resulting in a

training phase of the SHM model that will not general-

ise in the testing phase. Consequently, focussing on

single structures in a standard SHM setting can give a

limited view of the variety of damage that is possible.
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Population-based structural health monitoring

(PBSHM),1–8 aims to address this shortcoming by

studying entire groups of structures simultaneously,

thereby increasing the knowledge-base of structural

behaviours and damage states. Interestingly, the popu-

lation of structures here can be homogeneous (struc-

tures within the population are nominally identical) or

heterogeneous.

One of the forerunning technologies that aid

PBSHM in achieving health-state inference across

populations is transfer learning.9 Transfer learning

aims to improve the performance on target domains by

leveraging information from related source domains.

In the context of PBSHM, the target domain contains

structures with incomplete data (such as missing/lack

of damage labels), and the source domain contains

structures with labelled data. For transfer learning,

similarity between domains is a key factor. Dissimilar

domains can lead to a phenomenon named negative

transfer,9 where the performance in the target is nega-

tively affected by leveraging information from a source

domain, that is, the performance is worse as a result of

transfer than using just target data in the model.

Therefore, to infer health states of one structure by

studying a population of others, there is a clear need to

determine similarity within populations, in order to

identify and group similarly behaving structures.6,10

Similarity, as it happens, is also an important consider-

ation in standard supervised SHM methods, because

unexpected disparities between training and testing

data can lead to reduced model performances during

testing.

In PBSHM, similarity can be measured at two lev-

els: structural similarity and feature similarity. The

hypothesis here is that feature data collected from

structures is best suited for transfer learning if the

structures are similar in their composition. Results

from a recent study on PBSHM supports this hypoth-

esis.2,11 Structural similarity considers the dynamic

behaviour of structures based on their construction

and boundary conditions. By representing structures as

attributed graphs, similarity of structures can be mea-

sured.2,12 The converse hypothesis to the aforemen-

tioned ‘similarity in structure implies similarity in

data’, is ‘similarity in data implies similarity in struc-

ture’,13 and the wish in PBSHM is to enable assessment

of similarity in both cases (and eventually simultane-

ously). In this paper, the focus is on measuring similar-

ity of monitoring data and descriptive features

collected from structures. It is important to understand

the behaviour of data during normal operating condi-

tions, under environmental and operational variations

(EOVs), and during deterioration and/or damage, in

order to identify the most suitable data for transfer.

It is well understood that humans are experts in

identifying changes or anomalies and recognising pat-

terns in their surroundings.14 Unfortunately, as popu-

lations grow in size and variety (vast sensor networks,

multiple structures within homogenous and heteroge-

neous populations), manual analysis of large monitor-

ing datasets becomes an impossibility. There is a need,

therefore, to develop preliminary methods to identify

similar and anomalous behaviours/trends in data

quickly and automatically in a principled way, that

forgo the need for time-consuming and in-depth analy-

sis of individual datasets in a population. The intention

is that this information may then be initially used to

group structures together, highlight structures or com-

ponents of the data that are performing differently

from the majority of the population, etc., and inform

further decisions such as, establish whether standard

machine-learning approaches are appropriate across a

population (i.e. find suitable training and testing data),

and assess whether transfer learning is required.

There are many stages in a monitoring campaign

where measuring similarity in features may be helpful.

This paper focusses on methods that can be used at the

very start of the analysis chain, to discover information

about a population for which there is little prior

knowledge and before any analysis has taken place on

individual structures. Therefore, the methods suggested

for assessing similarity in this paper do not speculate,

infer, or aim to identify the condition of the structure

(from which the data were collected), or the cause of

any identified dissimilarities – whether the data are

affected by interesting behaviours such as EOVs and

damage, or whether they are a result of issues in the

measurement chain (sensor damage, for example).

Consequently, the underlying structure of the data

could take any form, and the suggested methods of

assessing similarity should be flexible enough to

accommodate this.

To assess the similarity and to discover information

about the data, the idea of a metric is employed here by

treating the feature space (The feature space here is the

space in which all features that correspond to each

structure in a population lie) F as a metric space.

Specifically, distance metrics that obey the rules set by

Dudley15 will be explored, that is, the distances metrics

are non-negative D(x, y)ø 0ð Þ, give a value of zero if-

and-only-if the two features are the same (D(x, y) = 0 if

and only if x= y), symmetric D(x, y) =D(y, x)ð Þ, and

obey the triangle inequality D(x, z) < D(x, y) +D(y, z)ð Þ.
Here, D is the distance and x, y and z are quantities.

Unlike in SHM, where a single metric might be used

for assessment without much consideration of oth-

ers,16,17 in PBSHM there is no precursor or historical

studies that evaluate the most suitable metric for asses-

sing similarity in this new context. The approach in this
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paper is to compare available metrics – that give an

indication of significant variability in the data – across

a population, for a given feature Fi. For simplicity,

only time-domain features are considered here.

This paper also considers the behaviour of features

and metrics as the data are normalised/standardised,

because it is a common pre-processing step in SHM18–20

and PBSHM.1,21 Dissimilarities in standardised data

can indicate the presence of interesting behaviours (such

as, higher-order moments). In PBSHM, standardisation

helps bring source and target domains into the same

space for domain adaptation. Methods such as normal

condition alignment (that standardises and aligns data

when structures are under normal operating condition)

has proven incredibly useful for PBSHM in transferring

knowledge across structures.22,23 Therefore, the

behaviour of metrics as data are standardised is an

important consideration for testing their effectiveness

for PBSHM.

Original contributions

This is the first study that measures similarity of fea-

tures across a population of structures to aid transfer

learning in population-based SHM – a relatively new

concept that aims to transfer information across groups

of structures to increase the pool of available informa-

tion, in order to increase performance of monitoring

campaigns. Principled methods of assessing large

amounts of engineering data quickly and automatically

are necessary for PBSHM, although the methods sug-

gested here can also help reduce analysis times for typi-

cal SHM steps such as identifying suitable training and

testing data.

The study introduces distance metrics in the context

of PBSHM, to automatically assess similarity between

distributions of data which the authors argue are better

suited to compare populations of structures (e.g. all

wind turbines in a wind farm). Here, a survey of possi-

bly useful distance metrics – that are not all widely used

in SHM currently – is conducted to assess similarity of

features in PBSHM.

The distance metrics are then tested against typical

commonly occurring changes in data-sets and features

that originate from SHM programmes. The responses

of the metrics to the commonly occurring changes are

mathematically formalised. The suitability and sensitiv-

ity of the chosen metrics to the feature changes in

PBSHM are presented. The most appropriate candi-

date metric for a given feature behaviour is determined

to aid fast and automatic similarity assessment.

The effect of data normalisation/standardisation on

distance metrics is mathematically derived because it is

a common analysis technique in domain adaptation for

PBSHM, and a typical pre-processing step in SHM.

The metrics that are most suitable for determining simi-

larity in standardised data are explored and presented.

The aforementioned methods are first tested on a

simulated data-set, and then applied to a real, homoge-

neous population of wind turbines from the Lillgrund

farm, to test their effectiveness in assessing similarity

for PBSHM.

Related work

As the field of PBSHM is relatively new – and this is an

early contribution for measuring feature similarity for

PBSHM – there are only a few small number of exam-

ples of related work. Nevertheless, a number of studies

that focus on PBSHM state that similarity is a key con-

sideration in successful transfer within PBSHM. When

transferring damage localisation information between

aircraft wings, similarity between structures aided a

more fruitful transfer.11 When modelling a homoge-

neous offshore wind turbine population, the similarity

was measured using the Fréchet number, a metric that

takes the location and ordering of the points along the

curves of two datasets into account.24 This measure,

however, is not studied in detail in a PBSHM context

to understand its sensitivity to specific feature types. In

bridge monitoring, the cross-modal assurance criterion

was used to assess the similarity of bridges by studying

their natural frequencies. In the current paper, a differ-

ent approach is considered where time-domain features

are explored as, typically, the data are available in the

time domain at the start of the analysis chain.25

Usually, many studies in PBSHM literature acknowl-

edge that similarity measurement is vital, and conducts

it visually23,26,27 or using a specific metric.24,25 This

paper attempts to find a principled method of assessing

feature similarity in PBSHM that provides a guideline

on which metrics are most suitable for a given com-

monly occurring feature found in SHM and PBSHM.

Distance metrics

This paper addresses the initial analysis of population

data. At this stage, the assumption is that there is little

available information about the underlying structure

of the data. As a result, it is not helpful to use a simple

metric such as the Euclidean distance between means

of two datasets to measure similarity. When assessing

stochastic data from engineering structures, a more

insightful metric would compare the density functions

of the data, that is, it is possible to use distance metrics

to assess whether two probability distributions (pi(x)

and pj(x)), or two probability density estimates (p̂i(x)

and p̂j(x)) are the same or different by measuring their

overlap.28 Many have studied the use of metrics based

on probability densities because of their relevance for

Wickramarachchi et al. 3



information and probability theory as well as statis-

tics.29 In 2009, Sriperumbudur et al.30 discussed the

relationships between metrics based on probability

densities, namely, f-divergences and integral probabil-

ity metrics (IPM), and presented a number of novel

properties to help increase their applicability.

A commonly used metric in SHM16,17,31,32 is the

Kullback-Leibler (KL)-divergence,

KL(p̂i, p̂j) =

ð

p̂i(x) log
p̂i(x)

p̂j(x)

 !

dx ð1Þ

which is a measure of information divergence33 and

relative entropy; it is a metric that calculates the dis-

tance between distributions of random variables and

indicates the amount of extra information needed to

model p̂i(x) using p̂j(x). However, the KL-divergence is

not symmetric, and therefore does not constitute a dis-

tance metric. Instead, the Jenson-Shannon metric is

investigated in this paper as it is the symmetric equiva-

lent of the KL-divergence.

Other measures based on density estimates that are

explored here are the Hellinger distance, the total var-

iational distance, the Kolmogorov distance and the

Area metric. Table 1 provides further details about

these metrics and provides their equations. The mea-

sures based on density estimates considered in this

paper fall into two categories: f-divergences and IPMs.

To put it simply, f-divergences are concerned with

ratios between probabilities,

Distancef p̂i, p̂j

� �

=

ð

M

f
dp̂i(x)

dp̂j(x)

 !

dp̂i(x) ð2Þ

and IPMs with the difference between probabilities,

DistanceF P̂i, P̂j

� �

= sup
f 2F

ð

M

f dP̂i(x)�
ð

M

f dP̂j(x)

�

�

�

�

�

�

�

�

�

�

�

�

ð3Þ

where p̂i(x) and p̂j(x) are either probability density

functions (PDFs) or cumulative density functions

(CDFs) – denoted in upper case, that is, P̂i(x) and

P̂j(x). M is a measurable space, f is a convex function,

F is a class of real-valued bounded measurable func-

tions on M, f is the subset of functions that define the

metric, and sup is the supremum: the least upper bound

of point-wise difference.30,32

Another (true) metric that is considered here is the

maximum mean discrepancy (MMD), which circumvents

the need for density estimation (this is considered bene-

ficial as there is no universally accepted methodology

for conducting density estimations, and they can intro-

duce unwanted variability into the metric formulations).

The MMD uses a kernel function to obtain the maxi-

mum distance between the mean embeddings of two

features or vectors that have been mapped into a repro-

ducing kernel Hilbert space (RKHS). For a more com-

prehensive understanding, the reader is referred to.34,35

In the past, the MMD has been used in a variety of dis-

ciplines, because of its strength in assessing similarity of

a range of data types; from time series,36,37 graphical

data,38 images,39 to attribute matching.34,40 The MMD

has been applied successfully in the field of verification

and validation in SHM,32 for domain adaptation,20,41,42

in computer sciences to distinguish between malicious

and honest users,43 and to evaluate the effectiveness of

Table 1. The distance metrics based on density estimation that are explored in this paper.

Description Equation

The Jenson-Shannon distance is the symmetric
equivalent of the KL-divergence. JS p̂i, p̂j

� �

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2
KL p̂i(x), p̂k(x)ð Þ+ 1

2
KL p̂j(x), p̂k(x)
� �

r

(4)

where p̂k(x) =
1
2

p̂i(x) + p̂j(x)
� �

. p̂i(x) and p̂j(x) are absolutely

continuous w.r.t p̂k(x).
The Hellinger distance is the L2-norm between
two probabilities. H p̂i, p̂j

� �

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2

Ð
ffiffiffiffiffiffiffiffiffiffi

p̂i(x)
p

�
ffiffiffiffiffiffiffiffiffiffi

p̂j(x)
q� �2

dx

r

(5)

The total variational distance employs the
L1-norm: The f-divergence.

TV p̂i, p̂j

� �

= 1
2

Ð

p̂i(x)� p̂j(x)
�

�

�

�

�

� dx (6)

The IPM form. TV p̂i, p̂j

� �

= sup
kf k‘<1

p̂i(x)� p̂j(x)
�

�

�

�

�

� (7)

The Kolmogorov distance is the largest vertical
distance (or the maximum L1-norm) between
two CDFs.

KOL P̂i, P̂j
� �

= sup
x2R

P̂i(x)� P̂j(x)
�

�

�

� (8)

The Area metric is simply the difference
between the area under two CDFs.

A P̂i, P̂j
� �

=
Ð

P̂i(x)� P̂j(x)
�

�

�

� dx (9)

CDF: cumulative density function; HL: Hellinger; JS: Jenson-Shannon; KL: Kullback-Leibler KOL: Kolomogorov; TV: total variational.
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treatment and diagnosis in cancer research44 to name a

few. The biased estimate of the MMD is given by,

MMD2
b½F ,X , Y �= 1

m2

X

m

i, j= 1

k xi, xj
� �

+
1

n2

X

n

i, j= 1

k yi, yj
� �

� 2

mn

X

m, n

i, j= 1

k xi, yj
� �

ð10Þ

where X := x1, :::, xmf g, Y := y1, :::, ynf g and m and n

are the number of data points in X and Y respectively.

k(x, y) is a kernel between x and y. There also exists an

unbiased version of the MMD that uses the population

expectation, however, it is not utilised in this paper.

The Gaussian kernel k( � , � ),

k(x, y) = exp �k x� yk2
2l1l2

� 	

ð11Þ

used here, is universal and continuous in the RKHS.34

The widths of the kernels k xi, xj
� �

and k yi, yj
� �

are l1
and l2 respectively. There is no universal method of

choosing the length scale for the Gaussian kernel.

Gretton et al. uses the median heuristic, as explained in

Gretton A, et al.,34 and defined in Garreau et al.45 The

same method is used in this paper, although here, the

length scales are calculated separately for each kernel

k xi, xj
� �

and k yi, yj
� �

, and the resulting length scales

are multiplied together for k xi, yj
� �

.

Kernel density estimation

Unlike the MMD, the IPM and f-divergence calcula-

tions are based on the differences between estimated

density functions of the data. Consequently, one of the

setbacks of using these distance metrics is determining

the underlying probability distributions of the random

variables in question. There does not exist a universal

method of obtaining these; instead, a number of differ-

ent methods are available, each with their own merits

and drawbacks. One method that is widely used in

literature is kernel density estimation (KDE).46–49

To put it simply, the KDE places ‘atoms’ of prob-

ability at each observation. The width of these atoms is

specified by a window length (or smoothing/band-

width) parameter and the shape is determined by the

choice of kernel type. Usually, the kernels used are

symmetric and non-negative. The final density estimate

is the sum of these atoms50,51 over a sample set.

The equation for the PDF with the Gaussian kernel

used in this work is,

f̂ x; hð Þ= 1

N

X

N

i = 1

1

h
ffiffiffiffiffiffi

2p
p exp� x� Xi

h
ffiffiffi

2
p

� 	2

, x 2 R ð12Þ

where N is the number of samples, Xi are the data-

points, the width or bandwidth of the kernel functions

is defined by h and can be calculated using the rule of

thumb,50

h=s
4

(d + 2)n


 � 1

(d + 4)

ð13Þ

where n is the number of observations, s is the stan-

dard deviation of X, and d is the number of multivari-

ate dimensions. In order to find the CDF using KDE,

Equation (12) is integrated to obtain,

F̂ x; hð Þ=
ð

x

�‘

f̂ (v)dv =
1

N

X

N

i= 1

1

2
1+ erf

x� Xi

h
ffiffiffi

2
p

� 	� 

ð14Þ

where erf is the error function.

All methods of density estimation are affected by

the chosen parameters, such as the kernel type or the

bandwidth of the kernel. As a result, care must be

taken when choosing these values, especially in a

PBSHM context. For example, when evaluating a

metric based on integration of density functions, the

integral requires a mesh – or a method of discretising

the function – that fixes the x points at which the den-

sity functions are evaluated. These points therefore

must sufficiently capture the trends seen in the data

across the population, in order for the metrics to cap-

ture relevant information.

The structure of this paper is as follows. In the next

section, a number of typical behaviours observed in

SHM data-sets are introduced using a simulated data-

set to investigate the response of the aforementioned

distance metrics, and assess their suitability in identify-

ing similarity in the PBSHM context. Then, in Section

‘Data normalisation and distance metrics’, using the

same simulated dataset, the effects of data standardisa-

tion on the behaviour of distance metrics are explored

and mathematically formalised; standardisation is an

important step in transfer learning and domain adapta-

tion within PBSHM. Furthermore, in Section ‘Case

study: similarity of turbines in the Lillgrund wind farm’

the applicability of distance metrics to assess similarity

within a population of real structures is investigated

via a case study containing data from an offshore wind

farm. Finally, concluding remarks are presented and

future work is discussed in Section ‘Conclusion’.

Distance metrics response to commonly

occurring behaviours in SHM datasets

In order to gain insights and identify behaviours of

interest, similarity can be assessed across populations

as a first step, using distance metrics. Determining the

Wickramarachchi et al. 5



similarity of data can be useful for, and inform any fol-

lowing steps in the analysis chain. For example, it may

be used to extract suitable data for training and testing,

for discovering features that are non-representative of

the population, for applications such as domain adap-

tation,20 to name a few.

In this section, the aim is to determine the suitability

of distance metrics suggested in Table 1 to measure

similarity of time-domain features in the context of

PBHSM. Consequently, the sensitivity of the distance

metrics to the transient and permanent changes typi-

cally observed in SHM features is studied. By doing so,

it may be possible to identify specific metrics that are

highly sensitive to a given change in feature behaviour.

These differences can stem from EOVs, structural dete-

rioration and even contamination as a result of impedi-

ments to the measurement chain (e.g. the sensor

network). A simulated dataset that mimics these varia-

tions is used in this section. Particularly, the effect of

these behaviours on the kernels and density functions

that drive the distance metrics are mathematically

derived, with a focus on the parameters that underpin

these functions. Later, in the case study, examples of

these variations acting on a real-world PBSHM dataset

are presented.

Typical variations in SHM features

Structures in operation undergo a range of EOVs in

their lifetime, for example, temperature changes, wind

loading, fluctuating traffic loading (across a bridge,

say), etc. Typically, the influence of EOVs on monitor-

ing data (and on any feature therefrom derived), mani-

fests in a change in statistical moments (mean,

variance, skewness, etc) in either the time or frequency

domain (or both). Commonly in SHM, changes in the

mean of the resonance frequencies are tracked for their

sensitivity to damage. Naturally, these features are also

sensitive to changing temperature and fluctuate

accordingly52,53 – giving rise to daily and seasonal

trends. Other commonly occurring signatures of EOVs

are changing variance,54 here again attributed to tem-

perature, temporary mean shifts8,55 caused by daily

changes in wind direction or seasonal changes in tem-

perature, and spikes which can be attributed to, for

example, a quick transition to the extremes of the envi-

ronmental or operational envelope.56 The presence of

structural damage or damage in the measurement

chain also affects measurements and features in a simi-

lar manner (changing EOVs are often referred to as

confounding influences in an SHM assessment for this

reason). In this section of the paper, the effect of these

commonly observed signatures on a series of candidate

metrics is studied. The intention is to assess metric

sensitivity and determine how best one might approach

an initial analysis that is looking to identify similarities

and differences in a population, whether they be from

EOVs, damage or other.

To mimic these behaviours of change in frequency,

variance and mean, and also to observe their affect on

distance metrics within the time domain, a simulated

dataset is used where an ‘original’X – data sampled

from a normal distribution with a mean of zero and a

standard deviation of one, that is, N (0, 1) – is altered

according to a. Here, a represents the magnitude of

alterations (change in frequency, temporary and per-

manent alterations in mean and variance). In order to

change the stochastic feature to include commonly

occurring SHM behaviours, a window function v(t) is

used. The window v(t) = 1 if t 2 ½t1, t2� and v(t) = 0 oth-

erwise, where t is time. Therefore, the specific beha-

viour explored only affects the stochastic feature X

within the window. Now, a can represent a constant or

an incremental change which affects the entire feature

X, where ½t1, t2� encompass the entire feature.

Alternatively, when a represents a transient change

½t1, t2� covers a only section of the feature X.

The presence of typical SHM behaviours are likely

to affect the distance metrics. As the metrics are driven

by the density functions of the features, the way in

which the characteristics of the density functions are

affected is explored here. Note that the integrals in

Table 1 may be approximated by numerical summa-

tions as long as the integration mesh is invariant across

all features that are being compared.

Change in amplitude/variance

Changes in variance and amplitude are often observed

in SHM datasets as a result of EOVs or damage.

Effect on density estimates. To parameterise such changes

in amplitude/variance by a, the features of the density

estimations Equations (12) and (14) that drive the

metrics in Table 1 are pointwise multiplied by a,

X (t)7!av(t)X (t): ð15Þ

The s in the width of the kernel in Equation (13) alters

as,

s(X (t))7!s (av(t)X (t)) ð16Þ

to account for the change in variance. As seen in

Figures 1 and 2, changes in a lead to changes in var-

iance and kurtosis of the density functional, although

the mean and the skewness are unaffected. The width

of the curve can increase as a result of increased

variance, because the data now lie further away from

the mean. Consequently, all metrics in Table 1 will be
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affected as they are driven by either the vertical dis-

tances or the area between functions.

If a temporary change in variance occurs (for a small

time window where ½t1, t2� covers a section of the fea-

ture), as a result of EOVs, damage or an issue with the

measurement chain, the resulting density functions take

the form seen in Figure 3. As the effects are temporary,

their influence on the density functions can be minimal;

this influence is likely to increase with longer time win-

dows or larger variances.

Effect on the Gaussian kernel used in the MMD. As the

Gaussian kernel is employed differently in the MMD

compared to KDE, it is useful to understand how the

MMD formulation in Equation (10) is affected by a

change in amplitude. When calculating the MMD, the

Gaussian kernel is not evaluated over fixed intervals.

Instead, the kernel gives a measure of similarity

between two feature vectors, X := x1, :::, xmf g and

Y := y1, :::, ynf g. Here the kernel in Equation (11) is

altered according to a. Only feature Y is changed by a

here. If the amplitude of signal Y changes by a con-

stant value of a throughout, the kernel k yi, yj
� �

is not

affected,

k ayi,ayj
� �

= exp � ayi � ayj
�

�

�

�

2

a2l2l2

 !

= exp �a2
yi � yj

�

�

�

�

2

a2l2l2

 !

= k yi, yj
� �

ð17Þ

because of the distributive property. It should be noted

that the length scale should account for the new change

in amplitude. When using the median heuristic to

obtain the length scales from ay in this case, l2 becomes

al2.

The k xi, yj
� �

, however, affects the MMD as it

changes to,

k xi,ayj
� �

= exp � xi � ayj
�

�

�

�

2

l1al2

 !

: ð18Þ

Figure 1. The effect of changing variance of a feature on probability density estimates. Here the amplitude of the original signal is

changed to a.

Figure 2. The effect of continuously changing amplitude of a feature on probability density estimates. Here the amplitude of the

original signal is incrementally changed from 1 to a.
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If the change in amplitude varies across the feature, the

distributive property no longer applies. If a is now a

vector of the same length as Y, where each element

changes the amplitude of each point in the feature,

element-wise multiplication can be used to obtain ayi
and ayj. The median heuristic used to calculate the

length scales is also affected here, and results in,

k ayi,ayj
� �

= exp � ayi � ayj
�

�

�

�

2

la
2
la
2

 !

6¼ k yi, yj
� �

: ð19Þ

where la
2

is the new length scale affected by a.

Consequently, k xi, yj
� �

becomes,

k xi,ayj
� �

= exp �k xi � ayjk2
l1l

a
2

� 	

ð20Þ

affecting the MMD.

Change in mean

The mean of features can alter as a result of EOVs and

damage; this is an example of signal shift.

Effect on density estimates. The density functions (in

Equations (12) and (14)) translate in mean as,

X (t)7!av(t) +X (t) ð21Þ
Here, a can be used to shift the entire feature by a sin-

gle value (Figure 4), incrementally (Figure 5), or shift

parts of the feature temporarily (Figure 6). If the entire

feature is shifted by a single value of a, then the width

of the kernel h is unaffected because the variance does

not change. However, if an incremental or temporary

shift in the data is present, the change in variance will

affect h as,

s(X (t)) 7!s(av(t) +X (t)) ð22Þ

When the entire feature is shifted in mean by a single

value of a, that is, ½t1, t2� covers the entire feature, the

mean of the density functions also shifts, whilst the var-

iance and higher-order moments remain unaffected

(Figure 4). Although in translation the area under the

density functions will not change, the resulting distance

metrics will be affected as the same integration matrix/

discretisation of features is used for the original and

translated functions.

Incremental changes in the mean shift the density

functions and changes their shape, as the variance is

also affected (Figure 5). The change in shape resembles

an increase in variance, where peak heights are reduced

and the width of the peaks are increased. The combina-

tion of change in variance and mean affects the skew-

ness of the density functions.

When a temporary shift in mean is present, that is,

½t1, t2� covers a section of the feature, the resulting den-

sity functions resemble a mixture of Gaussians (that do

not have the same mean) as seen in Figure 6, where

multiple modes are present. As the skewness and kur-

tosis are affected by the variance of the data, higher

moments of the functions appear during a temporary

mean shift in data.

Effect on the Gaussian kernel used in the MMD. For the

Gaussian kernel in the MMD formulation in Equation

(11), if feature X is unaffected and the entire feature Y

is translated by a single a, the length scale is not

affected, as the distribution of Y does not change. The

kernel k yi, yj
� �

also doesn’t change when altered by a,

k yi +a, yj +a
� �

= exp �k (yi +a)� (yj +a)k2
l2l2

� 	

= exp �k yi � yjk2
l2l2

� 	

= k yi, yj
� �

:

ð23Þ

Figure 3. The effect of temporarily changing the amplitude of a feature on probability density estimates. Here the amplitude of the

original signal is incrementally changed from 1 to a, within a small window.
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However, k xi, yj
� �

modifies to,

k xi, yj +a
� �

= exp � xi � (yj +a)
�

�

�

�

2

l1l2

 !

ð24Þ

causing the MMD to change accordingly.

If, however, the mean is altered incrementally or if

only a portion of the feature’s mean is altered, the

variance will be affected and therefore the length scales

will also change. Consequently, k xi, yj
� �

becomes,

k xi, yj +a
� �

= exp � xi � (yj +a)
�

�

�

�

2

l1l
a
2

 !

ð25Þ

showing that changes in mean of one distribution will

be detected by the MMD.

Figure 4. The effect of global mean shift on a feature by a factor a, and the corresponding density estimates.

Figure 5. The effect of incremental mean shift on a feature from 0 to a, and the corresponding density estimates.

Figure 6. Temporary changes in mean to a feature by av(t) and the resulting density functions.
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Change in frequency

The frequency content of sensor signals can vary dur-

ing normal operating conditions as a result of EOVs

and damage. However, the change in frequency of a

feature,

X (t) =A sin (2pat) + z(t) ð26Þ

(where a is the frequency, A is the amplitude of the sig-

nal, and z is the added white Gaussian noise) is challen-

ging to capture using the distance metrics suggested

here. Of course, this is not to say that the frequency has

no affect on the density functions – in fact, changes in

frequency (across the entirety of X shown here for sim-

plicity), can have a significant impact on the density

functions. Take Figure 7(a), for example. In this figure,

a has been altered significantly to show the effect on

density functions and the resulting distance metrics

(Figure 7(b)). It is unlikely that the frequency of a given

SHM feature would undergo a change in frequency by

an order of 103, so this example is purely for demon-

stration purposes. The challenge here is that the altera-

tions to the density functions are not necessarily easy to

track; there does not seem to be a clear pattern or cor-

relation between frequency changes and the resulting

effect on the density functions or distance metrics.

When the change in a is much smaller, however, the

effect on the density functions is harder to distinguish,

as seen in Figure 8(a). Here, a has been altered between

1 and 11, a much more plausible change to be expected

in features from operational civil structures. Again, the

distance metrics are unable to capture that difference

(a)

(b)

Figure 7. Change in frequency across a wide range and the resulting effect on density functions and distance metrics. One metric

based on the PDF, CDF and the MMD are presented here. In (b) the lighter shades represent high similarity and the darker shades

represent high dissimilarity. (a) The effect on density functions as the frequency of X is altered by a and (b) The effect on distance

metrics as the frequency of X is altered by a.
CDF: cumulative density function; MMD: maximum mean discrepancy; PDF: probability density function.
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effectively, as the change to the density functions are

seemingly random, because the pairwise distances

between X and Xa (the altered feature) are very small.

It is clear that the method of employing distance

metrics to identify feature changes at the top of the

analysis chain suggested here, is unable to effectively

capture changes in frequency in time-domain features.

Consequently, change in frequency will not be explored

further in this paper. However, SHM methods often

track frequencies (such as natural frequencies of struc-

tures56), across time, where changes in frequencies can

present themselves as changes in mean and/or variance.

An example of such behaviour is presented in Figure 9,

where freezing temperatures alter the natural frequen-

cies of the Z24 bridge56– a widely explored case study

in SHM. The distance metrics method suggested in this

paper will be useful at identifying these changes in

frequencies, as they will alter the density functions as

seen in Figure 6.

The response of the metrics to changes in amplitude

and mean

For automated similarity/dissimilarity assessment

within PBSHM, the method put forward in this paper

is to use distance metrics to measure the difference

between features collected from datasets. It is, there-

fore, important that the distance metrics suggested here

are reponsive to typical behaviours observed in SHM

features. The hope here is that the candidate metrics

are able to detect changes in mean and variance of the

features and provide insights into the underlying beha-

viour of the data at the very top of the analysis chain.

(a)

(b)

Figure 8. Change in frequency across a relatively small range and the resulting effect on density functions and distance metrics.

One metric based on the PDF, CDF and the MMD are presented here. In (b) the lighter shades represent high similarity and the

darker shades represent high dissimilarity. (a) The effect on density functions as the frequency of X is altered by a and (b) The effect

on distance metrics as the frequency of X is altered by a.
CDF: cumulative density function; MMD: maximum mean discrepancy; PDF: probability density function.
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Figure 10 presents how the distance metrics respond

when the amplitude/variance of features are altered by

a. Table 2 presents the a values used for altering each

feature. Here, the discretisation mesh is set between -6

and 6 for all features based on density estimates. To

demonstrate the effectiveness of distance metrics com-

pared to simply evaluating summary statistics, the

responses of the first and second statistical moments

(referred to as ‘Mean’ and ‘Std’, respectively) to the

features are also presented here. The data in this figure

are normalised between [0,1] for comparison. Values

closer to 1 in darker shades suggest a large response,

whereas, values closer to 0 in lighter shades indicate lit-

tle to no response. Additionally, Figure 11 provides the

maximum metric value for each feature across all a

values.

Key insights from Figures 10 and 11 are:

� When considering all feature changes (‘Change in

amplitude’, ‘Drift’, ‘Transient burst’, ‘Shift’,

‘Incremental shift’, ‘Transient shift’) in Figure 10,

the distance metrics show a higher sensitivity over-

all than simply using ‘Mean’ and ‘Std’; for some

features, the maximum values of ‘Mean’ and ‘Std’

are very small/negligible in Figure 11.
� The first statistical moment ‘Mean’ is unsuitable

for detecting features based on an amplitude/var-

iance change as those features do not drive a

change in mean. Conversely, the ‘Std’ has a limited

or null response when identifying global and incre-

mental shifts in mean, as the change in standard

deviations of the features are negligible. It is, how-

ever, able to detect transient shifts in mean as the

standard deviation increases as a result of the mul-

tiple modes (as seen in Figure 6).
� Across the range of a values, all distance metrics

and ‘Mean’ are most sensitive to ‘Shift’/global

mean shift. As the mean of the features is translated

according to a, the distance between the original

and altered density functions increases, the overlap

Figure 9. The natural frequencies of the Z24 bridge where changes in frequencies resulting from freezing conditions are

highlighted between the two vertical black lines.56

Figure 10. The sensitivity/response of each metric to varying a (the change in features as a result of commonly occurring SHM

behaviours). All metric values are normalised between [0,1] to identify the most sensitive metric. The response of the first two

statistical moments are also presented here for comparison purposes.
SHM: structural health monitoring.

Table 2. The a values used for altering each feature to produce Figure 10.

Change in amplitude/Drift Transient burst Shift/Incremental shift Transient shift

0.1–2 0.1–0.9 in increments of 0.1 21.8 to 2 27.2 to 8
in increments of 0.1 then 1–4 in increments 0.3 in increments of 0.2 in increments of 0.8
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decreases, leading to increases in distance-metric

values. The ‘Std’ is unable to identify this signifi-

cant change in features, as the standard deviation

of the features do not vary here. As mean shifts are

common in SHM data, the use of ‘Std’ in this sce-

nario could be detrimental for anomaly detection.
� Variance changes for a short window (‘Transient

bursts’) evoke the smallest response across all dis-

tance metrics. HL and TV metrics show the highest

sensitivity where they are less sensitive to small var-

iations compared to large variations. As short

‘bursts’ of variance increase can indicate the pres-

ence of damage or a change in conditions, the HL

and TV metrics are preferred here.
� When considering a global change in amplitude, all

distance metrics based on the PDF, the MMD and

‘Std’ present a large response. The peak height and

area of the PDFs change readily with varying

amplitude, as seen in Figure 1. The distance metrics

are more sensitive to reduction in variance (or when

a\1), that is, when the amplitude is decaying com-

pared to growth, both of which may affect sensor

signals as a result of damage or instability.57,58 The

‘Std’ can be useful in detecting this feature where it

is most sensitive to small changes in amplitude.
� The metrics are more sensitive to small transient

shifts compared to large ones. The statistical

moments are also relatively sensitive to transient

shifts.

The aforementioned changes in variance and mean

clearly affect the density functions and their statistical

moments, and in turn drives the changes in distance

metrics. HL and TV metrics present the highest overall

response across all features and are well suited for

assessing similarity within SHM datasets. It should be

noted that the MMD performs similarly to HL and

TV (often presenting the third highest sensitivity within

the distance metrics), and should be given serious con-

sideration here as the most suitable candidate, because

it negates the need for density estimation. This is a pro-

mising result, as it is preferable to avoid density estima-

tion where possible.

Table 3 presents the order in which each metric prior-

itises a feature according to sensitivity. The MMD, JS

and HL metrics show similar priorities here, whereas

the TV, KOL and Area metrics have different prefer-

ences. The Area metric is unique in that it is more sensi-

tive to changes in mean than variance. Although the

difference between the sensitivity responses are relatively

small across all metrics – with no obvious front-runners

for any given feature (Figure 11) – the priorities of the

metrics suggest that some are more sensitive to specific

features over others. Therefore, the MMD, JS, and HL

Figure 11. The maximum metric values from each SHM feature presented here to provide an overview of the metric response in

Figure 10. The response of the first two statistical moments are also presented here for comparison purposes.
SHM: structural health monitoring.

Table 3. The sensitivity of each metric to each feature ordered from the most sensitive to least sensitive. This table gives an

indication of which type of SHM feature each metric prioritises during automated similarity assessment.

Order of priority MMD/JS/HL TV KOL Area

1 Shift Shift Shift Shift
2 Change in amplitude Change in amplitude Transient shift Transient shift
3 Transient shift Transient shift Change in amplitude Incremental shift
4 Incremental shift Drift Incremental shift Change in amplitude
5 Drift Incremental shift Drift Drift
6 Transient burst Transient burst Transient burst Transient burst

MMD: maximum mean discrepancy; SHM: structural health monitoring.
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metrics are expected to behave similarly when identify-

ing features, whereas, TV, KOL, and Area metrics are

expected to highlight different types of features. On this

account, commonly occurring behaviours within new

datasets may be identified by using a combination of

distance metrics, allowing for fast and automatic infor-

mation retrieval and similarity assessment.

By using a simulated dataset, in this section, the

responses of candidate distance metrics to commonly

occurring SHM features are explored. It is clear that

the metrics are well suited for identifying features (espe-

cially over simple analysis using the first two statistical

moments), where some metrics show a preference for

identifying certain features over others. As a result, a

given metric can give an indication of the type of fea-

tures present in a signal without manual inspection.

The results presented here using the simulated dataset

are satisfactory pointers towards generalisation,

because in a population-based setting – particularly

within a homogeneous population where the behaviour

of the data within a given window is assumed to be the

same/very similar (Even in heterogenous population

examples, feature similarity is important to avoid nega-

tive transfer23,26) – the metrics will not identify differ-

ences between general trends as D(x, y) = 0 when x= y.

As a result, the metrics are expected to identify beha-

viours/features that are anomalous to the general popu-

lation trends. Consequently, the underlying general

behaviour of the simulated dataset (a Gaussian white

noise signal), is less important in a population-based

setting than the commonly occurring SHM features.

Given that the features are based on typical behaviours

observed in the SHM literature, this dataset is simple

yet satisfactory for the purpose of metric analysis.

A note on real-time analysis of population data

using distance metrics. Although not implemented in

this paper, it is noted here that for PBSHM, it is possi-

ble to use these metrics to track the behaviour of struc-

tures over time, using a moving window. Care must be

taken when discretising the density functions in this

case, because an inadequate range could diminish the

effect of unexpected SHM behaviours or highlight nor-

mal behaviours as abnormal. As the MMD formula-

tion does not require the calculation of density

functions, it is perhaps better suited for real-time anal-

ysis. In this case, a suitable moving window length can

be chosen a priori that captures the general fleet-wide

trends in historical data, offline. The data that are used

to set the window length should be collected during

normal operating condition in order to ensure that

abnormalities (deviations from the normal condition)

can be detected during real-time implementation.

The computational complexity of calculating the

MMD is O(m+ n)2 time, where m and n are the points

sampled from distributions estimates p̂i(x) and p̂j(x)

respectively. Whereas, the computational complexity of

distance metrics based on KDE is O(n). Consequently,

assessing the similarity of data in a PBSHM setting

using distance metrics is relatively computationally

inexpensive, especially when the dataset sizes are small.

In real-world implementations, suitably small window

lengths can ensure small dataset sizes. As a result, this

framework can be compliant with edge processing for

its implementation.

In the next section, the effect of normalisation of

the data on the metrics is discussed; normalising or

standardising the data to have zero mean and unit

standard deviation is a common pre-processing step in

SHM analyses. Normalising removes the effects of

mean and variance on the density estimations. As a

result, it is possible to determine if a given metric is

sensitive to higher-order moments that may be present

as a result of variations within the data. In PBSHM

applications that utilise transfer learning, normalisa-

tion can be vital for aligning domains for domain

adaptation.22 Techniques such as normal condition

alignment can help move data and change the size of

the space they occupy, in order to facilitate better deci-

sion boundaries that separate the data well, and allow

easy comparison between domains. Foregoing align-

ment can sometimes even lead to negative transfer. The

next section of this paper explores how normalisation

can affect data and therefore the ability to find simila-

rities using distance metrics, if the calculation of the

distance metrics should be altered to aid normalisation,

and how to analyse the results from normalised data.

Data normalisation and distance metrics

In conventional SHM, distance metrics can be used to

identify whether structures are operating under normal

(undamaged) conditions, or if damage has occurred,

where a large distance between the normal and damage

conditions is preferred. In PBSHM, it is desirable to

reduce the distance between the data from normal con-

ditions of different structures in a population to aid

positive transfer in instances such as when attempting

domain adaptation.20,22 Here, distance metrics are used

to identify the target label-set that is the closest match

to the source domain. Normalising the source and tar-

get domains by their respective normal operating con-

dition helps align the data by the normal condition.

This form of normalisation is beneficial to transfer

leaning, as learners are notoriously ineffective when

translation has occurred between source and target

data.59,60 Normalisation can, however, mask the effects

of temporal and spatial EOVs; the dynamic response

of the structures can be altered by wind, thermal and

induced vibrations, change of material properties and

boundary conditions.8,61
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In this paper, distance metrics are used to find simi-

larity and information within a population when there

is no knowledge of the underlying data structure. The

assumption is that little to no information is available

on the condition of the structure (from which the data

were collected), or the data itself. In the previous sec-

tion, distance metrics were tested against a number of

typical behaviours in SHM features in order to deter-

mine their suitability at detecting changes and assessing

similarity. These behaviours usually have an affect on

the characteristics of feature distributions. In this sec-

tion, normalisation is employed to eliminate the effects

of lower-order moments from the data and highlight

features containing higher-order moments such as

skewness and kurtosis. Given that higher-order

moments can indicate the presence of transient shifts/

drifts in the data, normalising in this context may be

helpful in identifying features that are affected by

unexpected behaviours. Consequently, a single distance

metric value used on absolute and normalised data

may indicate useful information about the underlying

structure of the data.

Normalisation in the form of standardisation is an

alignment step that can be applied to data.62–64

Standardisation translates and scales the data collected

from structures by subtracting the mean and dividing

by the standard deviation. When applied on a

structure-by-structure basis – also referred to as self-

standardisation – the resulting data from each struc-

ture has a mean of zero and a unit variance. Often it is

used to move data to a similar space where compari-

sons between the data are meaningful. Standardisation

can also reduce the condition numbers of matrices,

allowing for numerical accuracy when computing their

inverse. It is important to note that metrics cannot be

used on self-standardised data to find differences

between datasets because global transformations have

not been conducted on the data; the mean and variance

of each dataset are likely to be slightly different and,

therefore, each dataset will be altered differently during

self-standardisation. In this section, self-standardising

is used to investigate the origin of the differences seen

in PBSHM datasets.

Figure 12 visually presents the effect of self-

standardisation on the density functions that drive the

distance metrics. Here, the commonly occurring fea-

tures in Figures 1 to 6 are used for demonstration. a

values of 0.5, 2 and 5 are used to represent change in

amplitude/variance, drift (time-varying amplitude) and

transient bursts, respectively. An a value of 2 is used to

shift the feature, and a value of 5 is used for the transi-

ent shift. After self-standardisation, the scaling and

shifting effects from changing amplitude/variance and

translation/shift are reduced. Density functions that

contain higher-order moments are highlighted, as the

integration mesh essentially squeezes the functions into

the same space. The next section explores how these

transformations manipulate the density functions that

drive the metrics, with a focus on the parameters used

to obtain density estimates.

Data standardisation and the IPM and f-

divergences

The IPM and f-divergences in Table 1 are driven by

the probability and CDFs. These density functions

(Equations (12) and (14)), are dependant on two vari-

ables: the width h and the points x. To track the effect

of standardising on the distance metrics, the process in

which these variables are altered is studied.

When the data are self-standardised, the bandwidth

parameter, h (in Equation (13)) becomes,

hN = 1
4

(d + 2)n


 � 1

(d + 4)

h=sX3hN

ð27Þ

because the standard deviation of the self-standardised

data sXN
ð Þ is 1. Also, the values for x should now

encompass the data from all structures. In the

population-based setting, Equation (12) becomes,

f̂ c,XNi; hNð Þ= 1
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where c are the new points at which the density func-

tions of the self-standardised data are evaluated.

Similarly the CDF becomes,

F̂ c,XNi; hNð Þ= 1

N

X

N
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1
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ð29Þ

Therefore, in a PBSHM setting, the discretisation and

the smoothness of the density functions are affected

when the data are self-standardised. As a result, these

values should be re-evaluated when obtaining density

functions for self-standardised data. Equations (28)

and (29) can be fed back into the metric formulations

where the integrals can be treated as sums, because the

discretisations c are the same for all functions. Next,

the way in which the MMD is affected during standar-

disation is explored.
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Data standardisation and the MMD

As the random variables x and y from Equation (10)

are moved to a similar space by standardisation, the

value of the MMD is expected to change because it is a

measure of difference between the mean embedding of

two distributions. As the Gaussian kernel for the

MMD is calculated on the data from two distributions

(Equation (11)), the length scales can be separated.

When both variables are from the same distribution,

the normalised kernel is equal to the non-normalised

kernel, that is,

k xN , x
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where sx is the standard deviation of x. Similarly,

k y, y0ð Þ= k yN , y
0
Nð Þ. The same cannot be said for

k xN , yNð Þ because the length scales are divided by the

standard deviation of the corresponding variable sx

and sy (the standard deviation of x and y respectively),

that is,
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It is also interesting to note the effect of altering the

length scales of the kernel when standardising, because

obtaining the optimum choice of kernel size is an cur-

rent research topic, and therefore the length scales are

subject to change.34 For example, if the relationship

between k(x, y) and k xN , yNð Þ is k(x, y) =a3k xN , yNð Þ
and if the length scales are multiplied by a constant c,

where c 2 R, the relationship

Figure 12. The effect of standardising on density functions is presented using the commonly occurring SHM behaviours.

Standardising (figures on the left), leads to effects from changes in amplitude/variance and translation to reduce, and highlights

transient changes.
SHM: structural health monitoring.
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Again, as the MMD is a true metric that circumvents

the need for density estimation, it may be preferred

over metrics based on density estimates when used for

preliminary analysis; this is because, the discretisation

step required for density estimates (on both absolute

and self-standardised data), can be avoided when using

the MMD.

The response of distance metrics to self-standardised

data

In this section, the focus is on exploring the effect of

self-standardised data on the response of distance

metrics. This is an important consideration for

PBSHM because, standardisation is a key alignment

technique used to bring domains into a similar space

for transfer learning. Furthermore, standardisation can

be used to reduce the effects of the first two statistical

moments on the data, thereby increasing the metric’s

sensitivity to higher-order moments. It is hoped that

standardisation will help to identify interesting features

in the data that were previously masked by the mean

and variance. Earlier, in Figure 12 it was found that

transient behaviours are highlighted after standardisa-

tion as they tend to contain higher-order moments.

The aim here is to find metrics that are sensitive to

those characteristics. Again, the commonly occurring

behaviours introduced in Section ‘Distance metrics

response to commonly occurring behaviours in SHM

datasets’ are used here for demonstration.

When considering the commonly occurring SHM

behaviours, Figure 13 show how each distance metric

responds to self-standardised data. As with Figure 10,

the response of ‘Mean’ and ‘Std’ are presented here for

comparison between the distance metrics and the first

two statistical moments. The results in 13 are combined

with the absolute case in Figure 10 and normalised

between [0,1] for ease of comparison. The correspond-

ing self-standardised metric values for constant changes

in amplitude, and constant mean shifts are not pre-

sented here because self-standardising these altered fea-

tures leads to metric values of zero. In these figures, a

can represent the increase/decrease in variance/ampli-

tude, or a positive/negative shift in mean/translation.

The ranges of a used in Figure 13 can be found in

Table 2. Figure 14 summarises Figure 13 by providing

the maximum response of each metric to each standar-

dised feature.

The key observations from Figures 13 and 14 and

comparisons between the absolute case in Figures 10

and 11 are:

� Unsurprisingly, the metric responses are markedly

reduced when assessing self-standardised data

because the effects of mean and standard deviation

are removed.
� The first two statistical moments ‘Mean’ and ‘Std’

are unable to detect any changes in the features

within self-standardised data, making them unsui-

table for similarity assessment in PBSHM where

the data are standardised.
� Unlike the first two statistical moments, the dis-

tance metrics show some response to the feature

changes, with a relative high response towards tran-

sient shifts.
� The distance metrics based on the PDF and the

MMD present a higher sensitivity to transient

bursts in the self-standardised case in Figure 14

compared to the absolute case in Figure 11 because,

the higher-order moments such as skewness and

Figure 13. The sensitivity of each metric to varying a when the data containing the commonly occurring SHM features are self-

standardised. The metric values for change in amplitude and feature shift are not presented as standardisation leads to metric values

of zero. The response of the ‘Mean’ and ‘Std’ are also presented to represent the first two statistical moments. All metric values are

normalised between [0,1] for comparison.
SHM: structural health monitoring.
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kurtosis are highlighted as the data are standar-

dised (as observed in Figure 12).
� As data are standardised, metrics are more respon-

sive to transient behaviours over incremental

behaviours.

These results show that there are advantages to

undertaking data standardisation in the context of

identifying commonly occurring SHM features using

distance metrics. Transient effects are especially high-

lighted in the standardised case, when the effects of

general trends (overall mean and variance changes) are

diminished. As transient features can be indicative of

damage and EOVs, it is useful to undertake data stan-

dardisation to identify them.

Table 4 presents the order of priority for each

metric as the data are standardised, that is, the stan-

dardised features that each metric is sensitive to,

ordered from most to least. The results here show that

there is a high level of uniformity across the candidate

metrics, except for the TV metric. The TV metric is

more sensitive to incremental shifts over transient

bursts; perhaps because incremental shifts not only

shift the data but also reduces the area under the PDF,

the TV metric (in the f-divergent case), is more sensi-

tive here as it responds to the largest and the smallest

areas under the PDF. This difference in response by

the TV metric is helpful, as using a combination of the

TV and other metrics will be useful for capturing a

wider variety of features from standardised data.

The recommendation here is therefore to assume

that the metrics based on the PDF are likely to identify

overall trends when using absolute data, and highlight

transient behaviours when the data are standardised.

When considering metrics based on the CDF, transient

shifts can be identified from absolute data. As a result,

when using absolute data, a combination of HL/TV

and KOL/Area should detect a variety of SHM fea-

tures from the dataset automatically. In the standar-

dised case, the TV metric can be used alongside HL to

identify a range of transient and incremental features.

Overall response of the distance metrics

Figure 15 presents the overall performance of the

metrics when considering the SHM features in both

absolute and standardised cases (six absolute and four

standardised features). The x-axis of the figure repre-

sents the ‘score’ of each metric; the score is calculated

by identifying the maximum response of each metric to

each feature and giving a value of one for the most sen-

sitive metric and a value of eight for the least sensitive

Figure 14. The maximum metric values from each SHM feature presented here to provide an overview of the metric response in

Figure 13. The response of the first two statistical moments are also presented here for comparison purposes.
SHM: structural health monitoring.

Figure 15. The overall performance of the metrics across all

absolute and standardised features. The metric with the largest

response has the lowest score. The metric with the lowest

variance performs similarly across all features. The best overall

metric should present a low variance and a low score. The

dotted dashed lines indicate 50% of the score and variance.
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metric (as there are eight metrics assessed in total: six

distance metrics, two statistical moments). A metric

can have a total score between values of 10 and 80

where a value closer to 10 suggests that the metric has

a high sensitivity to all SHM feature and a score of 80

suggests that the metric is insensitive to all SHM fea-

tures. The scores are plotted against the variance of the

score in the y-axis. A small variance suggests that the

response of the metric was similar across all features,

whereas a high variance of score suggests the response

of the metric varied significantly from feature to fea-

ture. The best overall metric should, therefore, have a

low score and a low variance. In Figure 15 two dashed

lines separate the metrics at 50% of the score (vertical)

and 50% of the variance (horizontal). Those in the bot-

tom left corner are the best performing metrics from

the chosen candidates. Within this quarter, the HL has

the lowest score and the MMD has the lowest var-

iance. Again, as the metrics based on density estima-

tion require a discretisation mesh to be selected, the

similar performance of the MMD is advantageous for

feature assessment at the start of the analysis chain.

The results from the simulated dataset suggests that

the distance metrics chosen in this paper are suitable

candidates for detecting typical SHM behaviours. It is

clear that using a combination of metrics across abso-

lute and standardised data can give insights into dis-

similarity across populations as well as provide an

indication of what type of features are present within

the data automatically. These findings are incredibly

helpful for PBSHM, where manually analysing data to

find suitable data for training and testing or transfer

learning is an impossibility. In order to validate these

findings and to understand whether these metrics are

flexible in identifying SHM features from measured

data from operational structures, a case study is

presented next. The case study focuses on identifying

similarity/dissimilarity of features collected during a

year-long monitoring campaign of a wind turbine fleet.

Case study: similarity of turbines in the

Lillgrund wind farm

This case study investigates the use of distance metrics

to automatically identify similar/dissimilar behaviours

within SHM features collected from a population of

wind turbines. This is a homogeneous population,

which is a sensible starting point for population-wide

assessment. Modern wind turbines continuously collect

data pertaining to environmental and operational con-

ditions. Each turbine collects data from multiple chan-

nels, usually at ten-minute intervals. The available data

for analysis, therefore, grows with population size. On

that account, there is a clear need for fast and auto-

mated analysis for PBSHM.

The aim here is to gain an understanding of the

effectiveness of the investigated distance metrics, at

identifying interesting features from real, operational

structures, in order to evaluate whether they can be

used for automated data assessment in PBSHM. The

metrics will be tested on absolute and standardised

data as before, to determine whether normalisation is

helpful and to discover transient behaviours. If success-

ful, the hope is that these metrics will be used to group

together structures with similar behaviours, and reduce

the burden on transfer learners to achieve positive

transfer, by establishing that the underlying distribu-

tions of the domains are similar. Furthermore, the

assumption is that identifying dissimilarities within the

turbines should indicate unexpected EOVs or damage.

To reiterate, the assumption in this paper, and

indeed in this case study, is that the similarity assess-

ment is undertaken at the very start of the analysis

chain where little to no information about the data is

known. The aim here is to automatically gain knowl-

edge of the data collected from an entire population,

reducing – or even alleviating – the need for time-

consuming manual analysis.

The Lillgrund wind farm and the SCADA dataset

Located between the Swedish and Danish borders, the

Lillgrund wind farm has 48, 2.3 MW wind turbines.65

This is a homogeneous population, as all the structures

are nominally identical, but with varying boundary

conditions.1,3,4,20 Each turbine is fitted with a

Supervisor Control and Data Acquisition (SCADA)

system that collects and saves data from a range of

sensors at ten-minute intervals. Henceforth, the 48

turbines in the Lillgrund wind farm will be denoted T1

to T48.

In this work, the brake-gear temperature data col-

lected during the year 2009 are studied (Figure 16).

Table 4. The sensitivity of each metric to each standardised

feature ordered from the most sensitive to least sensitive. This

table gives an indication of which type of SHM feature each

metric prioritises during automated similarity assessment of

standardised data.

Order of priority MMD/JS/HL/KOL/Area TV

1 Transient shift Transient shift
2 Transient burst Incremental shift
3 Incremental shift Transient burst
4 Drift Drift

MMD: maximum mean discrepancy; SHM: structural health monitoring.
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This particular feature is chosen because of its sensitiv-

ity to daily temperature variation, and also because it

includes behaviours such as shifts in mean, change in

variance and transient mean shifts (such as those

explored in Sections ‘Distance metrics response to

commonly occurring behaviours in SHM datasets’ and

‘Data normalisation and distance metrics’), that may

be indicative of operational conditions or damage. To

ease the computational burden, a window of data from

the middle of May is chosen for analysis. The first step

in the analysis process is to identify the most similar

and dissimilar turbines within the fleet.

Results and discussions

The results calculated by the distance metrics are pre-

sented in Figure 17 in the form of confusion matrices

where one-to-one comparisons are made across the

population. The darker shades in these figures signify

dissimilarity whilst the lighter shades indicate similar-

ity. There are clear differences between the absolute

and standardised cases here, suggesting that standardi-

sation has helped identify different turbines to the

absolute case, most likely as a result of transient beha-

viours. The metrics show that a significant number of

turbines have high similarities across the population,

suggesting that they can be used for transfer learning.

This result is a strong indication that the underlying

distribution of the general population is similar, which

is evident in Figure 16.

One of the most interesting observations from the

confusion matrices is the interaction between two of

the most dissimilarly behaving turbines (T10 and T12),

in the self-standardised case. It is clear that, even

though the distances between data from T10 and T12

are consistently large compared to the rest of the popu-

lation, the distances between each other are relatively

small according to most metrics. This finding suggests

that the anomalous data from these particular turbines

actually behave similarly to each other and could be an

indication that the underlying mechanisms or forces

driving these behaviours are also the same. This result

illustrates the purpose of PBSHM in a number of

ways. For example, if presented with a dataset that

contains healthy and damage-state data, it may be pos-

sible to identify other datasets that are undergoing the

same mechanisms, and detect damage prior to failure

using this method for guidance. If the dissimilar beha-

viour is a result of EOVs, it may be possible to group

the relevant structures together and label them appro-

priately. On the other hand, T10 deviates from T12

around data points 400–450 (highlighted in Figure

18(c)), but that does not reduce the similarity between

them, in comparison to the data from the rest of the

population, across the window. This result shows that

a temporary variation is not as significant for the

metrics when the overall trend is very similar, and also

demonstrates the importance of the window in which

the metrics are calculated; temporary variations may

be masked by more persistent trends, resulting in

misleading conclusions.

Identifying common SHM features. The two most dissimi-

lar turbines from the confusion matrices when using

absolute and normalised values are identified for each

metric in Figure 19 by summing the difference values

across all comparisons between turbines. Given the

findings from earlier in this paper, these results should

(a) (b)

Figure 16. Brake-gear temperature of the 48 turbines in the chosen time window. Some anomalous behaviours can be seen here,

where data appear outside of the general trend. Distance metrics may help in identifying these anomalous behaviours. (a) Absolute

values and (b) normalised values.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 17. The confusion matrices showing distances calculated by metrics using absolute and standardised data. (a) MMD

absolute, (b) JS absolute, (c) HL absolute, (d) TV absolute, (e) KOL absolute, (f) Area absolute, (g) MMD normalised, (h) JS

normalised, (i) HL normalised, (j) TV normalised, (k) KOL normalised, (l) Area normalised.
MMD: maximum mean discrepancy.
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(c) (d)

(a) (b)

Figure 19. Most dissimilar turbines in the population when considering the brake-gear temperatures. (a) Absolute values and

(b) self-standardised values.

(a) (b)

Figure 18. The absolute and normalised brake-gear temperatures. Highlighted here are the most dissimilar turbines identified by

the distance metrics. (a) MMD and KOL absolute, (b) JS, HL, TV and Area absolute, (c) MMD, JS, HL and Area normalised, and

(d) TV normalised.
MMD: maximum mean discrepancy.
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give an indication of the type of SHM features identi-

fied by the metric.

Findings from the absolute case are:

� According to Table 3, it is probable that T4, T7

and T20 stem from a global shift in mean, or a

change in variance because the MMD, JS, HL and

TV metrics prioritise those features over others.

Indeed, Figures 18(a), 18(b) and 20(a) show that

T4 and T7 are shifted in mean and T20 has a small

variance.

- These shifts in mean of T4 and T7 are a result

of the turbine’s position within the farm (T4

and T7 is located along one of the edges of the

farm), and the speed and direction of the wind

during this time period, suggesting that identi-

fying signal shift via distance metrics may be

useful for environmental mapping.

- The density function of T20 (Figure 20(a)), that

drives these metrics, resembles the effects of

decrease in amplitude from Figure 1. The tem-

perature variation of T20 across the time period

is smaller than others in the population (Figure

18(b)), possibly because of an operational issue;

for example, the sensor may be damaged, con-

sequently reducing its sensitivity to temperature

changes. Clearly, automatically identifying this

decrease in variance within the population

would not be a simple task for a human. Given

that three out of six metrics have detected this

feature, this finding further supports the use of

distance metrics for automated anomaly

detection and suggests that they may be useful

in detecting faults in the instrumentation.

� The Area metric identifies T17 as dissimilar, which

could mean a shift in mean or a transient shift

according to Table 3. Again, Figure 18(b) confirms

that a transient shift has taken place in T17.

As expected from previous sections, when the data

are standardised, T4 and T7 and T20 are no longer sig-

nificantly dissimilar to the others, because the effects of

translation and variance are diminished.

Insights from the standardised case are:

� All metrics except TV identify T10 and T12 as the

most dissimilar, suggesting from Table 4 that incre-

mental shifts may be the cause. Figure 18(c) con-

firms that this is the case.
� Surprisingly, the transient shifts of T17 are not

highlighted by the metrics after self-standardisa-

tion, as expected from the results in Table 4. This

result is because the transient shifts of other tur-

bines (Figure 21(a)), are now more pronounced

than that of T17.
� Interestingly, the TV metric identifies different tur-

bines (T16 and T31), to the other metrics as suggested

by the findings from Table 4, possibly owing to small

incremental shifts observed in Figure 18(d).

The results presented in this section closely follow

the findings from Sections ‘Distance metrics response

to commonly occurring behaviours in SHM datasets’

(a) (b)

Figure 20. The density functions of the absolute data with the most dissimilar turbines highlighted. (a) Based on the PDF and

(b) based on the CDF.
CDF: cumulative density function; PDF: probability density function
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and ‘Data normalisation and distance metrics’, validat-

ing the earlier findings and suggesting that the simu-

lated dataset is suitable for evaluating the candidate

distance metrics. As the general trend is similar across

the population, only anomalous behaviours are identi-

fied easily and automatically.

The results from the case study indicate that a com-

bination of HL, TV and Area metrics should help

broaden the number of dissimilar turbines that can be

identified from the dataset. Tables 3 and 4 also agree

that these metrics prioritise a wide range of features.

The most dissimilar turbines from each of these metrics

across absolute and standardised data are highlighted

in Figure 22(a). As the MMD negates the need for den-

sity estimation, and as it has a low overall score and

variance in Figure 15, the most dissimilar turbines

identified by the MMD are also presented in Figure

22(b). The combination of HL, TV and Area metrics

find a large number of dissimilar turbines spanning

many different features. The MMD performs relatively

well, where it captures many of the same turbines. The

recommendation is, therefore, to use a combination of

HL, TV and Area metrics for a comprehensive dissimi-

larity identification and use the MMD to avoid the

drawbacks of density estimation.

Conclusion

This is the first exploration of automated similarity

assessment of feature data in population-based SHM,

(a) (b)

Figure 21. The density functions of the self-standardised data with the two most dissimilar turbines highlighted. (a) JS and HL

normalised and (b) TV normalised.

(a) (b)

Figure 22. (a) The most dissimilar turbines identified by a combination of HL, TV, and Area giving a broad range of dissimilarities.

When considering the the 10 most dissimilar turbines from the absolute and standardised cases, 13 turbines are identified by the

three metrics and (b) the 10 most dissimilar turbines (from both absolute and standardised cases) identified by the MMD, a metric

which has one of the best overall performances, without the need for density estimation. (a) TV, HL, Area and (b) MMD.
MMD: maximum mean discrepancy.
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a new research field that aims to transfer knowledge

across structures to address the shortcomings of SHM.

PBSHM considers data from multiple structures and

sensor networks, and therefore, new technologies are

required to analyse vast amounts of data quickly and

automatically, to aid positive transfer learning, and

help identify suitable training and testing data. In this

paper, distance metrics – that are not all widely used in

SHM currently – were introduced in the context of

PBSHM, and analysed for their ability to highlight

similarity between members of the population at the

top of the analysis chain, to aid the decision-making

process.

Six distance metrics were tested on a simulated data-

set, and on feature data collected from an operational

wind farm, to evaluate their effectiveness at identifying

commonly occurring features in PBSHM datasets. In

both cases, the effect of data standardisation was also

studied as it is a vital alignment step in transfer learn-

ing. The findings between the simulated and real dat-

sets agreed and suggested that distance metrics are well

suited for similarity assessment in PBSHM.

The results showed that most metrics were respon-

sive to shifts in mean and variance when assessing

absolute data, and transient effects when assessing

standardised data. By assessing the response of the

metrics to SHM features, it was found that a combina-

tion of metrics is required to identify a comprehensive

variety of dissimilar behaviours within a population.

The recommendations from the study are to use a com-

bination of Hellinger, Total Variational (IPM form)

and Area metrics to identify a broad range of dissimi-

larities in a population. If avoiding the drawbacks of

density estimation is important, then the MMD is a

useful metric, as it has a good response to all features

evaluated.

These metrics are only suitable for use in large

populations because the similarities (and, likewise, dis-

similarities), are identified by comparison across the

population. It is not possible to highlight dissimilarly

behaving data from a structure using the distance

metric value between itself and another structure. For

these metrics to be used effectively, the population size

should be large enough that it is possible to recognise

the difference between data from a group of similarly

behaving structures against a dissimilar structure.

In this paper, a homogeneous population of struc-

tures is studied, which reduces the complexity of asses-

sing the similarity across the fleet, because the sensor

network is also assumed to be similar across the popu-

lation. However, it is entirely possible that small dis-

similarities in the data will arise if some aspects of the

sensor networks (sensor positions, types, manufactur-

ers, models) are different across the population. This

more complex case is the basis for transfer learning in

PBSHM where knowledge transfer between source and

target structures takes place where the behaviours of

structures (and therefore the collected data) are differ-

ent but related.

The metrics in this study were able to automatically

identify numerous dissimilarities within absolute and

standardised data, and give an indication of what type

of features are present in the dataset without requiring

manual inspection. Interestingly, the metrics detected

some structures that behaved dissimilarly to the main

population but behaved similarly to each other. As a

consequence, it may be possible to group dissimilarly

behaving structures in order to learn the mechanisms

that drive these changes, or quickly find associations

when analysing new data that may have similar trends.

Overall, the use of distance metrics was found to be

extremely helpful for PBSHM, and is likely to be

advantageous to other systems concerned with fleet

management.
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