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Employing currently available quantum technology, we design and implement a nonclassically correlated

SWAP heat engine that allows to achieve an efficiency above the standard Carnot limit. Such an engine also

boosts the amount of extractable work, in a wider parameter window, with respect to engine’s cycle in the absence

of initial quantum correlations in the working substance. The boosted efficiency arises from a trade-off between

the entropy production and the consumption of quantum correlations during the full thermodynamic cycle. We

derive a generalized second-law limit for the correlated cycle and implement a proof-of-principle demonstration

of the engine efficiency enhancement by effectively tailoring the thermal engine on a cloud quantum processor.

DOI: 10.1103/PhysRevResearch.5.043104

I. INTRODUCTION

Recent years have witnessed the rise of quantum ther-

modynamics (QTD), which has rapidly become an arena to

test and debate fundamental concepts such as the laws of

thermodynamics and the related fluctuation theorems at the

quantum scale [1–12]. In parallel, QTD is facilitating the

extension of practical concepts such as heat and work towards

the design [13–20] and, more recently, the implementation

[2,21–27] of thermal machines based on a handful of quantum

degrees of freedom. Particular attention is being given to the

concept of entropy production for systems out of equilibrium

[28–32] and to the—related—second law of thermodynamics

[6,33,34], as well as to the role of quantum correlations in

both fundamental concepts [35–39] and in the functioning

of thermal devices [40–45]. Quantum features can be con-

sidered as extra resources. Squeezed states, for instance, can

enhance the performance of a microscopic engine above its

classical limits [17,46]. Coherence with a dynamical interfer-

ence [47–49], quantum measurements [50–56], and quantum

operations causal order [57–62] also play nontrivial roles in

the performance of thermodynamic tasks [40,41].
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Through the design and proof-of-principle implementation

of a two-qubit thermal machine (on a quantum processor),

here, we demonstrate that the use of quantum correlations

as an extra resource can indeed lead to a generalized sec-

ond law of thermodynamics encompassing regimes with

efficiency larger than the standard Carnot limit. As an

added bonus, quantum correlations increase the amount of

extractable work, as well as extend the parameter region

corresponding to useful work extraction for the proposed

cycle.

This paper is organized as follows. Taking advantage of

initial nonclassical correlations in a two-qubit working sub-

stance, in Sec. II, we design a correlated quantum heat-engine

based on the concept of a partial SWAP operation. The

engine’s nonequilibrium-thermodynamics quantifiers are in-

troduced and analytically computed in Sec. III. In Sec. IV, we

introduce a quantum processor implementation of the quan-

tum heat engine setup and experimentally demonstrate the

performance enhancement of the proposed correlated SWAP

heat engine. In Sec. V, we derive an analytical expression

for the SWAP engine efficiency and provide a criterion for

performance over the classical limit (above Carnot) to occur.

In Sec. V A, we prove that such an engine can exceed the

conventional classical limits, with an out-performance that is

well described by an information-to-energy trade-off relation

for the cycle efficiency, which can be seen as a quantum

generalized efficiency limit for a two-stroke cycle in the

presence of nonclassical correlations. In Secs. V B and V C,

based on the ancilla-assisted two-point-measurement method

developed in Ref. [26], we use a cloud quantum processor

[63] to implement an experimental proof-of-principle of our

design. Summary of results and concluding remarks are given

in Sec. VI.
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FIG. 1. (a) Thermodynamic cycle of a correlated SWAP quan-

tum heat engine. The two-qubit (AB) system acts as the working

substance. QA (QB) denotes the heat exchanged with the hot (cold)

environment. (b) Quantum-circuit to test the correlated heat engine

concept. The input to the circuit is the ground state |0000〉. The

qubits q0 and q3 are employed as ancillae to prepare the engine

in the initial thermal state ρ0
1 ⊗ ρ0

2 ≡ ρ̃0
A ⊗ ρ̃0

B (box 1); the rotation

angles θi depend on α and the qubits effective temperature. The AB

correlations are generated in boxes 2 and 3 via U−, and the final

partial SWAP implementation, via U+, in box 4.

II. DESIGN AND FUNCTIONING OF A CORRELATED

QUANTUM HEAT ENGINE

The quantum engine is composed by two qubits with en-

ergy gaps εA and εB. Each of them is initially coupled to an

effective heat environment, as schematized in Fig. 1(a), stroke

1.1, which lead to the product of Gibbs states, ρ̃0
A ⊗ ρ̃0

B. After

such a complete thermalization, the two qubits get correlated

through stroke 1.2 [Fig. 1(a)] in a state given by

ρ0
AB = ρ0

A ⊗ ρ0
B + χAB, (1)

where the reduced local state for each qubit ρ0
i =

exp(−βiHi )/Zi is a thermal equilibrium state at the inverse

temperature βi = (kBTi )
−1, i = A, B; Zi = Tri exp(−βiHi ) is

the corresponding partition function, and χAB = α|01〉〈10| +
α∗|10〉〈01| gives the relevant correlation term, with TriχAB =
0. Here, the states |0〉 and |1〉 denote the ground and excited

eigenstates of the qubit Hamiltonian Hi = − 1
2
εiσ

(i)
Z ; the total

two-qubit Hamiltonian HAB = HA + HB. Qubit A is assumed

to be hotter than the qubit B, that is βA < βB. We remark that

the correlation term χAB does not contribute to the energy

of qubits A and B. The populations of states ρ̃0
A and ρ̃0

B are

chosen in a way to obtain the desired correlated state in Eq. (1)

(see Appendix A). The energy exchange between the two

qubits is determined by means of a partial SWAP operation, as

illustrated in Fig. 1(a), stroke 2, where work can be extracted

from or performed on the quantum system. Physically, this can

be implemented by an effective unitary Heisenberg exchange

Hamiltonian evolution ( j = X,Y, Z)

Ut = exp

⎛

⎝

−iJt

2

∑

j

σ
(A)
j ⊗ σ

(B)
j

⎞

⎠. (2)

At t = 0, there is no interaction at all; a complete SWAP

operation [64,65] takes place at t = π/(2J ).

Although the initial state Eq. (1) seems to be similar to the

one considered in Ref. [41], we stress that the off-diagonal

parameter has a different phase and the evolution is driven

by a different Hamiltonian, which makes all the difference

to exploit nonconvectional energy flows to thermal tasks.

Moreover, the correlation parameter used in Ref. [41] would

not allow for an advantage in the quantum heat engine here

implemented.

Next, we consider a proof-of-principle implementation on

a quantum processor. Figure 1(b) shows a quantum circuit

that implements a partial SWAP engine in the presence of

initial correlations. It is based on the use of the (controlled)

gate U±(x) ≡ 1
√

1 − x ± iσY

√
x, as follows. Qubits q1 and

q2 constitute the working substance, while qubits q0 and q3

are employed as ancillae to prepare the engine in the initial

thermal state ρ0
1 ⊗ ρ0

2 , and emulate the actions of the hot and

cold environments, respectively. This initial state is prepared

by means of a rotation gate Rx(θi) in the ancillae and a CNOT

gate between the ancillae and the qubits i = A and B [q1, q2 in

box 1, Fig. 1(b)]. The rotation angles are associated with the

effective temperature of each qubit and with the correlation

parameter α as follows:

θA = arccos
√

p−, θB = arccos
√

p+, (3)

p± =
1

2
(pA + pB ±

√

(pB − pA)2 + 4α2), (4)

εB

εA

=
βA ln (pBZB)

βB ln (pAZA)
, (5)

where pi = exp(−βiεi )/Zi and εB/εA gives the qubits energy-

gap ratio.

In the present implementation, the initial correlation in

the working substance (q1 and q2) is achieved by a CNOT

gate framing one controlled U−(x) gate, x = x(α) = (pA −
pB)/(p+ − p−) + 1/2, as shown in Fig. 1(b) (box 3) [66],

and α should satisfy α � 1/(ZAZB) to fulfill that the system’s

density operator is a positive semi-definite. We also produced

the same reduced correlated state of the working substance

in the ancillary qubits q0 and q3, through box 2 of Fig. 1(b),

in order to have a copy of the initial correlated state at the

circuit end, thus having an abridged measurement strategy.

After boxes 2 and 3 [Fig. 1(b)], the working substance is in

the state given by Eq. (1). Two distinct scenarios are identi-

fied: (i) α = 0, the qubits are initially uncorrelated, and (ii)

α �= 0, the bipartite state is initially correlated. The partial

SWAP operation, stroke 2, can be effectively implemented

through a quantum circuit composed by two CNOT gates

043104-2
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framing one controlled-gate U+(λ) [Fig. 1(b), box 4]. For

λ = 1, we have a full SWAP between the qubit states, while

for λ = 0 there is no operation at all between such qubits. The

partial SWAP takes place at a time τ , with 0 < τ < π/(2J ).

We finally measure all qubits in their respective (σ
(i)
Z ) energy

basis.

III. QUANTUM-ENGINE NONEQUILIBRIUM-

THERMODYNAMICS QUANTIFIERS

For the aforementioned cycle, we calculate the mean en-

ergies involved in the whole process: the average values for

the work, 〈W 〉 = Tr[(ρ
f

AB − ρ0
AB)HAB] (that takes place in

stroke 2) and the heat contributions from the hot (〈QA〉) and

cold (〈QB〉) environments, 〈Qi〉 = −Tr[(ρ
f

i − ρ0
i )Hi], where

ρ
f

A(B) = TrB(A)(ρ
f

AB) = TrB(A)(Uτρ
0
ABU

†
τ ) is the final out-of-

equilibrium reduced state for qubit A (B) after stroke 2. We

obtain

〈W 〉 = 2(εB − εA) f (�ν, λ, α), (6)

〈QA〉 = 2εA f (�ν, λ, α), (7)

〈QB〉 = −2εB f (�ν, λ, α), (8)

with f (�ν, λ, α) = sinh(�ν)

ZAZB
λ + 2α

√
λ(1 − λ), where

�ν = (εBβB − εAβA)/2. Since the total energy is

conserved, Eq. (6) to (8) fulfill energy conservation, i.e.,

〈W 〉 = −(〈QA〉 + 〈QB〉). These results for the correlated case

(α �= 0) are plotted in Fig. 2(b) and as the continuous curves

in Fig. 2(d) (see also Fig. 3). For comparison, in Figs. 2(a)

and 2(c), we plot the corresponding energies in the absence

of initial correlations (α = 0).

We characterized the performance of the quantum engine

by varying the energy gap ratio εB/εA, setting βB = 2βA, and

fixing the SWAP parameter to λ = 0.6 (other values are con-

sidered in Fig. 3). For the correlated initial state we considered

α’s maximum value, αmax = 1/(ZAZB).

In Figs. 2(a) and 2(b), we plot the parameters’ diagram for

temperature and energy gap ratios {βB/βA, εB/εA} required

for work extraction for both, initially uncorrelated, and cor-

related scenarios. The dashed curve in the diagram for the

case without initial correlations, Fig. 2(a), separates the re-

gions for which the system can work as a refrigerator (work

injection) or as a heat engine (work extraction). In contrast, for

initially correlated qubits [Fig. 2(b)], work injection gets sup-

pressed in the whole gap ratio εB/εA < 1, for all βA < βB, and

work extraction becomes much higher; the maximal extracted

work can be seen, e.g., for βB � 3βA and 0.2 � εB/εA � 0.5

[Fig. 2(b)].

In Figs. 2(c) and 2(d), we plot the mean energy (re-scaled)

quantities, work (〈W 〉, black dots) and heat from the hot (〈QA〉,
red dots) and cold (〈QB〉, blue dots) environments obtained

from the experimental runs in the quantum processor. The

error bars were estimated using the standard deviation of the

measured data in the quantum processor. Three operational

regimes [65] appear in the initially uncorrelated qubits sce-

nario [Fig. 2(c)]: refrigerator (0 < εB/εA < 1/2), heat engine

(1/2 < εB/εA < 1), and heat accelerator (εB/εA > 1). How-

ever, when the qubits are initially correlated, the partial SWAP

engine only exhibits two operational modes: heat engine

(0 < εB/εA < 1) and heat accelerator (εB/εA > 1) [Fig. 2(d)].

FIG. 2. Parameters phase diagram for engine operation mode:

(a) initially uncorrelated qubits, work extraction is only allowed

for parameter ratios {βB/βA, εB/εA} above the dashed curve (blue

region); and (b) initially correlated qubits, work extraction is al-

lowed for all 0 � εB/εA < 1, βA < βB. Experimental results for the

rescaled average work (〈W 〉/εA), and heat from the hot (〈QA〉/εA)

and cold (〈QB〉/εA) reservoirs for (c) initially uncorrelated qubits, and

(d) initially correlated qubits; in all experimental runs in the quantum

processor, we set βB = 2βA, λ = 0.6, and αmax = 1/(ZAZB ). The er-

ror bars were estimated using the standard deviation of the measured

data. The solid curves correspond to the theoretical prediction.

In the engine operation mode, quantum correlations boost

the amount of work that can be extracted, making it at its

maximum about an order of magnitude larger than the one

obtained in the absence of initial qubit correlations. As al-

ready explained above, this result has also been verified for

other λ values (see Fig. 3). In Figs. 2(c), 2(d), and 3, we

find a very good agreement between the quantum-processor-

implementation results and the corresponding theoretical

prediction from Eqs. (6) to (8) (solid curves). Furthermore,

quantum correlations enlarge the εB/εA values’ window where

work extraction is possible.

In Fig. 3 the average work and heat from the hot and

cold environments, for different λ values are plotted. As es-

tablished above, Fig. 3(a) shows the three different modes

of operation of the SWAP quantum engine that are avail-

able if we consider initially uncorrelated qubits (λ = 0). The

engine mode occurs for 0.5 < εB/εA < 1. Otherwise, for ini-

tially correlated qubits, the engine mode expands its range

to 0.0 < εB/εA < 1, as it is shown in Figs. 3(b)–3(d), λ =
0.8, 0.6, and 0.2, respectively. The lower the λ parameter the

greater the amount of extracted work. In fact, executing a full

SWAP (λ = 1) in the engine would erase the advantage due to

its quantum correlations hence obtaining the same result as in

the absence of initial correlations.

043104-3
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FIG. 3. Quantum-processor-implementation results for the average work, and heat from the hot (〈QA〉) and cold (〈QB〉) reservoirs for

(a) initially uncorrelated qubits (λ = 0), and initially correlated qubits: (b) λ = 0.8, (c) 0.6, and (d) 0.2. In all runs in the quantum processor,

βB = 2βA and αmax = 1/(ZAZB ). The error bars were estimated using the standard deviation of the measured data. The solid curves are

obtained from our theoretical predictions from Eqs. (6) to (8) and numerical simulations.

From Eqs. (6) and (7), it is straightforward to obtain the

SWAP engine efficiency,

η = −
〈W 〉
〈QA〉

= 1 −
εB

εA

. (9)

For qubit energies such that εB

εA
= βA

βB
, the quantum engine

achieves the standard Carnot limit,

ηCarnot ≡ 1 −
βA

βB

. (10)

IV. QUANTUM HEAT ENGINE EXPERIMENTAL SETUP

Here we give further details about the quantum processor

implementation of a quantum heat engine and corresponding

data analysis. For the implementation and characterization of

the quantum heat engine, we ran several experiments on the

five-qubit ibmq_manila quantum processor [63]. Below we

experimentally demonstrate the performance enhancement of

a correlated SWAP heat engine and confirm our theoretical

predictions.

For each run in the quantum processor, we implemented

the quantum circuit depicted in Fig. 1(b) and collected the

qubits statistics over a sample of size 20 000. We performed

the experiment for different values of the partial SWAP pa-

rameter λ. Additionally, for each λ, we ran ten experiments

with the aforementioned sample size in order to see the fluctu-

ations of the experimental setup. From these, we estimated the

error propagation, using the standard deviation. Each circuit

run is determined by the correlation (α) and thermalization

(λ) parameters.

In Fig. 4, we outline the transpiled circuit that has been

implemented following the topology and optimization of

ibmq_manila. This corresponds to the engine thermodynamic

cycle portrayed in the circuit of Fig. 1(b). The correlated

SWAP engine implementation parameters (see Table I) have

energy-gap ratio εB/εA, and angles θA and θB, with p± and pi

as given in Eqs. (3) to (5). Here,

φA = arcsin
√

x(α), (11)

φB = φA − arcsin
√

λ, (12)

x(α) = (pA − pB)/(p+ − p−) + 1/2, (13)

where x(α) and λ give the correlation and partial swap pa-

rameters, respectively. In Table I, we display the experimental

angles used in all the runs in the quantum processor here

reported.

In the transpiled circuit (Fig. 4), three basic gates are used;

Rz rotations,
√

X and CNOT, in order to parallel implement

the original quantum circuit of Fig. 1(b). We resort to the

gating and decoherence times for ibmq_manila [63] as fig-

ures of merit to check that the coherence properties required in

the implementation of the quantum thermodynamic cycle are

guaranteed. Clearly, relaxion (T1) and decoherence (T2) times

are about three orders of magnitude longer than the qubits’

gating times. These times are reported in Table II.

The last column gives the execution times of the “i_ j” two-

qubit gates according to the ibmq_manila topology (i, j =
0, 1, . . . , 4). By assuming that each gate takes its longest

possible execution time (∼500 ns), we can overestimate

FIG. 4. Schematic representation of the transpiled circuit implemented by three basis gates: Rz rotations,
√

X , and CNOT. The circuit depth

or layers of quantum gates are executed in parallel according to ibmq_manila topology to achieve the computation indicated in the original

circuit of Fig. 1(b). The q[i] input labeling indicates the physical qubits used by the five-qubit processor and the circuit output c[i] represents

the classical data where the measurement result is recorded.

043104-4



CORRELATION-BOOSTED QUANTUM ENGINE: … PHYSICAL REVIEW RESEARCH 5, 043104 (2023)

TABLE I. Parameters used in the transpiled circuit displayed in

Fig. 4 for the engine implementation in a quantum processor.

Engine implementation experimental parameters

λ = 0.2 λ = 0.6 λ = 0.8

εB/εA θA(rad) θB(rad) φA(rad) φB(rad) φB(rad) φB(rad)

0.05 2.41 1.34 2.57 0.10 −0.32 −0.54

0.20 2.47 1.45 2.50 0.17 −0.25 −0.47

0.40 2.55 1.56 2.41 0.27 −0.15 −0.37

0.60 2.64 1.69 2.31 0.37 −0.05 −0.27

0.70 2.67 1.74 2.26 0.42 −0.001 −0.22

0.80 2.71 1.79 2.21 0.467 0.05 −0.17

1.00 2.78 1.86 2.12 0.56 0.14 −0.08

1.20 2.84 1.92 2.03 0.65 0.22 0.002

1.40 2.89 1.96 1.96 0.72 0.30 0.08

1.50 2.91 1.97 1.92 0.75 0.33 0.11

the runtime of the full circuit to approximately 11 μs, which

is shorter than the shortest T2 time reported in Table II.

In Fig. 5, we plot the average work and efficiency for

(a) and (c) initially uncorrelated qubits, (b) and (d) initially

correlated qubits. The blue dots give the results of 10 exper-

iments for each energy gap ratio value shown in the figure.

Each dot is obtained by running the circuit Fig. 4 with 20 000

shots, using the parameters given in Table I. Figures 5(a) and

5(b) demonstrate that the extractable work (negative work)

under initially correlated qubits is larger (about an order of

magnitude larger at its maximum) than the one obtained in the

absence of initial qubit correlations. In Figs. 5(c) and 5(d), we

show the efficiency obtained for the experimental implemen-

tation of the thermal machine. This is in agreement with the

criterion given below [see Eqs. (16) and (17)]: efficiency for

uncorrelated initial qubits remain below the standard Carnot

limit, while initially correlated qubits may allow for a boost in

efficiency, with values well above the Carnot limit.

V. BOOSTING QUANTUM ENGINE EFFICIENCY

BY QUANTUM CORRELATIONS

The mutual information I (A : B) = SA + SB − SAB gives

a measure of the total correlations between systems A and

B, where Si = −Tri(ρi ln ρi ) is the von Neumann entropy

TABLE II. Calibration data for the qubits involved in the gen-

eration of the heat engine at the five-qubit ibmq_manila quantum

processor (Fig. 4).

ibmq_manila calibration data

Qubit T1 (μs) T2 (μs) Gate time (ns)

q0 177.13 78.73 0_1: 277.33

q1 186.02 75.55 1_2: 469.33

1_0: 312.89

q2 136.19 22.30 2_3: 355.56

2_1: 504.88

q3 184.82 46.64 3_4: 334.22

3_2: 391.11

q4 122.91 43.53 4_3: 298.67

FIG. 5. Quantum-processor-implementation results for the aver-

age work and efficiency, considering (a) and (c) initially uncorrelated

qubits; (b) and (d) initially correlated qubits. The blue dots indicate

the realization of 10 different experiments for each εB/εA value, and

each one performed with 20 000 shots. The full lines in (c) and

(d) correspond to the theoretical prediction. In all the figures, λ =
0.6, βB = 2βA, and αmax = 1/(ZAZB ).

of state ρi. We next derive an analytical expression for

the SWAP engine efficiency. Such efficiency involves an

information-to-energy trade-off relation written in terms of

the single-cycle variation of the mutual information between

qubits A and B, �I (A : B) = �SA + �SB (where �Si =
S(ρ

f

i ) − S(ρ0
i )) and of the entropy production cycle, �eng =

D[ρ
f

A ||ρ0
A] + D[ρ

f

B ||ρ0
B]. Here, D[ρ||σ ] = Tr[ρ(ln ρ − ln σ )]

is the Kullback-Leibler divergence [1]. For the cycle,

we arrive at the following generalized efficiency (see

Appendix B):

η = ηCarnot −
�eng + �I (A : B)

βB〈QA〉
. (14)

Equation (14) can be applied to all cycles based on bipartite

working substance (of any dimension) when work and heat

exchanges are performed in different strokes. Let us now

introduce an efficiency booster quantifier BE ,

BE ≡
�eng + �I

βB〈QA〉
, (15)

which tracks the direct competition between entropy produc-

tion and correlations consumption.

A. Engine efficiency criterion

Equation (14) implies that there may exist efficiencies

above Carnot, η > ηCarnot, depending on the sign of �I , with
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FIG. 6. Experimental results for the correlated SWAP quantum heat engine implementation; figures of merit: (a) efficiency and booster,

(b) entropy production, variation of mutual information and of quantum discord, and (c) test of the generalized second-law limit for efficiency,

which must satisfy η + BE = ηCarnot = 1/2. The black and blue dashed lines in (a) correspond to the theoretical expectation for the correlated

SWAP engine efficiency and efficiency booster, respectively. The shaded areas in (b) denote the theoretical results but calculated with the

actual initial experimental states (instead of the ideal ones) of the various experimental runs. In all experiments, we set βB = 2βA, λ = 0.6, and

αmax = 1/(ZAZB ). The error bars were estimated using the standard deviation of the measured data.

the following engine efficiency criterion arising

BE < 0, η > ηCarnot, (16)

BE � 0, η � ηCarnot. (17)

Equation (14) can be seen as a quantum generalization of the

second law efficiency and expression (16) is the condition for

performance over the classical limit to occur, and indeed it

is satisfied in Fig. 6(a). This result arises since the variation

of mutual information �I is always negative, and there is a

trade-off with the always positive entropy production �eng

[see Fig. 6(b)]. The variation of �I = �DQ + �C, where

DQ quantifies purely quantum correlations (here given by the

quantum discord [67]), and C represents classical correlations,

demonstrates that there is a consumption of quantum correla-

tions during the thermodynamic cycle. For εB/εA < 1/2, this

makes �eng < |�I (A : B)| and hence BE < 0, which in turn

implies η > ηCarnot in Eq. (14).

For the calculation of the quantum correlations we have

used the geometrical quantum discord DQ for a two-qubit X

state [69,70], which can be written in terms of the elements of

the density matrix as

DQ = [k1 − 2k2 + 4z2 − max(k1 − 2k2, 2z2)], (18)

where k1 = a2 + b2 + c2 + d2 and k2 = ac + bd .

The emergence of condition (16) depends on a proper

choice of initially correlated states and of the driving Hamil-

tonian in the stroke 2. It only arises if BE < 0. Otherwise, η �

ηCarnot [Eq. (17)]; BE � 0 also describes engine operation for

initially uncorrelated qubits [Fig. 2(a)]: entropy production is

always greater or equal than variation of mutual information.

An experimental verification of the engine efficiency criterion

Eqs. (16) and (17) (see Figs. 5–7) is provided below.

B. Experimental demonstration of performance boosting

in the correlated SWAP heat engine

In Fig. 6, we plot the quantum-processor-implementation

results for the efficiency, the entropy and the generalized

second law related quantities as a function of the energy gap

ratio. These quantifiers have been obtained by using quantum

state tomography (QST), as detailed below. The efficiency

η (black dots) and the efficiency booster BE (blue dots) are

displayed in Fig. 6(a). The plotted error bars were estimated

FIG. 7. Entropy and correlation quantities during the thermodynamic cycle: (a) λ = 0.8, (b) λ = 0.6, and (c) λ = 0.2. Experimental data

in black, blue, and red correspond to the entropy production, variation of quantum discord and variation of mutual information, respectively. In

all runs in the quantum processor, the temperature relation βB = 2βA and the correlation factor αmax = 1/(ZAZB ). The shaded areas denote the

theoretical results calculated with the actual initial experimental states (instead of the ideal one), see, e.g., Fig. 8. The error bars were estimated

using the standard deviation of the measured data.
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FIG. 8. Quantum state tomography of the two-bit working substance for the initially correlated state (upper row) and corresponding final

state (lower row) for λ = 0.6 and for the following qubits energy gap ratios εB/εA: (a) and (f) 0.10; (b) and (g) 0.30; (c) and (h) 0.55; (d) and

(i) 0.70; (e) and (j) 0.90. Data shown represent the result over 20 000 shots for each circuit used in one of the QST implementations. Re(ρ )

denotes the real values of the density matrix (the corresponding imaginary part entries are of the order of 10−3, not shown).

as in Fig. 2. The booster BE reaches negative values hence the

efficiencies go above the Carnot limit, ηCarnot = 0.5, in agree-

ment with our theoretical findings (solid lines). In Fig. 6(b),

we plot the entropy production (black dots), the variation

of mutual information (red dots), and of quantum discord

(blue dots) obtained in the quantum processor implemen-

tation. For εB/εA < 0.5, we obtain |�I (A : B)| > �eng and

since �I is always negative, BE < 0 and the SWAP engine ef-

ficiency surpasses the standard Carnot limit η > ηCarnot, which

is in perfect agreement with Fig. 6(a) and with the criterion

Eq. (16).

We make explicit the role of the measured correlations

(both quantum and classical), by plotting �I = �DQ + �C

and �DQ, during the thermodynamic cycle [see the two lower

curves of Fig. 6(b)]. Here, the variation of quantum discord

closely follows that of mutual information and both are always

negative. This means that while entropy production increases,

both variations in classical and quantum correlations are con-

sumed during the cycle. The larger correlations consumption

is of purely quantum origin, and come from the discord. These

results have been further verified and plotted for �eng, �I

and �DQ in Fig. 7, for other values of λ. The shaded areas

in Fig. 6(b) represent the theoretical results calculated with

the actual initial states in the quantum processor (instead of

the ideal one) of the various runs. The theoretical predic-

tions are in very good agreement with the implementation

results.

Figure 6(c) shows the quantum-processor-implementation

results for a verification of the generalized efficiency formula

as a function of the qubits’ energy-gap ratio. The black dots

give the results for the sum of the engine efficiency and

the booster η + BE , as averaged measurements following the

qubits statistics from collected data from 20 000 runs. We

find that the generalized second law limit measured with

the ibmq_manila quantum processor is at most within two

standard deviations from the analytical result Eq. (14), thus

verifying, with Fig. 6(b), the quantum origin of the working

thermodynamical principle for enhancing the efficiency of the

correlated SWAP quantum heat engine.

C. Entropy related quantities and quantum state tomography

In Fig. 7, we plot the variation of entropic and correlation

quantities as a function of εB/εA, namely the variation of the

engine entropy production �eng, of the mutual information

�I and of the quantum discord DQ, for (a) λ = 0.8, (b) 0.6,

and (c) 0.2. Figure 7 further demonstrates that the variation

of mutual information is mostly due to the consumption of

quantum correlations between the qubits. It also confirms that

for initially correlated systems |�I| may be greater than �eng,

leading to a correlation boosting of the engine efficiency.

For the quantum state tomography (QST) implementation

required in this analysis, we have used a module in the QISKIT-

IGNIS library [68]. For a complete QST of a two-qubits state,

nine circuits are needed. The result for each circuit is averaged

over 20 000 shots and, additionally, in order to average over

the system fluctuations, we repeat the process five times for

the initial state and five times for the final one. In Figs. 8(a)–

8(e), we show the QST result for the initially correlated state

ρ0
AB, considering εB/εA = 0.10, 0.30, 0.55, 0.70, and 0.90,

respectively. In the same way, in Figs. 8(f)–8(j), we give

the QST result for the final state, with λ = 0.6 and εB/εA =
0.10, 0.30, 0.55, 0.70, and 0.90, respectively. Similar re-

sults were obtained for λ = 0.2, 0.8 (not shown). In the

computational basis, the qubits density matrix can then be

approximated as

ρ =

⎛

⎜

⎜

⎜

⎝

a 0 0 0

0 b z 0

0 z c 0

0 0 0 d

⎞

⎟

⎟

⎟

⎠

. (19)

VI. SUMMARY

In summary, the limits posed by the second law of thermo-

dynamics may be affected by the presence of initial quantum

correlations in the working fluid of a thermal machine, leading

to efficiency higher than the Carnot standard limit and to a
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boost in the extractable work in each cycle. A criterion for

the construction of such enhanced thermodynamic feature is

given in terms of a trade-off between entropy production and

quantum correlations consumption during the implemented

thermal machine’s cycle. The design of thermal machines that

use extra resources based on quantum correlations highlight

the need for a revision of the standard thermodynamics limits.

In this framework, the energetic cost of building initial cor-

relations should not be included in the efficiency definition.

This is in line with the practice of not including costs related

to the production of (hot) heat sources in classical internal-

combustion engines (e.g., fuel production/refining, etc.). Our

results with an IBM quantum processor clearly demonstrate

that the effect we propose allows to obtain advantages in

thermal tasks using available quantum technology.
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APPENDIX A: ABOUT ENERGY EXCHANGE,

CORRELATIONS PRODUCTION AND EFFICIENCY

Here we show the effect of taking into account the initial-

state correlation production in the thermodynamic cycle. To

do so, we start from the state in stroke 1.1 [Fig. 1(a)]. Such a

state, ρ̃0
A ⊗ ρ̃0

B, explicitly reads

⎛

⎜

⎜

⎜

⎝

p+ p− 0 0 0

0 p+(1 − p−) 0 0

0 0 p−(1 − p+) 0

0 0 0 (1 − p+)(1 − p−)

⎞

⎟

⎟

⎟

⎠

. (A1)

The populations of states ρ̃0
A and ρ̃0

B are chosen as p± = (pA + pB ±
√

(pB − pA)2 + 4α2)/2 to obtain the desired correlated

state ρ0
AB = ρ0

A ⊗ ρ0
B + χAB, where p− (p+) denotes the ground state population of ρ̃0

A (ρ̃0
B). Hence, ρ0

AB becomes
⎛

⎜

⎜

⎜

⎝

pA pB − α2 0 0 0

0 pA(1 − pB) + α2 α 0

0 α pB(1 − pA) + α2 0

0 0 0 (1 − pA)(1 − pB) − α2

⎞

⎟

⎟

⎟

⎠

, (A2)

and the von Neumann entropy of ρ0
A ⊗ ρ0

B + χAB is the same

than that of ρ̃0
A ⊗ ρ̃0

B. In fact, using the expressions for p± and

pi, we obtain the same eigenvalues for both density operators,

ρ0
AB and ρ̃0

A ⊗ ρ̃0
B:

ν1 =
1

2
[pA + pB − 2pA pB + 2α2 −

√

(pB − pA)2 + 4α2],

ν2 = (1 − pA)(1 − pB) − α2,

ν3 = pA pB − α2,

ν4 =
1

2
[pA + pB − 2pA pB + 2α2 +

√

(pB − pA)2 + 4α2].

(A3)

From the initial state ρ̃0
A ⊗ ρ̃0

B, we calculate the heat

and work as 〈Q̃i〉 = −Tr[(ρ
f

i − ρ̃0
i )Hi] and 〈W̃ 〉 = Tr[(ρ

f

AB −
ρ̃0

A ⊗ ρ̃0
B)HAB], respectively. In Fig. 9(a), the dashed lines cor-

respond to the heat generation (〈Q̃A〉/ǫA, pink area) and work

production (〈W̃A〉/ǫA, yellow area) when considering ρ̃0
A ⊗ ρ̃0

B

as the initial state. We see that 〈Q̃A〉 and 〈W̃ 〉 are greater than

〈QA〉 and 〈W 〉 (in absolute value), but the cycle efficiency

when considering the correlation production η̃ = 〈W̃ 〉/〈Q̃A〉
corresponds to the same one computed from the correlated

state η = 〈W 〉/〈QA〉, as it is shown in Fig. 9(b). This is so

because there is a compensation in the extra amounts ob-

tained for the corresponding heat and work, as illustrated

in the shaded areas of Fig. 9(a). These show the extra heat

generation (pink area) and the correlation production cost

(yellow area) due to the generation of correlations in the initial

state.

APPENDIX B: DEMONSTRATION OF THE

GENERALIZED SECOND-LAW LIMIT

Here we give a demonstration for the efficiency result

Eq. (14). The entropy production of the correlated SWAP

quantum engine can be expressed as the sum of two relative

entropies that reads

D
[

ρ
f

A ||ρ0
A

]

+ D
[

ρ
f

B ||ρ0
B

]

= −�SA − �SB + βATr
[(

ρ
f

A − ρ0
A

)

HA

]

+ βBTr
[(

ρ
f

B − ρ0
B

)

HB

]

, (B1)

where ρ
f

i is the final out-of-equilibrium state for the

qubit i = A, B. We simplify this equation by introducing
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FIG. 9. (a) Average work 〈W̃ 〉/εA, heat from the hot reservoir

〈Q̃A〉/εA, and (b) efficiency η̃, including in the cycle the initial-state

correlation production. In the same graphs, we plot the correspond-

ing quantities but now without including the initial-state correlation

production step: 〈W 〉/εA, 〈QA〉/εA, and η. We set βB = 2βA, λ = 0.6,

and αmax = 1/(ZAZB ).

〈Qi〉 = −Tr[(ρ
f

i − ρ0
i )Hi], hence

D
[

ρ
f

A ||ρ0
A

]

+ D
[

ρ
f

B ||ρ0
B

]

= −�SA − �SB − βA〈QA〉 − βB〈QB〉. (B2)

We use the fact that �I (A : B) = �SA + �SB to

rewrite Eq. (S4) as D[ρ
f

A ||ρ0
A] + D[ρ

f

B ||ρ0
B] = −�I (A :

B) − βA〈QA〉 − βB〈QB〉. This is equivalent to

D
[

ρ
f

A ||ρ0
A

]

+ D
[

ρ
f

B ||ρ0
B

]

+ �I (A : B)

βB〈QA〉
= −

βA

βB

−
〈QB〉
〈QA〉

.

(B3)

Energy conservation implies that the average values for the

heat and work, 〈QA〉 + 〈QB〉 + 〈W 〉 = 0. The extracted work

〈Wext〉 = −〈W 〉 = 〈QA〉 + 〈QB〉 and the quantum heat engine

efficiency η = 〈Wext〉/〈QA〉 reads

η = 1 −
βA

βB

−
D

[

ρ
f

A ||ρ0
A

]

+ D
[

ρ
f

B ||ρ0
B

]

+ �I (A : B)

βB〈QA〉
, (B4)

where 1 − βA/βB is the standard Carnot limit. Equation (B4)

defines a generalized second law limit for bipartite quantum

engine in the presence of initial correlations. As dis-

cussed in the main text, the efficiency booster BE ≡ (�eng +
�I )/βB〈QA〉 sets a criterion [Eq. (16)] for the enhancement of

the engine’s efficiency and extractable work (see Figs. 3, 5,

and 7).
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