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A B S T R A C T 

Developing an effective automatic classifier to separate genuine sources from artifacts is essential for transient follow-ups in 

wide-field optical surv e ys. The identification of transient detections from the subtraction artifacts after the image differencing 

process is a key step in such classifiers, known as real-bogus classification problem. We apply a self-supervised machine learning 

model, the deep-embedded self-organizing map (DESOM) to this ‘real-bogus’ classification problem. DESOM combines an 

autoencoder and a self-organizing map to perform clustering in order to distinguish between real and bogus detections, based 

on their dimensionality-reduced representations. We use 32 × 32 normalized detection thumbnails as the input of DESOM. 

We demonstrate different model training approaches, and find that our best DESOM classifier shows a missed detection rate of 

6 . 6 per cent with a false-positive rate of 1 . 5 per cent . DESOM offers a more nuanced way to fine-tune the decision boundary 

identifying likely real detections when used in combination with other types of classifiers, e.g. built on neural networks or 

decision trees. We also discuss other potential usages of DESOM and its limitations. 

K ey words: methods: observ ational. 

1  I N T RO D U C T I O N  

Time-domain astronomy has risen in popularity among the astronom- 

ical research fields during the past decade. It is particularly important 

for the study of gamma-ray bursts (GRBs, Piran 2004 ; Zhang et al. 

2006 ; Li et al. 2012 ; Berger, Fong & Chornock 2013 ; Jin et al. 

2013 ; Tanvir et al. 2013 ; Berger 2014 ; Cenko et al. 2015 ; Kumar & 

Zhang 2015 ; Kasliwal et al. 2017 ; Lamb et al. 2019 ; Coughlin et al. 

⋆ E-mail: yik.mong@monash.edu (Y-LM); k endall.ackley@w arwick.ac.uk 

(KA) 

2020 ; Ho et al. 2020 ; Andreoni et al. 2021 ; Mong et al. 2021 ) and 

gra vitational-wa v e (GW) ev ents (Abbott et al. 2016 , 2017 ; Blanchard 

et al. 2017 ; Chornock et al. 2017 ; Coulter et al. 2017 ; Cowperthwaite 

et al. 2017 ; Goldstein et al. 2017 ; Hallinan et al. 2017 ; Margutti et al. 

2017 ; Savchenko et al. 2017 ; Gompertz et al. 2020 ). These events 

require prompt (time-scales of hours) follow-up observations in order 

to identify their nature, before they become too faint to be detected 

(see e.g. Rau et al. 2009 ). Information about the event’s origin can 

often be relatively poor, with uncertainty regions of hundreds of 

square degrees typical. To this aim, facilities with a large field of view 

(FoV) enable the follow-up observations of these transient events. 

© 2022 The Author(s) 

Published by Oxford University Press on behalf of Royal Astronomical Society 
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The Gra vitational-wa ve Optical Transient Observer (GOTO) 1 is a 

robotic optical telescope designed to search for the counterparts of 

GW events (Dyer et al. 2020 ; Steeghs et al. 2022 ). GOTO presently 

consists of two telescope arrays, each equipped with 8 × 40 cm 

unit telescopes and a total FoV of ∼80 square degrees per pointing. 

Other than following up GRBs and GW events, GOTO also performs 

re gular all-sk y surv e y observations in order to explore the transient 

sky with serendipitous searching. It can reach depths of ≈20 mag in 

the adopted Baader L -band filter (400–700 nm ), with a set of 3 × 90 s 

exposures. The image size of each camera is 8176 × 6132 pixels with 

a pixel scale of ≈1 . 2 arcsec . 

Difference imaging is commonly used to identify transient objects 

on an image (Alard & Lupton 1998 ; Becker 2015 ). With a reference 

image, taken during a historical visit of the same field as the input 

image (also called the science image), the two images can be aligned 

by performing an affine transformation (e.g. with a custom Python 

package spalipy ). The aligned reference frame is then subtracted 

from the science frame (e.g. using HOTPANTS ) in order to generate 

a difference image (Becker 2015 ). An ideal subtraction helps to 

remo v e the vast majority of the objects that do not vary in intensity. 

Transients which appear only on the science frame should appear on 

the difference image after the image subtraction process. 

‘Real-bogus’ classification is the process of separating real objects 

from ‘bogus’ detections, including instrumental artifacts, subtraction 

residuals, bad pixels, etc., on the difference image (Bloom et al. 

2012 ). Due to imperfections in the difference imaging method, ∼10 4 

subtraction artifacts can be identified as detections by SExtractor 

per GOTO image (Bertin & Arnouts 1996 ). A large number of 

subtraction artifacts make it impossible to manually separate real 

transients from bogus detections. As a result, an automatic real- 

bogus classifier is required. Supervised machine learning models are 

commonly used to construct the real-bogus classifier. Among all of 

the supervised learning algorithms, the convolutional neural network 

(CNN) model shows the best performance on solving computer 

vision problem (Cabrera-Vives et al. 2016 , 2017 ; Gieseke et al. 

2017 ). The current real-bogus classifier of GOTO is built based 

on the VGG16 CNN model (hereafter GOTO-VGG, Simonyan & 

Zisserman 2014 ; Duev et al. 2019 ; Killestein et al. 2021 ). 

There are two major disadvantages of using supervised machine 

learning to solve real-bogus classification problems. First, since the 

training process of the model is supervised, all training instances 

must be labelled as real or bogus. This labelling process requires a 

high cost of expert human labour. This challenge has been previously 

addressed by using detections on the science frame to train the 

classifier (Mong et al. 2020 ) or building a training set with synthetic 

transients (Smith et al. 2020 ; Killestein et al. 2021 ). Second, during 

the actual prediction process, supervised learning models act like 

‘black box’ models. The algorithm is typically too complicated for a 

human to visually understand how the prediction is made. Therefore, 

improving the model is challenging. 

Using unsupervised learning models to build our classifier, a v oids 

the shortcomings of supervised learning models. Since the clustering 

model groups similar data together, it is easy to understand that two 

inputs with the same prediction means that they are close to each 

other in the parameter space, and hence likely arising from a similar 

origin. 

In this paper, we apply unsupervised machine learning to solve 

the real-bogus classification problem. In Section 2 , we introduce the 

learning algorithms used to construct our classifier. In Section 3 , we 

1 http://goto-observatory.org 

discuss how to extract and pre-process our data before performing 

further analyses. In Section 4 , we discuss how we train our model 

and report the result of our best model. We also compare the model 

performance with the GOTO-VGG model. In Section 5 , we discuss 

the advantages and the shortcomings of the model. Finally, we 

conclude our results in Section 6 . 

2  L E A R N I N G  A L G O R I T H M S  

We employ the deep-embedded self-organizing map (DESOM, 

Forest et al. 2019 ; Teimoorinia et al. 2021 ) as the unsupervised 

learning model to build our real-bogus classifier. DESOM consists of 

two parts, the autoencoder (AE) and the self-organizing map (SOM). 

In this section, we will be introducing the basic concept behind these 

algorithms. 

2.1 Autoencoder 

The AE model is a variant of the neural network model, with the 

main objective of reconstructing the input data via dimensionality 

reduction (Baldi 2012 ; Wang et al. 2014 ; Bank, Koenigstein & Giryes 

2020 ). The architecture of the AE is usually symmetric, i.e. the output 

has the same dimension as the input. Due to the objective of AE, the 

input X is also used as the target in the training process. Therefore, 

AE is considered to be a ‘self-supervised’ learning algorithm. 

The AE architecture consists of three parts, the encoder, the 

‘bottleneck’, and the decoder. The bottleneck represents the middle 

layer of the AE. AE can generally be divided into two types, 

undercomplete and o v ercomplete. F or the undercomplete AE, the 

number of neurons in the bottleneck layer is smaller than that of 

the input layer. On the other hand, an o v ercomplete AE has a 

bottleneck with more neurons than the input layer. In this work, 

we use undercomplete AE to construct our model in order to capture 

the most important features from the raw input data. 

The first half of the AE is defined as the encoder. It maps the input 

X to the output parameter space, also called the ‘latent space’. Since 

the bottleneck has a smaller size than the input layer, the output 

of the bottleneck is considered to be a compressed representation 

of the raw input. Therefore, the encoder can be used to perform 

dimensionality reduction. The second half of the AE is the decoder. 

It takes the compressed representation φ( X ) as the input and attempts 

to reconstruct the original input X . The mathematical operation of an 

AE can be written as 

ˆ X = ψ( φ( X)) , (1) 

where φ and ψ are the operators of the encoder and the decoder, 

respectively. The reconstructed output of the AE is denoted by ˆ X . 

The encoder part of the AE is usually identical to an artificial 

neural network (ANN, Daniel 2013 ) or a CNN (O’Shea & Nash 2015 ) 

model. The choice of using the convolutional ( Conv2D ) layers or the 

fully connected ( dense ) layers depends on the type of the problem. 

The Conv2D layer identifies local patterns under translation and 

rotation invariance. For computer vision problems, Conv2D usually 

performs better in general. In this work, we use a CNN model to 

construct our AE model. 

2.2 Self-organizing map 

A SOM is a clustering algorithm consisting of only two lay- 

ers, the input layer and the output layer (Kohonen 1990 , 2001 ). 

Each layer consists of several nodes, and each input node is 

connected to all output nodes with a corresponding weight. Since 
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those two layers are fully connected, SOM is a variant of an 

ANN model. The number of output nodes, which represents the 

number of desired clusters, is the most important hyperparameter 

of SOM. 

Each cluster in the input parameter space is characterized by a 

weight vector, which is called the prototype vector (PV), of an output 

node. The SOM nodes usually form a two-dimensional (2D) grid, 

also called a SOM map. The input vector x is connected with an 

output node with the weights w ij , where i , j indicates the position of 

the node in the output layer. Therefore, the PV of an m × m SOM 

map can be expressed as 

W = 

⎛ 

⎜ 
⎜ 
⎜ 
⎝ 

w 11 w 12 · · · w 1 m 

w 21 w 22 · · · w 2 m 

. . . 
. . . 

. . . 
. . . 

w m 1 w m 2 · · · w mm 

⎞ 

⎟ 
⎟ 
⎟ 
⎠ 

. (2) 

The prediction output of the SOM model is the cluster with the 

minimum Euclidean distance between w ij and x . We call the selected 

w ij the ‘winner PV’ of x . 

In the SOM training process, W is updated iteratively with three 

steps: competition, cooperation, and adaptation. In the competition 

step, the input x searches for the winner PV w k with the minimum 

Euclidean distance | w k − x | among W . In the cooperation step, the 

distances between w k and other PVs w ij are calculated. The winner 

PV w k will then be updated by reducing the Euclidean distance 

between the w k and the x . Ho we ver, w k is not the only PV being 

updated. In fact, all w ij will be updated in the final adaptation step 

depending on their distances from w k . 

The update of any w i is directional pointing towards x in the latent 

space, and the step size is controlled by three factors: the Euclidean 

distance between w k and x , the Euclidean distance between w k and 

w i , and the learning rate η. The step size of the update also decays 

with the number of the training iterations t . Therefore, the algorithm 

of the update is written as 

w i 
′ = w i + η( t ) h ik ( t ) | x − w k | , (3) 

where 

h ik ( t) = exp 

(

−
| w i − w k | 

2 

T ( t) 2 

)

(4) 

is the kernel function. We use the Gaussian neighbourhood function 

to be the kernel here. The temperature parameter, 

T ( t) = T 0 exp 

(

−
t 

τT 

)

, (5) 

determines the kernel size at the training epoch t . The maximum 

temperature and the decay constant are denoted by T 0 and τ T . The 

same form is used to describe the t -dependent learning rate, 

η( t) = η0 exp 

(

−
t 

τη

)

. (6) 

2.3 Deep-embedded self-organizing map 

The DESOM model is constructed by combining an AE and SOM. 

The AE achieves the dimensionality reduction, while the SOM 

performs the actual clustering process on the dimensionality-reduced 

input. Therefore, the SOM layer is attached to the bottleneck of the 

AE. With this model architecture, DESOM can be divided into two 

types depending on how the model is trained, the ‘combine-trained’ 

DESOM, the ‘separate-trained’ DESOM. 

2.3.1 Combine-trained DESOM 

The combined training of DESOM was first demonstrated by Forest 

et al. ( 2019 ). In the training process, the parameters in all layers 

are trainable. In the other words, both AE and SOM are trained 

at the same time. A combine-trained DESOM was also used to 

build an image-quality-based recommendation system (Teimoorinia 

et al. 2021 ). Fig. 1 illustrates the architecture of DESOM. As 

we can see that DESOM generates two separate outputs from the 

decoder and the SOM layer with their corresponding losses, the least- 

squares reconstruction loss L dec and the SOM loss L som indicating the 

Euclidean distance between the input x and the winning PV in the 

latent space. The total loss of each run can be defined as the weighted 

sum of the two losses: 

L tot = L dec ( θ e , θd ) + γL som ( θ e , θ som ) , (7) 

where γ is the weight of the SOM loss. The trainable model 

parameters of the encoder , the decoder , and the SOM are denoted by 

θ e , θd , and θ som . All parameters connected from the output layer to the 

input layer are updated in each training iteration through a numerical 

algorithm called back-propagation (Munro 2010 ). Ho we ver, since 

we have two output layers, there are two different paths in the back- 

propagation to update the parameters (see the red lines in Fig. 1 ). 

Therefore, the back-propagations of both decoder and SOM also 

contribute to the update of the encoder, and this is the reason why 

both losses also depend on θ e . 

There are two major disadvantages of using this training approach. 

First, DESOM has many adjustable hyperparameters such as the 

number of layers, the number of neurons, and the size of the 

SOM map, among others, which makes the model e v aluation with 

respect to different hyperparameter set-ups very complicated. Blindly 

searching for the best hyperparameter set is very time consuming. 

Second, this approach provides relatively inef fecti ve SOM training. 

At the beginning of the SOM training phase, the kernel size τ T is 

large, such that the update of the SOM map is more global. As a 

result, the early training phase of SOM is more ef fecti ve to roughly 

map the SOM map on to the latent space of AE. Ho we ver, the AE is 

undertrained during the early training phase. If we train both SOM 

and AE together, the SOM layer will learn the unuseful information 

from the undertrained AE latent space ef fecti vely due to a large T ( t ∼

0). On the other hand, once the AE has been well-trained, the SOM 

kernel h ik ( t ≫ τ T ) has converged to a small size. At that time, the 

training process would only fine-tune the SOM layer, which means 

that the final SOM is mainly trained on an undertrained AE. To solve 

this problem, we are moti v ated to explore the following alternative 

training approach. 

2.3.2 Separ ate-tr ained DESOM 

Here, we instead break down the DESOM training into two separate 

processes. First, we train the AE individually. Then, we freeze both 

θ e and θd (by manually setting them to be ‘untrainable’ parameters). 

Finally, we insert the SOM layer to the bottleneck of the AE and 

train for it with the frozen, trained AE. 

Training the AE and SOM indi vidually can ef fecti vely speed up 

the hyperparameter searching process. Considering that AE and 

SOM have M and N hyperparameter configurations, respectively, 

the grid searching finds the best combined configuration among 

M × N configurations. By separating the training processes of 

AE and SOM, we first search for the best AE among those M 

configurations. Then, we implement the best AE to search for the 

best SOM configuration. Therefore, the number of trials reduces 
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Figure 1. The propagation flows of DESOM training (Forest et al. 2019 ). The black lines indicate the direction of the forward propagation. And the red lines 

indicate the direction of the back-propagation. 

down to M + N , which significantly speeds up the grid searching 

process. 

Since the SOM training process commences after obtaining the 

best AE configuration, the SOM layer is directly trained on the well- 

established latent space of the AE bottleneck. Unlike the combine- 

trained DESOM, which the SOM is trained on an unlearnt bottleneck 

of the AE during the early training phase, the training process of the 

SOM layer in the separate-trained DESOM is more ef fecti ve. Using 

this approach, all the shortcomings of the combined training approach 

can be addressed. 

2.4 GOTO-VGG classifier 

To provide a direct comparison to the DESOM architecture presented 

in this work, we used the pre-trained CNN classifier currently being 

used in the live GOTO pipeline, details of which are presented in 

full in Killestein et al. ( 2021 ). This model is a 330 000 parameter, 

eight layer deep CNN that was trained on around 400 000 labelled 

examples. The model inherits the broad structure of the GOTO- 

VGG network of Simonyan & Zisserman ( 2014 ) by utilizing ‘conv- 

conv-pool’ blocks, but is significantly downscaled owing both to the 

smaller scale and o v erall lower comple xity of astronomical images, 

compared to the data sets used in the computer science literature. 

3  DATA  E X T R AC T I O N  A N D  PROCESSING  

We randomly gathered 719 stacked images taken by GOTO between 

2021 April 16 and 2021 June 12 to perform analyses in this work. 

Each of these images includes science, reference, and subtracted 

frames. All images are processed through the GOTO standard image 

processing pipeline (Steeghs et al. 2022 ). 

We use two different approaches, the difference-coordinate (DC) 

approach and the science-coordinate (SC) approach (see Sections 3.1 

and 3.2 for more details), to extract the coordinates of the detections 

from the difference images. Once we obtain the detection coordi- 

nates, we use a 32 × 32 pixel cutout centred on the coordinates to be 

the input thumbnail (see Fig. 2 for some examples extracted with the 

DC approach). Since DESOM is an unsupervised learning model, 

labelling process is not required to build our training set. 

3.1 Differ ence-coordinate appr oach 

The DC approach is the usual approach of extracting the detection 

coordinates of candidate sources from the difference image. The 

coordinates are extracted by running the source extraction software 

SExtractor on the difference images. We randomly extracted 

1000 000 detection cutouts from 719 difference images to build our 

data set (DC data set). We further split the data set into training and 

test sets, which contain 800 000 and 200 000 detections, respectively. 

Figure 2. Examples of 32 × 32 pixel cutouts from GOTO prototype images 

extracted with the DC approach. S1 is an example of masked subtraction of a 

bright source. S6, S8, and S9 are likely due to the statistical fluctuation of the 

background. S7 is a detection lying on the edge of the difference image. These 

examples show that the DC approach usually does not centre the subtraction 

residual within the thumbnail. 

There are two obvious problems of using this approach to create 

inputs. First, as we can see in Fig. 2 , the central points of most of the 

cutouts are offset from the original positions of the sources on the 

science images. This issue is caused by the fact that SExtractor 

tends to identify the subtraction residuals surrounding the actual 

position of the source, as candidate detections. The root of this issue 

resides in the following SExtractor performance method. During 

the subtraction process, pixel discretization and fractional shifts may 

result in point spread function (PSF) kernel mismatches between the 

science and reference frames. As a result, the science detections are 

segmented into multiple peaks extracted by SExtractor on the 

difference image (see Fig. 3 ). This effect substantially increases 

the number of bogus detections on the difference image. Thus, 

even a classifier with a low false-positive rate (FPR) could result 

in many false positi ves. The disadv antages of this approach moti v ate 

us to develop another approach, the SC approach, to perform source 

extraction. 

3.2 Science-coordinate approach 

Here, we run SExtractor on the science frame instead of the dif- 

ference frame, to extract the detection coordinates. Those coordinates 

will then be used to generate cutouts from the difference image. The 
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Figure 3. Example of the segmentation caused by difference imaging. The 

extracted detections recovered by SExtractor are indicated with red 

crosses. The segmentation of the image subtraction can substantially increase 

the number of the bogus detections on a difference image. 

Figure 4. Examples of 32 × 32 pixel cutouts from GOTO prototype images 

extracted with the SC approach. Unlike the ones extracted with the DC 

approach (see Fig. 2 ), the subtraction residuals are centred at the middle of 

the thumbnails. 

thumbnail generated with the SC approach is centred at the original 

position of the source on the science image, as the difference image 

is astrometrically aligned to the science frame before the image 

subtraction (see Fig. 4 ). In addition, we can ef fecti vely eliminate the 

majority of the segmented detections which might arise from the 

subtraction of a single source. Therefore, the SC approach solves 

both problems of the DC approach. 

Nevertheless, the SC approach has its own issues. Using the co- 

ordinates of all science detections to extract the cutouts is extremely 

inefficient, since the subtraction process can otherwise ef fecti vely 

reject persistent objects. To solve this problem, we cross-match all 

detections on the science image with the ones on the difference 

image, and select only those science detections with a cross-matched 

result within a radius defined in equation ( 8 ). If the same detection 

appears on both science image and difference image, the offset in the 

cross-match result is defined as the ‘subtraction of fset’. Ho we ver, it 

is very challenging to conclude that every detection on the science 

Figure 5. The offset between the detection on the science image and its 

closest detection on the difference image against its magnitude. The y -axis 

error-bar indicates the 2 σ confidence level of the offset distribution. The 

or ange curv e represents the best Gaussian function fitting the 2 σ upper limits 

of the data with m < 13.5. The red line indicates the lower limit of f ( m ) in 

equation ( 8 ) at 3 arcsec . For the science detection with m > 13.5 and an 

offset smaller than 3 arcsec , the closest detection on the difference image is 

considered as the same source. 

image is the same source of another detection on the difference image 

even if the subtraction offset is small. 

Although we can only conclude that a smaller offset implies a 

higher chance of association, we have to set a critical offset to 

claim the association of the detections on the science image and 

the difference image. We plot the offsets of the detections on the 

science images from the closest detections on difference images 

against the magnitudes of the detections on the science image 

(Fig. 5 ). Depending on the brightness of the source, the closest 

offset could be a good representative of the subtraction offset. For 

the bright sources with m � 10, the subtraction offset can go up 

to ∼30 arcsec (2 σ confidence level), due to the effect of masking 

saturated pix els. F or the fainter detections with m � 15, the offset 

gets larger with decreasing brightness. This can be explained by 

the fact that the subtraction on the faint stable source is usually 

cleaner. If the subtraction residual left on the difference image is 

negligible, it cannot be detected by SExtractor . Therefore, in the 

cross-matching process, the science detection actually matches with 

another completely different source. Hence, the cross-matched offset 

becomes larger. We conclude that the closest offset beyond m > 13.5 

in Fig. 5 does not reflect the subtraction offset of the same source. 

Since the subtraction offset is magnitude-dependent, we obtain the 

offset threshold as a function of magnitude by fitting a phenomeno- 

logical piece-wise Gaussian function, 

f ( m ) = max 

[

3 , A exp 

(

−
( m − m 0 ) 

2 

2 σ 2 

)]

, (8) 

to the data in Fig. 5 . We restrict our fitting at 2 σ upper limit of the 

subtraction offset and m < 13.5. The best-fitting parameters are A = 

46.3, m 0 = 3.,7 and σ = 4.4. We also set the lower limit of the offset 

threshold at 3 arcsec . Any detection with magnitude m on the science 

image which has a closest offset smaller than f ( m ) is considered as 

having a cross-matched result, and it is included in the data set. 

With this approach, the number of detections that need to be 

analysed is greatly reduced. In Fig. 6 , we can see that a science 

frame usually has ∼10 4 detections. After the difference imaging, 

only ∼10 3–4 detections are left on a difference image. With the 
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Figure 6. Distributions of numbers of science detections ( orange ), sub- 

tracted detections ( blue ) and extracted detections with the SC approach 

( green ) per image. With the SC approach, the number of detections needed 

to be analysed drops to ∼10 2–3 per image. 

SC approach, ∼10 2–3 detections per image have to be analysed, 

which is an order of magnitude smaller than the original number 

of science detections. Ho we ver, this filtering step has to be done 

carefully in order to prevent overfiltering. To e v aluate ho w many 

detections are o v erfiltered, we estimate the fraction of the ‘real- 

labelled’ detections which are not filtered in the SC approach. This 

estimation is done by manually inspecting 200 random detections 

from those o v erfiltered detections. We find that the SC approach can 

only reco v er ≈80 per cent of those ‘real-labelled’ detections. We 

also find that ≈50 per cent of those o v erfiltered detections are only 

statistical fluctuations instead of genuine real detections. Therefore, 

the o v erfiltered rate of the SC approach is ≈10 per cent . F or those 

o v erfiltered detections, most of them are filtered by mistake due to 

a slightly larger subtraction offset. This o v erfiltered rate is roughly 

consistent with the fact that we obtain our offset threshold f ( m ) by 

fitting to the 2 σ confidence level of the subtraction offset and set the 

lower limit at 3 arcsec . 

We further exclude all faint detections ( m > 21) and edge detec- 

tions (lying within 50 pixels from the edge of the image) to obtain 

our second data set, the SC data set, which then contains 637 937 

detection thumbnails. This set is further split into training and test 

sets, which contain 574 143 and 63 794 detections, respectively. 

3.3 Normalization 

Image normalization is an important data pre-processing procedure to 

make sure that all inputs are consistent and all pix els hav e the same 

range of values. Due to different observing conditions, detections 

having the same intrinsic brightness but observed at different epochs 

usually have different background levels and peak values of the 

signals. Since the real-bogus classification is usually based only on 

the morphology of the detection on the difference image, we need 

to normalize the input (the pixel values of the subtracted cutouts) in 

order to a v oid the classification being affected by these variations. 

We normalize each input by multiplying each difference cutout 

pixel value by 

f ( p) = 

{

[( p − p̄ ) / ( p 1 . 00 − p̄ ) + 1] , p > p̄ 

[ max ( −| ̄p − p| / | ̄p − p 0 . 05 | , −1 ) + 1 ] / 2 , p < p̄ , 
(9) 

where p̄ and p 1.00 are the median pixel value and the peak value 

of the thumbnail, respectively. p 0.05 is the 5- percentile value of the 

pixels which lie below p̄ . In this normalization algorithm, we set p̄ 

to be the background level with a normalized value of 0.5. We then 

linearly normalize the abo v e-background pix els ( p > p̄ ) and below- 

background pixels ( p < p̄ ) with different normalization constants. 

We normalize the peak value p 1.00 to be 1 and the 5-percentile p 0.05 to 

be 0. Since the subtraction process might generate some outliers with 

e xtremely ne gativ e values, in order to a v oid the normalization scale 

being affected by those outliers, we use p 0.05 instead of the minimum 

pixel value to normalize the below-background pixels. 

3.4 Minor planet test set 

To generate a test set for the classifiers we use the code of Killestein 

et al. ( 2021 ) to extract a set of stamps centred on known minor 

planets (MPs). Positions of MPs are queried using SkyBoT (Berthier 

et al. 2006 ) and cross-matched to difference image sources to yield a 

confirmed set of genuine examples. We extract stamps of size 32 × 32 

pixels centred on the difference image detections (the DC approach 

described in Section 3.1 ), equi v alent to extracting stamps centred on 

science sources given the lack of underlying template source. This 

approach yields 50 279 real detections, spanning a wide range of sky 

conditions, PSFs, and source magnitudes. 

We also randomly gathered 92 901 human-re vie wed bogus detec- 

tions from the GOTO detection data base to form a bogus test set. 

Combining with the 50 279 real detections, the entire test set contains 

143 180 detections. 

4  ANALYSES  A N D  RESULTS  

4.1 Model training 

We start our analysis by training our DESOM model with the DC 

data set (see Section 3.1 ). We apply different training approaches 

(see Section 2.3 ) and perform grid searching on the hyperparameter 

space of the DESOM model to obtain the best model configuration. 

The AEs constructed with different training approaches and 

complexities share similar averaged reconstruction loss L dec indi- 

cating similar performance. The loss can be used to perform model 

comparison. Ho we ver, we cannot conclude whether the AE performs 

well based on its loss value alone. Additionally, we manually 

compare the reconstructed outputs and the raw inputs to see if the AE 

performance is reasonable. Fig. 7 shows some examples illustrating 

the AE performance. Since the main objective of the AE in this work 

is to generate a compressed representation for the input to train the 

SOM layer, the AE does not need to be perfect but has to be able 

to pick up enough details from the input for classification purposes. 

In fact, a more complex AE can improve the image reconstruction, 

ho we ver it also results in a larger latent space which requires a more 

complex SOM to learn. Therefore, we should al w ays k eep our AE 

simple but just good enough to reproduce the main details of the 

inputs in order to maximize the efficiency of the SOM training. 

Although the AE trained with the DC data set provides a reasonable 

performance, the performance from the SOM layer is unexpectedly 

bad. We expect that the subtraction artifacts of a similar type should 

group together in the latent space. With this assumption, we should 

be able to conclude the different subtraction issue based on the 

predicted PVs. Ho we ver, the predicted PVs generated by the DC- 

trained DESOM show a completely different morphology from the 

original inputs (see Fig. 8 ). 

The poor performance of the DC-trained DESOM can be explained 

by the fact that the SOM prediction is not transformation (rota- 

tion and/or translation) invariant (Polsterer, Gieseke & Igel 2015 ; 
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Figure 7. Examples of some cutout inputs from GOTO prototype images and 

their reconstructed outputs generated by the DC-trained AE. These examples 

show that the AE performs well on denoising with preserving most of the 

characteristics from the original inputs. 

Teimoorinia et al. 2021 ). Thus, two inputs with the same pattern 

could possibly be separated far apart from each other in the latent 

space if only the location or the orientation of the pattern is different. 

As we can see in Fig. 8 , while the last three inputs have identical 

patterns but with offsets, their PVs look completely different, and 

none of them is a good representation of that pattern. It implies that 

the DC-trained DESOM fails to group them together in the latent 

space. Therefore, we are moti v ated to train our DESOM with the SC 

data set (see Section 3.2 ). 

We train our DESOM model with the SC data set using different 

training approaches and find that the separated training approach 

(Section 2.3.2 ) provides the best performance. We perform grid 

searching on the hyperparameter space of the DESOM. We compare 

L dec and L som of different model configurations. The best model 

configuration is shown in Table 1 . The encoder in our best DESOM 

consists of five hidden layers, three Conv2D layers, and two dense 

layers. The decoder is symmetric to the encoder built with dense 

layers and Conv2DTranspose layers. 

We also show the 30 × 30 DESOM output map in Fig. 9 . The 

separation between two PVs on the SOM map is proportional to 

the Euclidean distance between those corresponding clusters in the 

latent space. Ho we ver, we can see that the point-like PVs concentrate 

Figure 8. Examples of some cutout inputs and their decoded PVs showing 

the poor performance of the DC-trained DESOM. In the last three examples, 

the SOM layer classifies the same pattern located at different positions 

into three different PVs, which indicates that the prediction of SOM is not 

transformation invariant. 

Table 1. Best DESOM model configuration. 

Parameter Value 

Training set SC data set 

Training approach Separate-trained 

1 st hidden layer 32 neurons ( Conv2D + MaxPooling2D ) 

2 nd hidden layer 64 neurons ( Conv2D + MaxPooling2D ) 

3 rd hidden layer 128 neurons ( Conv2D + MaxPooling2D ) 

4 th hidden layer 512 neurons ( dense ) 

5 th hidden layer 120 neurons ( dense ) 

Decoder layers dense + Conv2DTranspose 

SOM map size 30 × 30 

T max 10 

T min 0.01 

Training iterations 15 000 

at both top-left and bottom-left corners, which are supposed to stay 

close with each other. We randomly pick one of the PVs at the top- 

left corner and calculate the Euclidean distance between that PV 

and those at the bottom-right corner. The distance is comparable to 

the intra-distance of the top-left PV clusters. This result indicates 

that the two corners are very close to each other. The DESOM 
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Figure 9. The decoded PVs on the DESOM map of the best model configuration showed in Table 1 . The red bordered PVs indicate the selected PVs in the 

reference PV selection (see text in Section 4.2 ). The green bordered PVs indicate the PVs which are selected manually to further impro v e the model performance. 

map shows that it successfully groups the PVs with qualitatively 

similar patterns together. We can see, in Fig. 10 , that the PVs 

are able to capture the key features from those corresponding 

inputs. 

4.2 Model evaluation 

Before testing our model accuracy, we visually inspect all DESOM 

maps generated by the models with different training approaches 

and hyperparameter configurations. Since most of the DESOM maps 

generated with the combine-training approach (see Section 2.3.1 for 

more details) have two main issues, some of the PVs are random 

noise and some other PVs look identical, we decide to deploy the 

separate-training approach (see Section 2.3.2 ) instead. For the rest 

of this paper, all results are presented based on the separate-training 

approach. 

In order to apply the DESOM model to the real-bogus classifica- 

tion, we need to select which PVs should be classified as real. Since 

each PV can be labelled as real class or bogus class, there are 2 900 

different permutations for a 30 × 30 DESOM map. 

We compare the model performance between DESOM and GOTO- 

VGG by studying their receiver operating characteristic (ROC) 

curv es. The ROC curv e can be generated by gradually moving the 

decision boundary. Ho we ver, for the DESOM model, there is no 

specific order to switch on and off the PVs. With different switching 

order , 900! R OC curves can be generated. To generate some good 

representatives out of all ROC curves, we decide to use GOTO-VGG 

predictions as the reference to assign the switching order for the 
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Figure 10. Examples of some cutout inputs and their decoded PVs predicted 

by the SC-trained DESOM. The SOM loss L som shows a large variation 

depending on the complexity of the image pattern. These examples show that 

the DESOM model performs noise reduction and identify the general patterns 

of the inputs at the same time. 

PVs. We apply the DESOM model to our SC test set such that each 

detection falls on to one of the PVs. Since each test detection comes 

with the real-bogus score predicted by the GOTO-VGG model, we 

can order the PVs by the median values of the GOTO-VGG scores. 

The PV with a higher GOTO-VGG median score means it is more 

likely to be real. To begin with, we ‘switch on’ all PVs. In the other 

words, we label all PVs to be real at first. We then ‘switch off’ the 

PVs one by one starting from the one with the lowest median VGG 

score. In the switch-off process, the ROC curve can be generated as 

the FPR decreases with the increasing missed detection rate (MDR). 

Here, we use our MP test set to estimate the FPR and the MDR 

in order to make sure that each test sample has been re vie wed 

manually. 

To obtain the best ROC curve, we experimented with switching 

off the PVs in different orders. We repeat the abo v e procedure with 

different percentile GOTO-VGG scores instead of the median score. 

Fig. 12 shows that using 99- percentile GOTO-VGG score to order 

the PVs generates the best ROC curve. We define the reference PV 

selection as the one with the lowest MDR at FPR = 1 per cent . The 

MDR at FPR = 1 per cent is also called the figure of merit (FoM). 

With these definitions, the FoM of the reference PV selection is 

about 9–10 per cent (see the red star in Fig. 12 ). We also specify 

Figure 11. The heatmap presents the performance of the PVs. The colour of 

each cell represents the ratio between the probabilities of a real detection and 

a bogus detection falling into that PV. 

the reference PV selection with the red bordered PVs in Fig. 9 . By 

comparing with the FoM ≈ 6 per cent of the GOTO-VGG model, the 

reference PV selection performs slightly worse than the GOTO-VGG 

classifier. 

We further modify our reference PV selection by including some 

extra PV manually. We inspect the selection and find that some 

of the unselected PVs look real. By including eight extra PVs 

(indicated by the green bordered PVs in Fig. 9 ) to the reference 

PV selection, the MDR drops to 6 . 6 per cent and the FPR climbs 

to 1 . 5 per cent , respectively (see the blue star in Fig. 12 ). This 

e x ercise demonstrates that further adjustments to the PV selection can 

impro v e the performance of the DESOM classifier in combination 

with the GOTO-VGG classifier. 

In practice, since generating ROC curve is not necessary unless for 

model comparison, we can manually select all PVs which look like 

genuine detections without any help from other supervised classifiers. 

In order to visualize the performance of the PVs, for each PV, 

we calculate the ratio between the probabilities of a real detection 

and a bogus detection being classified into that PV. The heat map in 

Fig. 11 represents the ratio values. We can see that the ratios of those 

selected PVs are much higher than the others, indicating that a real 

detection is more likely to fall into those PVs than a bogus detection 

does. 

5  DI SCUSSI ON  

We have constructed a DESOM model to classify detections on 

difference images produced with the GOTO prototype instru- 

ment, with the objective of improving our ability to distinguish 

between real and ‘bogus’ detections. We compare our DESOM 

model with the existing GOTO-VGG classifier by discussing their 

strengths and weaknesses in Section 5.1 . In Section 5.2 , we dis- 

cuss the potential usages of DESOM beyond real-bogus classifi- 

cation. We also discuss the limitations of the DESOM model in 

Section 5.3 . 
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Figure 12. ROC curves generated by ‘switching off’ the ordered PVs on 

the DESOM map one by one. Different colours represent the PVs ordered by 

different percentile values of the GOTO-VGG score (see text in Section 4.2 for 

more details). The FoM of the reference PV selection is about 9–10 per cent . 

We also plot the ROC curve of the GOTO-VGG classifier. The blue star 

indicates the performance of the modified reference PV selection with the 

inclusion of eight extra PVs (see green bordered PVs in Fig. 9 ). 

5.1 Comparison between DESOM and GOTO-VGG classifier 

A neural network model is usually considered to be working as 

a ‘black box’. It is very challenging to visually understand the 

prediction logic. Shifting the decision boundary can impro v e either 

the MDR or the FPR. Ho we ver, balancing the MDR and the FPR 

does not fundamentally impro v e the classifier. To do so, we need to 

re-train the classifier with more data or different model configuration. 

On the other hand, DESOM provides users more flexibility in 

the classification process. Users can simply adjust the model by 

selecting more or fewer real-labelled PVs on the DESOM map. Since 

the selection of PVs is done by visual inspection, the adjustment 

is usually explicable. Ho we ver , unlike the GO TO-VGG classifier , 

DESOM is unable to generate a probability score representing how 

likely a detection is real. 

For the GO TO-VGG classifier , we can only shift the entire decision 

boundary. The step size of the shift can be infinitesimal. Ho we ver, 

we cannot control the shape of the decision boundary. In the case 

of a particular pattern which is al w ays misclassified, the ideal 

way to impro v e the performance on that pattern is to only shift 

the corresponding part of the decision boundary, which cannot be 

achieved by adjusting the decision boundary of the GOTO-VGG 

classifier. Unlike the GO TO-VGG classifier , DESOM forms clusters 

to co v er the entire latent space. We can simply change the label of a 

particular PV if we find that the corresponding PV contains too many 

false predictions, allowing us to fine-tune the decision boundary. On 

the other hand, this change is discrete rather than continuous. When 

we change the label of a PV, it is equi v alent to swapping between the 

true predictions and the false predictions of the PV. 

5.2 Other potential usages 

The DESOM model treats real-bogus classification problem as a 

multiclass classification problem. With the visual inspection of the 

DESOM map in Fig. 9 , only ∼5 per cent of the PVs should be used 

to represent the clusters of real detections. For the rest of the PVs, 

they represent the bogus detections with different morphologies and 

subtraction issues. With this characteristic, we can use DESOM to 

flag the detections based on their representative shapes. 

The DESOM map can also be used to e v aluate the performance 

of other classifiers. Different classifiers usually have different weak- 

nesses. In order to impro v e the performance of a classifier, we may 

need to identify which types of patterns the classifier is relatively 

weak at. To do so, we can study the distribution function of the real- 

bogus score for each PV cluster. Visual comparison of the detection 

thumbnails located at both ends of the score distribution can help 

us understand what causes the confusion of the classifier within the 

same PV class. 

5.3 Limitations of DESOM 

There are two limitations using DESOM as a real-bogus classifier. 

First, since DESOM is a self-supervised clustering model, it cannot 

generate a probability score as a prediction. Second, some of the 

detections would be lost in the SC source extraction process (see 

Section 3.2 ). 

With the abo v e two limitations, our DESOM classifier is not ideal 

to replace the current GOTO-VGG classifier. Ho we ver, there are two 

ways of implementing the DESOM output. As we have discussed in 

Section 5.2 , DESOM can be used as a flagging system to provide 

extra information for each of the detections. Therefore, the original 

real-bogus score is preserved. Another way of implementing the 

DESOM model is to build a stack model with the GOTO-VGG 

classifier. Ho we ver, a detailed discussion of this approach is outside 

the scope of this work. 

6  C O N C L U S I O N  

In this work, we demonstrate how to apply a self-supervised learning 

approach to the ‘real-bogus’ classification problem for difference 

imaging. The algorithm we used is the DESOM, a combination of 

AE and SOM algorithms. 

We use 32 × 32 normalized detection thumbnails extracted from 

the difference images to be the inputs of the DESOM model. We find 

that using the detection coordinates obtained from the science image 

to extract the thumbnails can significantly improve the DESOM 

performance. 

We obtain our best DESOM model by training the AE and the 

SOM layer separately. The FoM of the DESOM classifier is about 

9–10 per cent . Since the DESOM performance highly depends on the 

selection of the real PVs, we show that, by adding a few extra PVs, 

the DESOM classifier can further be impro v ed ( MDR = 6 . 6 per cent 

and FPR = 1 . 5 per cent ). 

The major advantage of the DESOM model is the flexibility of 

its PV selection, allowing the user fine-control of the shape of 

the decision boundary. Since the DESOM model treats the real- 

bogus classification problem as a multiclass problem, we suggest 

the best use of DESOM is to build a flagging system for detections, 

in combination with a probabilistic classification. On top of that, 

DESOM output map can be used to e v aluate the performance of 

other typical real-bogus classifiers. 
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DATA  AVA ILA BILITY  

Data files co v ering the system throughput and some of the software 

packages are available via public github repositories under https://gi 

thub.com/GOTO-OBS/. Prototype data were mainly used for testing 

and commissioning and a full release of all data is not foreseen. Some 

data products will be available as part of planned GOTO public data 

releases. 
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