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Abstract

Acquiring knowledge about object interactions and affordances can facilitate scene un-
derstanding and human-robot collaboration tasks. As humans tend to use objects in many
different ways depending on the scene and the objects’ availability, learning object affor-
dances in everyday-life scenarios is a challenging task, particularly in the presence of an
open set of interactions and objects. We address the problem of affordance categorization
for class-agnostic objects with an open set of interactions; we achieve this by learning sim-
ilarities between object interactions in an unsupervised way and thus inducing clusters of
object affordances. A novel depth-informed qualitative spatial representation is proposed
for the construction of Activity Graphs (AGs), which abstract from the continuous represen-
tation of spatio-temporal interactions in RGB-D videos. These AGs are clustered to obtain
groups of objects with similar affordances. Our experiments in a real-world scenario demon-
strate that our method learns to create object affordance clusters with a high V-measure
even in cluttered scenes. The proposed approach handles object occlusions by capturing
effectively possible interactions and without imposing any object or scene constraints.

1. Introduction

In the literature, the meaning of the term affordance of an object differs depending on the
context. In robotic applications, e.g. robot manipulation tasks, the definition of affordance
is bound to the part of a tool, which can be afforded in a specific way, e.g. the handle of a
hammer has the affordance of ‘hold’ whereas the head has the affordance of ‘hit’, the inner
surface of a cup has the affordance of ‘contain’ although the cup’s handle has the affordance
of ‘hold’. In contrast, in human-object interaction recognition tasks, affordance is defined
as the way an object can be utilized by the human in a scene, e.g. if a human uses a cup
for containing something then the cup will have the affordance of ‘contain’. Moreover, an
object may have more than one affordance as it depends on the purpose it is being used for,
e.g. a pizza box can have the affordance of ‘contain’ when it is being utilized as a container
of a pizza or ‘support’ when is plays the role of a tray. Such multi-labeled affording objects
can be recognized by considering their interactions with other objects.

In a human-robot collaboration scenario, acquiring knowledge of the affordances of the
objects in a scene is crucial for aiding the human, e.g. assisting the human when performing
a physically hard task. This becomes challenging when the scene comprises an open-set of
objects and the affordance space enlarges. Moreover, in human action prediction tasks, the
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affordances of the objects carry useful information for the prediction of the future action, and
are highly correlated with the rest of the objects the human interacts with. Nevertheless,
such knowledge is not easy to obtain as humans tend to use the same object in different
ways depending on the task, thus changing its primary affordance.

Object affordances were first formally defined by Gibson (1977); however the concept of
object affordances as it is understood in Computer Science has not been explicitly defined
in the literature, causing some confusion. For this purpose we propose the definition:

Definition 1 An affordance is a property of an object arising from its interaction with
another entity, i.e. agent, object. It is correlated with the occurring interaction as every
interaction exploits at least one object affordance. An object may have multiple affordances
based on the various interactions it may have with other entities.

Based on this definition, we address the problem of affordance inference by exploiting
object interactions through RGB-D video data. Hence, we rely on the way objects are
being utilized by the human agents in a scene, allowing objects to support different kinds
of affordances at the same time. Thus, we focus on learning groups of high-level object
interactions, which take into account their spatio-temporal relations from extracted visual
appearances. Graphs are able to represent both static and dynamic high level relations
between objects. Accordingly, we embody these object interactions through a high-level
graphical structure, the Activity Graph, abstracting from the continuous spatio-temporal
representation and acquiring depth-informed qualitative spatial relations between object
pairs. With these high-level qualitative relations, our graphical structures for capturing
interactions are not dependant on scene-specific characteristics, i.e. the objects’ labels,
distance between objects, etc.

Definition 1 states that “every interaction exploits at least one object affordance”; af-
fordances of objects are inferred from these high-level graphs representing pair-wise object
interactions. Affordance clusters are formed in an unsupervised way by exploiting graph
similarity using the cosine similarity measure of their embeddings in a learned latent space.
By clustering graph structures, a hierarchical tree representation is produced demonstrat-
ing their similarity. Since our approach is based on learning a high-level representation of
interactions, it is not limited to any number or kind of affordances, scenes, and objects.

To obtain a richer set of spatial relationships than those possible from a sequence of
purely 2D frames, we exploit the depth information assuming the presence of RGB-D video
data. The depth cues allow some inference about the morphology of the objects in the scene
and thus the possible ways they can interact with other objects, e.g. non-concave objects
can not act as containers.

Hence, the objectives of this work are 1:

• to propose a depth-informed set of qualitative relations, which can describe a wide
variety of object configurations regarding a real-world scenario as well as differen-
tiating between object occlusions and interactions, for detecting effectively spatial
relationships of objects;

1. Preliminary versions of this work in unpublished workshop papers can be found in Toumpa and Cohn
(2019) and Toumpa and Cohn (2020).
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• to introduce a novel unsupervised affordance categorization framework, which handles
an open-set of interactions and affordances, considering high-level information of the
human-object and object-object interactions;

• to present a novel human-object interaction dataset, which focuses on different object
affordances.

2. Literature Review

Qualitative spatial relations Qualitative relations are mostly used to represent seman-
tically meaningful properties of a perceived event, i.e. interaction, deformation, whilst
abstracting away from any non-relevant information, i.e. pixel values, numeric measure-
ments. Spatial relation formalisms comprise: mereotopology, direction, distance, shape,
relationships between static spatial entities, and moving objects (Chen et al., 2015; Dylla
et al., 2017; Landsiedel et al., 2017). Due to the nature of the problem we address in
this work, we focus on mereotopological information for representing human-object and
object-object interactions and shape information for defining possible concave regions on
the detected objects.

The Region Connection Calculus (RCC) (Cohn et al., 1997; Gerevini & Renz, 2002) and
the n-intersection model (Egenhofer, 2005; Egenhofer & Franzosa, 1991, 1995; Egenhofer
& Herring, 1990; Egenhofer & Sharma, 1993; Egenhofer & Vasardani, 2007; Egenhofer
et al., 1994, 1994) are the most well-known and well-studied approaches for representing
topological information. However, as both sets of relations only rely on the spatial location
of the detected entities, i.e. objects, no occlusion can be differentiated from an actual
interaction of containment or support. Galton’s Lines of Sight (Galton, 1994), the Region
Occlusion Calculus (Randell et al., 2001), and The Occlusion Calculus (OCC) (Köhler,
2002) aim to solve the occlusion problem in 2D space. However, relations as ‘contain’ and
‘support’ are still not detectable. Thus, shape characteristics are crucial for detecting more
relevant relations to object interactions.

Qualitative shape information can be obtained by using region-based methods (Cohn,
1995) or boundary-based methods (Leyton, 1988; Galton & Meathrel, 1999; Gottfried,
2003a, 2003b, 2004). Both kind of methods depend on the 2D shapes of the detected
entities. By exploiting the depth cues of the entities, concave regions are discovered in the
3D space, indicating possible containment.

Inspired by the RCC8 spatial relations and the Process-Grammar (Leyton, 1988), in
this work we propose a novel set of mereogeometrical relations that exploit the concave
regions indicated by the depth cues of the detected entities. Our new set of relations define
more complex and concave-informed relations, such as ‘contain’ and ‘support’.
Object affordances Several methods have been proposed for detecting functional object
parts and their corresponding affordance labels. These works involve the detection of object
affordance parts by considering their visual and geometric features (Deng et al., 2021;
Wang & Tarr, 2020). One of the early works in this direction focused in the detection of
graspable object areas by creating local visual descriptors of grasping points and estimating
the probability of the presence of a graspable object based on the Bernoulli trial (Montesano
& Lopes, 2009). New approaches employ Convolutional Neural Network (CNN) models
to produce classes of functional object parts from RGB (Nguyen et al., 2017; Do et al.,

3



Toumpa & Cohn

Input data type Information exploited a Solve taskb

L.F. H.A. H.F. O.T O.O. O.S A. O.S.O

(Montesano & Lopes, 2009) 2D & Keypoints X
(Zhao & Zhu, 2013) 2D & 3D X
(Myers et al., 2015) 2.5D X X

(Nguyen et al., 2016) 2.5D X
(Nguyen et al., 2017) 2D X
(Kokic et al., 2017) Synthetic X X

(Sawatzky et al., 2017) 2D & Keypoints X
(Do et al., 2018) 2D X

(Wang & Tarr, 2020) 2D X
(Deng et al., 2021) 3D X X
(Xu et al., 2021) 2.5D & Keypoints X X

(Turek et al., 2010) 2D X X X
(Qi et al., 2018) 3D X

(Kjellström et al., 2011) 2D X X X
(Yao et al., 2013) 3D X
(Qi et al., 2017) 2.5D X X

(Gkioxari et al., 2018) 2D X
(Fang et al., 2018) 2D X

(Chuang et al., 2018) 2D X X
(Tan et al., 2019) 2D X X
(Wu et al., 2020) Synthetic X
(Hou et al., 2021) 2D X

(Sridhar et al., 2008) 2D X X X
(Aksoy et al., 2010) 2D X X
(Aksoy et al., 2011) 2D X X

(Pieropan et al., 2013) 2.5D X X
(Pieropan et al., 2014) 2D X X

(Moldovan & De Raedt, 2014) Synthetic X
(Liang et al., 2016) 2.5D X X X
(Liang et al., 2018) 2.5D X X

This work 2.5D X X X X
a L.F.: Low-level features H.A.: Human Actions H.F.: High-level Features (graph

representations, embeddings) O.T.: Object tracks
b O.O: Object Occlusions O.S.A.: Open-set of affordances O.S.O: Open-set of objects

Table 1: Related works on object affordance detection.
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2018; Sawatzky et al., 2017) and synthetic data (Kokic et al., 2017). However, depth cues
along with the RGB information have demonstrated a greater detection accuracy in this
task (Nguyen et al., 2016; Myers et al., 2015; Xu et al., 2021). Additionally, incorporating
knowledge about the scene and context in which an object is being used boosts the prediction
accuracy even more (Zhao & Zhu, 2013).

However, processing static visual information restricts the number of affordances as-
signed to an object to be the ones correlated only with its visual features. For this purpose,
many works have considered exploiting the correlation of human actions and the detected
objects in a scene (Gkioxari et al., 2018; Yao et al., 2013; Fang et al., 2018; Kjellström
et al., 2011; Hou et al., 2021; Wu et al., 2020). Depending on the human-object interaction
being held, a different affordance is detected. Also, prediction of object affordances, cast
as human-object interactions, utilize graph-based convolutional neural networks, which are
trained on Object Affordance Graphs (OAG), constructed by the spatio-temporal relations
between human and objects/scenes across the input video data (Tan et al., 2019). Simi-
larly, a spatio-temporal And-Or graph (ST-AOG) exploits the context captured by objects,
actions, and affordances to solve the task of activity understanding (Qi et al., 2017). An-
other approach predicts action-object affordances based on the contextual information of
the scene, whilst deploying a graph to represent the objects in the scene as the nodes and
their spatial relations as the edges (Chuang et al., 2018). These works demonstrate that
by fusing knowledge about the scenario in which an interaction takes place facilitates the
prediction of affordances, however limits the generalizability across different domains.

To facilitate domain independence, high-level graph representations of interactions are
sometimes employed. Recent works introduce such graphical structures in synthetic indoor
environments focusing on the prediction of furniture areas the human is most likely to
interact with (Qi et al., 2018), whereas outdoors scenes are examined by considering the
behavior of moving objects around them (Turek et al., 2010). Nevertheless, these approaches
only consider a one-to-one mapping of affordances and objects, hence the objects are bound
to a single kind of interaction, not permitting multi-labeled object affordances.

Though graphical structures are able to extract high-level information about the inter-
actions in the scene, their structure might be the cause of domain restriction (Aksoy et al.,
2010, 2011; Pieropan et al., 2014, 2013). For this purpose, qualitative spatio-temporal re-
lations are exploited for their construction (Sridhar et al., 2008). One of the fundamental
obstacles in these works is object occlusion. To mitigate this problem, the tracks and visual
appearances and disappearances of non-deformable objects are considered (Liang et al.,
2018, 2016; Moldovan & De Raedt, 2014). However, these approaches are restricted to the
detection of a single object affordance, i.e. containment, and prone to false positive detec-
tions of the containment relation due to occlusions. Table 2 presents the related works of
object affordance detection and prediction.

In this work, we propose a novel method for predicting object affordances in real-world
scenarios with object occlusions. Different from any other published work, our approach
is not restricted to a predefined set of objects, interactions, or scenes. High-level graphs
assist in considering an open-set of interactions and no object labels restrict the general-
izability of our method. Our experiments demonstrate that, without any supervision, we
acquire homogeneous and complete clusters of object affordances by exploiting qualitative
information about their interactions and their shapes.
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RCC2 Definition Description

C(α,β) mask(α) ∩mask(β) 6= ∅ † α and β are connected

DC(α,β) ¬C(α, β) α is disconnected from β

† mask(z) defines object z’s region in the image plane.

Table 2: RCC2

3. Background

3.1 Activity Graphs

Relational graph structures represent high-level information by abstracting from the contin-
uous space of the exploited relations. From definition 1: “It (an affordance) is correlated to
the occurring interaction as every interaction exploits at least one object affordance.”, hence
an object-object and human-object interaction reveals each object’s affordances. Relational
graph structures of object interactions aid in representing an open set of interactions. Thus,
in this work we exploit the representation of Activity Graphs (AGs) (Sridhar et al., 2010),
which are relational graphs that describe the interaction between entities, i.e. objects and
human body parts, of a scene by considering their qualitative spatio-temporal relationships.

An AG consists of three layers of vertices, where each layer comprises a single type of
node and only nodes in adjacent layers can be connected with each other. The three layers
of an AG are: 1) the entity layer, which contains the set of vertices of the entities which
interact (Vent ), 2) the spatial layer, which consists of vertices with the spatial relations
(Vspat ) which describe the spatial interactions of the entities in Vent, and 3) the temporal
layer, which specifies the temporal relations between the spatial layer nodes (Vtemp ).

In this work, AGs are deployed to captured object-object and human-object interactions,
thus two different qualitative spatial relations (QSRs) are considered, one for each kind of
interaction. A set of novel QSRs, introduced in §5, is employed to describe the spatial
relationships between objects, whereas the RCC2 set of relations (Table 2) (Randell et al.,
1992; Cohn et al., 1997) are used for representing interactions between objects and humans.
These two spatial relational sets comprise the Vspat layer of our AGs, whilst Allen’s temporal
algebra (Allen, 1983) is exploited to express the temporal relationships between the spatial
relations (Vtemp ). This qualitative temporal set consist of the relations2: ‘before’ (<,
>), ‘meets’ (m, mi), ‘overlaps’, (o, oi), ‘starts’ (s, si), ‘during’ (d, di), ‘finishes’ (f, fi), and
‘equals’ (=). The set of qualitative spatial relations for every interaction is obtained from
the presence of episodes. An episode is the maximum period of time where a single spatial
relation between two entities holds, while a different spatial relation occurs before and after
the defined time period. By considering episodes instead of individual frames for detecting
the spatial relationships of the objects, our method can effectively generalize across different
video fps and is not video length dependent.

We define an Activity Graphlet (AGraphlet) of an object as a sub-graph of an AG,
which carries the spatial and temporal information (V

′
spat ,V

′
temp ) of the respective object’s

2. Inverse relations end in i.
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Figure 1: (best viewed in color) Qualitative spatial relations are extracted from detected
episodes in the temporal domain of a video. Activity Graphlets are constructed
using these qualitative spatio-temporal relations for individual detected objects
(encircled) in the scene describing their interaction with another object and a
human body part, e.g. human hand.
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Figure 2: Graph2vec network; the size of the depicted network is specific to one of the folds
used for training.

interactions with another object and a human body part (V
′
obj ). Figure 1 illustrates an

example where AGraphlets are extracted from a video sequence of three interacting entities.

3.2 Graph Embedding

Graph embeddings are d -dimensional vector representations of projections of graphs in a
d -dimensional latent space. By projecting graphs in a multi-dimensional space we are able
to find similarities/dissimilarities between them by considering distance measures on their
vector representations.

Inspired by the Natural Language Processing literature, we exploit the graph2vec net-
work (Narayanan et al., 2017) to learn graph embeddings in an unsupervised way and
project the AGraphlets in the learned latent space. The network exploits the notion of con-
text, where context is defined as a fixed number of subgraphs comprising every AGraphlet.
AGraphlets with similar subgraphs represent similar affordances. Figure 2 shows an illus-
tration of the graph2vec network with the AGraphlets as input data.

We refer the reader to §8.4 for more details about the hyper-parameter’s selection and
training of the graph2vec network.

4. Overview

The proposed approach solves the problem of object affordance categorization in an unsu-
pervised way, by exploiting depth-informed qualitative information and representing object
interactions in a high-level latent space. Figure 3 summarizes the proposed approach.
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Figure 3: Overview of the proposed approach. Object coordinates and their convexity type
are extracted from RGB-D video data per frame and employed for the construc-
tion of AGraphlets capturing the proposed set of relations. The Graph2Vec net-
work is trained to project these graphs on a latent space. Graph embeddings
of AGraphlets are then hierarchicaly clustered to create groups of objects with
similar affordances.

Firstly, objects of interest are localized in the input frames of a video by utilizing any
visual-based object detector which provides class-agnostic object bounding boxes. We cap-
ture object-object and human-object interactions and we effectively represent qualitative
spatial relationships between them by exploiting a novel set of depth-informed spatial rela-
tionships (§5) and the RCC2 relation set. Such qualitative spatial information constitutes
the spatial layer of an AGraphlet. AGraphlets are used as a high-level representation of ob-
ject interactions, thus achieving a generalization across various scenarios. These graphical
structures are then employed to train the graph2vec network, which projects each AGraphlet
to a latent space. Hierarchical clustering, which is described in §6, is employed for learn-
ing in an unsupervised way clusters of detected object interactions. By exploiting graph
embeddings, which are projections of AGraphlets onto the latent space, the clustering pro-
duces a dendrogram of object affordances. As, our method is not object-dependent and
not scene-constrained, we perform evaluation on the newly presented Leeds Object Affor-
dance Dataset (LOAD), where the groundtruth affordances do not correlate to the objects’
primary function.
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Figure 4: DiSR representations in 3D space.

5. Depth-informed QSR

5.1 Formulation of Depth-informed Spatial Relations (DiSR)

Effectively, detecting simple and discrete spatial interactions e.g. ‘touching’, ‘not touching’
as well as more complex ones e.g. ‘supporting’, ‘containing’, in the 2D image plane, is chal-
lenging, especially when there is object occlusion. To address this limitation we propose
a depth-informed set of qualitative spatial relationships, which enable the differentiation
between objects’ visual occlusion and actual interaction, and take into account the object’s
convexity-type. The object’s convexity-type carries information about the object’s affor-
dance, hence the kind of interaction which can hold between that object and another. For
example, the relation contains can hold between a concave object, due to its concavity,
and another object when interacting in a specific way. However in an interaction between
objects without any visual concave curve, such a relation will not hold.

The spatial information employed to describe the object interactions in the spatial do-
main consists of a discrete set of spatial relations that can describe any spatial configuration
of the objects in a scene. These depth-informed interactions are exploited for the construc-
tion of more accurate qualitative graphical structures, achieving more homogeneous and
complete affordance clusters.

Previous work on affordances using QSRs (Sridhar et al., 2008) has used the purely
mereotopological RCC set of relations (Randell et al., 1992; Cohn et al., 1997). Here we
propose a more expressive set of relations (DiSR), which exploit knowledge that can be
garnered from a 2.5D representation: objects’ convexity type and their orientation in the
vertical plane. We propose the set of Depth-informed Spatial Relations (DiSR) (Fig. 4)3:
‘supports’ (Sup, Supi), ‘contains’ (Cont, Conti), ‘adjacent’ (Adj), ‘not interacting’(NI).

Depth information is considered for reasoning about the spatial relative positions of
objects in 3D space, hence enabling the distinction between occlusions and interactions.
Furthermore, from depth cues we can effectively infer the convexity-type of the detected
objects, and along with the corresponding depth differences, DiSR relations are extracted.
For a spatial interaction to hold, an overlap on the depth dimension must be evident as well
as the x, y dimension, and depending on the convexity-type of the interacting objects and

3. The inverse of a relation is denoted with an i at the end, wherever an inverse exists, e.g. the inverse of
Sup is Supi.
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DiSR Definition Description

Sup(α,β) (DPO(α, β) ∧ Surface(α)) ∨ On(β, α) α supports β

Cont(α,β) P(β, α) ∧ Concave(α) ∧ DPP(β, α) α contains β

Adj(α,β) O(α, β) ∧ DPO(α, β) ∧ ¬Cont(α, β) ∧ ¬Cont(β, α) ∧
¬Sup(α, β) ∧ ¬Sup(β, α)

α is adjacent to β

NI(α,β) ¬Sup(α, β)∧¬Sup(β, α)∧¬Cont(α, β)∧¬Cont(β, α)∧
¬Adj(α, β) ∧ ¬Adj(β, α)

α does not interact with
β

P and O of RCC relations

P(α,β) ∀z(C(z, α)→ C(z, β))† α is a part of β

O(α,β) ∃z(P(z, α) ∧ P(z, β)) α overlaps β

† C relation is defined in Table 2.

Table 3: DiSR

in which part of the depth information the overlap appears, a different qualitative spatial
relation holds from the set of DiSR.

DiSR spatial relations take into account the depth information of the detected object
masks in the scene as well as their 2D location considering the bounding box enclosing the
detected mask of every object. We present in Table 3 the definition of every DiSR relation
inspired by the RCC set, whilst exploiting the RCC relations: ‘overlap’ (O) and ‘part’ (P,
Pi) computed in the 2D image plane.

The convexity type of an object, being either concave, surface or convex, is described
further in §5.2. ‘Depth Overlap’ (DPO) and ‘Depth Proper Part’ (DPP, DPPi) are primitive
relations which hold between the objects’ depth information, defined as:

DPO(α, β) ≡ ((dmaxα ≥ dminβ) ∧ (dmaxα < dmaxβ)∧
(dminα < dminβ)) ∨ ((dmaxβ ≥ dminα)∧
(dmaxβ < dmaxα) ∧ (dminβ < dminα))

DPP(α, β) ≡ (dmaxα > dcminβ) ∧ (dmaxα ≤ dcmaxβ)∧
(dminα ≥ dcminβ) ∧ (dminα < dcmaxβ)

where dmax and dmin are the maximum and minimum depth values, respectively, by consid-
ering the depth cues of the detected object’s mask, and dcmax and dcmin are the maximum
and minimum depth values of the detected concave curve area. Figure 5 (right) illustrates a
concave object’s concave curve area ([dcmin ,dcmax ]), where ascending-ordered depth-pixel
values are on the x -axis and their depth values on the y-axis. The values of dcmin and
dcmax are obtained by Alg. 2, which is further explained in §5.2.
Moreover, the primitive spatial relation On is defined as:

On(α, β) ≡ O(α, β) ∧ ((ymaxα ≥ ymaxβ)∧
(yminα ≥ yminβ) ∧ (xmaxα ≤ xmaxβ) ∧ (xminα ≥ xminβ))

where (xmin, ymax) and (xmax, ymin) are the top-left and bottom-right corners of the de-
tected object’s bounding box (Fig. 5 (left)).
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Figure 5: (left) Detected object bounding box coordinates. (right) Object depth distri-
bution and the depth information signifying potential concave curve detection
between the values dcmin and dcmax (red).

Algorithm 1 Compute the convexity type of an object.

Given: threshconvex

1: procedure ObjectConvexity(distdepth)
2: dmax ← max(distdepth); dmin ← min(distdepth)
3: C ← ContourHierarchy(distdepth)
4: if

(
( dmax − dmin ) < threshconvex

)
&
(
C.child() exists

)
then

5: objecttype ← concave
6: else
7: if ( dmax − dmin ) < threshconvex then
8: objecttype ← surface
9: else objecttype ← convex

10: return objecttype
11: end

The definitions proposed are an approximation to the meaning of the English descrip-
tions in Table 3; it is possible to satisfy the definitions with configurations which do not
accord with intuitive meaning of the English word. E.g. in the case where three objects are
stacked the one on top of the other, then in the 2D image plane On(top object, bottom object)
will be True even though there is a middle object in between. However, these definitions are
easy to compute and work well in the everyday scenes we have considered so far. In future
work we may refine these relationships to more closely correspond to the semantics of the
English words.

5.2 Object Convexity Type Detection

By considering the depth information we obtain knowledge about the indentation area (m-)
and protrusion area (M+) of an object, as defined in the Process-Grammar (Leyton, 1988).
More specifically, visually ‘convex’ type objects do not appear to have any indentation
areas whereas ‘concave’ type objects are characterized by their concavity curve, which
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Detected object Depth regions Deep depth regions Deep depth contours

Figure 6: Processing steps for extracting depth contours. The bounding boxes of the de-
tected objects in the RGB frames are mapped onto the depth data from where
we extract all the depth information partitioned into sections depending on their
depth values. Finally, from that depth data, deep regions are considered from
which depth contours are created indicating potential indentation areas, thus this
object is classified as ‘concave’. The extraction of deep depth regions is based
on the employment of the threshconvex threshold. Any information indicating an-
other detected object occluding the primary one, is discarded; the last two rows
illustrate the presence of a bowl object (blue) whose depth information is not
considered as shown in the ‘Depth regions’ column.
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Algorithm 2 Define min and max depth of an object’s concavity.

Given: h, n

1: procedure ConvexityDepth(distdepth)
2: dmax ← max(distdepth); dmin ← min(distdepth)
3: objecttype ← OBJECTCONVEXITY(distdepth)
4: if objecttype = concave then
5: sections← ( dmax − dmin )/h
6: dcmax ← dmax
7: dcmin ← dmax −(n∗ sections)
8: else dcmax ← dmax ; dcmin ← dmin

9: return dcmax , dcmin
10: end

morphologically appears as a bay-formation described as M+m-M+. Such information is
critical to ascertain a relation when two objects interact in the 2D image plane, e.g. a Cont
DiSR occurs between one or more ‘concave’ type objects when the depth information of the
containee confirms that is between m- and M+ areas of the container. In this section we
will demonstrate how we derive the convexity type of the detected objects from the depth
cues.

We identify three primary convexity type objects: ‘concave’, ‘convex’, and ‘surface’ by
employing Alg. 1. For the determination of the objects’ convexity type the increasing-
ordered-by-value depth information across the pixels defining each object is considered
(Fig. 5(right)). Alg. 1 is based on a convexity depth threshold (threshconvex ), which
defines the upper boundary of depth range information of a ‘convex’ type object. Objects
with depth range (considering the minimum and maximum values of the distdepth) greater
than threshconvex are subject to be grouped under ‘concave’ or ‘surface’ depending on their
depth contour hierarchies (ContourHierarchy). A depth contour is the contour created by
the depth information exceeding threshconvex (Fig. 6). Contour hierarchies establish a tree
structure of contour inclusion, where every node of the tree stands for a contour and every
parent includes its children. In this case, the root of the tree is always the frame of the
image. Contours which are not directly included in the root contour are not considered its
children. We eliminate potential contour noise by considering the relative difference of the
size of the contours with respect to the detected object. The remaining contours are then
examined in terms of hierarchy. A child contour indicates an indentation area. Thus, the
detection of a child contour in the depth domain, indicates the presence of a concave curve,
therefore a ‘concave’ type object, and ‘surface’ type otherwise4. Figure 7 summarizes the
process of the detection of a concave object.

However, defining only the type of an object is not sufficient for reasoning about the
spatial interactions between objects. Detecting complex spatial object relations effectively,
i.e. contains, is challenging without considering potential concave curves of objects. Thus,
we propose Alg. 2 to infer the boundaries of the m- and M+ areas, as a direct generalization
of the Process-Grammar to 2.5D, indicating a concave curve in 3D space, with respect to the

4. This approach considers this restricted representation for detecting concave objects as the depth resolu-
tion varies depending on the objects’ distance from the visual sensor.
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Figure 7: Process steps for detecting ‘concave’ type objects. From an RGB video frame
objects are detected using an object detector; numbers are shown in the image
frame for every detected object. The bounding boxes proposing an object detec-
tion are mapped on the depth domain to extract the depth data relevant to that
object detection. The depth data is then partitioned and deep depth regions are
exploited to produce depth contour’s of possible concave curve areas. Finally,
depth contours are a hierarchical set depending on each contour’s inclusion, e.g.
the orange contour is included in the red contour hence it is a child of the red
contour. If a child contour exists then the region it encapsulates is detected as a
concave curve area.

object’s depth information and convexity type. For a ‘concave’ type object we partition the
ordered-by-value depth information into h sections for distinguishing the indentation from
the protrusion area. The n sections with the highest depth values are estimated to capture
its concave curve. We set these depth boundaries of such objects to enclose the potential
concave curve’s depth information for detecting the relation Cont. The parameterization of
h n, and threshconvex was conducted in an empirical study and is further explained in §8.
Depth boundaries of ‘convex’ and ‘surface’ type objects are not processed due to concave
curve absence. dcmax and dcmin set the boundaries of the potential concave curve area of
a ‘concave’ type object and are further employed for detecting a contains relation between
a pair of objects.

6. Learning Object Affordances

We learn to categorize object affordances by clustering AGraphlets whilst employing a hier-
archical approach. Every AGraphlet represents the interaction between a pair of objects in
the scene. We consider an interaction between two objects as the spatio-temporal sequence
of relations holding during an activity. By clustering such graph structures we produce a
hierarchy of similar affordances, which are closely related with the way every object is being
used in an activity. Hence, our method does not pose any constraints on the number of
affordance clusters an object can be assigned to, whilst every object has as many AGraphlets
as detected interactions. E.g. consider the scenario where an agent picks a bowl from a
table and places it in the microwave. The clustering mechanism considers the interaction
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of the bowl with the table and the bowl with the microwave as two different interactions;
two AGraphlets will be created for the bowl implying that it is a supportable as well as a
containable object.

As AGraphlets are high-level object interaction representations defined in the space of
the qualitative relations being captured, computing the similarity between them is based
on the spatio-temporal relations occurring. To effectively cluster these representations we
project the AGraphlets in a d -dimensional latent space and perform clustering on that space
instead. The graph2vec network is employed for this purpose, creating d -dimensional graph
embeddings for each AGraphlet.

To compute the similarity/dissimilarity of these graph embeddings we exploit a cost
function using the cosine similarity measure, defined as:

C(A,B) = 1− cos(A,B) = 1− A · B
||A|| × ||B||

(1)

where the values of the cos() function range from -1 to 1, where 1 indicates that the vector
embeddings are exactly the same, 0 that they are orthogonal, and -1 means that the vectors
are exactly opposite. In the AGraphlet space, a 1 cosine value stipulates that the two graphs
carry the same spatio-temporal information, hence the same affordance, whereas a value of
-1 suggests that the two graphs have no spatio-temporal information in common, thus each
one of them represents a completely different affordance. A cosine value of 0 denotes that
the two graphs are opposite, each one carrying information of the two objects that interact.

We perform a hierarchical clustering on the graph embeddings, using the cost function
defined in Eq. 1, to produce a dendrogram of similarities of the extracted AGraphlets. Clus-
ters are formed by grouping the leaves of the dendrogram with respect to their hierarchy.
Figure 11(top) illustrates a subset dendrogram of the complete hierarchical clustering out-
put. Such a hierarchy reveals the similarities of the different interactions occurring in the
data, which thus yields a set of affordance clusters. Different set of clusters are formed
based on a tunable threshold in our hierarchy. The higher in the hierarchy we consider
creating the clusters, the more general the clusters become in terms of affordances.

7. Leeds Object Affordance Dataset (LOAD)

We present the Leeds Object Affordance Dataset or LOAD dataset, which effectively extends
the domain of activities existing in all the publicly available datasets to date. This newly
presented dataset comprises of 58 RGB-D videos with an average number of 258 frames per
video, capturing various human-object interactions, which are not present in the existing
datasets visualizing human-object interactions. LOAD dataset aims to push the boundaries
of affordance distinction and categorization through more complex real-world activities.
Sample frames presenting the different object affordances captured can be found in the
appendix. Figure 8 illustrates the percentage of the affordance labels occurring in the LOAD
dataset and Figure 9 presents the percentage of different kinds of activities. Moreover,
Figure 10 displays the percentage of occurrence of the affordances in every kind of activity.
The main benefit of the LOAD dataset, as shown in these figures, is that the same affordance
is present in different kind of activities and between different objects. From Figure 10,
though some affordances are present in only a single activity, i.e. ‘drinkable’, there are
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Figure 8: Affordance labels in the LOAD dataset; area of rectangle reflects abundance in
the dataset.
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Figure 9: Coarser grouping of activities in LOAD dataset.

others that are spread throughout different kind of activities, i.e. ‘support’, ‘can-support’,
‘holdable’, ‘rollable’, ‘coverable’, ‘can-cover’. In this dataset, apart from the interactive
objects, we also consider the ‘floor’ as an entity that holds an affordance, thus the affordance
labels of ‘can-support’ and ‘supportable’ dominate in the ground truth. Also, there are
several affordance labels, which do not have a complementary affordance. This is due to
affordances related to human-object interactions, e.g. ‘kickable’, ‘pushable’, ‘pullable’, etc.

8. Experimental Setup

8.1 Datasets

For the evaluation of our method we found the publicly available CAD-120 dataset (Koppula
et al., 2013) (CAD) suitable for the task of object affordance categorization. Moreover,
to prove generalizability across different data distributions we also tested our method on
the Watch-n-Patch (Wu et al., 2015) (WnP), and on the LOAD dataset (LOAD) newly
presented here. All three datasets comprise activities of everyday-life scenarios with various
configurations of the objects in the scene as well as different camera orientations. Table
4 summarizes the characteristics of the datasets employed in this study. Moreover, the
affordance labels present in the LOAD dataset are indicated in Figure 8, whereas the labels
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Figure 10: Analysis of the percentage of affordances for every activity, considering a coarser
grouping of activities.

for both the CAD-120 and Watch-n-Patch datasets are: ‘can-contain’, ‘containable’, ‘can-
support’, ‘supportable’, ‘drinkable’, and ‘holdable’.

We used 80% of the CAD-120 dataset to determine the method’s parameters and train
the graph2vec network, resulting to 18,072 AGraphlets, and then evaluated the proposed ap-
proach on the remaining 20% unseen videos (24 videos), which comprise of 5,682 AGraphlets.
Experiments on the Watch-n-Patch and LOAD datasets were conducted on 24 and 15 hand-
picked videos, or 6,900 and 1,212 AGraphlets respectively, where the predictions of the object
detector, after visual inspection, were sufficient for capturing interacting objects. For defin-
ing the parameters of the algorithm, we exploited hand-picked videos from the training set
for the CAD-120 dataset, and for the LOAD and Watch-n-Patch datasets we hand-picked
videos different from the ones used for testing the proposed method.

8.2 Human/Object Detection and Tracking

To obtain human skeletal data in the scene we compared the output of the Convolutional
Pose Moachine (CPM) (Wei et al., 2016) model with the kinect skeletal data. Through
an empirical study we found that the CPM predictions are more accurate, especially when
human-joint occlusion occurs or the human agent stands on their side.

Object locations and depth information are provided from the predicted objects’ masks.
We employ the state-of-the-art Mask R-CNN framework (He et al., 2017) trained on the
COCO dataset (Lin et al., 2014), since the training data distribution is similar to the data
distribution present in the datasets we use in this work, and it is a generic dataset with
more object classes than those included in the target task. The box enclosing the object’s
mask corresponds to the object’s bounding box. This implementation is based on Mask R-
CNN predictions, however the proposed method is not object-specific and any class-agnostic
proposal method can be used.

Whilst Mask R-CNN objects’ bounding boxes predictions are temporally sparse, we
enrich the objects tracks by considering the CSRT tracker’s predictions (Bolme et al., 2010)
from the latest object bounding box occurrence, for frames where Mask R-CNN failed to
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Dataset data #vid. avg.fr.a a.p.v.b a.r.c activities

CAD-
120

2.5D 120 525 1-2 3 ‘arranging objects’, ‘cleaning objects’,
‘having meal’, ‘making cereal’, ‘microwav-
ing food’, ‘picking objects’, ‘stacking ob-
jects’, ‘taking food’, ‘taking medicine’,
‘unstacking objects’

Watch-
n-Patch

2.5D 457 170 1-2 3 ‘turn on monitor’, ‘turn off moni-
tor’, ‘walking’, ‘play computer’, ‘read-
ing’, ‘fetch book’, ‘put back book’,
‘take item’, ‘put down item’, ‘leave of-
fice’, ‘fetch from fridge’, ‘put back to
fridge’, ‘prepare food’, ‘microwaving’,
‘fetch from oven’, ‘pouring’, ‘drinking’,
‘leave kitchen’, ‘move kettle’, ‘fill kettle’,
‘plug in kettle’

LOAD 2.5D 58 258 3-4 3 ‘pull chair’, ‘push chair’, ‘sit on chair’, ‘sit
on the floor’, ‘sit on the table’, ‘push ta-
ble’, ‘pull table’, ‘hold bottle’, ‘hold um-
brella’, ‘carry bag’, ‘drinking’, ‘put item
down’, ‘kick ball’, ‘roll ball’, ‘bounce ball’,
‘throw ball’, ‘cover’, ‘put into’, ‘take out’,
‘lean against the wall’, ‘roll bottle’, ‘roll
chair’, ‘roll suitcase’, ‘carry chair’

a average number of frames (per video)
b activities per video
c activity repetition

Table 4: Datasets

detect the object, hence creating tracks of class agnostic-masks. CSRT tracker solely relies
its predictions of the visual characteristics of the initial object mask predictions, considering
only past instances on mask detections. Hence, it is able to track non-rectangular objects,
which aids in having more accurate tracking predictions by considering the objects mask’s
rather than their bounding boxes. A threshold of minimum 0.5 IoU overlap, determined
from an empirical study, is required to assign a bounding box prediction as the predicted
location of a detected object.

The predicted object mask’s depth information is employed to infer the object’s convex-
ity type. We exclude any pixel, which is part of a human detection, by retrieving a human
mask from the DensePose framework (Alp Güler et al., 2018). Whilst Mask R-CNN pro-
duces object masks for every object separately, overlapping objects have overlapping masks,
thus the intersected mask area may cause problems in determining the object’s convexity
type. A semantic depth map is constructed for every frame of the video data, consisting
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of all the predicted object masks while eliminating any detected intersection mask area.
This is achieved by assigning every pixel of such area to the object with the highest mask
detection score.

8.3 Parameters

We employed the QSRlib library (Gatsoulis et al., 2016) for the construction of AGraphlets.
For the h and n values which are used in defining the indentation area of a concave object,
we selected the values of 5 and 3 respectively, after conducting an empirical study for
h ∈ {2, 3, 4, 5, 6, 7} and n ∈ {1, . . . , h − 1}. We also set the threshconvex value to be 4 for
the CAD-120 dataset after evaluating on the values 1,2,3,4,5,6,7,8,9,10, 0.3 for the Watch-
n-Patch after consideration of the values in the range 0.1 to 2.0 with step 0.1, and 10.0 for
the LOAD after studying the values in the range 8 to 20 with step 1.

For the creation of clusters we threshold the produced hierarchy at 0.02 for all three
datasets. The value of 0.03 was employed for the RCC5(+ON) experiment (§9.1), though for
the sED (§9.1) the value 1.0 was used. This hierarchy threshold was defined by evaluating
the Bayesian Information Criterion (BIC) and Akaike Information Criterion (AIC) on the
training set for different heights of the hierarchy.

8.4 graph2vec Network

We trained from graph2vec network with the AGraphlets of the training set to create a 128-
dimensional latent space where the interaction graphs can be projected on. We employed
the network architecture provided by (Narayanan et al., 2017) and we trained it using
Stochastic Gradient Descent, a batch size of 512, and setting the learning rate to 0.5. Also,
we set the WL subgraph extraction value to 14 which, through an empirical study, we found
it was sufficient enough to create all the different subgraphs from the AGraphlets.

The selection of the embedding size and learning rate was made from two empirical
studies detailed in the appendix.

9. Experimental Evaluation

9.1 Quantitative Evaluation

In this section, we will analyze the experimental results by inspecting the clusters of affor-
dances formed, and evaluating their homogeneity and completeness. The datapoints clus-
tered consist of detected objects with their interactions with any other object and the hu-
man agent, allowing multiple datapoints to point to the different interactions a single object
might hold. We evaluate the clusters by reporting the normalized V-measure, homogene-
ity, and completeness scores, with higher values implying a better clustering. Homogeneity
captures how homogeneous the clusters are with respect to the groundtruth annotations,
whereas completeness expresses how complete the clusters are in terms of the groundtruth
affordance labels, i.e. encapsulating as many as possible of the same groundtruth labels into
a single cluster. The V-measure represents an average of the homogeneity and completeness
scores.
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Method V-measure Homogeneity Completeness

C
A

D RCC5(+ON) 0.80 0.93 0.70
sED 0.57 0.67 0.49
Ours 0.87 0.99 0.77

W
n

P RCC5(+ON) 0.49 0.83 0.34
sED 0.14 0.13 0.16
Ours 0.57 0.99 0.40

L
O

A
D RCC5(+ON) 0.62 0.78 0.52

sED 0.40 0.44 0.37
Ours 0.70 0.99 0.54

Table 5: Baselines experiments.

9.1.1 Baselines Experiments

We compare our method with the baselines presented in Table 5, in which we evaluate the
impact of using depth information to enhance 2D qualitative spatio-temporal relations, and
projecting AGraphlets into a latent space. The baselines are:

• RCC5(+ON): we evaluated our method with the RCC5 (Randell et al., 1992), which
consists of the relations: ‘discrete’ (DR), ‘partially overlapping’ (PO), ‘proper part’
(PP, PPi), and ‘equal’ (EQ), along with the addition of the On spatial relation defined
in §5.1. We aim to investigate how the lack of depth information affects the affordance
categorization. For this study we keep the method’s configuration unchanged and
conduct the experiments altering only the exploited spatial relations;

• sED: we performed hierarchical clustering on the AGraphlet without projecting them
in a latent space learned by the graph2vec network. This baseline evaluates the clus-
tering performance by considering a vanilla measure for graph comparison and aims
to showcase the contribution of projecting AGraphlets in a latent space. Hence we
exploit a set Edit Distance measure (Eq. 2, where cspat and kspat are 0.5 from an
ablation study) to create clusters of similar affordances;

sED = cspat
∑

v∈V
′α,β
DiSR

v + ctemp
∑

v∈V
′α,β
DiSRtemp

v+

kspat
∑

v∈V
′α,β
RCC2

v + ktemp
∑

v∈V
′α,β
RCC2temp

v

where ctemp = 1− cspat and ktemp = 1− kspat

(2)

V
′α,β
R = {v : v ∈ {V ′α

R \ V
′β
R } ∪ {V

′β
R \ V

′α
R }}

where R ∈ {DiSR,DiSRtemp, RCC2, RCC2temp}
(3)
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Method V-measure Homogeneity Completeness

C
A

D Sridhar et al. 0.40 0.66 0.29
Aksoy et al. 0.71 0.84 0.61

Ours 0.87 0.99 0.77

W
n

P Sridhar et al. 0.39 0.65 0.28
Aksoy et al. 0.58 0.70 0.50

Ours 0.57 0.99 0.40

L
O

A
D Sridhar et al. 0.63 0.82 0.51

Aksoy et al. 0.61 0.77 0.50
Ours 0.70 0.99 0.54

Table 6: Experimental comparison with related works.

From this study, it is evident that our method outperforms the RCC5(+ON) and sED
baselines in all reported metrics and datasets. The comparison between the experimen-
tal results of the proposed approach and the RCC5(+ON) baseline, demonstrate that the
employment of depth information for inferring object affordances has a considerable im-
provement of the V-measure in comparison to the primary RCC5 set. This improvement
results from more accurate spatial relationships of interactions, enabling the creation of more
accurate graphical structures for describing them. Also, the scores’ improvement involving
the employment of the graph2vec network, in comparison to the sED baseline, indicates the
enhancement of the clustered datapoint representation by projecting the AGraphlets in the
latent space.

9.1.2 Related-Works Comparison

Related works exploit the distance between objects as a measure for perceiving their inter-
actions, or simplistic qualitative relations, which only describe the relation of the objects
with the human hand, e.g. ‘hand approaching’, ‘hand leaving’, ‘in use’, ‘idle, and ‘close
to’. Both approaches are not able to capture complex object interactions. For this reason,
our evaluation considers methods, which leverage qualitative spatial relations for describ-
ing human-object and object-object interactions, which are more descriptive in the spatial
domain.

We compare our approach with two state-of-the-art methods that use qualitative spatio-
temporal relations to describe in a high-level way human-object and object-object interac-
tions, similar to the proposed method. These works are:

• Sridhar et al.: we conducted experiments using a re-implementation of the approach
of Sridhar et al. (2008) which, to the best of our knowledge, is the most closely related
work that exploits QSRs to capture functional object clusters;

• Aksoy et al.: we also performed a comparison of the proposed method with a re-
implementation of the approach of Aksoy et al. (2010), which exploits high-level
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qualitative graphs without the employment of QSRs, to describe interactions between
objects.

Both of these works employ a set of spatial qualitative relations. However, these re-
lations are not descriptive enough to distinguish between complex object interactions, i.e.
containment and support. Hence, differentiation of affordances due to different object types
is not present, resulting to a coarser-grain of affordance categorization. Moreover, occlusion
is not handled, thus capturing many false positive object interactions.

Table 6 shows the quantitative results of the experiments we conducted to demonstrate
the performance of the proposed approach against the Sridhar et al. (2008) and Aksoy et al.
(2010) baselines. Our experiments demonstrate a significant increase in all the reported
metrics against the Sridhar et al. (2008) work, which results from the representation of
AGraphlets that exploit more information about the interactive objects. We also achieve
higher scores than the Aksoy et al. (2010) work in the CAD-120 and LOAD datasets, and
obtain comparable V-measure score on the Watch-n-Patch dataset. This is due to the fact
that not many interactions are evident in the video scenes of the Watch-n-Patch, and the
set of relations being captured are more coarse-grained, resulting to a higher completeness
score, however degrading the homogeneity of the clusters.

Our results indicate that our method creates more fine-grained groups of affordances
than the groundtruth annotations, i.e. there can be more than one group of datapoints
indicating a ‘supportable’ affordance. Hence, we can distinguish between different objects
with the same convexity type.

9.2 Qualitative Evaluation

A representative instance of our object affordance categorization method is illustrated in
Figure 11. A subset of AGraphlets from the test set of the CAD-120 dataset is employed
in this figure as an input to the proposed methodology. Groups of similar AGraphlet em-
beddings in the latent space form clusters of object affordances. Clusters are color-coded
in the presented hierarchy.

The depicted clusters denote the different kind of affordances in the present subset of a
video. To facilitate better understanding of the results, by considering the dominant ground
truth affordance label in each group of data points, we are able to give an affordance name
to every cluster (Fig. 11 (bottom right)). Some clusters have been assigned the ‘unknown
label’, which denotes an affordance that is not present in the groundtruth hence, creating
a fine-grained affordance hierarchy. Also, some clusters have two labels of affordances,
which indicate that the objects in those clusters carry both these affordance labels. Our
clustering hierarchy of affordances takes no account of any object labels, thus a cluster is
able to contain all objects that have similar interactions in reference to their AGraphlets
embeddings.

Figure 12 shows the clustering output of a video from the CAD-120 dataset. Groups of
objects with similar affordances form the clusters of the hierarchy. Groundtruth affordance
labels are assigned to every cluster by inspecting the objects and their AGraphlets the
cluster comprise of.

An important aspect of our method, as illustrated in this figure, is that we achieve a
fine-grained affordance categorization by differentiating between different kinds of the same
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Cluster number Groundtruth label

0 containable, supportable
1 can-contain
2 can-contain
3 unknown label
4 can-contain
6 can-support
7 supportable
9 can-support
13 can-contain
14 supportable

V-measure Homogeneity Completeness

0.70 0.75 0.66

Figure 11: Hierarchical clustering of 100 AGraphlets captured from the CAD-120 dataset.
(top) The hierarchy of clusters where the y-axis corresponds to the distance and
the x -axis shows the cluster id every leaf node is assigned to; edges of the leaf
nodes are colored depending on the cluster the leaf node is assigned to. (bottom
left) Visualization in 3D space of the graph embeddings of the clustered data,
after applying PCA. Coloring is associated with the clusters they are assigned
to. (bottom right) Table mapping the clusters id with groundtruth labels.
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Figure 12: Clusters’ hierarchy for a video from the CAD-120 dataset.

convexity type objects, i.e. the bowl and the microwave in this example. As both the bowl
and the microwave are containers, the bowl plays the role of a containee. Whilst, we can
also group together different convexity type objects if they carry the same interaction.

The hierarchical tree presented, is generalizable to the whole dataset. More hierarchi-
cal trees of other videos demonstrating the generalization of our approach across different
datasets, thus videos, are illustrated in the appendix.

10. Discussion

10.1 Failure Cases

Object detections are retrieved from an off-the-shelf object detector, trained on the COCO
dataset. However, some object configurations, present in the datasets used for the evaluation
of this work, are out of the object detector’s training distribution. Hence, false positive
object detections are evident in cases where the primary objects change shape and visual
appearance, i.e. opening a closed microwave. In such cases, false positive relations between
detected objects are captured. E.g. opening the door of a closed microwave produces a
detection for the main body of the microwave object as well as a different one for its door,
resulting to the presence of AGraphlets between the door and the rest of the objects in the
scene. Hence, the proposed approach is heavily reliant to the quality of object proposals.

10.2 Limitations

Our definitions of spatial interactions model spatial states of the interactive objects, e.g. a
cup is on the table. However, some kind of affordances are derived from interactions holding
as a transition from one state to another, e.g. ‘pourable’, ‘able to be poured’ are inferred
from the transition of the state Cont(bowl1, liquid) to Cont(bowl2, liquid). Our method
is limited to only detect state-based relations; hence affordances as ‘pourable’, ‘able to be
poured’, ‘throwable’, and ‘able to be thrown’ are not detectable in the current pipeline.
Although the proposed framework is generic, it is currently limited to the set of detectable
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and defined relations. Moreover, an enhancement of detecting interactions of more than
two objects is necessary for affordances which are inferred from the interaction of multiple
objects, e.g. learning ‘stirable’ requires both a liquid and a stirrer to be contained in a
concave object.

11. Conclusion

In this work, we presented a novel depth-informed qualitative representation with the abil-
ity to handle occlusions by considering depth information, and efficiently detecting relative
spatial relationships between objects in the 2D image plane. We also addressed the prob-
lem of affordance categorization by creating embeddings of graphs of human-object and
object-object interactions using the graph2vec network, and clustering these graphs in an
unsupervised way, forming groups of similar affordances in the latent space. Moreover, we
introduced a new object affordance dataset which expands the affordance domain compared
to existing datasets. Our experiments demonstrate that exploiting the proposed relations
produces more accurate qualitative graphs, describing the interactions, resulting in more
homogeneous and complete clusters of affordances, and higher V-measure scores.

The enhancement of the graph representations with additional object information, such
as the size of the objects, is a future direction for expanding the possible affordances our
method can detect. Also, in our future work, we aim to enhance the qualitative spatial
relations, by detecting multi-object relations and enabling the construction of sequence-
based relations, which allow the description of interactions that occur during a series of
episodes, e.g. ‘throwing’.
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Appendix A.

A.1 LOAD Dataset

ball: kickable, supportable ball: holdable, bouncable

suitcase: holdable, carriable chair: holdable, carriable

table: supportable, pushable chair: supportable, pullable

suitcase: holdable, carriable, can-cover umbrella: holdable, can-cover
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box: supportable, can-support, coverable, sittable chair: supportable, sittable, coverable

table: supportable, can-cover bottle: holdable, drinkable

box: supportable, can-support, leanable suitcase: supportable, can-contain

bottle: supportable, containable, holdable suitcase: supportable, can-support, coverable, rollable

Some sample image frames from the LOAD dataset are presented here, along with the
affordance labels for one of the detected objects in every scene.
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table: supportable, sittable, coverable chair: supportable, can-support

table: supportable, sittable, can-support suitcase: supportable, can-support

chair: supportable, sittable suitcase: supportable, sittable

chair: supportable, can-support box: supportable, sittable

A.2 graph2vec Hyper-parameter Tuning

For the selection of the embedding size we trained the graph2vec network with the embedding
size values 128, 256, 512, and concluded that an embedding of size 128 produces the smallest
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Figure 13: (best viewed in color) Training and validation loss of graph2vec network for
different embedding sizes. The experiments were done with batch size 512 and
learning rate 0.5. The loss history does not update if a validation loss value
greater than the latest reported has been calculated.
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Figure 14: (best viewed in color) Training loss of graph2vec network with embedding size
128 for different learning rates. The experiments were done with batch size 512.
The training loss history does not update if a validation loss value greater than
the latest reported has been calculated.

training and validation loss (Fig. 13). Batch size and learning rate remained unchanged
in this experiment. Moreover, we evaluated the output after training the network with
different learning rates (0.3, 0.5, 0.7). As illustrated in Figure 14, the best training results
were produced with learning rate 0.5. The batch and embedding sizes remained the same
throughout this study. The batch size was selected through an empirical study.
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A.3 Qualitative Results

Further qualitative results are presented in this section (Fig. 15, Fig. 17). We also, present
the cluster hierarchy formed, illustrating groups of object affordances (Fig. 16, Fig. 18).
Every cluster forms a group of objects that share the same affordance. Some clusters
comprise a single object, however with multiple affordances.

Cluster number Groundtruth label

0 supportable
2 holdable
5 supportable
6 holdable

V-measure Homogeneity Completeness

0.33 0.37 0.30

Figure 15: Qualitative results from the Watch-n-Patch dataset.
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table
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Object Clusters

Affordance Labels

Figure 16: Clusters hierarchy for a video from the Watch-n-Patch dataset.

Cluster number Groundtruth label

0 can-contain, holdable, supportable
1 unknown label
2 can-support
3 supportable
4 unkown label

V-measure Homogeneity Completeness

0.67 0.63 0.71

Figure 17: Qualitative results from the LOAD dataset.
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supportable
can-support

suitcase
trash bin floor suitcase

supportable can-support sittable

robot(body)robot(head)

supportableAffordance Labels

Object Clusters

Figure 18: Clusters hierarchy for a video from the LOAD dataset.
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