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ENCFIS: An Exclusionary Neural Complex Fuzzy
Inference System for Robust Regression Learning

Chuan Xue and M. Mahfouf

Abstract—Robust learning, an emerging research topic in
recent years, is a promising branch of advanced artificial
intelligence. Robust learning models target mainly noisy and
rough datasets, predominantly in situations where noises and
outliers are hard to remove. In this paper, the concept of robust
learning is combined with complex fuzzy theory for the first time,
proposing a novel neuro-fuzzy system ENCFIS with extensive
adaptability to numerical regression problems, with or without
noise. Simulation results indicate that such architecture has
excellent performance on a dataset with massive (45%) label
noises and on a distorted time series dataset (25% corrupted).
Additionally, experimental results on a metallurgy dataset also
show that the approximation performance of ENCFIS is not
compromised for the increase in robustness, making it an ideal
candidate for general industrial scenarios with weak noise but
difficult data characteristics.

Index Terms—Robust machine learning, Neuro-fuzzy system,
Complex fuzzy inference system (CFIS), Numerical regression.

I. INTRODUCTION

FOR a long time, numerical modelling overridingly relied

on classic statistical models such as ordinary least squares

(OLS) [1], or hypothetical models based on tenable assump-

tions, expert knowledge, and deductive reasoning. However,

the reliability of these methods is often inadequate, and, in

many cases, they can only be employed to describe certain

phenomena qualitatively, which hinders any future attempts to

perform regression tasks based on the information obtained.

With the rise of machine learning, inductive statistical models

represented by artificial neural networks (ANN) are rapidly

replacing traditional methods as the dominant approach in the

field. As technology continues to permeate in this quickly

digitizing world where internet of thing (IOT), deep learning

and big data technologies are massively and increasingly

applied, machine learning based numerical modelling is now

indispensable among incalculable amount of research and

industrial sectors.

Among all applications of numerical modelling, regres-

sion specifically benefits from machine learning methods,

as algorithms of this category are capable of autonomously

and precisely acquiring information from raw data, which

enables it to remarkably outperform traditional methods, at

least from the aspect of accuracy. Not the least of which,

solutions of this category usually do not require its users
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to master precise mathematical expressions of the object.

Although the knowledge of the data perspective is necessary

to select the appropriate model for the task and verify the

credibility of the final output, it is often easier to acquire than

mathematical representations, which significantly reduces the

difficulty of modeling. It is noteworthy that, in the realm of

numerical regression, due to higher requirements for real-time

performance compared with most of the pattern recognition

scenarios, fuzzy machine learning algorithms, represented by

ANFIS (Adaptive Neuro-Fuzzy Inference System) [2] and

WM (Wang-Mendel method) [3], are often preferred owing

to their simplicity, rapid convergence, competitive accuracy,

and interpretability. After the emergence of interval type-2

fuzzy models [4], thanks to richer semantic implications of

type-2 fuzzy logic, the prediction performance of the fuzzy

algorithms is even further upgraded to a level that significantly

outperforms most non-fuzzy machine learning methods.

Nevertheless, conventional machine learning methods in-

cluding fuzzy logic based methods rely highly on the tidiness

of the dataset. As such algorithms are all designed under the

hypothetical premise that the distribution of data is clean,

even the most preeminent algorithms can be confused if

there are statistically notable noises or outliers in the data.

Unfortunately, real-world data is rarely ideal. In many cases,

it is feasible to remove the noise and outliers with certain pre-

processing methods, such as filtering, smoothing or anomaly

detection [5]. However, these methods are hardly 100% effec-

tive and anomalous data points will inevitably be fed into the

model, leading to a reduction in performance. Some designs

with good generalization capability may be resistant to such

perturbations within data to a certain degree, but as long as

such disturbances play a role in the final result, the regression

accuracy of the model will more or less be affected. Even

worse, if undetectable but destructive adversarial perturbation

[6] is planted in the data, it will lead to major impact on model

performance. In fact, practical attack methods [7] have already

been developed by creating malicious data samples with

specially designed adversarial perturbations for the purpose

of sabotaging machine learning models. Conventional machine

learning models are completely defenseless against this type of

attack. As a matter of course, the performance and adaptability

in real-world scenarios is likely to be enhanced if a machine

learning regression model can initiatively counter outliers. This

category of approaches is also referred to as “robust machine

learning” [8].

Support vector regressions (SVRs) [9] can be considered as

0000–0000/00$00.00 © 2022 IEEE
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a paradigm following this line of thought. From the perspective

of statistics, the ultimate objective of all machine learning

algorithms is to achieve the minimization of expected risk.

In general, since the expected risk is difficult to measure,

most algorithms seek to minimize the empirical risk, i.e.,

minimizing the mean loss over all samples in the training

set. However, this poses a few more problems; pure empirical

risk minimization tends to lead to over-fitting of the model

and causes it to be sensitive to the noise. The concept

of structural risk minimization is introduced in SVR as a

compromise between empirical risk and expected risk, which

can be captured by adding a L2 regularization in its loss

function. Further, by introducing a slack variable to this

regularization term, a “hard/soft-margin” is created, which

pardons the errors arising from incorrect data points and thus

significantly avoids the effects of noises [10]. Despite the fact

that SVR has been used extensively to process noisy data,

such method is not perfect. Firstly, although SVR can avoid

the noise in many cases by setting a “margin”, it does not

recognize the differences between the noise and the normal

data from the statistical aspect, which may cause the false

adoption of noisy data samples while some normal ones are

mistakenly excluded. Secondly, even a sparse representation is

available for the SVR model, the complexity of training such

a model can be excessive especially for nonlinear problems

with a significant number of training samples, as it requires

initializing a remarkable number of support vectors to obtain

linearly separable results on the Hilbert space and calculate

kernel functions for each support vector, which results in its

exceptional inefficiency under such circumstances. In the worst

case, if sparse representations are difficult to obtain, the num-

ber of support vectors for the SVR model may even approach

the number of training samples, which is unacceptable.

Other attempts have also been made to improve the noise

immunity of machine learning algorithms. The simplest way

is to replace the objective function with a robust loss func-

tion, such as Huber loss [11], log-cosh loss or quantile loss

[12]. Barron [13] proposed a generalized adaptive robust loss

function, which is considered superior to traditional robust

loss functions. This type of approaches has the advantage of

simplicity, but limited improvement in algorithm robustness.

Further, some researchers enhanced robustness by introducing

a noise adaptation mechanism into the model, i.e., label-noise

representation learning (LNRL) [14]. Goldberger et al. [15]

increased the robustness of the algorithm to outliers by adding

a noise adaptation layer to the deep network. Patrini et al. [16]

introduced loss correction methods in deep learning models

to form a more robustness model. Wang et al. [17] and Ren

et al. [18] applied data reweighting techniques to facilitate

the noise tolerance of network structures. Jiang et al. [19]

employed a small-loss technique to suppress noise but resulted

in cumulative errors. Han et al. [20] ameliorated the small-loss

trick by training two neural networks synchronously to create

a difference channel structure, which successfully cancels out

cumulative noise. However, although the robustness of such

models has been enhanced by LNRL methods, such train of

thought also leads to a dramatic increase in training difficulty.

Subsequently, Wang et al. [21] compensated for the shortcom-

ings of previous LNRL methods by employing a meta-learning

approach to estimate the noise transition matrix, which signif-

icantly ameliorates the efficiency of robust learning systems.

This attempt also created a brand-new class of meta-learning

based robust learning methods. Carmon et al. [22] proposed

a semi-supervised learning strategy to allow networks to

increase robustness by simply adding more unlabeled data

samples, and theoretically justified this approach. Neverthe-

less, semi-supervised learning and meta-learning both require

pure validation sets to pre-train the model, whereas for some

scenarios clean data may not be available. In addition, there

are some non-architectural level techniques that can improve

robustness of the training process, including regularization,

loss designing or even manually exclude some corrupted parts

of data. Such methods are not strictly enhancements to the

robustness of the model, but merely improve the robustness of

the model for specific problems and therefore are not presented

here. Despite the fact that many exploratory attempts have

been made, conspicuous shortcomings exist in the present

robust machine learning methods: a) The robustness comes

at the expense of significantly offsets the accuracy of the

algorithm. b) The training process is often sophisticated and

unfriendly to applications requiring real-time adjustments. c)

Mostly tailor-made to classification and pattern recognition

tasks with uncertain effectiveness over numerical regression

application scenarios. Notably, to our best knowledge, robust

learning frameworks for fuzzy models have not yet emerged.

Driven by the above motivations, an exclusionary neural

complex fuzzy inference system (ENCFIS) that learns from

both normal and contaminated datasets with a robust, accurate

and expeditious regression performance, has been proposed in

this paper. Note that the word “exclusionary” in this context

characterizes the model capability of ruling out the obfuscation

caused by outliers during training. Complex fuzzy sets and

logic (CFS&T) [23] is also introduced in this work to replace

the traditional type-1 or type-2 fuzzy logic for constructing the

fuzzy inference system. The membership degree of a complex

fuzzy set is defined in a unit circle on the complex plane,

with two-dimensional properties that enable less sensitivity

to disturbance compared to the one-dimensional type-1 logic,

contributing to the improved robustness. Additionally, complex

numbers are algebraically closed structures, and the first-order

derivatives of the membership functions of complex fuzzy sets

can guarantee a closed-form solution, which makes gradient

optimization possible. This is an overt advantage in contrast to

the interval type-2 fuzzy logic because an algebraic solution

to the derivative of an interval type-2 membership function

does not exist. Considering that derivatives are actually the

prior knowledge of the optimization surface, by applying

gradient optimization policy, the complex fuzzy model can be

potentially more efficient and precise than a typical interval

type-2 model.

Regarding robust learning, the partition-based bisecting k-

means clustering method [24] is employed to pre-train the

antecedent parameters of membership functions, which not

only ensures that the model is placed close to its optimum

before the iterative optimization process but also helps to avoid

the interference from label noises as clustering is performed
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only on input variables. Once the pre-trained antecedent mem-

bership function maps the training data into the Hilbert space,

the M-estimator based on the Welsch influence function [25]

performs noise-resistant robust estimation to determine the

linear consequent parameters. The M-estimator can score the

credibility of the training samples. It assigns low weights to

data samples close to the noise and outliers in distribution and

gives high weights to those without significant abnormalities

to achieve parameter optimization in high-noise environments.

Given that the residuals are often decoupled from the actual

target under strong noise conditions, compromising the credi-

bility of ordinary loss functions, a Huber loss function that can

generate pseudo-residuals, is employed as the loss function,

which significantly improves the reliability of the iterative

training in high noise environments. Thus, ENCFIS is then

able to perform iterative optimization to refine the network pa-

rameters for better performance. Finally, this robust design was

tested on a highly contaminated synthetic dataset, a severely

corrupted Sunspot time series dataset and a metallurgical

dataset that simulates the real-world scenario. Experimental

results indicate that the ENCFIS model is not just robust

to extremely noisy datasets, but also hugely adaptable and

competitive when it comes to practical applications.

The remainder of this paper is organized as follows: in

Section II, related work on complex fuzzy theory, complex

fuzzy systems and existing robust estimators is introduced.

In Section III, the methodology of the ENCFIS, including

network architecture, robust regression method, and optimiza-

tion policy, is presented. In Section IV, the experimental

implementations and outcomes are exhibited and discussed.

Finally, conclusion as well as the discussions of future work

will be given in Section V.

II. RELATED WORK

A. Complex Fuzzy Theory & Systems

Ramot et al. [26], [27] proposed the pioneering complex

fuzzy set & logic (CFS&L) by extending the common domain

of the type-1 fuzzy membership from the interval between 0

and 1 to the entire unit circle in the complex plane. Sparked

by the particle-wave duality in quantum physics, the modulus

of the complex number is defined as the absolute value of

the complex membership, corresponds to “particle”; while the

phase is designated as the “context”, analog to “wave”. Thus,

the complex fuzzy membership degree is denoted as follows:

ϕs(x) = φs(x) · e(jωs(x)), j =
√
−1 (1)

where φS(x) ∈ [0, 1] represents the modulus term and ωS(x),
which can be arbitrary value, signifies the phase term. If the

phase term is set to be zero, then a complex fuzzy set will

be reduced to ordinary type-1 fuzzy set. The fuzzy inference

logic for complex fuzzy sets is also proposed in the work

of Romat’s. Define two complex fuzzy sets A and B in

the universe of discourse U , where set B is the aggregation

of a group of sets A1, A2, A3, . . . , An. The operators for

complement, union, intersection, and aggregation are defined

respectively as follows:

ϕĀ(x) = C [φA(x)] · e(jωĀ(x)) (2)

ϕA∪B(x) = [φA(x)⊕ φB(x)] · e(jωA∪B(x)) (3)

ϕA∩B(x) = [φA(x) ⋆ φB(x)] · e(jωA∩B(x)) (4)

ϕA(x) = aggregate[ϕA1
(x), ϕA2

(x), . . . , ϕAn
(x)]

=

n∑

i=1

ωiφAi
(x), (5)

where ⊕ denotes t-conorm, and ⋆ is the operator for t-norm.

In fuzzy mathematics, a t-norm refers to intersection in a

lattice and conjunction in logic, whereas a t-conorm plays

the role of a disjunction logic or a union operator. Dick [28]

implemented a further investigation into Ramot’s work and

developed a more general interpretation for complex fuzzy

theory by introducing the mathematical concept of group

theory. According to his point of view, the complex fuzzy sets

can be divided into two factions, depending on whether the

set is rotationally invariant. Rotational invariance is a notion

of algebraic discipline. A function L : Γ × Γ → Γ is defined

as rotationally invariant if and only if L
(
pejα · ejk, qejβ .

ejk
)
= ejk ·L

(
pejα, qejβ

)
holds for all pejα, qejβ ∈ Γ, where

Γ is the lattice this set subordinates to. In abstract algebra,

rotational invariance is also used to describe a group or a

physical phenomenon. If a complex fuzzy set is considered

as rotationally invariant, then the algebraic product cannot be

applied for its conjunction operations. In accordance with the

definition, Romat’s complex fuzzy theory belongs to the family

of rotational invariance.

Dick’s discussion on the rotational invariance provided a

theoretical foundation for the construction of complex fuzzy

inference systems. Subsequently, fuzzy systems based on this

novel theory have emerged. Man et al. [29] proposed the first

complex neuro-fuzzy system by combining complex fuzzy

logic with a single-input ANFIS and named it as Adaptive

Neuro Complex Fuzzy Inference System (ANCFIS). Note that

this six-layer system is mainly aimed at the prediction of

quasi-periodic problems. Therefore, a sinusoidal membership

function is created to attain this purpose:

r(θ) = d sin(aθ + b) + c, (6)

where a, b, c, d are premise parameters. However, the limita-

tion of this network is obvious, as it can only tackle problems

with periodic regularity, such as time series prediction. For

broader function approximation problems, the scale of appli-

cation is greatly restrained because of the shortcomings of the

sinusoidal membership function.

To fill in this gap, Li et al. [30] proposed the complex

neural-fuzzy system (CNFS) based on their originally de-

veloped polynomial complex Gaussian membership function,

which is shown as follows:

µGaussian(x,m, σ) = exp

[
−0.5(

x−m

σ
)2
]

−j(x−m

σ2
) exp

[
−0.5(

x−m

σ
)2
]
, (7)

where x is the base variable, m and σ denote the mean

and the spread of a normal distribution. Compared with the
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sinusoidal function in ANCFIS, this Gaussian complex mem-

bership function can adapt to more universal purposes instead

of only serving problems with periodicity. Such structure

shows advantages in the application of a variety of function

approximation problems. Nevertheless, the CNFS network is

optimized using particle swarm optimization (PSO), which of-

ten gives rise to randomness and lack of robustness in training

process. In addition, since the PSO algorithm does not utilize

the first-order derivative, which is the prior knowledge of the

optimization surface, its computational complexity is often a

magnitude higher than that of gradient methods. Furthermore,

due to the random initialization of the antecedent parameters,

the training results heavily depend on initial values, which

often leads to a local optimum. Clearly, there is still a lot of

room for improvement of this structure.

Shoorangiz et al. [31] also proposed an adaptive complex

neuro-fuzzy inferential system (ACNFIS) to target function

approximation purposes. They applied a polar form complex

Gaussian membership that directly inspired by the intersection

operator from Ramot’s complex fuzzy theory. This function is

given as follows:

µ(θ)=exp

[
−
(
θ−cA
aA

)2
]
∠

{
2πexp

[
−
(
θ−cP
aP

)2
]}

(8)

where {cA, aA} and {cP , aP } are parameter sets for amplitude

term and phase term respectively. Unfortunately, this study

has not been tested in practice, probably due to the lack of

simplicity as well as effective defuzzification methods for this

polar form function compared to the previous two cases.

It is worth noting that the semantic interpretation of the

complex fuzzy logic has not yet theoretically explained.

Therefore, emerged complex fuzzy inference systems are all

adaptive systems based on neural networks, which saves the

trouble of understanding the complicated semantics. In fact,

in addition to Ramot’s complex fuzzy theory, other complex

fuzzy theories have also been proposed. Consider that those

works have not been used to construct fuzzy inference systems,

thus will not be discussed here. Moreover, there is currently

no research in the literature that applies complex fuzzy logic

to build robust learning structures.

B. Robust Estimators

In the field of parameter estimation, many simple yet excel-

lent methods are available, such as the least squares estimation,

method of moments and maximum likelihood estimation [1],

if the actual problem is consistent with the assumed parametric

model and no statistically significant outliers exist in the

observed values. However, in practice, idealized parametric

models are rarely identical to real problems, and observations

are often inaccurate, noisy, or distorted. In this context, the

concept of robust statistics [32] came into being, which is

characterized for its tolerance to imprecision in hypothetical

models as well as to the interference of abnormal observations.

Robust estimators, designed based on the idea of robust

statistics, strive to approach traditional statistical methods but

are more resistant against misleading outliers or deviations

from the reference statistical distribution.

A variety of robust estimators have indeed emerged during

the past few decades, which can be classified into three

main categories, namely L-estimators, R-estimators, and M-

estimators. Specifically, L-estimation is a special linear com-

bination of statistics of the observation, for example, the

sample median and α-trimmed mean, which is extraordinar-

ily straightforward but statistically robust. The most famous

case of L-estimation is the Theil-Sen estimator [33], [34],

in which the mean of a least square estimator is replaced

by the multivariate median, hence significantly increases the

robustness. Such method has no additional parameters, and

its performance is even comparable to OLS, with a high

breakdown point of 29.3%. However, due to the difficulty

of determining the median value increases sharply with the

raise of dimension, the efficiency and accuracy of the L-

estimator represented by Theil-Sen estimator plummets under

high-dimensional conditions. Consequently, L-estimators are

rarely taken in practice since high-dimensional scenarios are

often involved in linear estimations. L-estimators based on

α-trimmed mean are also not preferred because of their

dependance on prior knowledge. Differ from L-estimation, R-

estimation is realized through the classification of residues, in

which the residuals are compartmentalized into several classes

and each class is assigned a unique weight, therefore achieving

a robust statistic. However, the R-estimator is used even less

than L-estimators because its construction even more relies on

the prior knowledge of the problem, which vastly increases the

arduousness of its applications.

Currently, the most mainstream robust estimation method

is the M-estimation. The difference between this method and

the previous two is that it simulates the possible distribution of

the data by formulating an influence function, thus avoiding

the requirement for prior knowledge. The M-estimator, as a

generalization of the maximum likelihood estimator, is suscep-

tible to the data distributed near the mean while insensitive to

the disturbance of anomalous points (usually situated far from

the mean). Therefore, a reliable and robust estimation can be

accomplished even if the priori of the data is unavailable. In

general, there are two types of M-estimators, i.e., ρ-estimator

and ψ-estimator. For ρ-type, assume an n-dimensional mea-

sure space Λ ∈ R
n, and λ ∈ Λ is the parameter vector of the

model. Thus, the representation of this Mestimator Ξ(G) in

accordance with the mapping ρ : χ × Λ → R
n is given as

follows:

Ξ(G) := argminλ∈Λ

∫

χ

ρ(x, λ)dG(x), (9)

where ρ(x, λ) is the influence function, G denotes the distri-

bution of observed values and χ refers to the distribution of

estimation. Note that if ρ(x, λ) = − ln
(

∂G(x,λ)
∂x

)
, then the M-

estimator will reduce to the ordinary maximum likelihood es-

timator. For a differentiable and continuous influence function

ρ, the M-estimator can be simplified to a more computationally

convenient form, i.e., the ψ-type. In this case, the estimator

ξ(G) is defined by equation:

∫

χ

ψ(x, ξ(G))dG(x) = 0, (10)
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and the estimation λ̃ can be obtained by solving the following

equation: ∫

χ

ψ(x, λ)dG(x) = 0 (11)

where ψ(x, λ) = ∂ρ(x,λ)
∂λ

. In addition, M-estimators with

bounded ψ are typically robust, which suggests the importance

of selecting appropriate influence functions. Dozens of influ-

ence functions have been proposed so far, though, only five

of those are most used, i.e., the Huber function, the Hampel

function, the Cauchy function, the Bisquare function and the

Welsch function [25].

III. METHODOLOGY OF THE PROPOSED METHOD

In this part, network architecture, optimization policy, and

robust learning strategies for the proposed ENCFIS algorithm

will be investigated. To ensure accuracy, the Sugeno defuzzi-

fication [35], which is considered as the most exactitude, is

employed. Assume the objective system has m inputs and one

output, then the i th fuzzy rule can be represented as follows:

Rule i : IF l1 is Ai
1(x1) and l2 is Ai

2(x2), . . . , and lm is Ai
m(xm).

By enforcing the Sugeno defuzzification, the output ζi of this

rule is obtained:

ζi = ai0 +

m∑

j=1

aijxj , i = 1, 2, . . . , n, (12)

where Ai
j (xj) denotes the j th antecedent of the i th com-

plex fuzzy rule, aij signifies its corresponding consequent

parameter. In terms of the optimization of the antecedent

parameters, the bisecting k-means algorithm is utilized first

to pre-train the Gaussian kernel parameters to approximate

the actual global optimum. Subsequently, the DEMON [36]

momentum decaying optimization is taken to further fine-tune

the parameters. Regarding the consequent part, a ψ-type M-

estimator based on the Welsch influence function is applied

to conduct a robust linear estimation in order to determine

the consequent parameters from noisy datasets. Moreover,

Huber loss is selected as the cost function to counteract the

disturbance caused by outliers. An overall schematic diagram

of the ENCFIS is unfolded in Fig. 1.

Fig. 1. ENCFIS algorithm flow.

A. Network Structure of ENCFIS

ENCFIS has a five-layer network architecture which is

displayed in Fig.2. A complex Gaussian membership func-

tion in polynomial form similar to the one in CNFS [30]

is employed. This is a batch learning architecture similar

to the initial version of ANFIS [2], where the parameters

are updated after every complete iteration. The operation of

each layer under the m-dimensional input vector x(τ) =
[x1(τ), x2(τ), . . . , xm(τ)]

T
at time τ is presented as follows:

Fig. 2. The main network structure of ENCFIS. (Xi denotes input variable,
Ri represents the firing strength of each rule, Ni is the normalization layer,
Di is the outcome of Sugeno defuzzification, and S signifies the sum of the
previous layer, which is identical to the output of the network, i.e., y.)

Layer 1: The fuzzification is carried out in this layer, where

the real-valued inputs are mapped into the complex common

domain via the following complex Gaussian membership func-

tion:

Oi
1,j(τ) = exp

(
−
(
x(τ)− µi

j

)2

2bij

)

− jexp

(
−
(
x(τ)− µi

j

)2

2bij

)
x(τ)− µi

j

bij
λij , (13)

where Oi
1,j(τ) refers to the complex membership of the i th

rule by the j th input variable, and
{
µi
j , b

i
j , λ

i
j

}
denotes the

antecedent parameters for each node.

Layer 2: This layer computes the firing strength of each

rule, in which a complex multiplication is applied:

Oi
2(τ) =

m∏

j=1

Oi
1,j(τ) =: αi

j(τ) + jβi
j(τ) (14)

αi
j(τ)=


1−

m∏

j=1

(
xj(τ)−µi

j

)

bij
λij


exp


−

m∑

j=1

(
xj(τ)−µi

j

)2

2bij




(15)

βi
j(τ)=−

m∑

j=1

λij
xj(τ)−µi

j

bij
exp


−

m∑

j=1

(
xj(τ)−µi

j

)2

2bij


 , (16)
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where Oi
2(τ) is the strength of the i th firing and αi

j(τ), β
i
j(τ)

represent the value of real component and imaginary compo-

nent, respectively.
Layer 3: All firing strengths are normalized in this layer via

complex division to thoroughly interact the two dimensions of

information. For brevity, formulas (15) and (16) are used here

to simplify the expression:

Oi
3(τ)=

Oi
2(τ)∑n

r=1 o
r
2(τ)

=
αi(τ) + jβi(τ)∑n

r=1 α
r(τ) + j

∑n
r=1 β

r(τ)
, (17)

where Oi
3(τ) denotes the normalized output of i th node in

this layer.
Layer 4: Such layer consists of adaptive nodes, in which the

Sugeno defuzzification is implemented to derive the output of

fuzzy reasoning in accordance with corresponding consequent

parameters:

Oi
4(τ) = Oi

3(τ) ∗


pi0 +

m∑

j=1

pijxj(τ)


 , (18)

where Oi
4(τ) is the result of each reasoning and{

pi0, p
i
1, p

i
2, . . . , p

i
m

}
are consequent parameters.

Layer 5: The overall output of the network is determined

in this layer by simple sum of outputs from layer 4. Note that

only the real component of the complex output is utilized.

O5(τ) = Re
n∑

i=1

Oi
4(τ), (19)

where “Re” denotes the real component of the complex num-

ber, O5(τ) is the network output and m equals to the number

of fuzzy rules for this system. For a real-valued regression task,

the expected result is real-valued, and one cannot assume the

process is complete if the outcome is complex-valued instead.

This operation of mapping the complex reasoning result into

real numbers is essentially a step of defuzzification for the

complex fuzzy sets. For a complex fuzzy membership function

defined in polynomial form, its complex plane projection on

the real axis equals to the real component, which makes it

the best candidate to be the defuzzified output. Not the least

of which, this strategy maintains the nature mapping relation

between the fuzzy antecedents and the output, enabling the

antecedent parameters to be pre-train by a partition-based

clustering method. Technically, ENCFIS shares the same feed-

forward structure as CNFS [30], but its learning method has

shifted from the online learning of CNFS to a batch learning

strategy to serve robust learning purposes.
Regarding the selection of objective function, the mean

square error (MSE) loss function, is often preferred owing to

its good performance in regression tasks. But MSE loss is very

sensitive to outliers, causing a vulnerability against noisy data.

Although the mean absolute error (MAE) is considered more

robust against disturbances, it is rarely applied in neural net-

work optimizations due to its constant gradient that performs

poorly when approximating the minimum. Hence, Huber loss

[11], combining the merits of the two, is taken as the objective

function for ENCFIS, which is shown as follows:

Ĥ(τ)=

{
1
2 (y(τ)−O5(τ))

2
, |y(τ)−O5(τ)| ≤ δ

δ |y(τ)−O5(τ)|− 1
2δ

2, otherwise
(20)

where Ĥ(τ) represents the Huber loss, |y(τ)−O5(τ)| is the

residual at the τ th input, δ denotes the tuning coefficient.

By setting a δ, the Huber function diverts a part of abnormal

data points to the MAE loss, which enhances the robustness

of the traditional MSE loss. After deploying the Huber loss,

the optimization process no longer relies on the residual, but

the pseudo-residual, which is defined as:

ĥ(τ)=

{
y(τ)−O5(τ), |y(τ)−O5(τ)| ≤ δ
δsign (y(τ)−O5(τ)) , otherwise

(21)

where ĥ(τ) represents the pseudo-residual generated by the

τ th data point, sign() is the signum operator that extracts

sign from a real number. Since noise tends to keep the actual

residuals away from the optimization target, the introduction

of pseudoresiduals certainly smooths the training process.

B. Bisecting K-Means

K-means clustering is the best-known clustering method,

simple but effective and are massively applied in many fields.

The primitive k-means, as the name suggests, divides the

data into k clusters according to the pre-determined centroids

ξ1, ξ2, . . . , ξk. By calculating the distance between each data

point xi and the cluster center ξj , each point will be distributed

to the cluster that has the smallest point-to-center gap. Then,

centroids are relocated in accordance with the new clusters:

ξj =
1

|qi|
∑

x∈qi

x (22)

where qi refers to the j th cluster, j = 1, 2, . . . , k. Via multiple

repetitions of above procedures, the optimized solution for

the clusters is determined. However, this method is extremely

dependent on the selection of the initial centroids. Whether it

is the manual or random initialization, the result can easily

fall into the local optimum.

To address this issue, Steinbach et al. [24] combined the

notion of hierarchical clustering with the primeval k-means,

creating a novel top-down version which is now known as the

bisecting k-means. This algorithm also relies on stochastically

chosen of initial centroids, but it effectually averts local

optimum with the help of a binary decision tree. To implement

the bisecting k-means, first consider the whole dataset as a

single cluster, and ordinary k-means is performed to bisect it.

The sum of the squared error (SSE) value for each cluster is

then calculated, and the one with the larger SSE will be further

halved. The above step will be repeated until the number

of clusters equals to the preset. SSE is determined by the

following formula:

SSE =

n∑

i=1

(xi − x̄)
2

(23)

where x̄ is the mean of the cluster, xi denotes an individual

point and there are n points in this cluster in total. Compared

with the earlier k-means counterparts, the bisecting k-means

converges faster especially when the preset k is large, and the

result can be guaranteed to be close to the global optimum.
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C. DEMON Momentum Decaying Optimization

The gradient-momentum method [37] is widely adopted

amongst the brigade of gradient descent schemes. The idea of

momentum is introduced to facilitate optimization in directions

of low curvature, while avoiding fluctuations in directions of

high curvature. Compared with the vanilla gradient solution,

the addition of momentum smooths the optimization process

and helps avoid some possible local optima. Assume x(k) ∈
R

d is the parameter vector of the k th iteration for a network,

the iterative expression for the classical gradient-momentum

optimization is as follows
{
x(k + 1) = x(k) + αv(k)
v(k) = ηv(k − 1)−∇f(x(k)), (24)

where α ∈ R represents the learning rate, ∇f(x(k)) refers to

the vector of the gradient, η denotes the momentum coefficient

and the item v(k) ∈ R
d accumulates momentum over the

iterations. However, such technique is very sensitive to the

initial parameter setting, and even subtle changes can make a

huge difference in the final optimization outcomes. In addition,

unchanged momentum also causes it easy for the model to

miss the optimum over the last few iterations. Consequently,

methods of gradually reducing momentum during training

were proposed, in which DEMON [36] is currently considered

the state-of-the-art.

It is well-known that the concept of momentum is essen-

tially the impact of historical gradients on the present learning

process. For a constant momentum training process, the main

iterative expression can be rewritten as:

x(k + 1) = x(k)− α∇f(x(k))− αη∇f(x(k − 1))−

· · · − αηk−1∇f(x(1))

= x(k)− α∇f(x(k))− α

k∑

i=1

η(i)∇f(x(k − i)) (25)

where η(i) signifies the momentum of the i th iteration and

in this case η(i) = ηi. It should be noted that if k → ∞, then

η(k) → 0. According to the sum of geometric series, we have:

lim
k→∞

k∑

i=1

η(i) = η lim
k→∞

k∑

i=0

η(i) =
η

1− η
. (26)

The DEMON momentum decaying is developed enlightened

by the above expression such that the momentum can be

reduced to zero within finite T steps. In accordance with this

idea, the decayed momentum at the k th step is given as:

η(k) = ηinit
1− k

T

(1− ηinit ) + ηinit
(
1− k

T

) , (27)

where ηinit is the initial momentum. Thus, the renewed

gradient-momentum update equation applying DEMON mo-

mentum decay is as follows
{
x(k + 1) = x(k)− α∇f(x(k)) + η(k)v(k)
v(k) = η(k − 1)v(k − 1)− α∇f(x(k − 1))

, (28)

Since the momentum decays to zero after finite iterations, the

sensitivity of the network to the initial value of the momentum

parameter sharply decreases. This is a huge advantage for

models seeking for more robustness during training, especially

when a model is extremely hyperparameter sensitive. Such

scheme also enables a better optimization process around the

optimal point.

D. M-Estimator with Welsch Influence

Normally, the linear consequent part of a Sugeno neuro-

fuzzy system is updated utilizing the ordinary LS. However,

ordinary LS is susceptible to abnormality among the training

samples, making it unqualified as part of a robust learning

architecture. Thus, an M-Estimator with the Welsch influence

is applied to estimate the linear parameters of the network.

The Welsch influence function is defined as follows:

fW (ε) =
γ2

2

[
1− exp

(
− ε2

γ2

)]
, |ε| ≤ ∞ (29)

where the symbol γ denotes the tuning constant for an M-

estimator and ε refers to the independent variable of the

influence function. Given the following system model:

yL = SLθ + ωL, (30)

where SL is the sample matrix, θ denotes the parameter vector,

yL is the vector for output labels, ωL is the vector of the system

noise which is also independent to the input. The discrete

M-estimator can be obtained via minimizing the following

objective function:

n∑

i=1

fW

(
yi − siθ̂

σ̂

)
=

n∑

i=1

fW (εi) , (31)

where si ∈ SL denotes the i th data sample, σ̂ represents the

scale parameter, εi is the i th z-scored residual, fW refers

to Welsch influence. For continuously differentiable function

fW , designate ψ = ∂fW
∂θ

, then the minimization process can

be further simplified as solving the following equation:

n∑

i=1

ψ

(
yi − siθ̂

σ̂

)
si =

n∑

i=1

ψ (εi) si = 0, (32)

Define weight function w(ε) under the Welsch influence:

w(ε) =
ψ(ε)

ε
= exp

(
− (ε/γ)2

2

)
, (33)

and substitute it into equation (32), we have:

n∑

i=1

w (εi) εisi = 0 (34)

To estimate θ̂, the following equation is derived by substituting

εL = SLθ̂ − yL into equation (34):

ST
LWSLθ̂ − ST

LWyL = 0, (35)

where W is the weight matrix determined by the weight

function w(ε). Thus, the final estimation of the parameter

vector θ is obtained as follows:

θ̂ =
(
ST
LWSL

)−1
ST
LWyL (36)



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, OCTOBER 2022 8

Regarding the tuning constant γ in the weight function, this

is related with the estimation efficiency. In applied statistics,

the efficiency of ordinary LS is usually used as the reference

for evaluating the efficiency level of a robust estimator [25].

The higher the constant tunes, the closer its performance is

to LS, but the robustness against outliers decreases. The most

encountered relative efficiencies of Welsch Mestimator against

ordinary LS under different γ settings are given in TABLE I

[25]. In most cases, the M-estimator is recommended to run

at 95% efficiency level.

TABLE I
THE EFFICIENCY LEVEL UNDER DIFFERENT γ FOR WELSCH

M-ESTIMATOR.

γ 2.3831 2.9850 3.9104 4.7407
Efficiency level 90% 95% 98% 99%

E. Robust Learning Process for ENCFIS

In this section, the robust learning method utilizing bisecting

k-means, DEMON momentum decaying, Welsch M-estimator

as well as Huber loss is illustrated. Note that if the variables of

the input data are too different in scale, it may negatively affect

the performance of clustering, gradient optimization, and M-

estimator. Thus, an essential factor for this strategy to work is

that all data should be normalized according to Z-score [38]

formula:

xz =
x− µz

σz
(37)

where µz is the mean of the samples, σz is the standard

deviation, and xz is the normalized value. The reason for using

the Z-score instead of the Max-Min normalization here is that

the data processed by ENCFIS usually suffer from a significant

amount of outliers, and the scale of the outliers may be larger

than the correct data samples. Z-score can unify the data of

different scales and avoid the normalization outcome being

swayed by the outliers. After the standardization, clustering

is employed to pre-train the antecedent part of the network

using only input variables. By operating the bisecting kmeans

on all training samples, the vector of r cluster centroids

C = {c1, c2, . . . , ci, . . . , cr} is obtained. Here, r must be

identical to the number of fuzzy rules that assigned to each

input variable. Subsequently, the sum of the distances between

samples and their corresponding centroid in every cluster is

calculated, i.e., D = {d1, d2, . . . , di, . . . , dr}, where di =∑n
k=1

(
xki − ci

)
, n denotes the number of samples in this

cluster. Therefore, the antecedent parameter set
{
µi, bi, λi

}

is determined as follows:

µi = ci, b
i = ρ

n∑

k=1

(
xki − ci

)
, λi = 1 (38)

where µi denotes the center of each kernel, bi refers to the

width and λi represents the scale factor for the complex

component. ρ is said to be the expansion factor, which is

default to be 1.

For the conventional type-1 Gaussian fuzzy kernels, after

the previous step, the antecedent parameters should be very

close to the global optimum. But for the complex fuzzy

antecedents, there is still a gap to fill in, as the cluster-

ing algorithm estimates only the projection of the complex

membership functions on the real axis. The remaining part

is left to the iterative optimization algorithm to approximate

its actual condition in the complex plane. For ENCFIS, the

DEMON gradient optimization strategy is utilized to refine

the parameters. Combine the equations (27) and (28), the

expression of the update rule for parameter µi at the recursion

k + 1 is given as follows:




η(k)=ηinit
1− k

T

(1−ηinit )+ηinit (1− k

T )

µi(k+1)=µi(k)−αh(k)∂f(k)
∂µi

∣∣∣
µi=µi(k)

+η(k)v(k)

v(k+1)=η(k)v(k)−αh(k)∂f(k)
∂µi

∣∣∣
µi=µi(k)

(39)

where h(k) is the pseudo-residual under the Huber loss, which

is already defined by equation (21).
∂f(k)
∂µi is the partial deriva-

tive with respect to µi. Further, the update rules for parameters

bi and δi can be obtained by replacing
∂f(k)
∂µi

∣∣∣
µi=µi(k)

with

∂f(k)
∂bi

∣∣∣
bi=bi(k)

and
∂f(k)
∂λi

∣∣∣
λi=λi(k)

, respectively.

As for the linear consequent parameters, the Welsch M-

estimator is utilized to robustly estimate the optimum. Assume

there is a set of N data samples involved, then define the

equation coefficient matrix Si, weight matrix W i, data label

vector y and the parameter vector θi as follows:

Si =




f i0 (x1) f i1 (x1) · · · f iq (x1)
f i0 (x2) f i1 (x2) · · · f iq (x2)

...
...

. . .
...

f i0 (xN ) f i1 (xN ) · · · f iq (xN )


 ,

W i =




wi
1 · · · 0 0
0 wi

2 · · · 0
...

...
. . .

...

0 0 · · · wi
N


 ,

y = [y1, y2, . . . , yN ]
T
,

θi =
[
ai0, a

i
1, . . . , a

i
q

]T
,

where f i0, f
i
1, . . . , f

i
q denote the outputs of the antecedent

neurons, q equals to the number of fuzzy rules, and

wi
0, w

i
1, . . . , w

i
N are determined in accordance with formula

(33). Hence, the estimated consequent parameter at the k th

recursion can be calculated as:

θ̂k =
[(
Sk
)T
W kSk

]−1 (
Sk
)T
W ky. (40)

To correctly implement the proposed robust learning pro-

cess, the clustering step only needs to be used once, whereas

the DEMON optimizer and M-estimator joint learning ap-

proach is supposed to repeat several recursions until the

error requirement is satisfied or the maximum epoch set-

ting is reached. Such learning process is extremely robust

against the label noise for the following reasons. Firstly,

the clustering process does not involve labels, thereby more

accurately estimates the antecedent parameters. Secondly, the

real residuals are replaced with pseudo residuals to conduct
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gradient optimization, which offsets the interference of noise.

Thirdly, the noise-insensitive M estimator is adopted to obtain

the consequent parameters, which avoids the problems caused

by ordinary LS. Note that the choice of gradient optimization

strategy needs to be a smooth and hyperparameter-insensitive

gradient-momentum solution similar to Demon. In early tri-

als, for clean datasets, most gradient optimization methods

achieved close outcomes on ENCFIS, but for highly noisy

data, smooth gradient methods have a better chance to con-

verge because a solution that relies on the stochastic gradient

for the global optimum, such as SGD or Adam, would fail

to converge due to the misleading residuals caused by a large

volume of noise. Also, hyperparameter-sensitive solutions may

significantly increase the difficulty of determining the parame-

ters due to the noise and are therefore not recommended. The

simplified algorithm procedures are given as follows:

Algorithm 1 Robust Learning for ENCFIS (proposed).

Step 1. Normalize the dataset according to Z-score stan-

dardization formula.

Step. 2 Pre-determine the antecedent parameter set{
µi, bi, λi

}
using information obtained from bisecting k-

means according to equation (38).

Step. 3 Compute outputs with the initial setting, then

generate the pseudo-residual ĥ(τ) under the Huber loss.

Step. 4 Refine the antecedent part (non-linear) of the net-

work by DEMON momentum decaying method.

Step. 5 Estimate the consequent part (linear) with Welsch

M-estimator.

Step. 6 Calculate the output of the network, obtain the

renewed pseudo-residual ĥ(τ).
Step. 7 Repeat Step.4-Step.6 until the stopping condition is

satisfied. (It is recommended to set the maximum number

of iterations as the stopping condition.)

IV. EXPERIMENTS AND DISCUSSIONS

A total of three experiments are included in this section

to test the performance of the proposed robust learning ar-

chitecture. It should be noted that all simulations in this

paper were implemented on MATLAB 2022b environment,

and the benchmark models run for the tests were mainly from

MATLAB’s built-in toolbox, while the rest were programmed

from scratch.

Additionally, four different indicators are involved in this

part to evaluate the performance, i.e., standard deviation

(STD), root-mean-square deviation (RMSE), mean absolute

error (MAE), and symmetric mean absolute percentage error

(SMAPE). The calculation formulas are given as follows:

STD =

(
1

N − 1

N∑

i=1

(yi − u)
2

) 1

2

(41)

RMSE =

(
1

N

N∑

i=1

(yi − wi)
2

) 1

2

(42)

MAE =
1

N

N∑

i=1

|yi − wi| (43)

SMAPE =
100%

N

N∑

i=1

2 ∗ |yi − wi|
|yi|+ |wi|

, (44)

where N denotes the number of the samples; u is the mean

of the samples; yi is the label and wi is the estimated value;

yi − wi represents the residual.

A. Corrupted Synthetic Data Test

The single-input-single-output synthetic dataset is produced

by the standard sinusoidal function:

f(x) = sin(x− 3), 0 ≤ x ≤ 10, (45)

in which 201 original data points are isometrically sampled

from [0,10] with an interval of 0.05. Corruption is then

added to the data, by evenly replacing initial data points

with random points ranged from [-3, 2]. A total of 45% of

the data points were “corrupted” during this process, which

poses a huge challenge to any machine learning model. It

is worth noting that there is no testing or validation set for

this experiment. Algorithm performance is evaluated based on

its ability to “restore” the original data. However, given that

the RMSE computed using corrupted data makes no sense,

RMSE value will be evaluated according to the original data.

The hyperparameter setting for this test is given in TABLE

II and the comparison between the proposed ENCFIS model

and other models is revealed in TABLE III. The actual MSE

as well as the Pseudo-MSE during the training process are

side by side displayed in Fig. 3. The visualization of the data

restored by different models is shown in Fig. 4.

Fig. 3. MSE and Pseudo-MSE in training.

TABLE II
ENCFIS HYPERPARAMETER SETTING FOR THE CORRUPTED SYNTHETIC

DATA TEST.

Bisecting k-means clustering for antecedence pre-training
Cluster number k 9 Expansion factor ρ 1

DEMON M-estimator and Huber Loss

Learning rate α 10−6 Tuning constant γ 2.9850
Initial momentum
factor β

0.1 α-cut factor δ 0.15
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Fig. 4. Restored sinusoidal curves.

As it can be easily seen from Fig.3 that the variation trends

of MSE and pseudo-MSE values during training, computed in

accordance with residuals and pseudo-residuals respectively,

show a big difference. The actual residuals from the training

process have lost their authenticity as a measure of the empir-

ical error, due to the very large number of noisy data points

in the dataset. Despite that, pseudo-residuals generated by the

Huber loss function have played a crucial role in measuring

the training error, so that the training can proceed in the right

direction. Regarding the “restoration” performance, six models

including BP [39], RBF [40], GRNN [41] , EA-SVR, Type-

1 and ENCFIS are involved in this test, where Type-1 is

a counterpart of ENCFIS that uses exactly the same robust

learning strategy but takes the traditional type-1 fuzzy logic

instead of the complex fuzzy logic. Type-1 model is specially

introduced as a control group to find out if the complex

fuzzy logic is conducive to performance and robustness of the

model. Furthermore, EA-SVR is a SVR model that applies

evolutionary algorithm [42] to tune the hyperparameters, for

obtaining the best performance from the SVR model.

As shown in Fig. 4, the mostly used but non-robust re-

gression models such as BP, RBF and GRNN are com-

pletely ineffective under such a high level of noise. Even the

SVR, the most classical de-facto robust regression learning

method, which is considered very resistant to noise, has been

influenced, despite the adoption of EA to tune its param-

eters. This also confirms that SVR’s strategy of offsetting

noises via setting a “margin” has limitations. However, the

proposed ENCFIS model as well as the “Type-1” model

obtained the best outcome in this data recovery challenge.

Further investigation of the RMSEs in TABLE III reveals

that ENCFIS not only far outperforms all models including

SVR, but also significantly outperforms Type-1, which is

the type-1 fuzzy logic counterpart of ENCFIS as mentioned

above. Note that the RMSE values here were obtained by

comparing the restored data with the uncorrupted original data.

Given that experimental results may suffer from coincidence,

the Kruskal-Wallis test [43] is introduced to ensure that the

conclusion holds from the statistical perspective. To carry

out the significance test, EA-SVR, Type-1, and ENCFIS are

executed 20 times on this dataset to obtain a set of RMSE

values for each model as the performance reference. Then the

narrative “the two sets of RMSE values have no statistical

difference” is defined as the null hypothesis, meaning a p-

value less than 0.05 would indicate a statistically significant

inconsistency between the two. The p-value obtained from

the Kruskal-Wallis test for EA-SVR and ENCFIS is 0.0002,

while the p-value for Type-1 and ENCFIS is 0.0439, both

rejecting the null hypothesis, i.e., the performance of ENCFIS

on this dataset is statistically superior to EA-SVR and Type-1.

This result suggests that the proposed robust learning method

is highly effective, and the introduction of complex fuzzy

logic is also immensely positive regarding the accuracy and

robustness. Thus, it is sufficient to conclude that the ENCFIS

model is robust under high label noise conditions.

TABLE III
COMPARISON OF THE MODELS OVER THE CORRUPTED SYNTHETIC DATA

TEST.

BP RBF GRNN EA-SVR Type-1 ENCFIS
RMSE 0.639 0.419 0.380 0.126 0.0271 0.0082
Hidden Neurons 5 50 203 - 36 36
Support Vectors - - - 149 - -
Parameters 16 151 603 - 36 45
Epoch 100 100 100 30 100 60

B. Corrupted Sunspot Time Series Test

Sunspot data records sunspot activity from 1874 to 2022,

which can be downloaded from the website of Sunspot Index

and Long-term Solar Observations (SILSO) [44]. In this

experiment, 602 sunspot observations from 1976 to 1980 are

used to create the contaminated training set, while another

602 records from 1984 to 1989 are taken to form the clean

validation set. The form of each data point used for the test

is designated as {χ(τ − 2), χ(τ − 1);χ(τ)}, in which two

previous observations are utilized to create the input vector

while the current observation χ(τ) is considered the output

label. For the training set, around 150 observations out of the

602 are evenly replaced with random values, which means

25% of the time series is compromised. This also suggests that

if the training data is constructed using the above form, 50%

of the data points will contain one incorrect input variable,

25% data points will have a misleading training label and

only 25% of the data points are intact. This experiment is

far more challenging than the previous one because in the

function approximation case only the label noise exists, while

the inputs are perfectly preset. But time series forecasting

requires to apply the earlier observations to predict the future

ones, which gives rise to the inescapable perturbation inside

input vectors, bringing an extraordinarily daunting challenge

to any algorithm. In other word, all benchmark models suffer

from both intense label noises and faulty inputs in this case.

The hyperparameter setting of ENCFIS is shown in TABLE

IV, the ccomparison of all benchmark models are given in

TABLE V and the visualization of model outputs on both

contaminated training set and pure validation set are displayed

in Fig.5. As expected, three non-robust algorithms, BP, RBF



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, OCTOBER 2022 11

TABLE IV
ENCFIS HYPERPARAMETER SETTING FOR THE CORRUPTED SUNSPOT

DATA TEST.

Bisecting k-means clustering for antecedence pre-training
Cluster number k 6 Expansion factor ρ 1

DEMON M-estimator and Huber Loss

Learning rate α 10−5 Tuning constant γ 2.9850
Initial momentum
factor β

0.3 α-cut factor δ 0.1

and GRNN still perform poorly in this test. Although SVR

outperforms non-robust models, it also has obvious deviations

in the prediction of peak points. It may be caused by the way

SVR sets the “margin” that excludes some correct data points

near the peak. Note that the SVR model trained in this test still

has 975 support vectors while the training set has 1000 sam-

ples, indicating that the SVR algorithm has not obtained the

expected sparse representation on this challenging dataset. A

model where the number of support vectors is almost the same

as the size of the training set is of no practical value. From this

perspective, the EA-SVR model does not pass the corrupted

Sunspot time series test. Moreover, even the “Type-1” model

that uses the same robust learning strategy as ENCFIS, failed

to accurately predict the peak part of the time series, which

makes ENCFIS the only winner in this challenge. In fact, the

Sunspot time series is not a difficult object, and many models

can easily achieve good results on this dataset. The only

reason for the poor performance is strong noise and massive

outliers. Thus, it is fair to say that model robustness against

disturbances is the key to excelling in this case. From this

perspective, ENCFIS model exhibits outstanding robustness,

as it barely gets affected by the outliers, which is not only

reflected in Fig. 5, but also verified from the RMSE values

on TABLE V. The above factors strongly indicate that the

proposed robust learning method contributed to such a result.

Nevertheless, given that ENCFIS’ type-1 fuzzy counterpart

marked as “Type-1” also interfered by the noise, it leads us to

the conclusion that the two-dimensional properties of complex

fuzzy logic and the disturbance insensitivity it brings is vital

to the success of ENCFIS as well.

TABLE V
COMPARISON OF THE MODELS OVER THE CORRUPTED SUNSPOT DATA

TEST.

BP RBF GRNN EA-SVR Type-1 ENCFIS
RMSE 101.4287 37.5726 75.1519 17.2526 14.1203 6.4720
Hidden Neurons 20 100 1002 - 30 30
Support Vectors - - - 975 - -
Parameters 81 401 4000 - 30 36
Epoch 100 50 100 30 50 30

C. Ultimate Tensile Strength (UTS) of Metal Alloys Regression

Model

The ultimate tensile strength refers to the peak of engineer-

ing stress in a stress-strain curve, which is a vital property

for metal materials. In metallurgy, it is not easy to ensure

materials meet specific requirements, because the relationship

between the variables of the production process is highly

nonlinear and sparse. In this experiment, 1,500 data samples

from actual industrial processes are selected, of which 1,000

were used as training sets and the other 500 were test sets.

This dataset has a total of 15 input dimensions, of which 13

are numerical variables and 2 are categorical variables. The

specific information of each variable is shown in TABLE VI.

It is worth noting that due to the high dimensionality of this

dataset, only the 10 most important influencing variables are

selected as input information, which are C, Mn, Cr, Mo, Ni,

Site, Tempering Temperature, Cooling Medium, Sample Size

and Test Depth. In addition, since the data comes directly

from industrial processes, it contains an unknown number of

outliers, which caused by measurement errors or incorrect

human entry, which, albeit in limited numbers, may still offset

model performance. It is believed that this experiment can

simulate most real-world scenarios, thus, validate the model

potential in applications. The hyperparameter setting of the

network is shown in TABLE VII, performance indicators of

all benchmark models are provided in TABLE VIII and the

visualization of the model output is displayed in Fig. 6.

TABLE VI
THE BASICS OF UTS DATA SET.

Numerical Variable Mean Median Range

C 0.3902 0.41 0.12-0.62
Si 0.2546 0.25 0.11-0.35
Mn 0.7524 0.73 0.35-1.72
S 0.021 0.023 0.0005-0.21
Cr 1.053 1.07 0.05-3.46
Mo 0.2631 0.23 0.01-1
Ni 0.8039 0.25 0.02-4.16
Al 0.036 0.027 0.005-1.08
V 0.0075 0.005 0.001-0.27
Hardening Temp 856.81 850 820-980
Tempering Temp 604.18 610 170-730
Sample Size 156.93 150 8-381
Test Depth 16.08 12.7 4-140
UTS 932.09 912.9 516.2-1842

Category symbol Categories

Site 6
Cooling Medium 3

TABLE VII
ENCFIS HYPERPARAMETER SETTING FOR THE UTS DATA TEST.

Bisecting k-means clustering for antecedence pre-training
Cluster number k 6 Expansion factor ρ 1

DEMON M-estimator and Huber Loss

Learning rate α 10−6 Tuning constant γ 3.9104
Initial momentum
factor β

0.3 α-cut factor δ 0.2

In terms of RMSE values, the performance of different

models on this dataset varies widely. As a result of the high-

dimensionality, data sparsity as well as perturbation caused

by outliers, traditional non-robust neural network models

such as BP, RBF, GRNN, LSTM [45], and DBN [46] have

underwhelming performance on this dataset. The classical

ANFIS neuro-fuzzy model does not achieve the best prediction

performance as well due to the limited expressive ability of

the type-1 fuzzy logic. Only three models achieved MSE

values that is less than 40, namely EA-SVR, IT2-Sugeno [47]

and ENCFIS, and those are close in performance. Among
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Fig. 5. Model outputs of corrupted Sunspot time series test. (The first row shows the reconstruction results of models on the corrupted training set, and the
second row reveals the prediction results of models on the clean validation set.)

them, the good performance of SVR is attributed to its

unique vector representation of the input data, which makes

it immune to the high dimensionality and sparsity. Also,

SVR is robust to noise owing to its setting of “soft margin”,

which further strengthens its advantages. IT2-Sugeno is a

type-2 fuzzy model that benefits from the richer semantic

representation of the interval type-2 fuzzy logic. The enhanced

generalization capability of the interval type-2 rule-base also

increases the reliability, as its parameters are less prone to

fluctuations due to occasional outliers. However, both methods

have conspicuous disadvantages. The traditional type-2 fuzzy

model is not robust enough for heavy noises. The SVR model

is overwhelmingly inefficient for nonlinear problems with

numerous training samples as the sparse representation is

often hard to obtain, and the algorithm is prone to generate

excessive support vectors instead. Note that both methods rely

on evolutionary algorithms for optimization, which brings the

computational complexity a magnitude higher than gradient

optimization.

To be more specific on this issue, TABLE VIII also provides

the training complexity of each algorithm versus the data

dimension m and the number of samples n, where some of

these algorithms are sensitive to the former, while others are

sensitive to the latter. It can be seen that the EA-SVR model

has the training complexity of O(n3), making it the most n
sensitive one among all benchmark models, which explains

its unfriendliness against training sets with a large number of

data points. For the IT2Sugeno algorithm trained using the

evolutionary algorithm, the complexity is O(mn2 + n!), i.e.,

it is sensitive to both data dimensionality and sample size,

leading to limited application scenarios. In comparison, the

complexity of the ENCFIS model, which is O(mn2), is less

sensitive to sample size, giving it a significant advantage over

the previous two models in tasks with controlled dimension-

ality but massive training samples.

Furthermore, ENCFIS obtained the best RMSE performance

thanks to the proposed robust learning strategy and the im-

Fig. 6. Performance of ENCFIS on UTS regression. The data samples on
the left side of the grey line denote the training set, while the right-side data
samples are the test set. Approximation error is displayed in the picture as
well.

TABLE VIII
COMPARISON OF THE PERFORMANCE (UTS DATA TEST).

STD MAE SMAPE RMSE Epoch TrainComplex

BP 150.9674 32.1335 3.4460 44.4965 200 O(mn)
RBF 149.2079 41.2173 4.4341 54.1319 100 O(mn2)
GRNN 153.8146 39.2092 4.1841 56.5168 100 O(mn2)
LSTM 137.5868 42.4865 4.5160 56.5765 200 O(mn2 +m2n)
DBN 142.1892 36.1535 3.9260 47.7999 50 O(mkm+1)
EA-SVR 153.1510 29.5739 3.1759 39.5723 30 O(n3)
IT2Sugeno - - - 38.7600 100 O(mn2 + n!)
ANFIS 148.6884 36.4036 3.9672 45.4163 50 O(mn2)
ENCFIS 153.6219 28.8886 3.1456 38.0137 20 O(mn2)

proved generalization capability of complex fuzzy logic. The

iteration efficiency of this algorithm is also leading other

benchmark algorithms, reflected by the training epochs, as

ENCFIS achieves the lowest RMSE value with only 20

iterations. It is fair to say that the proposed ENCFIS is a

well-balanced model that integrates performance, efficiency,

and robustness, making it highly adaptable to challenging

numerical regression tasks and real-world scenarios. It should

be mentioned that, unlike most robust models, ENCFIS does

not sacrifice its accuracy significantly for the exchange of extra
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robustness, which suggests that excellent robustness and good

model performance can co-exist in the same architecture.

V. CONCLUSIONS AND FUTURE WORK

In this paper, the first robust machine learning architecture

based on complex fuzzy theory for numerical regression pur-

pose is proposed. This algorithm has a unique robust learning

strategy to deal with noise and outliers, i.e., firstly it utilizes

clustering of input variables to pretrain kernel parameters

to make them close to the optimal position, then further

adopts momentum decay gradient method, Huber loss and

Welsch M-estimator as a joint robust learning method to

accurately predict parameters under the condition of massive

noise interference. At the same time, the two-dimensional

attributes as well as richer information capacity of the complex

fuzzy rule-base also increase the generalization capability and

anti-disturbance performance of the algorithm. In addition,

the existence of closed-form solutions for the first derivatives

of complex fuzzy membership functions enables gradient

optimization, thereby increasing algorithm efficiency, which is

a significantly superiority over type-2 fuzzy architectures that

gradient optimization is unavailable. The experimental results

also confirm that the proposed ENCFIS algorithm exhibits

amazing adaptability whether for a problem with only label

noise or when both input variables and labels are noisy.

Therefore, it has reason to believe that such design is very

successful as a robust learning attempt.

Future work should mainly include the following aspects.

The first is that we will continue to improve the current archi-

tecture, especially to find a better robust objective function

to replace Huber loss, to avoid the trouble of determining

the additional hyperparameter. Secondly, we will search for

a more effective optimization policy in order to obtain better

optimization results in intricate real-world scenarios. Thirdly,

we will further study the complex fuzzy theory and develop

better complex membership functions to replace the current

solution which is rather primitive. In addition, we are also

considering introducing an outlier detection mechanism to

identify outliers within the input variables. Given that deeper

networks are currently the mainstream in this direction, we will

also conduct research in this regard to improve robustness as

well as performance by increasing the depth of the network.
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