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1 Introduction

A major challenge of contemporary physics is to study quantum field theories at strong
coupling. An arguably important example is quantum chromodynamics (QCD) at low
energies. Here, the usually very successful perturbative treatment breaks down and new
strategies are required. One of them is to exploit symmetries to obtain predictions of strong
coupling phenomena. This works better the more restrictive the considered symmetries
are. According to this criterion, the clear winners are integrable systems, whose dynamics
are completely fixed by the existence of infinitely many conserved charges. Although QCD
is not integrable, it has an integrable relative, namely the maximally supersymmetric
SU(N) Yang-Mills theory, which shares some of its qualitative features. This theory has
been actively analysed with integrability techniques over the past two decades [1]. Most
notably, it is equivalent to a closed string propagating in five-dimensional Anti-de Sitter
(AdS) space by the AdS/CFT correspondence. In agreement with this correspondence, the
integrability is also manifest in the two-dimensional non-linear σ-model which describes
the string propagating in the AdS space. Therefore, integrable σ-models currently attract
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considerable interest. They promise an unprecedented level of computational control but
are at the same time very hard to find and even harder to quantise.

In this article, we consider a large family of integrable field theories called affine Gaudin
models [2–4], which gained particular attention in the recent years because they provide a
unifying framework encompassing most of the known integrable σ-models as well as many
new examples [5–7]. Unfortunately, the standard approach to quantise integrable field
theories, the inverse scattering method, is not directly applicable to affine Gaudin models
due to the so-called problem of non-ultralocality [8, 9]. However, there are alternatives to
probe their quantum regime. For example, one might ask how counter terms, that originate
from loop corrections, affect integrability. Do they break classical integrability or not? We
take this question as the motivation for this article. To avoid getting lost in technicalities,
we further restrict the discussion to models without supersymmetry or additional gauge
symmetries in the realm of bosonic string theory. They are captured by the bosonic string
σ-model, namely1

S =
1

4πα′

∫

Σ

(
gij dxi ∧ ⋆dxj + Bij dxi ∧ dxj

)
. (1.1)

It governs D scalars xi, i = 1, . . . , D, which capture the embedding of the closed string into
the D-dimensional (pseudo)-Riemannian target space with the metric ds2 = gij dxidxj and
the two-form gauge potential B = 1

2Bij dxi∧dxj . Only for very few distinguished choices of
the metric and the B-field this model becomes an integrable field theory. Finding them is in
general a difficult task as there is no completely systematic procedure known yet (if it even
exists) to determine whether a given choice of target space geometry leads to an integrable
dynamics or not. However, the formalism of affine Gaudin models allows the systematic
construction of a very large class of such integrable σ-models, which encompasses most
known examples. Therefore, we choose to focus on this class here.

Quantum corrections will renormalise both gij and Bij . It is by no means clear that
they should stay in the very small subset of metrics and B-field that result in an integrable
σ-model. Therefore, it is natural to ask:

Is integrability preserved (or stable) under renormalisation group (RG)-flows?

The main challenge in finding an answer is that we lack a simple criteria to decide if a
given combination of metric and B-field describes an integrable σ-model or not. The only
currently feasible approach is to compare the result of the flow with known examples of
integrable models. This has been done successfully over the last years [10–19] providing
clues that integrability is stable under RG-flows. This finding is particularly remarkable,
because at the level of the σ-model (1.1), it is not obvious at all and seems rather magic.
Of course there is no magic but rather a hidden symmetry principle that protects the
model from integrability breaking counter terms. Our objective here is to reveal it for affine
Gaudin models.

1Later on, we parameterise the worldsheet by two coordinates τ and σ, where the former is timelike. The

worldsheet metric is chosen such that ⋆1 = dτ ∧ dσ, ⋆dτ = dσ, ⋆dσ = dτ and ⋆(dτ ∧ dσ) = −1.
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To this end, we first discuss in section 2 a larger class of (not necessarily integrable)
σ-models, called E-models [20–22], and review the properties of their symmetries, dualities
and renormalisation. In section 3, we introduce affine Gaudin models as a specific subclass of
E-models which are automatically integrable, as their construction ensures the existence of
a Lax connection and a Maillet r/s algebra [23, 24]. Their formulation in terms of E-models
will be extremely useful when we finally transition from the classical to the quantum regime
in section 4. More specifically, we will investigate the form of quantum corrections for affine
Gaudin models. At this point we will identify the structure which preserves integrability
under the RG-flow as related to semi-magic matrices. Moreover, we will use these results to
establish the 1-loop renormalisability of these models and to prove a conjecture formulated
in [16], which compactly expresses their 1-loop RG-flow in terms of their so-called twist
function. This generalises the results of [25] to the case where the twist function possesses
poles of arbitrary order in the complex plane.

2 E-models and Poisson-Lie symmetry

2.1 E-models in terms of current algebras

In this section, we review the general formalism of E-models [20–22] and their relations to
Poisson-Lie symmetry [26]. Our starting point is a Lie algebra d, with basis {t̂

Â
} (where

the hatted notations are introduced for future convenience) and structure constants F̂
ÂB̂

Ĉ

defined by the bracket

[t̂
Â

, t̂
B̂

] = F̂
ÂB̂

Ĉ t̂
Ĉ

. (2.1)

We assume that d is equipped with an ad-invariant non-degenerate symmetric pairing

⟨t̂
Â

, t̂
B̂
⟩ = η̂

ÂB̂
, (2.2)

which requires

F̂
ÂB̂

D̂ η̂
D̂Ĉ

+ F̂
ÂĈ

D̂ η̂
B̂D̂

= 0 . (2.3)

Finally, we suppose that we are given a symmetric involution Ê : d→ d, Ê2 = id, such that
its two eigenspaces Ker(Ê ± id) have the same dimension. The operator Ê acts on the basis
{t̂

Â
} as

Ê(t̂
Â

) = t̂
B̂
Ê B̂

Â
. (2.4)

We will use the pairing η̂
ÂB̂

and its inverse η̂ ÂB̂ to lower and raise indices. In particular,

the ad-invariance of this pairing and the symmetry of Ê imply

F̂
ÂB̂Ĉ

= −F̂
ÂĈB̂

and Ê
ÂB̂

= Ê
B̂Â

. (2.5)

Together with F̂
ÂB̂Ĉ

= −F̂
B̂ÂĈ

, which follows from its origin as structure coefficients of the

Lie algebra (2.1), this implies that F̂
ÂB̂Ĉ

is totally anti-symmetric.
If η̂

ÂB̂
has split signature, i.e. the same number of positive and negative eigenvalues, this

data describes an E-model. The latter has been introduced to study Poisson-Lie symmetric
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σ-models and the closely related Poisson-Lie T-duality [26]. The name Poisson-Lie originates
from the fact that the first examples of Lie algebras d studied in this context have been
Drinfeld doubles describing Lie bialgebras associated to Poisson-Lie groups.

The E-model is defined as a Hamiltonian field theory with periodic spatial coordinate
σ ∈ [0, 2π) whose fundamental field is a d-valued current Jσ(σ) = t̂

Â
J Â

σ (σ) satisfying the
Poisson bracket [22]

{
J Â

σ (σ1),J B̂
σ (σ2)

}
= F̂ ÂB̂

Ĉ
J Ĉ

σ (σ1) δ(σ1 − σ2)− η̂ ÂB̂ δ′(σ1 − σ2) . (2.6)

Evolution with respect to the time coordinate τ of the model of any observable is fixed by
∂τ = {H, ·}, where the Hamiltonian is chosen as

H =
1

2

∫ 2π

0
dσ Ê

ÂB̂
J Â

σ J
B̂
σ =

1

2

∫ 2π

0
dσ ⟨Jσ, Ê(Jσ)⟩ . (2.7)

All field equations induced by this Hamiltonian can be combined into the compact form

dJ Â + J B̂ ∧ J Ĉ F̂
B̂Ĉ

Â = 0 (2.8)

based on the d-valued 1-form J = t̂
Â
J Â = Jτ dτ + Jσdσ, if one identifies

Jτ = Ê(Jσ) = t̂
B̂
Ê B̂

Â
J Â

σ . (2.9)

2.2 σ-model realisations and isotropic subalgebras

There are several ways of connecting the E-model defined above with the standard σ-
model (1.1). All of them require choosing a maximally isotropic subalgebra h ⊂ d. Maxi-
mality implies that the dimension of h is half the dimension of d, while the isotropy requires
that the pairing between any pair of h’s generators vanishes. For every choice of such h, one
can construct a realisation of the E-model as a σ-model whose target space is the quotient
M = H\D, where H and D are the Lie groups corresponding to h and d. In order to make
this relation explicit, we have to explain how the fundamental fields of the E-model, namely
the current components

(
J Â

σ (σ)
)

Â=1,..., dim d
, are related to the degrees of freedom of the

σ-model. As above, we will work in the Hamiltonian formulation: the σ-model is then
described by coordinate fields

(
xi(σ)

)
i=1,..., dim M

on the target space M and their conjugate

momenta
(
pi(σ)

)
i=1,..., dim M

, satisfying the canonical Poisson brackets

{pi(σ1), xj(σ2)} = δi
j δ(σ1 − σ2) {xi(σ1), xj(σ2)} = {pi(σ1), pj(σ2)} = 0 . (2.10)

Of particular interest for us will be the collection of fields

(
J I

σ (σ)
)

I=1,...,2M
=
(
∂σxi(σ), pi(σ)

)
i=1,...,M

, (2.11)

which is naturally valued in the generalised tangent bundle TM ⊕ T ∗M . In the above
equation and in what follows, we use upper-case indices I, J ∈ {1, . . . , 2 dim M} to label
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components in this bundle, in contrast with the lower-case indices i, j ∈ {1, . . . , dim M}

labelling coordinates on M . The fields J I
σ are governed by the bracket

{J I
σ (σ1),J J

σ (σ2)} = −η̂ IJ δ′(σ1 − σ2) , where η̂ IJ =

(
0 δi

j

δi
j 0

)
(2.12)

is the standard pairing on the generalised tangent bundle TM ⊕ T ∗M . As commonly done,
we use η̂ IJ and its inverse η̂ IJ to raise and lower indices I, J, . . . . The notations J I

σ and

η̂ IJ , similar to the current components J Â
σ and bilinear pairing η̂ ÂB̂ on d, are justified by

the pivotal formula

J Â
σ := ÊÂ

I J
I
σ , (2.13)

which relates the E-model current to the σ-model fields. The key ingredient in this relation
is the so-called generalised frame field ÊÂ

I , which satisfies the following properties:

1. It depends only on the coordinates xi of the quotient M = H\D.

2. It transforms the standard metric η̂ IJ on TM ⊕ T ∗M into the pairing η̂ ÂB̂ on d, i.e.

η̂ ÂB̂ = η̂ IJ ÊÂ
I ÊB̂

J . (2.14)

3. It gives rise to the structure coefficients through the relation

F̂
ÂB̂Ĉ

= 3Ê
[Â

I∂IÊ
B̂

J Ê
Ĉ]J

, (2.15)

where ∂I =
(
∂i 0

)
is the standard solution of the section condition in double field

theory [27–29].

The existence of a generalised frame field with such properties is a non-trivial fact [30–34],
which relies strongly on the assumption that h is a maximally isotropic subalgebra of d.
More precisely, the explicit construction of ÊÂ

I extensively uses the so-called isotropic basis
of d associated with the choice of h. For completeness, we review this in appendix A. The
properties 1 to 3 listed above ensure that, through the relation (2.13), the canonical bracket

for the fields of the σ-model translates to the current algebra (2.6) for J Â
σ . This guarantees

that the formula (2.13) is compatible with the Poisson structure underlying the E-model.
With this relation at hand, one is able to reformulate the E-model entirely in terms of

the canonical fields (xi, pi). In particular, the Hamiltonian (2.7) becomes

H =
1

2

∫ 2π

0
dσ ÊIJ J

I
σJ

J
σ with ÊIJ = Ê

ÂB̂
ÊÂ

I ÊB̂
J . (2.16)

The object ÊIJ appearing in this formula is called the generalised metric and takes the
form [35]

ÊIJ =

(
gij −BikgklBlj Bikgkj

−gikBkj gij

)
, (2.17)

where the tensors gij = gji, gij = gji and Bij = −Bji on M are identified with the metric,
inverse metric and B-field of the σ-model (1.1), respectively. Indeed, a standard canonical
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analysis shows that (2.16) is exactly the Hamiltonian corresponding to the action 2πα′S. In
particular, we can conveniently read off the metric and B-field from ÊIJ . All challenges in the
identification of the E-model with a σ-model are encapsulated in the generalised frame field,
but fortunately its construction is completely worked out (see above and appendix A). If
there are different possible choices for the maximally isotropic subgroup H, we can construct
different generalised frame fields that are not related to each other by diffeomorphisms or
B-field gauge transformations. Thus, they correspond to different σ-models which still arise
from the same E-model. This phenomena is known as Poisson-Lie T-duality.

To make the discussion complete, let us finally spell out the relation

pi = gij ∂τ xj + Bij ∂σxj (2.18)

between the conjugate momenta pi used in the Hamiltonian formulation of the σ-model
and the time derivatives ∂τ xi appearing at the Lagrangian level. Recall that the dynamics
of the E-model is conveniently expressed in terms of the 1-form J Â = J Â

σ dσ +J Â
τ dτ . The

equation (2.13) above explained the relation between its spatial component J Â
σ and the

canonical fields of the σ-model. In the Lagrangian formulation, this naturally extends to
the full 1-form J Â through

J Â = ÊÂ
I J

I , with J I =

(
dxi

gij ⋆ dxj + Bij dxj

)
. (2.19)

2.3 Chiral basis

Another basis of d, as important as the isotropic one used in the previous subsection, is the
so-called chiral basis. Its main motivation is that the defining data of the E-model is encoded
in η̂

ÂB̂
, Ê

ÂB̂
and F̂

ÂB̂Ĉ
. However, there is redundancy among these three quantities! In the

isotropic basis, we already fixed the form of η̂
ÂB̂

. But one can do more and also fix Ê
ÂB̂

completely, such that all the relevant information about the model is exclusively encoded in
the structure coefficients F̂

ÂB̂Ĉ
. To this end, we introduce the chiral basis (t̂

Â
) =

(
t̂â, t̂

â

)
,

where
(
t̂â

)
and

(
t̂
â

)
are orthonormal bases of the eigenspaces Ker(Ê − id) and Ker(Ê + id)

respectively (recall that Ê2 = id and thus that these eigenspaces span the whole algebra d).
Such a chiral basis is characterised by the simple form taken by η̂

ÂB̂
and Ê

ÂB̂
in it, namely

η̂
ÂB̂

=

(
η̂

â̂b
0

0 η̂
â̂b

)
and Ê

ÂB̂
=

(
η̂

â̂b
0

0 −η̂
â̂b

)
, (2.20)

where η̂
â̂b

= −η̂
â̂b

= diag(+1, . . . , +1,−1, . . . ,−1) is the flat metric on the tangent space of

the target M = H\D, with signature (p, q), p + q = dim M = 1
2 dimD. The choice of chiral

basis is not unique as (2.20) is manifestly invariant under the action of two copies of O(p, q),
forming the so-called double Lorentz group. It relates different choices of orthonormal bases
of the eigenspaces Ker(Ê ∓ id). The σ-model metric and B-field are invariant under the
action of this double Lorentz group, as can easily be seen from (2.17). At the infinitesimal

level, such a double Lorentz transformation acts as a change of basis δt̂
Â

= U
Â

B̂ t̂
B̂

with
U

â̂b
= U

b̂â
= 0 and U

â̂b
and U

â̂b
being skew-symmetric matrices.

– 6 –
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In particular, the chiral basis results in very simple expressions for the two projectors

P̂
Â

B̂ =
1

2

(
δ

Â
B̂ + Ê

Â
B̂
)

=

(
δâ

b̂ 0

0 0

)
and P̂

Â
B̂ =

1

2

(
δ

Â
B̂ − Ê

Â
B̂
)

=


0 0

0 δ
â

b̂




(2.21)

that can be understood as maps P̂ : d→ Ker(Ê − id) with P̂ (t̂
Â

) = P̂
Â

B̂ t̂
B̂

and similarly

for P̂ : d→ Ker(Ê + id). In the above form, one can see immediately that they satisfy the

required properties P̂ 2 = P̂ , P̂ 2 = P̂ and P̂ P̂ = 0.

2.4 RG-flow and one-loop β-functions

Let us finally discuss the renormalisation of E-models. We fix a double Lie algebra
d = Lie(D), with pairing ⟨·, ·⟩ and a maximally isotropic subalgebra h = Lie(H). The E-
model construction, reviewed above and in appendix A, then provides a family of σ-models
with target space M = H\D, parametrised by the choice of a symmetric involutive operator
Ê : d → d. Quantum effects will eventually renormalise these σ-models: in particular,
their metric and B-field (gij , Bij) will acquire a dependence on the Renormalisation Group
(RG) scale µ, governed by a differential equation in µ called the RG-flow. We say that
this RG-flow preserves the underlying E-model structure if the renormalised σ-models still
belong to the family described above. In particular, d and h then remain fixed but there
is an induced flow of the operator Ê with respect to µ. In that case, the Poisson-Lie
symmetries and dualities of these σ-models are preserved under the RG-flow. Moreover, if
the expression of the flow of Ê is independent of the isotropic subalgebra h then Poisson-Lie
T -dual theories associated to different choices of such isotropic subalgebras will share the
same β-function.

The RG-flow of σ-models is most often studied through its loop expansion, perturbatively
in the quantum parameter α′. The fact that this flow preserves the E-model structure was
shown at one-loop in [36–38] and at two-loop in [39] but currently remains an open question
for higher orders. In both cases this flow is independent of h. Before describing the one-loop
result more explicitly, let us investigate some of the general properties of the RG-flow under
the assumption that it preserves the E-model structure. By construction, such a flow can
be written in terms of the Ê-operator as

d

d log µ
Ê = Ŝ , (2.22)

where Ŝ is a symmetric linear operator on d. In this language, Poisson-Lie T -dual models
share the same β-function if Ŝ depends only on the data

(
d, ⟨·, ·⟩, Ê

)
and not on the choice

of h. Moreover, the form of Ŝ should be such that the property Ê2 = id is preserved along
the flow (2.22): this requires Ê Ŝ + ŜÊ = 0. We will give the explicit expression of Ŝ at
one-loop later in this subsection.

We now want to translate the abstract equation (2.22) as an RG-flow for the quantities
Ê

ÂB̂
, η̂

ÂB̂
and F̂

ÂB̂Ĉ
used to describe the E-model in a given choice of basis (t̂

Â
) of

d. This requires a careful treatment, as this basis can in general also depend on the
parameters of the theory and could thus itself flow under the RG. A choice often done in
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the literature is to consider a fixed basis (t̂
Â

) in which the structure coefficients F̂
ÂB̂Ĉ

and
the pairing η̂

ÂB̂
are constant, which can for instance be an isotropic basis. All the running

couplings of the E-model are then contained in Ê
ÂB̂

and the equation (2.22) translates to

a flow d
d log µ ÊÂB̂

=
〈
t̂
Â

, Ŝ t̂
B̂

〉
on these coefficients. In this choice of basis, the generalised

frame field ÊÂ
I does not flow and the renormalisation of the σ-model couplings (gij , Bij)

contained in the generalised metric ÊIJ = Ê
ÂB̂

ÊÂ
I ÊB̂

J is then only due to the flow of the

coefficients Ê
ÂB̂

.

RG-flow in the chiral basis. In this paper, we will follow a different strategy, by working
with the chiral basis (t̂

Â
) =

(
t̂â, t̂

â

)
introduced in the previous subsection. As explained

there, this is a basis in which η̂
ÂB̂

and Ê
ÂB̂

are simultaneously diagonalised in the very

simple and constant form (2.20). We stress that, since the bilinear form ⟨·, Ê ·⟩ runs with
the RG-flow (2.22), the associated chiral basis (t̂

Â
) is not constant along the flow. Instead,

it evolves through a continuous series of O(D, D) transformations, which bring back ⟨·, Ê ·⟩
to the diagonalised form (2.20) as it runs. We choose to parametrise the flow of the chiral
basis as

d

d log µ

(
t̂
Â

)
= β̂

Â
B̂ t̂

B̂
, (2.23)

in terms of a tensor β̂
Â

B̂ . The fact that the entries η̂
ÂB̂

stay constant along the flow implies

that the tensor β̂
ÂB̂

with lowered indices is skew-symmetric, i.e. β̂
ÂB̂

= −β̂
B̂Â

. With

respect to the decomposition (t̂
Â

) =
(
t̂â, t̂

â

)
of the chiral basis, the components β̂

â̂b
and

β̂
â̂b

generate infinitesimal double Lorentz transformations, corresponding to a redefinition

of the orthonormal bases (t̂â) and (t̂
â
) (see subsection 2.3), and can thus be set to any

skew-symmetric values without affecting the flow of the underlying σ-model. All the physical
information about the RG-flow is then contained in the components β̂

â̂b
= −β̂

b̂â
. These

can be related to the operator Ŝ characterising the flow (2.22) of Ê by imposing that, by
definition of the chiral basis, the entries Ê

ÂB̂
= ⟨t̂

Â
, Ê t̂

B̂
⟩ keep the diagonalised form (2.20)

along the flow. We then find that

β̂
â̂b

=
1

2
⟨t̂â, Ŝ t̂

b̂
⟩ and β̂

â̂b
= −

1

2
⟨t̂

â
, Ŝ t̂̂

b
⟩ . (2.24)

Let us also note that the preservation of Ê2 = id along the flow imposes ⟨t̂â, Ŝ t̂̂
b
⟩ =

⟨t̂
â
, Ŝ t̂

b̂
⟩ = 0. As expected, the data of the operator Ŝ is thus equivalent to that of the

components β̂
â̂b

. This observation originates from the two different ways of encoding the

RG-flow: the former in terms of the flow of Ê and the latter in terms of the flow of the
chiral basis.

It is clear that the generalised frame field coefficients ÊÂ
I in the chiral basis are not

RG-invariant, since the basis (t̂
Â

) itself runs with µ. The flow of ÊÂ
I is simply given by

d

d log µ

(
ÊÂ

I

)
= β̂Â

B̂
ÊB̂

I , (2.25)
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providing a useful geometric interpretation of the tensor β̂Â
B̂

. In that framework, the
renormalisation of the σ-model couplings (gij , Bij) contained in the generalised metric

ÊIJ = Ê
ÂB̂

ÊÂ
I ÊB̂

J is then only due to the flow of the frames ÊÂ
I , since the coefficients

Ê
ÂB̂

are kept constant.
Let us finally recall that in the chiral basis, all the parameters of the E-model are

encoded in the structure coefficients F̂
ÂB̂Ĉ

. The RG-flow of the theory can then also be

conveniently written in terms of these coefficients and the tensor β̂
Â

B̂, taking the form

dF̂
ÂB̂Ĉ

d log µ
= 3β̂

[Â
D̂F̂

B̂Ĉ]D̂
. (2.26)

One-loop β-functions. We end this subsection by the explicit description of the RG-flow
of E-models at one-loop [36–38]. Following the general discussion above, this flow can be
encoded in the operator Ŝ or equivalently in the tensor β̂

â̂b
= 1

2⟨t̂â, Ŝ t̂
b̂
⟩. At one-loop, i.e.

at the first order in the α′-expansion, the latter takes the particularly simple form [39]

β̂
(1)

â̂b
= −F̂

âĉ
d̂ F̂

b̂d̂

ĉ . (2.27)

3 Affine Gaudin models and integrability

We are now specialising to a class of integrable E-models called affine Gaudin models [4, 40].
At their heart is a Lax connection, which is fixed by a rational function φ(z) of the spectral
parameter z, the twist function.

3.1 Lax connection and Maillet bracket

In order to identify a field theory as integrable, we have to construct an infinite number of
independent conserved charges. Moreover, these charges are required to be in involution,
meaning that they should Poisson commute. A systematic approach to this problem relies
on identifying a Lax connection L(z) = Lσ(z)dσ + Lτ (z)dτ built out of the fields of the
theory. This is a one-parameter family of one-forms on the worldsheet, valued in (the
complexification of) a simple Lie algebra g and labelled by the spectral parameter z ∈ C,
which is required to be on-shell flat, namely such that

dL(z) + L(z) ∧ L(z) = 0 , (3.1)

for all values of z, after imposing the field equations. Integrating the Lax connection L(z)

along a spatial path σ ∈ [0, 2π], we obtain the monodromy2

T (z) = P←−exp

(
−

∫ 2π

0
Lσ(z)dσ

)
. (3.2)

Combining (3.1) with periodic boundary conditions L(σ=0; z) = L(σ=2π; z), one finds that
the time evolution of T (z) is governed by

∂τ T (z) = [Lτ (0; z), T (z)] . (3.3)

2Because Lσ is Lie algebra valued and therefore non-commutative, we have to use the path-ordered

exponential.
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It follows that the trace tr(T (z)) is conserved for all z, even though T (z) itself is in general
not conserved. Another common setup in the literature assumes boundary conditions where
the Lax connection vanishes at σ = ±∞. In this case T (z) is conserved.

An infinite number of conserved charges can be obtained by expanding tr(T (z)) around
a specific point. A sufficient condition ensuring the involution of these conserved charges is
that the Poisson brackets of the Lax connection’s spatial component are of Maillet’s r/s

form [23, 24]

{Lα
σ(σ1;z),Lβ

σ(σ2;w)}= (r+s)δβ(z,w)fδγ
αLγ

σ(σ1;z)δ(σ1−σ2) (3.4)

+(r−s)αδ(z,w)fδγ
βLγ

σ(σ2;w)δ(σ1−σ2)−2sαβ(z,w)∂σ1δ(σ1−σ2) ,

for some functions rαβ(z, w) and sαβ(z, w). Here, Greek indices like α, β, . . . label the
generators tα of the Lie algebra g in which the Lax connection takes value. Moreover, we
have the corresponding structure constants, defined by

[tα, tβ] = fαβ
γtγ , (3.5)

and Lα
σ are the coefficients of the spatial component of the Lax connection Lσ = tαL

α
σ .

For the class of integrable models we are interested in throughout the remainder of this
article, one can express r and s in terms of an invariant metric καβ on g and a rational
function φ(z), called the twist function, as

(r + s)αβ(z, w) =
φ(w)−1

w − z
καβ , (r − s)αβ(z, w) =

φ(z)−1

w − z
καβ . (3.6)

Our next goal is to explain how the analysis of a Maillet bracket with twist function naturally
leads to the systematic construction of integrable E-models. By doing so, we reveal the
relation between these integrable E-models and the formalism of affine Gaudin models.
Finally, we will discuss two equivalent but complementary descriptions, each presenting
their respective benefits, and corresponding to different bases of the underlying Lie algebra,
which are naturally associated to either the poles or the zeroes of the twist function φ(z).

3.2 Affine Gaudin models and poles basis

The deeper algebraic origin behind the non-ultralocal Poisson algebra (3.4) is best understood
by working with the combination Γα(σ; z) = φ(z)Lα

σ(σ; z) which satisfies the Poisson bracket

{Γα(σ1; z), Γβ(σ2; w)} = −fαβ
γ

Γγ(σ1; z)− Γγ(σ2; w)

z − w
δ(σ1 − σ2)

+
φ(z)− φ(w)

z − w
καβ∂σ1δ(σ1 − σ2) . (3.7)

This simple rewriting of (3.4) leads to the interpretation of the g-valued connection φ(z)∂σ +

tαΓα(σ; z) as the Lax matrix of an affine Gaudin model [2–4], see also [6]. If φ(z) has poles
at zi for i = 1, . . . , M of orders ni ≥ 1 then it is consistent with (3.7) to take Γα to have
the same pole structure, so that

φ(z) =
M∑

i=1

ni−1∑

p=0

ℓ[i,p]

(z − zi)p+1
+ λ−1, Γα(σ; z) =

M∑

i=1

ni−1∑

p=0

J
α[i,p]
σ (σ)

(z − zi)p+1
(3.8)
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for some constant parameters ℓ[i,p] and λ and some fields J
α[i,p]
σ (σ). It then immediately

follows from the bracket (3.7) that the coefficients of the Gaudin Lax matrix (3.8) satisfy
the current algebra

{
JαÃ

σ (σ1),JβB̃
σ (σ2)

}
= fαβ

γ F̃ ÃB̃
C̃

JγC̃
σ (σ1)δ(σ1−σ2)−καβ η̃ÃB̃ ∂σ1δ(σ1−σ2) (3.9)

where we use the single index notation Ã for a pair of indices [i, p] where i = 1, . . . , M

labels the sites of the affine Gaudin model (i.e. the poles of φ(z)) and p = 0, . . . , ni − 1 the
corresponding order of the poles. Explicitly, we have

F̃ ÃB̃
C̃

=





1 if Ã = [i, p], B̃ = [i, q] and C̃ = [i, p + q]

0 otherwise
(3.10)

and

η̃ÃB̃ =





ℓ[i,p+q] if Ã = [i, p] and B̃ = [i, q]

0 otherwise.
(3.11)

In other words, (3.9) describes a current bracket with underlying Lie algebra given by a
direct sum of truncated loop algebras, or Takiff algebras, over g and with levels given by
the ℓ

Ã
.

So far we have shown that the Maillet bracket (3.4) with twist function φ(z) is equivalent

to the data of currents JαÃ
σ (σ) associated with the poles of φ(z) and satisfying the simple

Poisson bracket (3.9). The remaining ingredient needed to construct an integrable field
theory is the choice of an Hamiltonian H such that the dynamics ∂τ = {H, ·} takes the
form of a flatness equation (3.1) for the Lax matrix Lσ(z). This is exactly what the affine
Gaudin model formalism provides. More precisely, it was shown in [4, 6] that the time
evolution of Lσ(z) takes the form of a flatness equation if one chooses the Hamiltonian to be

H = −
2N∑

A=1

res
z=ζA

ϵA

2φ(z)

∫ 2π

0
dσ καβ Γα(σ, z)Γβ(σ, z), (3.12)

where the points {ζA}A=1,...,2N are defined as the zeroes3 of φ(z), which we suppose real
and simple, and the coefficients ϵA are constant numbers. As explained in [6], to ensure
that the model is relativistic and has a positive Hamiltonian when g is compact, one further
has to take ϵA = −sign

(
φ′(ζA)

)
. For reasons to be explained later, we suppose from now

on that the choice of φ(z) is such that there are as many ϵA’s equal to +1 as ϵA’s equal
to −1. Reinserting the expression (3.8) of Γ(σ, z) in the above equation, one can compute
explicitly the residues and write the Hamiltonian in the form

H =
1

2

∫ 2π

0
dσ καβ ẼÃB̃

JαÃ
σ JβB̃

σ , (3.13)

where the explicit expression of the coefficients Ẽ
ÃB̃

, which depend on the location of the
zeroes ζA, the poles zi and their orders, as well as the coefficients ϵA, will not be needed in
what follows.

3The number of zeroes of the twist function φ(z) in equation (3.8) is given by
∑M

i=1
ni, where ni is the

multiplicity of the pole zi. We will suppose here that this number is even and will denote it as 2N .
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The above results are very suggestive of a relation between affine Gaudin models and
E-models. Indeed, the Poisson bracket (3.9) of the currents JαÃ

σ (σ) obtained here from
the Maillet bracket is a special case of the fundamental Poisson algebra (2.6) defining an
E-model. More precisely, this E-model is built from a Lie algebra d with a basis labelled
by pairs of indices αÃ, where the α’s label a basis of g and the Ã’s are indices associated
with the poles of φ(z), as introduced earlier in this subsection. Using these indices, the

structure constants of this algebra d then take a factorised form fαβ
γ F̃ ÃB̃

C̃
, where fαβ

γ

are the structure constants of g and F̃ ÃB̃
C̃

are defined in equation (3.10). This identifies d

with the direct sum of Takiff algebras of multiplicity ni associated with the poles of φ(z).
Similarly, the invariant pairing on d that arises from the above analysis takes the

factorised form καβ η̃ÃB̃ , where η̃ÃB̃ is defined in equation (3.11) in terms of the coefficients
in the partial fraction decomposition of φ(z). Finally, the operator Ê characterising the
E-model is obtained by comparing the expressions (2.7) and (3.13) for the Hamiltonian of

the theory. The matrix entries of this operator then take a factorised form δβ
α Ẽ

B̃
Ã

with

Ẽ B̃
Ã

defined through equation (3.13). One can show that this operator is symmetric with

respect to the pairing defined above and is an involution with Ê2 = id, using the fact that
the coefficients ϵA square to 1 (indeed, these coefficients turn out to be the eigenvalues of Ê).

The various ingredients described above define an E-model, which by construction
is integrable. This thus shows that any integrable field theory with twist function φ(z)

and Lax matrix Lσ(z) = φ(z)−1Γ(z) given by (3.8) can be naturally cast as an E-model.
These theories exactly coincide with the models introduced in [40] using the 4-dimensional
Chern-Simons theory, whose Hamiltonian formulation is known to be deeply related to
the affine Gaudin model construction [41]. In this subsection, we have described the Lie
algebra d, the invariant pairing ⟨·, ·⟩ and the operator Ê defining the E-model in a basis
naturally associated with the poles of the twist function φ(z). In this description, the
structure constants of the E-model are particularly simple — see the definition (3.10) of

F̃ ÃB̃
C̃

, allowing an easy identification of the underlying Lie algebra d. This is for instance
useful to construct the maximally isotropic subalgebra h of d which is needed to relate the
E-model to a standard σ-model. However, the price to pay for this simplicity is a more
complicated expression for the invariant pairing — see the definition (3.11) of η̃ÃB̃ — and
a quite convoluted expression for the operator Ê .

3.3 Zeroes basis

In the above affine Gaudin model formulation of integrable E-models, all the couplings of
the theory are encoded in the tensors η̃ÃB̃ and Ẽ

ÃB̃
since the structure constants (3.10) are

independent of the couplings. It was argued in [39] that for the purpose of computing the
one- and two-loop RG flows of these σ-models, it is convenient to encode all the E-model
couplings in the structure coefficients themselves: we refer to subsections 2.3 and 2.4 for a
review. In particular, this approach was used in [25] to compute the 1-loop RG flow of the
integrable E-models under consideration in the case when φ(z) has at most simple poles.

The change of basis in the current algebra (3.9) which has the effect of both diagonalising
the tensors η̃

ÃB̃
and Ẽ

ÃB̃
and removing all of their coupling dependence was constructed

in [40]. It can be motivated by analysing the definition (3.12) of the Hamiltonian of these
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models. Indeed, this expression shows that the Hamiltonian is more naturally expressed
in terms of the zeroes {ζA}A=1,...,2N of the twist function, rather than its poles. Because
the Hamiltonian of an E-model is directly related to its operator Ê , this suggests that the
latter takes a simpler form in a basis associated with these zeroes. One can obtain this
alternative form of the model from the results of the previous subsection by performing
explicitly the change of basis suggested in [40], in particular to obtain the expression of
the structure constants in this new basis. For completeness, we present this computation
in appendix B. Here, we will follow an alternative route and rederive the form of these
integrable E-models in the basis associated with zeroes directly from the Maillet bracket, to
show that it naturally arises from the integrable structure of the theory. As expected, the
two procedures lead to the same results, as can be checked by comparison with appendix B.

Since we are now working with the zeroes of the twist function rather than its poles, it
is natural to consider the partial fraction decomposition of its inverse. The latter is given by

φ(z)−1 = −
2N∑

A=1

ϵAL2
A

z − ζA
+ λ , (3.14)

where we introduce
LA = |φ′(ζA)|−1/2 (3.15)

and where ϵA = −sign
(
φ′(ζA)

)
as in the previous subsection. We now define currents

J αA
σ (σ) associated with the zeroes ζA of φ(z) by considering the following ansatz for the

partial fraction decomposition of the Lax matrix:

Lα
σ(σ; z) =

2N∑

A=1

LAJ
αA
σ (σ)

z − ζA
, (3.16)

where we introduced the normalisation by LA for future convenience. It now follows that
the Maillet bracket (3.4) is equivalent to the current algebra
{
J αA

σ (σ1),J βB
σ (σ2)

}
= fαβ

γ F AB
C J

γC
σ (σ1) δ(σ1 − σ2)− καβ ηAB ∂σ1δ(σ1 − σ2) , (3.17)

where the tensor ηAB is defined as

ηAB =





ϵA if A = B

0 otherwise
, (3.18)

while the totally symmetric tensor FABC is zero if all indices are different and the remaining
non-zero components are given by

FAAB =
ϵALB

ζA − ζB
and (3.19a)

FAAA =
1

LA


λ−

2N∑

B ̸=A

ϵBL2
B

ζA − ζB


 . (3.19b)

Moreover, in this basis the Hamiltonian (3.12) takes the simple form

H =
1

2

∫ 2π

0
dσ καβ EAB J

αA
σ J βB

σ with EAB =





1 if A = B

0 otherwise .
(3.20)
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We now have all the necessary ingredients to interpret this integrable field theory as
an E-model. Following the notations of section 2, the Lie algebra d underlying this model
has a basis {t̂

Â
} which in the present case is labelled by pairs of indices Â = α A, where α

labels the basis {tα} of g and A labels the zeroes ζA. The structure constants F̂
ÂB̂Ĉ

and
invariant pairing η̂

ÂB̂
of d are defined through the factorised expressions:

F̂
ÂB̂Ĉ

= fαβγ FABC and η̂
ÂB̂

= καβ ηAB, (3.21)

with FABC and ηAB as above. Finally, the operator Ê is defined by

Ê(t̂
Â

) = t̂
B̂
Ê B̂

Â
, with Ê B̂

Â
= δβ

α δB
A ϵA. (3.22)

As expected, in this basis associated with the zeroes of the twist function, the pairing ⟨·, ·⟩
and the operator Ê are extremely simple, and in particular independent of the parameters
of the model. The latter are then completely encoded in the structure constants, which take
a more complicated form — see equation (3.19), making the structure of the underlying Lie
algebra d less transparent. However, we know from the results of the previous subsection
(and more explicitly the appendix B) that d can be identified with a direct sum of Takiff
algebras: indeed, in the other basis associated with the poles of the twist function, the
structure constants become much simpler, at the cost of a more complicated expression for
the entries of the bilinear form and the operator Ê .

Using the terminology of subsection 2.3, the zeroes basis considered here is identified
with the chiral basis of the integrable E-model, as we now explain. First note that we
are free to choose the basis {tα}α=1,...,dim g of g to be orthonormal, such that the bilinear
form καβ = diag(+1, . . . , +1,−1, . . . ,−1) is diagonalised with entries normalised to +1 or
−1. Next, recall that we supposed earlier that there are as many coefficients ϵA equal to
+1 than there are equal to −1. Because these coefficients are the entries of the diagonal
matrix ηAB in equation (3.18), this fact ensures that the bilinear form η̂

ÂB̂
= καβ ηAB is

of split signature, as required in the definition of an E-model. We use this observation to
separate the indices A into two groups of equal size: a ∈ {1, . . . , N} with ϵa = +1 and
ā ∈ {1, . . . , N} with ϵā = −1. The zeroes basis {t̂

Â
= t̂α A} of d then naturally decomposes

into two subsets {t̂â = t̂α a}
a=1,...,N
α=1,...,dim g and {t̂

â
= t̂α ā}

ā=1,...,N
α=1,...,dim g of size N dim g each. In

this basis η̂
ÂB̂

and Ê
ÂB̂

take the diagonalised form (2.20), thus identifying the zero basis
with the chiral one. As argued in subsection 2.4, the latter is very well adapted for the
study of the RG-flow of the theory, which will be the subject of the next section.

4 Renormalisation and 1-loop β-functions

Quantum effects will eventually renormalise the action (1.1). Consequently, we have to
check if the resulting effective action is still governed by the integrable structure introduced
above. As explained in subsections 2.3 and 2.4, for a general E-model in the chiral basis,
these quantum effects will renormalise the defining data of the theory, namely its structure
constants F̂

ÂB̂Ĉ
(recall that in the chiral basis, the coefficients η̂

ÂB̂
and Ê

ÂB̂
are fixed and do

not contain any parameters of the theory). For the integrable E-models under investigation,
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we have identified the chiral basis as the one associated with the zeroes of the twist function
φ(z) in subsection 3.3. In this basis, the structure constants of the theory are expressed in
terms of particular combinations (3.19) of the parameters λ, ζA and LA defining φ(z). A
crucial ingredient in addressing the question of the renormalisability of the models under
consideration is to understand the map between infinitesimal deformations of the twist
function and the corresponding deformations of the structure constants. This is the subject
of the first subsection.

4.1 Variations of the twist function and structure coefficients

Let us start with a brief counting of parameters. According to equation (3.14), φ(z) encodes
4N + 1 parameters λ, ζA and LA, which we refer to as affine Gaudin parameters and whose
space we denote by Π. However, we note that the structure coefficients (3.19) only contain
differences ζA − ζB. Thus, shifting all ζA’s by a constant leaves them invariant. Similarly,
homogeneously scaling λ, ζA and LA by a constant also has no effect on the structure
coefficients. This translates the invariance of the integrable E-model under modifications
of the twist function φ(z) which can be reabsorbed via translations and dilations of the
spectral parameter. Without loss of generality, these operations can be used to eliminate 2
of the parameters among λ, ζA and LA (for instance by setting λ = 1 and

∑2N
A=1 ζA = 0),

implying that there are only 4N − 1 independent physical parameters. In other words, the
space of parameters of the model is a (4N − 1)-dimensional quotient of Π.

Variation of the twist function. Let us now consider infinitesimal variations dλ, dζA

and dLA of the affine Gaudin parameters, which we can see as one-forms on Π. This induces
a variation dφ(z) of the twist function. It is always possible, and will be convenient to
reparametrise, this variation as

dφ(z) = e(z)φ(z) + ∂z [f(z)φ(z)] (4.1)

in terms of two functions

e(z) =
2N∑

A=1

ϵAL2
AeA

z − ζA
and f(z) =

2N∑

A=1

ϵAL2
AfA

z − ζA
+ ft + fd z , (4.2)

where eA, fA, ft and fd are 4N + 2 one-forms on Π. These one-forms can be related to the
fundamental variations dLA, dζA and dλ by matching the right- and left-hand side of

d
(
φ(z)−1) = −e(z)φ(z)−1 − ∂zf(z)φ(z)−1 + f(z)∂z

(
φ(z)−1) (4.3)

yielding

dLA = −LA


fd −

λeA

2
+

2N∑

B ̸=A

ϵBL2
B

ζA − ζB

(
fA − fB

ζA − ζB
+

eA + eB

2

)
 (4.4a)

dζA = −ft − fd ζA − fA λ− ϵAL2
AeA +

2N∑

B ̸=A

ϵBL2
B(fA − fB)

ζA − ζB
(4.4b)

dλ = −fdλ . (4.4c)
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As expected from a simple counting argument, the relation (eA, fA, ft, fd) 7→ (dLA, dζA, dλ)

is not injective. Indeed, the above expressions for (dLA, dζA, dλ) are invariant under a
shift of (eA, fA, ft, fd) by (0,−c, λ c, 0), where c is an arbitrary one-form. In terms of the
functions e(z) and f(z) considered above, this corresponds to a shift of f(z) by c φ(z)−1,
as can be seen from the equation (3.14). It is clear that such a shift does not modify
the variation (4.1) of dφ(z) and thus encodes a redundancy in its parametrisation by e(z)

and f(z). On the other hand, one shows that the map (eA, fA, ft, fd) 7→ (dLA, dζA, dλ)

is surjective. Therefore, we can invert the above relation and find the expression of the
one-forms (eA, fA, ft, fd) in terms of (dLA, dζA, dλ), up to an arbitrary shift by (0,−c, λ c, 0).
We will not need the explicit form of this expression and thus skip it for simplicity. To
summarise, any infinitesimal variation (dLA, dζA, dλ) of the affine Gaudin parameters can
be parametrised as in (4.1) in terms of the functions e(z) and f(z). This parametrisation is
unique up to the shifts f(z) 7→ f(z) + c φ(z)−1.

Variation of the structure coefficients. Let us finally investigate the corresponding
infinitesimal transformation of the structure coefficients. Recall that they take a factorised
form F̂

ÂB̂Ĉ
= fαβγ FABC , where the first factor depends only on the Lie algebra structure

of g and the second factor is the combination (3.19) of the affine Gaudin parameters. Under
a variation of the latter, these structure coefficients transform as

dF̂
ÂB̂Ĉ

= 3T̂
[Â

D̂F̂
B̂Ĉ]D̂

(4.5)

where
T̂

Â
B̂ = δα

βTA
B and dFABC = 3T(A

DFBC)D . (4.6)

In terms of the parametrisation (eA, fA, ft, fd), we find that TAB = (Ta)AB + (Ts)AB

decomposes into the antisymmetric part

(Ta)AB =




−

LALB

ζA − ζB

(
fA − fB

ζA − ζB
+

eA + eB

2

)
A ̸= B

0 A = B
(4.7a)

and the symmetric part

(Ts)AB =





−LALB
eA − eB

6(ζA − ζB)
A ̸= B

ϵA

6




2N∑

C ̸=A

ϵCL2
C(eA − eC)

ζA − ζC
− λeA


 A = B .

(4.7b)

Note that ft and fd do not appear in the expression for TAB. This is expected from
equation (4.4), where we see that infinitesimal variations of the affine Gaudin parameters
corresponding to these two one-forms are given by (dλ, dζA, dLA) = −(0, ft, 0)−fd(λ, ζA, LA).
Consequentially, ft encode infinitesimal translations of ζA while fd encode infinitesimal
dilations of (λ, ζA, LA). As argued in the beginning of this subsection, these transformations
leave the structure coefficients FABC invariant, explaining why ft and fd decouple from
dFABC and thus from TAB. Moreover, one sees that the coefficients fA only appear in
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differences and thus that TAB is invariant under a shift of all fA’s by the same one-form c.
Again, this is expected. As argued in the previous paragraph, such a shift (combined with
a shift of ft, which does not appear in TAB) corresponds to sending f(z) to f(z) + c φ(z)−1

and thus does not change the variation of the twist function. Taking into account these 3
redundancies, we see that the 4N + 2 one-forms contained in e(z) and f(z) induce 4N − 1

independent variations of the structure coefficients, thus matching the number of physical
parameters of the model.

It is interesting to note that from the point of view of Lie algebra deformation the-
ory, (4.5) represents a trivial deformation. It does not change the underlying Lie algebra d

but merely corresponds to an infinitesimal change of basis in d. This is natural from the
affine Gaudin model construction. Indeed, the variations considered here correspond to
infinitesimal transformations along the space Π of affine Gaudin parameters. Yet, we know
from subsection 3.2 that the underlying Lie algebra structure of d is in fact independent of
the point in Π. It depends only on the number and order of the poles of the twist function,
not on the continuous parameters which enter its expression.

4.2 Comparison with the RG-flow

Having understood how an infinitesimal variation of the affine Gaudin parameters acts
on the structure coefficients F̂

ÂB̂Ĉ
of the integrable E-models in the chiral basis, we now

want to compare this result with the RG-flow of these theories. The renormalisation of
general E-models was discussed in subsection 2.4, under the assumption that quantum
effects preserve the E-model structure. In particular, we explained there that the whole
RG-flow can then be encoded in the variation (2.26) of the structure coefficients F̂

ÂB̂Ĉ
and

recalled the explicit expression of this flow at 1-loop.
In that context, proving the renormalisability of the affine Gaudin models boils down

to showing that the RG-flow (2.26) of F̂
ÂB̂Ĉ

can be fully reabsorbed in a variation of the

affine Gaudin parameters,4 which we recall act on F̂
ÂB̂Ĉ

as (4.5). Comparing these two
equations, we find that this is the case if and only if there exists a vector field β on the
parameter space Π such that

ιβT̂
Â

B̂ = β̂
Â

B̂
∣∣
int

. (4.8)

Here, β̂
Â

B̂
∣∣
int

denotes the evaluation of the tensor β̂
Â

B̂ (appearing in (2.26)) along the
subspace of integrable E-models (which can then be seen as a function on the space Π of

affine Gaudin parameters), while T̂
Â

B̂ is the one-form on Π defined through equation (4.5)

and ιβT̂
Â

B̂ is its interior product with the vector field β. Before proving that such a β

exists at one-loop and giving its explicit expression, let us study the above condition in
more details.

g-factorisation. To analyse (4.8) further, we will exploit some of the general properties
of the integrable E-models under consideration. Indeed, recall that their chiral basis {t̂

Â
} is

labelled by pairs of indices Â = α A, with α ∈ {1, . . . , dim g} and A ∈ {1, . . . , 2N}, and that

4Assuming that there are no finite quantum corrections to the functional expression of F̂
ÂB̂Ĉ

in terms of

these parameters.
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their structure coefficients F̂
ÂB̂Ĉ

= fαβγ FABC take a factorised form, where the first factors

fαβγ are the structure constants of the fixed Lie algebra g (in an orthonormal basis {tα}
dim g
α=1 ),

while the second factors FABC depend in a specific way on the continuous parameters of
the theory. Guided by this observation, let us consider the class of E-models with a chiral
basis labelled by the same pairs of indices Â = αA and with structure coefficients also
satisfying the factorisation property F̂

ÂB̂Ĉ
= fαβγ FABC , but with general FABC ’s.5 The

space of such theories, which we refer to as g-factorised E-models, is then parametrised by
the choice of allowed coefficients FABC (which should be completely symmetric and such

that F̂
ÂB̂

Ĉ = fαβ
γ FAB

C satisfy the Jacobi identity). The affine Gaudin models considered
in this paper then form a (4N − 1)-dimensional submanifold in this space, corresponding to
the specific choice (3.19) of coefficients FABC .

Recall that the structure coefficients F̂
ÂB̂Ĉ

in the chiral basis flow according to equa-

tion (2.26), in terms of the tensor β̂
Â

B̂ (if renormalisation preserves the E-model structure).
It is natural to expect that, in an appropriate renormalisation scheme, this tensor is built
from covariant contractions of η̂

ÂB̂
, Ê

ÂB̂
and F̂

ÂB̂Ĉ
: for g-factorised models, this can only

produce a tensor of the form β̂
Â

B̂ = δα
ββA

B. Renormalisation then preserves the space of
g-factorised E-models and induces the following flow on FABC :

dFABC

d log µ
= 3β(A

DFBC)D . (4.9)

Back to the integrable case. Let us now come back to the condition (4.8) for renor-
malisability of the integrable E-models. Since the latter belong to the class of g-factorised
models, the tensor β̂

Â
B̂ appearing on the right-hand side of this equation takes a factorised

form δα
β βA

B, as explained above. Recall moreover from equation (4.6) that the tensor

T̂
Â

B̂ appearing on the left-hand side is also factorised as δα
β TA

B. The condition for
renormalisability then reduces to the simpler form

ιβTAB = βAB

∣∣
int

, (4.10)

where we stripped out the g-factor and lowered the second index for future convenience. As
explained in the previous subsection, the tensor TAB is valued in the space of one-forms on
Π and is given explicitly by equation (4.7), in terms of the forms (eA, fA).

Let us analyse the condition (4.10). We first note that βAB = −βBA is a skew-symmetric
tensor. This result comes from subsection 2.4, where we found that any RG-flow that
preserves the E-model structure leads to a skew-symmetric β̂

ÂB̂
. Here, the latter takes

the factorised form καβ βAB, hence the skew-symmetry of βAB. Yet, the tensor TAB is in
general not skew-symmetric. More precisely, its symmetric part is given by equation (4.7b)
in terms of the one-forms e1, . . . , e2N on Π. Thus, one finds that equation (4.10) is possible
only if ιβeA = 0 for A ∈ {1, . . . , 2N}. Hence, assuming the hypotheses made in the above
discussion, the renormalisation of affine Gaudin models can only lead to an RG-flow of the

5Note that we are defining these E-models directly in the chiral basis, henceforth letting the matrices

η̂
ÂB̂

= καβ ηAB and Ê
ÂB̂

= καβ EAB take the same constant diagonalised form as in the integrable case.

– 18 –



J
H
E
P
1
2
(
2
0
2
3
)
0
0
5

twist function of the form
d

d log µ
φ(z) = ∂z

[
fβ(z)φ(z)

]
, (4.11)

where fβ(z) = ιβ f(z).
A comment is in order before we push the analysis further. Recall from subsection 3.3

that the labels A used in the zeroes basis are naturally decomposed into indices a ∈

{1, . . . , N}, for which ϵa = +1, and indices ā ∈ {1, . . . , N}, for which ϵā = −1, associated
with the two chiralities of the model. In the skew-symmetric tensor βAB characterising
the RG-flow of g-factorised E-models, only the components βab̄ = −βb̄a encode a non-
trivial transformation. The remaining components βab and βāb̄ generate double Lorentz
transformations and can thus be set to any skew-symmetric expressions without changing
the flow of the underlying σ-model. In practice, this means that we only have to check the
condition (4.10) for A = a and B = b̄. Taking into account the expression (4.7) of TAB as
well as the fact that we already found ιβeA = 0 earlier, we then rewrite the renormalisability
condition as

ιβTab̄ = −
LaLb̄

(ζa − ζb̄)
2
ιβ(fa − fb̄) = βab̄

∣∣
int

. (4.12)

Semi-magic squares and curious matrices. Let us finally discuss the structure
underlying the equation (4.12). It is equivalent to

ιβfa − ιβfb̄ = β′
ab̄

, where β′
ab̄

:= −
(ζa − ζb̄)

2

LaLb̄

βab̄

∣∣
int

(4.13)

is called the adapted β-tensor. The matrix appearing on the left-hand side of this condition
takes a very specific form. More precisely, it belongs to the linear subspace of MatN×N

CM =
{

A = [ua − vb̄] , u, v ∈ R
N
}

, (4.14)

which is called the space of curious matrices [42]. Reference [42] studies the properties of CM

in detail and provides an interesting alternative characterisation of curious matrices, namely

CM =

{
A = [Aab̄] ∈ MatN×N :

N∑

a=1

A
aσ(a)

is the same for all σ ∈ PN

}
, (4.15)

where PN is the set of all permutations of N integers. It also puts forward a relation
between curious matrices and semi-magic squares. The latter are defined as the N × N

matrices whose lines and columns all sum to the same number. They thus form the
(N2 − 2N + 2)-dimensional vector space

MS =



A = [Aab̄] ∈ MatN×N :

N∑

a=1

Aac̄ =
N∑

b̄=1

Adb̄ for all c̄, d = 1, . . . , N



 . (4.16)

A natural linear subspace of MS, of dimension (N2 − 2N + 1), corresponds to the case
where this number vanishes and is thus given by

MS(0) =



A = [Aab̄]∈MatN×N :

N∑

a=1

Aac̄ =
N∑

b̄=1

Adb̄ = 0 for all c̄, d = 1, . . . ,N



 . (4.17)
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In this language, the space of curious matrices CM can be equivalently characterised as the
orthogonal subspace of MS(0) with respect to the standard symmetric bilinear pairing

Tr(ABT ) =
N∑

a,b̄=1

Aab̄Bab̄ (4.18)

on MatN×N , where BT is the tranpose of B. In other words, the space of curious matrices
can also be seen as

CM = MS(0)⊥ =
{

A ∈ MatN×N : Tr(ABT ) = 0 for all B ∈ MS(0)
}

. (4.19)

Using the language introduced above, one then finds that the affine Gaudin models
are renormalisable if and only if the adapted β-tensor β′

ab̄
, defined in the second equation

of (4.13), belongs to the space of curious matrices CM. We will show that this is the
case at one-loop in the next subsection. In principle, one can hope that this condition,
together with the above characterisations of the curious matrices, could help in studying
the renormalisability of affine Gaudin models at higher-loop or even at all-loop.6

The above formulation also helps the geometric understanding of how affine Gaudin
models are embedded into the space of g-factorised E-models and how this subspace behaves
under a variation of the affine Gaudin parameters. At a given point in this subspace, the
RG-flow of the theory is characterised by the adapted β-tensor β′

ab̄
. As depicted in figure 1,

this flow preserves the subspace of affine Gaudin models if this tensor is fully contained in
the space of curious matrices CM. On the other hand, if β′

ab̄
has any components in the

orthogonal complement MS(0), the RG-flow will bring the theory to a g-factorised E-model
which can no longer be interpreted as an affine Gaudin model.

To end this subsection, let us stress again that the various results and ideas discussed
above rely on two important assumptions made throughout the reasonning. The first one is
that renormalisation preserves the structure of E-models (see subsection 2.4 for details).
The second one is that the expression of FABC in terms of the affine Gaudin parameters,
i.e. the embedding of affine Gaudin models in the space of g-factorised E-models, does not
acquire any quantum corrections. Both of these assumptions would require careful further
considerations for future investigations at higher-loop.

4.3 One-loop renormalisability and β-functions

Expressions for the one- and two-loop β-functions of E-models are known [36–39]. Here,
we restrict the discussion to one-loop to keep it simple and demonstrate how the results
from the previous sections can be applied. As explained in subsection 2.4, the RG-flow of
E-models in the chiral basis is controlled by the tensor β̂

â̂b
, whose expression at one-loop

was given in equation (2.27) in terms of certain structure coefficients. We now specialise the

6For instance, the characterisation (4.15) of curious matrices shows that the affine Gaudin models are

renormalisable if and only if
∑N

a=1
β′

aσ(a)
is the same for all permutations σ ∈ PN . This suggests investigating

the properties of symmetries of the RG-flow of integrable σ-models under permutation of the zeroes {ζb̄}

associated with the same chirality ϵb̄ = −1.
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subspace of affine Gaudin models

CM

MS(0)

space of g-factorised E-models

Figure 1. Embedding of affine Gaudin models in the space of g-factorised E-models. For the
RG-flow to preserve this subspace, the tensor β′

ab̄
has to be fully contained in CM, defined in (4.15),

and thus should not have any components in the orthogonal complement MS(0).

discussion to g-factorised E-models (see previous subsection), for which these coefficients
take the factorised form

F̂
âĉ

d̂ = fαγ
δ Fac̄

d and F̂
b̂d̂

ĉ = fβδ
γ Fb̄d

c̄ . (4.20)

The one-loop tensor (2.27) then reads

β̂
(1)

â̂b
= −fαγ

δ fβδ
γ Fac̄

d Fb̄d
c̄ . (4.21)

We recognise in the first factor the Killing form fαγ
δ fβδ

γ = Tr
(
adtαadtβ

)
of g, which is then

proportional to the invariant bilinear form καβ . More explicitly, let us fix the latter to be
καβ = −Tr(tαtβ), where the trace is taken in the fundamental representation of g and the
minus sign has been introduced so that it is positive-definite for g compact. We then have

fαγ
δfβδ

γ = −2cg καβ , (4.22)

where cg is the dual Coxeter number of g. We then find

β̂
(1)

â̂b
= 2cg καβ Fac̄

d Fb̄d
c̄ . (4.23)

In particular, this is an explicit check at one-loop of a general result argued in the previous
subsection, namely that the tensor β̂

â̂b
of a g-factorised E-model takes a factorised form

καβ βab̄. We then find the one-loop expression of βab̄ to be

β
(1)

ab̄
= 2cg Fac̄

d Fb̄d
c̄ . (4.24)

One-loop renormalisation of affine Gaudin models. We now specialise further to
the case of affine Gaudin models, for which the structure constants take the form (3.19).
Recalling that indices a, b̄, c̄, d are lowered using the bilinear form ηAB = δAB ϵB, with
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ϵa = ϵd = +1 and ϵb̄ = ϵc̄ = −1 (see subsection 3.3), we can perform explicitly the sum over
c̄ and d in equation (4.24). This yields

β
(1)

ab̄

∣∣∣
int

= −2cg Faab̄Fb̄b̄a = −2cg
LaLb̄

(ζa − ζb̄)
2

. (4.25)

The adapted β-tensor defined in (4.13) then takes the particularly simple form

β
(1)

ab̄
′ = 2cg . (4.26)

In the language of the previous subsection, one sees immediately that this is an element
of the space of curious matrices CM. In fact, it is further distinguished as it lies in the
intersection of curious matrices and semi-magic squares, namely

β(1)′ ∈ CM ∩MS . (4.27)

This proves that, at least at one-loop, affine Gaudin models are stable under the RG-flow.
By comparing the first equation of (4.13) with the above form of β

(1)

ab̄
′, one sees that the

vector field β is given at one-loop by

ιβ(1)fa = +cg = cg ϵa and ιβ(1)fb̄ = −cg = cg ϵb̄ , (4.28)

while we recall that ιβ(1)eA = 0 (see previous subsection). Plugging this vector field in
equation (4.1), we eventually also extract the one-loop RG-flow of the twist function:

dφ(z)

d log µ
= α′ ∂z

[
f (1)(z)φ(z)

]
, (4.29)

with

f (1)(z) = ιβ(1)f(z) = cg

2N∑

A=1

L2
A

z − ζA
+ f

(1)
t + f

(1)
d z . (4.30)

We recall that f
(1)
t = ιβ(1)ft and f

(1)
d = ιβ(1)fd are left unfixed as they encode dilations and

rescalings of the spectral parameter and thus leave the affine Gaudin model invariant (see
subsection 4.1). This shows that the conjecture made in [16] and proven in [25] for the case
of single poles is true for twist functions with arbitrary pole structure and simple zeros in
the complex plane (and a double pole at infinity).

5 Conclusion and perspectives

The goal of this paper was to study the renormalisation of a large class of integrable σ-models
obtained from the formalism of affine Gaudin models [2–4] or equivalently from 4-dimensional
Chern-Simons theory [41, 43]. In particular, we established the 1-loop renormalisability of
these theories and computed explicitly the RG-flow of their defining parameters, using the
formalism of E-models. Moreover, we showed that this RG-flow can be recast in a very simple
and compact way in terms of the so-called twist function of the model, thus confirming a
conjecture first proposed in [16] and proved in the particular case of twist functions with

– 22 –



J
H
E
P
1
2
(
2
0
2
3
)
0
0
5

simple poles in [25]. Finally, we exhibited the structure underlying the renormalisability of
these theories as being related to curious matrices and semi-magic squares.

A crucial role in our analysis is played by the zeroes of the twist function, which are
parts of the natural parameters describing affine Gaudin models. For the theories considered
in the present article, these zeroes are assumed to be simple (corresponding to having
simple poles in the Lax connection). It would be interesting to extend the construction of
these models and the analysis of their RG-flow to the case of twist functions with higher
order zeroes.

Another natural direction for generalisation is to study the renormalisation of gauged
affine Gaudin models [4, 7, 44–46], which for instance include integrable σ-models on
symmetric spaces and their deformations. We expect that the methods and results of this
paper naturally extend to this more general family of models (in particular, we hope that
this question can be approached using the work [47] on the renormalisation of degenerate
E-models/dressing cosets).

Various other results and conjectures on the 1-loop renormalisation of integrable σ-
models were discussed in recent works. This includes a formulation of the RG-flow using
integrals of the twist function in [48] and a universal formula for the divergences of these
models in terms of their Lax connection in [18].7 It would be interesting to investigate the
relation between these different approaches and the one developed in the present paper.

Finally, a quite interesting but challenging perspective of this work is its extension
beyond the first order in the quantum loop expansion. The study of higher-loop renormalisa-
tion of integrable σ-models has been an active domain of research in the past few years: see
for instance [14, 15, 17, 49]. In particular, these works show that renormalisability beyond
one-loop generally requires the addition of quantum corrections to the geometry of the
model. It would be interesting to understand these corrections in the language of E-models
used in the present article and to study the higher-loop RG-flow of the twist function.
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A Generalised frame field and isotropic basis

As explained in subsection 2.2 of the main text, the generalised frames Ê
Â

I provide the link
between an E-model and the corresponding σ-models. Thus, it is worth reviewing how they
are constructed. Most important in the construction is that we deal with two Lie algebras,

7See also the recent work [19] for a proof that this universal formula matches the divergences computed

from the 4-dimensional Chern-Simons theory with disorder defects.
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d and h, where the latter is a maximally isotropic subalgebra of the former. To emphasise
this point, one splits the generators of d into

t̂
Â

=
(
t̂â , t̂ â) (A.1)

and requires that the second half, t̂ â spans h. An immediate consequence is ⟨t̂ â, t̂ b̂⟩ = 0.
Up to a redefinition of the complement basis {t̂â}, one can always bring η̂

ÂB̂
into the

canonical form

η̂
ÂB̂

=

(
0 δâ

b̂

δâ
b̂

0

)
. (A.2)

Similar to the η̂-metric, the structure coefficients decompose into the four independent
contributions

F̂
â̂bĉ

, F̂
â̂b

ĉ , F̂â
b̂ĉ , and F̂ â̂bĉ = 0 , (A.3)

where the last one vanishes because h is assumed to be a subalgebra of d. We use the fixed
form of η̂

ÂB̂
in (A.2) and F̂ â̂bĉ = 0 as the defining properties of what we call isotropic basis.

These conditions are not sufficient to uniquely identify an isotropic basis and we will discuss
the freedom in its choice later in this appendix.

For the moment, let us consider a fixed isotropic basis
(
t̂â , t̂ â

)
and discuss how the

generalised frame field is constructed from this data. Recall that the space we are interested
in is the quotient M = H\D. In what follows, we assume that we have made a smooth
choice of coset representative of every m ∈ H\D, so that we can see m as an element of D.
We will need the right-invariant one-form

dmm−1 = t̂âvâ
idxi + t̂ âAâidxi (A.4)

and the adjoint action

M̂
Â

B̂ t̂
B̂

= mt
Â

m−1 . (A.5)

In these terms, the generalised frame field is then defined as

Ê
Â

I = M̂
Â

B̂

(
v̂̂

b
i v̂̂

b
jBji

0 vb̂
i

)
. (A.6)

Here, v̂â
i denote the components of the dual vector fields corresponding to the one-forms

vâ = vâ
idxi with the defining property ιv̂

â
vb̂ = v̂â

ivb̂
i = δâ

b̂. Moreover, we need the two
form B-field

B =
1

2
Bij dxi ∧ dxj =

1

2
vâ ∧Aâ + BWZW (A.7)

with
dBWZW = −

1

2
⟨dmm−1, [dmm−1, dmm−1]⟩ . (A.8)

Note that BWZW is usually not globally well-defined, but can always be obtained patch-wise
and then glued together by B-field gauge transformations.

For completeness, let us now come back to the question of the non-uniqueness of the
isotropic basis

(
t̂â , t̂ â

)
. To explore this, we note that η̂

ÂB̂
is the invariant metric of the Lie
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group O(D̂,D̂) with D̂ = 1
2 dimD = dimH. Hence, any new basis

(
t̂′
â

, t̂′ â
)

obtained from
(
t̂â , t̂ â

)
by an O(D̂,D̂) transformation will leave η̂

ÂB̂
invariant. However, for

(
t̂′
â

, t̂′ â
)

to
also define an isotropic basis, one still has to check the second constraint on the structure
constants. To this end, we parameterise O(D̂,D̂) transformations which are connected to
the identity as

t̂′
â

= Ââ
b̂ t̂̂

b
+ B̂

â̂b
t̂̂b

t̂′̂a = Â â
b̂
t̂̂b + β̂ â̂b t̂̂

b

(A.9)

with Ââ
ĉÂ b̂

ĉ = δâ
b̂, B̂

â̂b
= −B̂

b̂â
and β̂

â̂b
= −β̂̂

bâ
. By construction, η̂

ÂB̂
is invariant under

this transformation. We note that the coefficients Ââ
b̂ essentially amount to a change of

the basis {t̂ b̂} of h. Similarly, the coefficients B̂
â̂b

encode a change in the choice of basis
{t̂̂

b
} of the complement of h in d, without modifying h itself. For any transformation with

β̂ â̂b = 0, t̂′
â

then still span the same maximally isotropic subalgebra h. The most interesting

transformations are then the ones encoded in β̂ â̂b, which correspond to a change in the
choice of h. By construction, the new subspace h′ spanned by {t̂′ b̂} is always isotropic;
moreover, we find that it is a closed subalgebra if and only if

F̂ ′ â̂bĉ = β̂ âd̂β̂ b̂êβ̂ ĉf̂ F̂
d̂êf̂

+ 3β̂ [̂a|d̂β̂ |̂b|êÂ |̂c ]
f̂
F̂

d̂ê
f̂ + 3β̂ [̂a|d̂Â |̂b

êÂ ĉ ]
f̂
F̂

d̂
êf̂ = 0 . (A.10)

The constraint (A.10) can in general have non-trivial solutions, leading to new choices of
maximally isotropic subalgebras and thus to different σ-model realisations in the language
of E-models. This idea has been introduced in [34] to study the space of T-dual models.

B Changing from the poles basis to the zeroes basis

In this appendix, we perform the explicit transformation between the poles basis and the
zeroes basis of the double algebra underlying the integrable E-models of section 3. Recall
that in both of these bases, the structure constants and the non-degenerate pairing take
a factorised form. More precisely, the first factor, common to both bases, is labelled by
indices of the Lie algebra g while the second one is labelled by either poles or zeroes. To
perform the change of basis, it is thus enough to focus on this second factor. In the case
of the poles basis, we use indices of the form Ã = [i, p], where i ∈ {1, . . . , M} labels the
position zi of the poles and p ∈ {0, . . . , ni − 1} labels their order. In the zeroes basis, we
use indices A ∈ {1, · · · , 2N} labelling the (simple) zeroes ζA, with 2N =

∑M
i=1 ni. The

relation between the two bases is explicitly given by the (rescaled) confluent Cauchy matrix
with entries [40]

CA
[i,p] = −

ϵA LA

(ζA − zi)p+1
, (B.1)

where we recall that LA =
∣∣φ′(ζA)

∣∣−1/2
. Indeed, the E-model currents J

α[i,p]
σ (σ) associated

with the poles — see equation (3.8) — are related to the ones J αA
σ (σ) associated with the

zeroes — see equation (3.16) — by

J αA
σ (σ) =

M∑

i=1

ni−1∑

p=0

CA
[i,p] Jα[i,p]

σ (σ) . (B.2)
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Invariant pairing. Let us now consider the invariant pairing. Its behaviour under the
change of basis can be read from [40, Lemmas 4.2 and 4.3], Here, we rederive this result by

elementary computations. In the poles basis, the pairing is given by the tensor η̃ÃB̃ defined
in equation (3.11). Applying the change of basis (B.1), we find

CA
Ã
CB

B̃
η̃ÃB̃ = ϵAϵB LALB

M∑

i=1

ni−1∑

p,q=0

ℓ[i,p+q]

(ζA − zi)p+1(ζB − zi)q+1
(B.3)

= ϵAϵB LALB

M∑

i=1

ni−1∑

r=0

ℓ[i,r]

r∑

p=0

1

(ζA − zi)p+1(ζB − zi)r−p+1
,

where in the last equality we have changed the sum over (p, q) to a sum over (r, p) with
r = p + q, using the fact that ℓ[i,r] = 0 if r ≥ ni. We now need to distinguish whether A

coincides with B or not. We start with the case A ̸= B, using the identity
r∑

p=0

1

(ζA − zi)p+1(ζB − zi)r−p+1
=

1

ζB − ζA

(
1

(ζA − zi)r+1
−

1

(ζB − zi)r+1

)
.

Substituting this into the above equation and using the expression (3.8) of φ(z), one
easily finds

CA
Ã
CB

B̃
η̃ÃB̃ = −ϵAϵB LALB

φ(ζA)− φ(ζB)

ζA − ζB
= 0 , (B.4)

since by definition the ζA’s are the zeroes of φ(z). Let us now consider equation (B.3) in
the case A = B. Recalling that ϵ2

A = 1, we find

CA
Ã
CA

B̃
η̃ÃB̃ = L2

A

M∑

i=1

ni−1∑

r=0

(r + 1)ℓ[i,r]

(ζA − zi)r+2
= −L2

A φ′(ζA) = ϵA , (B.5)

where in the last equality we used φ′(ζA) = −ϵA L−2
A . In summary, we thus proved

CA
Ã
CB

B̃
η̃ÃB̃ = ϵA δAB , which then agrees with the tensor ηAB defined in equation (3.18).

Structure constants. The main non-trivial computation we have to perform is the
change of basis of the structure constants. In the poles basis, these constants F̃ ÃB̃

C̃
are

given by equation (3.10). To simplify the computation, we will use the structure constants
with all indices raised, by contracting the third index with η̃. Using the expression (3.11)
of the latter, we get

F̃ [i,p] [j,q] [k,r] = δijδikℓ[i,p+q+r] . (B.6)

Performing the change of basis, we then obtain

CA
Ã
CB

B̃
CC

C̃
F̃ ÃB̃C̃ (B.7)

= −ϵAϵBϵC LALBLC

M∑

i=1

ni−1∑

p,q,r=0

ℓ[i,p+q+r]

(ζA − zi)p+1(ζB − zi)q+1(ζC − zi)r+1
.

To compute this expression, it will be useful to introduce the function of three
complex variables

F(w1, w2, w3) = −

M∑

i=1

ni−1∑

s=0

ℓ[i,s]

ni−1∑

p,q,r=0
p+q+r=s

1

(w1 − zi)p+1(w2 − zi)q+1(w3 − zi)r+1
, (B.8)
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so that
CA

Ã
CB

B̃
CC

C̃
F̃ ÃB̃C̃ = ϵAϵBϵC LALBLC F(ζA, ζB, ζC) . (B.9)

To simplify this function, we apply the identity

ni−1∑

p,q,r=0
p+q+r=s

1

(w1−zi)p+1(w2−zi)q+1(w3−zi)r+1
=

1

(w1−w2)(w1−w3)

1

(w1−zi)s+1
(B.10)

+
1

(w2−w1)(w2−w3)

1

(w2−zi)s+1
+

1

(w3−w1)(w3−w2)

1

(w3−zi)s+1
.

Using also the expression (3.8) of φ(z), we then find

F(w1, w2, w3) = −

(
φ(w1)

(w1 − w2)(w1 − w3)
+

φ(w2)

(w2 − w1)(w2 − w3)
+

φ(w3)

(w3 − w1)(w3 − w2)

)
.

We now have to evaluate this function at (w1, w2, w3) = (ζA, ζB, ζC). Due to the presence
of terms wi − wj in the denominator, we have to be careful when some of the indices
A, B, C coincide. The simplest situation is thus when the three indices are distinct, in
which case we clearly find F(ζA, ζB, ζC) = 0 since the ζA’s are the zeroes of φ(z), hence

CA
Ã
CB

B̃
CC

C̃
F̃ ÃB̃C̃ = 0. In the case of two coinciding labels, a more careful analysis shows

F(ζA, ζA, ζB) = −
φ′(ζA)

ζA − ζB
=

ϵAL−2
A

ζA − ζB
. (B.11)

We then get

CA
Ã
CA

B̃
CB

C̃
F̃ ÃB̃C̃ = ϵB L2

ALBF(ζA, ζA, ζB) =
ϵAϵBLB

ζA − ζB
. (B.12)

Finally, the analysis of the case with all equal indices gives

F(ζA, ζA, ζA) = −
1

2
φ′′(ζA) . (B.13)

A direct computation using equation (3.14) then shows that

CA
Ã
CA

B̃
CA

C̃
F̃ ÃB̃C̃ = ϵA L3

AF(ζA, ζA, ζA) =
ϵA

LA


λ−

∑

B ̸=A

ϵB L2
B

ζA − ζB


 .

We thus conclude that, in all these cases, the tensor CA
Ã
CB

B̃
CC

C̃
F̃ ÃB̃C̃ coincides with

F ABC defined through equation (3.19) in the main text.8

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

8Note that the equation (3.19) gives the coefficients FABC with all indices lowered. The expression found

above for CA

Ã
CB

B̃
CC

C̃
F̃ ÃB̃C̃ has to be compared with F ABC = ϵA ϵB ϵC FABC , where we raised the indices

using ηAB = ϵA δAB . We then find complete agreement with the results of this appendix.
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