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Yu Pan, Ruoguang Li, Member, IEEE, Xinyu Da, Hang Hu, Miao Zhang, Member, IEEE, Dong Zhai,

Kanapathippillai Cumanan, Senior Member, IEEE, and Octavia A. Dobre, Fellow, IEEE

Abstract—The flexibility and controllable mobility of un-
manned aerial vehicles (UAVs) render them easier to become aeri-
al platforms carrying out integrated sensing and communication
(ISAC) functionality, and the cooperation among multiple UAVs
is a promising way to achieve simultaneous multi-static radar
sensing and coordinated multiple point (CoMP) transmission,
leading to an enhanced ISAC service. However, due to the intrin-
sically limited resources that UAVs can utilize, it is challenging
to achieve performance improvement for dual purposes. Toward
this end, in this paper, an orthogonal frequency division multiple
access (OFDMA) UAV-enabled ISAC system is investigated, and
a joint trajectory planning and resource allocation problem is
formulated to minimize the Cramér-Rao lower bounds (CRLB)
for target location estimation while guaranteeing the communica-
tion quality-of-service (QoS) constraints. The formulated problem
is non-convex and difficult to solve in general, and we first
decompose the original problem into three sub-problems and
then propose the corresponding algorithms to obtain the optimal
solutions efficiently. The extensive simulations demonstrate the
convergence of the proposed algorithm and the performance
improvement on the localization with different communication
requirements compared to conventional techniques.

Index Terms—Integrated sensing and communications (ISAC),
cooperative unmanned aerial vehicle (UAV) network, trajectory
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I. INTRODUCTION

A. Background and Motivations

In recent years, integrating unmanned aerial vehicles

(UAVs) into the sixth-generation (6G) communication system

cellular networks has been continuously researched and de-

veloped [1]. These techniques have been applied in numerous

scenarios, such as intelligent transportation, environmental

monitoring disaster relief, etc [2]. Due to its maneuverability,

intelligence, high flexibility, and ubiquitous coverage [3],

UAVs can complete various dangerous tasks without the

involvement of human beings at a low cost bringing wide

prospects in civil and military applications.

The potential applications of the 6G mobile systems in-

clude smart transportation and cities, which introduce more

stringent communication and sensing demands. For example,

the communication requires ultra-low latency and high reli-

ability [4], whereas the sensing requires high precision and

resolution [5]. The realization of the 6G vision necessitates

an architecture that is capable of deeply integrating perceptual

information acquisition, information sharing, intelligent data

processing, and control instruction distribution among the

users. Specifically, in UAV networks, wireless sensing is the

primary demand for surveillance, illegitimate target detection,

and collision avoidance. In addition, high-quality communi-

cation services among UAVs, base stations (BSs), and users

are also necessary. Therefore, sensing and communication

are two key technologies for exploring future use-cases and

emerging applications, while the continuous development of

UAV technology will put forward demanding requirements

for both functionalities. However, conventional radar sensing

and communication modules are individually designed in fully

separate spectrum and transceivers, which are undoubtedly

expensive and restricted in resource utilization, although the

spectrum resources are particularly scarce.

Exploiting integrated sensing and communication (ISAC)

technology with shared signal and transceivers is one approach

to compensate for the above-mentioned limitations, which can

achieve load-saving and spectrum-reusing [6]. The unified

transceivers can be built using light-weight wireless equip-

ment with both communication and sensing functionalities,

while the shared spectrum can improve spectrum utilization

[7], [8]. Due to the high altitude, UAVs can achieve wider

coverage areas with a high probability of line-of-sight (LoS)

links. Therefore, exploiting UAV in the ISAC system can

eliminate the performance degradation of communication and
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sensing/localization in urban or mountainous forest scenarios.

Mobile sensor networks are known to offer distinctive advan-

tages over terrestrial networks in terms of sensing coverage

[9], adaptability to changing conditions, and robustness against

failures [10]. Therefore, multiple UAVs can cooperatively

perform an aerial distributed radar sensing and wireless com-

munication network, realizing the function of multi-static radar

and coordinated multi-point joint transmission (CoMP-JT),

which makes it possible to further enhance the sensing and

communication performance [11]. Furthermore, this combina-

tion can promote the realization of global coverage and ubiq-

uitous connectivity for 6G, by expanding the system capability

from a traditional two-dimensional ground network to three-

dimensional space-air-ground network coverage [12], and from

traditional communication capacity to dual function radar

and communication (DFRC) capacity. Intuitively, the more

transmit resource is utilized to serve multiple users, the bet-

ter sensing and communication quality-of-service (QoS) will

be obtained. Unfortunately, resources (e.g., transmit power,

bandwidth, etc.) are always limited for practical applications,

resulting in the demand for performance trade-off among the

users. To that end, efficient resource allocation schemes are

necessary to achieve optimal QoS performance.

B. Related Works

An overview of ISAC towards 6G has been summarized

comprehensively in [6], where the existing dual-functional

waveforms are mainly designed from two perspectives: em-

bedding useful information into radar signals and employing

the existing communication signals for radar detection [13].

As a promising communication-centric waveform for ISAC,

orthogonal frequency division multiplexing (OFDM) has been

extensively investigated for the ISAC design in [14] and

[15]. OFDM was initially suited for communication since it

can provide robustness against multipath fading and facilitate

adaptive modulation, and its estimation performance has been

validated by theory and experimental measurements to be as

accurate as frequency-modulated continuous wave (FMCW)

in [16]-[17]. Several studies have been presented to enhance

joint sensing and communication performance by optimizing

the OFDM parameters [18]-[21]. For example, for the OFDM-

ISAC system incorporating specifications-compliant transmis-

sion waveforms based on 3GPP long-term evolution (LTE),

the impact of unused subcarriers within the transmitted signal

passband, the fundamental hardware challenges related to

transmitter-receiver isolation, and associated self-interference

problem were addressed in [18]. In [19], the OFDM waveform

matrix was designed to improve the channel capacity and

radar detection performance in the proposed RadCom archi-

tecture, while the authors considered the conditional mutual

information and the data information rate in [20]. Moreover,

[21] demonstrated that the theoretical lower bounds of the

radar system’s parameters of interest can be minimized by

waveform optimization at the cost of reducing the power

allocated for the communication subcarriers, where the radar

transceiver and the communication transmitter are considered

to be the same full-duplex BS. The expensive cost of fully

digital beamforming architecture motivated the investigation

of hybrid beamforming for the OFDM-ISAC system, to jointly

optimize the spectral efficiency of communication and spatial

spectrum matching error of radar [22].

As aforementioned, UAVs can be deployed quickly and

easily as a cooperative mobile network to potentially enhance

the communication and sensing abilities [23]. Many studies

have focused on the performance enhancement in multi-UAV

network from the perspective of communications [24]-[29] or

sensing [31]-[37], separately. For communications, the place-

ment, trajectory, and resource allocation of the UAVs can be

jointly optimized to satisfy different quality-of-service (QoS)

requirements. The effect of the UAV placement and path loss

factor was analyzed in [25] for user coverage maximization in

uplink transmission, while [26] focused on the power and time

resource allocation problem for time sharing non-orthogonal

multiple access UAV-assisted communications. In [27], the

legitimate surveillance problem was investigated by optimizing

the jamming power and 3D trajectory of the cooperative UAV

in a maritime communication network, and two reinforcement

learning schemes were further proposed in [28]. To fully

utilize the advantages of UAV-enabled simultaneous wireless

information and power transfer, [29] studied the system’s

robust joint design with imperfect eavesdropper locations to

maximize the minimum secrecy rate under the harvested

energy constraints, while the robust 3D-trajectory and time

switching optimization was further investigated for a dual-

UAV-enabled system in [30].

For radar sensing, to analyze the effect of radar geometric

deployment on localization accuracy, the placement strategy

of UAVs was considered for time of arrival (TOA)-based

localization [31]-[32], and angle of arrival (AOA)-based lo-

calization [33] by using the Fisher information matrix (FIM)

as the performance metric. In [34], a multi-UAV cooperative

resource scheduling and task assignment scheme based on the

animal colony perception method was proposed, providing a

target recognition, location, and tracking method. To localize

moving targets more efficiently, a cooperative path planning

technique through predicting the FIM was presented in [35].

Furthermore, based on the map-aided estimator, the UAV

trajectory was optimized in [36] to improve the performance

of localization under a given mission duration. However,

few works investigated the UAV-enabled ISAC system, which

may introduce challenging problems in practice. In [37], a

beam sharing scheme was proposed, and the corresponding

beamforming algorithm to maximize the sensing range for

each UAV was achieved. The joint UAV location problem was

considered in a DFRC multi-UAV network to maximize the

network utility in [23], and the UAV trajectory was optimized

with a novel integrated periodic sensing and communication

mechanism to maximize the user rate in [38]. However, the

aforementioned works only considered UAVs’ location opti-

mization for performance enhancement, not mentioning the

joint design problem of trajectory optimization and resource

allocation with the QoS constraints yet, and thus motivates our

current work on the trade-off between sensing and communi-

cation performance for an integrated waveform.
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C. Original Contributions and Organization

In this paper, we study a UAV-enabled ISAC system, where

multiple UAVs are employed to simultaneously provide sens-

ing and communication services via the integrated waveform.

In particular, the mean square error (MSE) of the location

estimation is minimized under throughput constraints for each

UAV, and then the cooperative trajectories and resource allo-

cation are jointly optimized with limited power and spectrum

resources. Such a resource-aware problem is non-trivial and

practically appealing, and is beneficial in extending the ability

of the ISAC system in terms of performance and endurance.

However, this problem has not been investigated to the best

of our knowledge. The variables of UAV trajectory, user

association, transmission power, and bandwidth are coupled

with each other and the problem is non-convex. After de-

composition, the pattern search algorithm is first applied to

determine the UAV tracking trajectories, and the Hungarian

algorithm is utilized to solve the association problem. Toward

this end, an alternative algorithm is proposed to iteratively

obtain the optimal bandwidth allocation and power allocation

with successive convex approximation (SCA) technique. The

main contributions of this paper are summarized as follows.

• First, we propose a cooperative multi-UAV ISAC network

to simultaneously provide target sensing and communica-

tion services. An OFDM-based waveform is adopted and

the resource block allocation is proposed, and the ISAC

framework and spectrum usage are elaborated.

• Then, to quantify the localization performance of the

cooperative UAVs, equivalent FIM (EFIM) [39] is applied

to directly calculate the FIM of ToA from each UAV,

which can reduce the dimension of the determined FIM.

Then, the Cramér-Rao lower bound (CRLB) for location

estimation is derived as sensing performance criterion.

• The ranging performance of each UAV is analyzed to

investigate the resource allocation principles, and the

effects of the trajectory and resource allocation on the

entire performance are accordingly demonstrated.

• Finally, we validate the effectiveness of the proposed

alternating path planning and resource allocation (APRA)

algorithm by the theoretical results of CRLB. It is shown

that the proposed algorithm is able to converge within few

iterations and can significantly and efficiently improve

the localization performance compared with conventional

radar networks.

In the rest of this paper, Section II describes the system

model, while Section III formulates the CRLB minimization

problem under throughput constraints. In Section IV, the

alternating algorithm is proposed to solve the non-convex

problem, and Section V presents the simulation results and

discussions. Finally, Section VI draws the conclusions.

Notations: Throughout the paper, matrices are denoted by

bold upper-case letters (i.e., Λ), column vectors are denoted

by bold lower-case letters (i.e., q), and scalars are denoted by

normal letters (i.e., P ). |a| stands for the magnitude of a scalar

a; diag{a} stands for a diagonal matrix with the elements

of vector a on the diagonal. Matrix superscripts (·)T and

(·)H represent the transpose and complex conjugate transpose

operations, respectively. Besides, the notations tr(·) and (·)−1

denote the trace and the inverse of a matrix.

II. SYSTEM MODEL

A. System Description

As shown in Fig. 1, the system is consisted of K ran-

domly distributed ISAC UAVs, one targeted UAV that is to

be detected, and one fusion center (FC). The ISAC UAVs

can perform simultaneous sensing and communication via

the pre-designed ISAC waveform. The rotary-wing UAVs are

deployed around the area of interest, and cruise at a fixed

altitude to detect the malicious target while communicating

with the BS. The locations of the unauthorized target, the

k-th ISAC UAV, and the j-th BS at the i-th time interval

are given by ωi ∈ R
2×1, qik ∈ R

2×1 (k ∈ K = {1, · · ·,K}),
and uj ∈ R

2×1 (j ∈ J = {1, · · ·, J}), respectively. The FC

not only manages the wireless resource scheduling among

UAVs and BSs, but also collects the sensed results from

each UAV for further processing. The synchronization among

UAVs can be achieved by wireless backhaul links. Besides,

the prior information of the coarse targeted UAV’s location

can be obtained by global positioning system (GPS). For ease

of analysis, we assume that the clutter can be appropriately

mitigated by using the existing clutter rejection techniques.

BS

ISAC signals

UAV

UAV

Target

Critical Infrastructure

BS

BS

UAV

FC

Downlink 

Communication

Echo signals

UAV

Fig. 1. A UAV-enabled ISAC system adopting OFDM.

The frame structure and schematic diagram for UAV-anbled

ISAC system are described in Fig. 2, which is based on a

typical time-division duplex (TDD) protocol. We assume that

a time interval can be regarded as a slot for communication

and a pulse repetition interval (PRI) for radar sensing1. As

shown in Fig. 2(a), during the first time interval, all the UAVs

transmit uplink pilots (UPs) to achieve target searching and

uplink channel estimation, while BS transmits downlink polits

1Following the standard radar literature, a transmit-receive cycle is termed
as a PRI [13].
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Radar Echo:

Communication：

time interval 1 time interval  2

UP GP DP UD GP DD

UP Uplink Pilot Downlink PilotGuard PeriodGP DP

UD DDUplink Data Downlink Data Echo

Target searching and channel 

estimation

ISAC 

waveform 

transmission

Target localization

and downlink 

communication

(a)

U
D

G
P

D
D

Cooperatively perform 
radar sensing

Uplink communication data, Vdata={VP,RP}

Echo signals reflected 
by the targets

Collected the 
sensing information 

at FC 

Downlink communication including the 
UAV control and power allocation 

Fusing all radar 
estimates and solve 

the problem  

(b)

Fig. 2. (a) Frame structure of the ISAC signal; (b) Schematic diagram of
the ISAC system in time interval 2.

(DPs) for downlink channel estimation. It is worth noting that

a guard period (GP) is necessary to avoid the interference

between downlink communications and echos. In the second

time interval, UAVs transmit the ISAC waveform to perform

simultaneous radar sensing and uplink data (UD) transmission2

to the micro BSs. When the echo is reflected back from

the target, the UAVs perform inner-measurement for ranging

independently and then forward the processed result to the

BSs by downlink data (DD), which will be finally collected at

the FC. The TOA-based localization is considered in this paper

for its easy deployment on UAV swarms, higher accuracy than

received signal strength sensors, and lower complexity than the

angle of departure and AOA sensors3. During the downlink

communication, the BSs send the data including the solutions

for trajectory control and resource allocation to each UAV,

which is obtained from FC by fusing all ranging estimates.

The number of K ISAC UAVs communicate with the BSs

via OFDM access (OFDMA), and the channel state informa-

tion (CSI) is assumed to be perfectly known. The transmit

power vector of the UAVs is denoted by pi = [P i1, · · · , P
i
K ]T,

where P ik denotes the transmission power of the k-th UAV

at the i-th interval. Without loss of generality, the OFDMA

network is considered with Nc subcarriers to be allocated to

2The uplink communication data is defined as Vdata={VP, RP}, including
VP={distance} for the target, and RP={detection picture/video} for environ-
ment and traffic status from the previous PRI, which are collected by wearable
module embedded on the UAVs.

3It should be mentioned that our model is simplified for ease of analysis.
And a more generalized model foe 3D localization needs to be considered in
the future work.

K UAVs, and the spectrum usage is illustrated in Fig.3.

Frequency Domain 

 subcarriers

Bandwidth of the K-th UAVBandwidth of the 1-th UAV

Time

Domain

1   2  3   4 Nc

Nc

Fig. 3. The spectrum usage of the OFDMA network with Nc subcarriers
for K UAVs.

Then, the OFDM-ISAC signal transmitted by the k-th UAV

can be represented as [20]

Sik(t) = ej2πfc,kt
∑

n∈N i
k

M−1∑

m=0

aiknC
i
k,nme

j2πn∆f(t−mT )

× rect

[
(t−mT )

T

]

, (1)

where N i
k represents the assigned subcarrier set of the k-

th UAV, M denotes the number of OFDM symbols in each

pulse, aikn is the amplitude of the n-th subcarrier of the k-

th UAV with P ik =
∑

n∈N i
k
|aikn|

2
, and Cik,nm is the m-

th modulated symbol on the n-th subcarrier. rect[t/T ] is the

rectangle function, and ∆f = 1/T is the subcarrier interval,

where T is the length of each OFDM symbol composed of

valid symbol time Ts and cyclic prefix (CP) time Tg . To avoid

the inter-symbol interference (ISI), the length of CP must be

larger than the maximum time delay of multi-path, while in

radar systems Tg should also be larger than the round-trip time

delay corresponding to the maximum detectable range.

B. Communication Model

The communication channel is mainly dependent on the

propagation loss with respect to distance. Let hikj denote the

channel coefficient between the k-th UAV and the j-th BS at

the i-th interval, which can be described by

hikj =
√

γikj h̃
i
kj , (2)

where γikj accounts for the large-scale fading effects, and h̃ikj

is a complex-valued random variable with E

[∣
∣
∣h̃ikj

∣
∣
∣

2
]

= 1

accounting for the small-scale fading. Specifically, the large-

scale fading effect varies based on LoS and Non line-of-sight

(NLoS) link, which can be written as [40]

γikj =







γ0

(

dikj

)−α̃

, LoS link

κγ0

(

dikj

)−α̃

, NLoS link
(3)

where γ0 is the path loss at the reference distance, α̃ is the path

loss exponent, and κ < 1 is the additional attenuation factor

due to the NLoS condition. Without loss of generality, we

assume that each UAV experiences the same channel gain on

each subcarrier due to smaller multipath effect in the air [41].
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The association between the UAV and BS at the i-th interval is

denoted by an indicator matrix Λi ∈ R
K×J , whose element at

the k-th row and the j-th column is λkj ∈ {0, 1}, where λkj =
1 indicates that the k-th UAV is associated with the j-th BS,

and λkj = 0 otherwise. Since the UAVs communicate with the

BSs via OFDMA, the mutual interference among downlinks is

non-existent. We assume that each UAV can only communicate

with one BS within each time interval, and each BS can serve

Na UAVs, then there exists

{∑

j∈J λ
i
kj = 1, ∀k ∈ K,

∑

k∈K λ
i
kj ≤ Na, ∀j ∈ J .

(4)

Since channel capacity is a general and important crite-

rion for communication, it is used as the metric to eval-

uate the communication performance in this ISAC system.

The vector of subcarrier number allocation is denoted by

ni = [N i
1, · · · , N

i
K ]T, where N i

k is the number of allocated

subcarriers to the k-th UAV at the i-th interval, and thus its

bandwidth is Bik = N i
k∆f . The subcarriers can be allocated

in consecutive or interleaved chunks to improve the frequency

diversity. Therefore, the achievable rate of the k-th UAV at the

i-th time interval can be obtained by

Ric,k = Bik
∑

j∈J

λikj log2




1 +

∣
∣
∣aiknh

i
kj

∣
∣
∣

2

σ2
c,k




 , (5)

where σ2
c,k is the noise power of the additive white Gaussian

noise (AWGN) at the j-th BS, and the achievable sum rate is

Ric =
∑

k∈KR
i
c,k.

C. Localization Measurement Model

Once the echo is received by the k-th UAV, we can remove
the echo from other UAVs since their status information are
achievable at FC. Then the processed echo which only contains
the information from the target can be formulated as

r
i
k(t) =

∑

n∈N i
k

M−1
∑

m=0

ζ
i
ka

i
knC

i
k,nme

j2πn∆f(t−mT−τi
k)

× e
j2π[fc,k(t−τi

k)+fi
D,kmT ] rect

[

t−mT − τ i
k

T

]

+ φk(t),

(6)

where fc,kn = fc,k+n∆f , and ζik denotes the complex-valued

reflection coefficient with |ζik|
2 proportional to the radar cross

section (RCS) of the target. τ ik and f iD,k are the round-trip

time delay and Doppler frequency shift detected by the k-th

UAV at the i-th interval, and φik(t) is the complex AWGN

with zero mean and unit variance. It can be easily seen that

τ ik = 2dik/c0, f
i
D,k = 2vikfc,k/c0, where dik and vik are the

range and relative radial velocity between the k-th UAV and

the target, and c0 is the speed of light. It is worth noting that

the UAVs intentionally detect the target within a specific area

with the given parameter information, so the prior information

on reflection coefficient can be known to each UAV. With the

estimated distances from all UAVs, the FC can calculate the

target’s position by multi-lateration.

The received rik(t) is first down-converted to the baseband

and sampled at the frequency of fs = Nc∆f . The sample

interval is 1/fs and Nc time samples can be extracted from

each OFDM symbol. By removing the CP and performing

the discrete Fourier transform (DFT) of length Nc, a received

matrix Yi
k ∈ R

Nk×M for each UAV can be derived as follows,

with the known Ck,nm removed

Yi
k(n,m) = aiknζ

i
ke

−j2πfc,knτ
i
k ·ej2πf

i
D,kmT +Φi

k(n,m), (7)

where Φi
k ∈ R

Nk×M is the matrix representation of AWGN.

Its elements are independent and identically distributed (i.i.d.)

complex random variables from a circular, zero-mean Gaus-

sian distribution with variance σ2
r,k, which has the same

property as in (6) for constant amplitude modulation alphabets

[15].

III. PROBLEM FORMULATION

In this section, we present the optimization design on sens-
ing performance improvement under communication QoS con-
straints. For radar, we are interested in its location estimation
accuracy, which can provide meaningful benchmarks and is
usually evaluated by CRLB 4. The derivation of the CRLB for
the frequency estimate in discrete-time, one-dimensional pro-
cesses can be found in [42]. In this paper, the parameter vector

to be estimated is defined as θi =
[

θi1
T
,θi2

T
]T

∈ R
2K×1,

with θi1 =
[
τ i1, · · · , τ

i
K

]T
, and θi2 =

[
f iD,1, · · · , f

i
D,K

]T
.

Regarding the observation output Yi
k in (7), the elements of

the observation matrix are subject to the following likelihood
function

f
(

Y
i | θi

)

=
∏

k∈K

∏

n∈N i
k

M−1
∏

m=0

1
√

2πσ2
r,k

exp

{

−
1

2σ2
r,k

×
∣

∣

∣
Y

i
k(n,m)− a

i
knζ

i
ke

−j2πfc,knτi
ke

j2πfi
D,kmT

∣

∣

∣

2
}

.

(8)

Then, the delay and Doppler shift can be estimated from

the joint log-likelihood function ln f
(
Yi | θi

)
by using the

periodogram-based estimation algorithms or maximum like-

lihood estimation, which have low computational complexity

and good performance. The FIM of θi can be written as

J(θi) =

[

J
(
θi1,θ

i
1

)
J
(
θi1,θ

i
2

)

J
(
θi1,θ

i
2

)T
J
(
θi2,θ

i
2

)

]

. (9)

According to the FIM of θi, the CRLB on delay and

Doppler shift estimation can be calculated as

CRLB
(
τ ik
)
=

32π(2M − 1)

M(M + 1)c02σRCS

(
dik
)4
σ2
r,k

P ik
,

CRLB
(
f iD,k

)
=

192πf2c,k
M(M − 1)2T 2c02σRCS

(
dik
)4
σ2
r,k

P ik
.

(10)

Then, to obtain the CRLB matrix of the target’s location,

we are mainly interested in the first subvector to achieve the

4The corresponding practical error variances can be minimized by optimiz-
ing the CRLBs, which is known to be asymptotically tight to the MSE of
the maximum likelihood estimator at high signal-to-noise ratio (SNR) and is
validated in [16].
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distances between the UAVs and the target. For simplicity, the

EFIM Je
(
θi1
)

is introduced to measure θi1 [39].

Lemma 1. Define the parameter vector of interest to be

estimated as ωi =
[
xi0, y

i
0

]T
, the EFIM J

(
ωi
)

of the target

location is

J
(
ωi
)
= QiJe

(
θi1
)
QT
i , (11)

with Je
(
θi1
)

and Qi given in (36) and (37).

Proof: See Appendix A. �

The inverse of the EFIM matrix J
(
ωi
)

can finally define

the CRLB matrix on the target location estimation as

Ci
x,y =

{

A0

∑

k∈K

P ik

[
gik11 gik12
gik21 gik22

]}−1

, (12)

where A0 = M(M+1)σRCS

8π(2M−1) , and







gik11 =
(xi

0
−xi

k)
2

di
k
6
σ2

r,k

,

gik12 = gik21 =
(xi

0
−xi

k)(y
i
0
−yik)

di
k
6
σ2

r,k

,

gik22 =
(yi0−y

i
k)

2

di
k
6
σ2

r,k

.

(13)

It can be observed that the CRLB for location estimation

for the multi-UAV ISAC system has a similar format as that

in [43][44]. The trace of Ci
x,y accounts for a lower bound on

the sum of the MSEs for the estimation on target location ωi,

i.e., tr
(
Ci
x,y

)
≤
(
σix
)2

+
(
σiy
)2

, where
(
σix
)2

and
(
σiy
)2

are

the MSEs of the location estimation on xi0 and yi0. Thus, the

localization performance of the UAVs can be evaluated and

optimized by minimizing the trace of the CRLB matrix.

Let us consider the scenarios that require high sensing

performance (e.g., autonomous vehicles), where the design

degree of freedom (DoF) for improving the communication

capacity is limited. Therefore, the objective in this paper is

to minimize the estimation MSE with the guaranteed QoS of

each UAV. The joint sensing and communication performance

mainly depend on the allocated power and bandwidth to each

UAV, the number of OFDM symbols in each pulse, and the

bearing angle and distance between each tracking UAV and the

target. All these parameters are incorporated into the elements

of the CRLB matrix and the constraints through vectors {qik},

ni, pi, and matrix Λi. Based on the above analysis, the design

problem of this ISAC system can be formulated as

(P1) min
{qi

k},Λi,ni,pi

tr
(
Ci
x,y

)
(14)

s.t. Ric,k ≥ ηc, ∀k ∈ K, (14a)

1Tni = Nc, (14b)

1Tpi ≤ PT , (14c)

P ik ≥ Pmin, ∀k ∈ K, (14d)
∥
∥qik − qi−1

k

∥
∥ ≤ vmaxδt, ∀k ∈ K,

(14e)
∥
∥qim − qin

∥
∥ ≥ dmin, ∀m,n ∈ K, (14f)

∥
∥ωi−1 − qik

∥
∥ ≥ dmin, ∀k ∈ K, (14g)

(3),

where constraint (14a) represents the throughput requirements

of the UAVs which also guarantees fairness to all users, con-

straints (14c) and (14d) limit the power allocation, and (14f)

and (14g) are the anti-collision constraints. ηc is the minimum

communication rate, Pmin is a minimum power which enables

each UAV to communicate with BSs and localize the target,

vmax is the maximum velocity of each UAV, δt is the unit

flight time slot, and dmin denotes the minimum distance to

keep UAVs from collision.

Problem (P1) is highly challenging to solve due to the

following reasons: 1) the objective function with a fractional

form is complicated and non-convex; 2) the variables {qik},

ni, and pi are coupled; 3) the constraints on Λi and ni imply

a mixed-integer programming.

IV. PROPOSED SOLUTIONS

In this section, we solve the problem (P1) by optimizing

the UAV trajectories, user association, and resource allocation

to minimize the localization CRLB. As the problem is gen-

erally intractable, we propose the APRA algorithm based on

alternating optimization, pattern search, Hungarian algorithm,

and SCA to make it tractable.

A. UAV Path Planning and User Association

Fixing p̄i, Λ̄i, and n̄i, the sub-problem of optimizing
{
qik
}

in problem (P1) can be written as

(P2.1) min
{qi

k}
tr
(
Ci
x,y

)
(15)

s.t. (14e), (14f), (14g).

To simplify the problem, we define

xik − x̂i0 = dik cosψ
i
k, (16a)

yik − ŷi0 = dik sinψ
i
k. (16b)

As shown in Fig. 4, di−1
k denotes the distance from the k-th

UAV to the target at the (i-1)-th interval, and it can be derived

that βi−1
k = arcsin r2

di−1

k

, ψik = arccos
xi
k−x̂

i
0

di
k

with yik−ŷ
i
0 ≥ 0,

and otherwise, ψik = 2π − arccos
xi
k−x̂

i
0

di
k

.

Lemma 2. To minimize the CRLB for target location

estimation, the problem (P2.1) can be reduced to

(P2.2) min
ψi

tr
(

C̃i
x,y

)

(17)

s.t. ψ̌ik ≤ ψik ≤ ψ̂ik (17a)

(14f),

where

C̃i
x,y =

1

A0







∑

k∈K

P ik





cos2 ψi
k

di
k,min

4
σ2

r,k

cosψi
k sinψi

k

di
k,min

4
σ2

r,k

cosψi
k sinψi

k

di
k,min

4
σ2

r,k

sin2 ψi
k

di
k,min

4
σ2

r,k











−1

,

(18)

and

[

ψ̌ik, ψ̂
i
k

]

=

{[
ψi−1
k − βi−1

k , ψi−1
k + βi−1

k

]
, r1 + r2 ≤ di−1

k ,
[
ψi−1
k − ξi−1

k , ψi−1
k + ξi−1

k

]
, r1 + r2 > di−1

k ,
(19)
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Fig. 4. Measurement model for UAV path planning analysis.

with ξi−1
k = arccos

r2
1
+r2

2
−d

i−1

k

2

2r1r2
, and ψi =

[
ψi1, · · · , ψ

i
K

]T
.

Proof: See Appendix B. �

The objective function (17) is highly non-linear and compli-

cated, making the problem (P2.2) hard to solve by gradient-

based optimization algorithms which are sensitive to the initial

condition and liable to be trapped in a local optimum. By

employing Lemma 2, the dimension and range of the feasible

region can be effectively reduced. We exploit the pattern search

to achieve the optimal tracking trajectory efficiently, which is

computationally fast to guarantee the path planning be done in

time. Once the UAVs’ trajectories are obtained, the association

problem for Λi can be interpreted as an assignment problem,

and can be solved by the classical Hungarian algorithm.

The solution for UAV path planning and user association

determination is detailed in Algorithm 1.

Algorithm 1 UAV Path Planning and Association Determina-

tion

Require: p̄i, n̄i, ω̂i−1,
{
qi−1
k

}
, uj

1: Init:







Iteration Index l = 0
Mesh Tolerance ǫ1
Feasible ψi(0) to (P2.2)

2: Repeat

3: Calculate the current values dimin(l), ψ̌
i
(l), and ψ̂i(l)

based on (40) and (19)

4: do

one iteration of pattern search and achieve ψi(l)
∗

5: ψi(l+1) = ψ
i
(l)

∗

6: l = l + 1
7: Until the mesh size of ψi is below ǫ1
8: do

Hungarian algorithm and determine Λi∗

Output:
{
q̄ik
}

, Λ̄i

B. Resource Allocation Scheme

1) UAV Bandwidth Allocation: Since the optimal UAV

trajectories and user association are determined, it should

be noted that the inappropriate bandwidth assignment may

lead to an infeasible problem. Consequently, the bandwidth

assignment should then be achieved before UAV transmission

power optimization. The main idea is to achieve the bandwidth

allocation results which can minimize the power budget satis-

fying the communication QoS constraints, and thus it can give

priority to the design DoF for sensing accuracy.

Considering the average SNR of the subcarriers, the optimal

rate-power allocation for the k-th UAV is to transmit equal

number of bits on each subcarrier. Minimizing the com-

munication power budget means minimizing the throughput,

bringing it as close as possible to the threshold value ηc.
Then, the required minimum power consumption to satisfy

the communication QoS can be calculated as

pic,min(k) = σ2
c,j(2

ηc

Ni
k
∆f − 1)/

∣
∣hikj

∣
∣
2
. (20)

The corresponding bandwidth allocation problem can be

summarized as

(P3.1) min
Ni

1Tpc,min (21)

s.t. (14a).

With the fixed
{
q̄ik
}

and Λ̄i, an appropriate algorithm to

achieve the bandwidth assignment is proposed in Algorithm 2,

where the subcarrier number is iteratively updated to achieve

the minimum power consumption for communication. The

initial integer values for the number of subcarriers are arbitrary

integers.

Algorithm 2 Iterative Algorithm for Bandwidth Allocation

Require:
{
q̄ik
}

, uj

1: Init:

{
Iteration Index l = 0
ni(0)

2: Repeat

3: for a = 1 : A
4: n(l)(a :) = ni(l−1) +N∆(a, :)
5: Calculate the objective function value for each

n(l)(a, :) denoted by pa based on (19)

6: end for

7:

[

P ∗
(l), a

∗
]

=argmin
[
1Tp1, · · · ,1

TpA
]

8: Update ni(l+1) = N∆(a
∗, :)

9: l = l + 1
10: Until the decrement of the objective value is equal to 0

Output: n̄i

During each iteration in Algorithm 2, one element in ni(l)
is chosen to be reduced by 1, and the amount is then added

to any of the other elements. Thus there exists A = (A2
K +1)

possible cases in each iteration, where A2
K = K!

(K−2)! and all
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cases of the allocation change can be denoted by

N∆ =










−1 1 0 · · · 0 0
−1 0 1 · · · 0 0

...
...

...
...

...
...

0 0 0 · · · −1 1
0 0 0 · · · 0 0










, (22)

where each row of the matrix N∆ represents one case of

allocation change. During the l-th iteration, the change that

causes the maximum power reduction can generate the opti-

mum subcarrier allocation as ni(l). The algorithm is repeated

until the change in power reduction in each iteration is equal

to 0. Problem (P3.1) can be easily solved by the iterative

Algorithm 2, and it is also efficient throughout the UAV’s flight

since the values of the previous time interval can be used as the

initial value of the next. The variation in bandwidth allocation

between two time intervals is little, and thus the algorithm can

quickly converge to an optimal solution.

2) UAV Transmission Power Allocation: With the band-

width allocation results, the sub-problem with respect to pi

can be formulated. The constraint (14a) can be reduced to a

lower bound constraint by calculating pic,min(k) by (20). Then,

given the other fixed variables, we have the following problem

for UAV transmission power optimization

(P4.1) min
pi

tr
(
Ci
x,y

)
(23)

s.t. pi(k) ≥ pic,min(k), (23a)

(14c), (14d).

It is obvious that the objective function defined in (12) is

non-convex and involves a ratio term, which should first be

relaxed by non-liner fractional programming (FP) [45]. The

classical Dinkelbach’s transform is applied to decouple the nu-

merator and the denominator of tr
(
Ci
x,y

)
, thereby converting

the original single-radio problem into a non-convex quadratic

programming (QP) problem, and then problem (P4.1) can be

reformulated as

(P4.2) min
pi

f
(
pi
)
− µg

(
pi
)

A0
(24)

s.t. (23a), (14c), (14d),

where

f
(
pi
)
= ci

Tpi, (25a)

g
(
pi
)
=

1

2
pi

T
Wipi, (25b)

with ci =

[

1
di
1

4
σ2
r,1

, 1
di
2

4
σ2
r,2

, · · · , 1
di
K

4
σ2

r,K

]T

, and Wi (n,m)

= cnm. The subscript of c interprets the index of any two

random-selected UAVs among the C2
K = K( K−1)

2! combina-

tions and is calculated as

cnm =

[(
xi0 − xim

) (
yi0 − yin

)
−
(
xi0 − xin

) (
yi0 − yim

)]2

din
6
dim

6 .

(26)

The new auxiliary variable µ in (24) introduced by FP is

updated by

µ(l+1) =
f
(

pi(l)

)

g
(

pi(l)

) , (27)

where l is the iteration index, and pi(l) is the value of pi at

the l-th iteration.

Since Wi is neither positive nor negative semidefinite, it

can be decomposed as a difference of two positive semidefinite

matrices based on eigenvalue decomposition given as

Wi = HiT
(
Mi −Ni

)
Hi = Wi

1 −Wi
2, (28)

where Hi is the eigenvector matrix of Wi, Mi =
diag [λ1, · · · , λl,0], N

i = diag [0,−λl+1, · · · ]. Obviously, the

elements in Mi and Ni are positive eigenvalues and the

opposite of negative eigenvalues of Wi, respectively. Then

(24) can be converted into a difference of convex functions

given as

R
(
pi
)
=

1

A0






cTi p

i +
µ

2
pi

T
Wi

2p
i

︸ ︷︷ ︸

R1(pi)

−
µ

2
pi

T
Wi

1p
i

︸ ︷︷ ︸

R2(pi)






.

(29)

Based on (29), the objective function can be effectively

handled by SCA technique. First, we derive the first-order

Taylor expansion of R2

(
pi
)
, which has been proved to be

a global lower bound of a convex function

R′
2

(
pi
)
= µpi(l)

T
Wi

1p
i
(l) −

µ

2
pi(l)

T
Wi

1p
i
(l)

≤ R2

(
pi
)
. (30)

Then (24) can be replaced by its corresponding upper bound

at the l-th iteration, and problem (P4.2) can be relaxed as

(P4.3) minimize
pi

1

A0

[
R1

(
pi
)
−R′

2

(
pi
)]

(31)

s.t. (23a), (14c), (14d).

The objective function (31) is convex since it is a combination

of a convex function and a linear function. Thus it can be

verified that problem (P4.3) is a convex QP problem with

linear constraints, which can be efficiently solved by standard

convex optimization techniques such as active set, interior

point, and conjugate gradient methods or existing software

toolbox such as CVX [46]. Therefore, an efficient solution for

problem (P4.1) can be achieved by successively updating the

stationary point of problem (P4.3) at each iteration, which is

summarized in Algorithm 3.

C. Overall Algorithm with Computational Complexity and

Convergence Analysis

The overall algorithm is summarized in this subsection,

which solves problem (P1) by alternately optimizing the

problems derived in the previous subsections. Specifically, the

optimal trajectories for the ISAC UAVs in each time interval

are determined by pattern search and the UAV-BS association
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Algorithm 3 Dinkelbach-based SCA Algorithm for Power

Allocation

Require: {q̄ik}, Λ̄i, n̄i, ω̂i, pic,min

1: Init:







Iteration Index l = 0
Threshold ǫ2
Feasible pi(0)

2: Repeat

3: Update µ(l) based on (27)

4: Solve the convex problem (P4.3) by CVX, and denote

the optimal solution as pi(l)
5: l = l + 1
6: Until the decrement of the objective value of (P4.3) is

below ǫ2
Output: p̄i

Λi is generated by the Hungarian algorithm. Then, the sub-

carrier number allocation ni is optimized by an appropriate

search algorithm. Finally, a high-quality sub-optimal solution

of the UAV power allocation problem is obtained by applying

the SCA technique. Furthermore, during each time interval, the

achieved
{

qik(n)

}

, Λi
(n), n

i
(n) and pi(n) in the n-th iteration is

used as the input of the next iteration. Similarly, the achieved
{
qik
}

, Λi, ni and pi at the i-th interval is used as the input

of the next interval. At the first time interval, the initial

power allocated to the UAVs is divided equally, and the initial

bandwidth is arbitrary. Details of this overall algorithm are

summarized in Algorithm 4.

Algorithm 4 Overall Algorithm for Solving (P1)

Require: ω̂i,
{
qi−1
k

}
, uj

1: Init:







Iteration Index n = 0
Threshold ǫ0
Feasible pi(0), Λi

(0), and ni(0)
2: Repeat

3: Update
{

qik(n+1)

}

and Λi
(n+1) via Algorithm 1

4: Update ni(n+1) via Algorithm 2

5: Update pi(n+1) via Algorithm 3

6: n = n+ 1
7: Until the decrement of tr

(
Ci
x,y

)
is below ǫ0

Output: pi,
{
qik
}

, Λi, ni

The overall computational complexity of the proposed al-

gorithm is linear with the number of iterations. Therefore, we

mainly focus on the deterministic cost per iteration for the

convenience of analysis. For the pattern search based UAV

path planning optimization, the complexity is O(ǫ−1
1 K). The

computational cost of both user association and bandwidth

allocation is linear with O(K). For UAV power allocation, the

complexity of the reformulated problem (P4.3) solved by the

Dinkelbach-based SCA algorithm is O(K3.5). To conclude,

the total complexity is polynomial over K.

The convergence of Algorithm 4 is stated by the following

lemma.

Lemma 3. The proposed overall algorithm is convergent.

Proof: See Appendix C. �

TABLE I
SIMULATION PARAMETERS

Parameter Value Parameter Value

γ0 -50 dB PT 0 dB

fc 2.44 GHz Pmin -20 dB

∆f 15 kHz Nc 1024

H 100 m K 3

dmin 3 m vmax 30 m/s

σ2
c,k

/σ2
r,k

-110 dBw σRCS -10 dBsm

M 5 α̃ 2
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Fig. 5. Convergence of the overall algorithm with different communication
constraints; the insets depict the convergence of Algorithm 2 for bandwidth
allocation (left) and Algorithm 3 for power allocation (right) with ηc = 25

Mbps.

V. NUMERICAL RESULTS

In this section, the effectiveness of our proposed APRA

algorithm is evaluated by numerical simulations in the ISAC

scenario. Without loss of generality, the micro BSs are uni-

formly distributed with distance of 60 m in the considered

area. The detailed simulation parameters are listed in Table

I, where the UAV’s altitude is according to the Federal

Aviation Administration regulation [47]. The initial geometric

distributions of the UAVs are set as q0
1 = [0, 0], q0

2 = [40, 0],
and q0

3 = [−20, 200], and the UAVs are constrained to keep

safety distance of dmin m from each other. Considering that the

duration of each interval in the proposed ISAC frame structure

is 1 ms, we take an observation interval as 100 ms for the

purpose of analysis in the following simulations.

A. Performance within One Observation Interval

First, we analyze the convergence of the proposed APRA

algorithm within the first observation interval. The proposed

algorithm is based on the alternating optimization approach by

solving three sub-problems. Therefore, the convergence of the

overall algorithm along with the convergence for the resource

allocation algorithms are shown respectively in Fig. 5. Note

that the overall convergence can be obtained in only a few

iterations since the objective value is monotonically decreased
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Fig. 6. The cooperative tracking trajectories of the UAVs with ηc = 15

Mbps and ηc = 25 Mbps.

as the outer iteration index rises, and the convergence for

the Dinkelbach-based SCA algorithm for power allocation is

also fast. Recall that the tracking performance depends on

the improvements in the CRLB, which is derived as σ2
x,y in

(12). Therefore, the localization performance comparison for

different communication QoS constraints is also demonstrat-

ed within this observation interval. As expected, compared

to the cases with stricter throughput constraints, the lower

CRLB on target location estimation can be achieved with

ηc = 15 Mbps. The curves show the performance trade-off

between localization accuracy and throughput threshold, which

is mainly dependent on the resource allocation scheme and

path planning, and the principle will be elaborated further in

the following subsection.

B. Performance across Observation Intervals

The simulation is then conducted over 40 consecutive ob-

servation intervals to analyze the tracking performance of this

dynamic ISAC network. Based on the proposed algorithm, the

optimized variables
{
qik
}

, Λi, ni and pi are updated as the

input to the next interval.

Given the pre-designed target path, Fig. 6 depicts the

trajectories of the cooperative tracking UAVs achieved by our

proposed algorithm, with the throughput requirement set as

ηc = 15 Mbps and ηc = 25 Mbps. It is worth noting that all

the tracking UAVs approach the target to improve localization

accuracy as time proceeds forward. Specifically, both UAV2

and UAV3 continuously approach the target within 4 s, so as

to get better localization performance. As for UAV1, it flies

far away from the target at the very beginning, and actually

this seemingly abnormal behavior improves the performance

from the perspective of angular spread, for the reason that

the localization performance is also reliant on the geometric

spread of all UAVs.

As illustrated in Fig. 7, the cooperative UAV network can

significantly increase the localization performance than radars

with fixed deployment by permitting a continuous tracking of
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Fig. 7. Comparison with different communication constraints in terms of the
improvement in σ2

x,y versus time.

the target, showing the superiority of the dynamic configura-

tion. In general, UAVs can achieve better localization accuracy

throughout the whole tracking process with ηc = 15 Mbps than

ηc = 25 Mbps. Moreover, the gap is gradually decreased with

the growth of time, since the path planning can make up for

the weakness of insufficient DoF for resource allocation.

As shown in Fig. 8, it is obvious that the allocation

variations among the observation intervals are more severe

with lower throughput requirements. Under the constraint of

total power budget, more strict communication QoS guar-

antee means that the residual power for improving sensing

performance is reduced. Therefore, when the communication

demand is less, the minimum power per UAV required to

maintain communication is decreased accordingly, and the

design DoF for sensing optimization can thus be increased.

The optimality principle of the joint bandwidth and power

allocation can be analyzed more comprehensively in terms of

each UAV’s individual ranging performance throughout the

movement. First of all, it can be noticed in Fig. 9 that the

performance differences between the UAVs are more evident

with lower communication requirement, which is consistent

with Fig. 8. Then for localization performance improvement,

increasing the power can intuitively improve the performance

as it potentially increases the SNR of the receiving measure-

ments. However, the system resource is limited, and we cannot

increase all UAVs’ performances while satisfying various

constraints and maintaining the communication QoS. Thus, a

performance trade-off between the UAVs is shown in Fig. 9 (a)

and (b). As we can observe from these results, in both cases,

the two UAVs closer to the target are selected to be allocated

more resources. Specifically, with the similar distances to the

target during t < 0.1 s, both UAV1 and UAV2 achieve better

ranging CRLB with ηc = 15 Mbps than ηc = 25 Mbps.

On the contrary, UAV3 achieves worse CRLB, and the final

joint localization performance with ηc = 15 Mbps is better.

This is because the localization performance is significantly

determined by the two UAVs with better ranging performance,

which is verified and interpreted more precisely in [43]. There-
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fore, UAV1 and UAV2 affect the joint localization accuracy

more than UAV3. Then, with the distance between UAV1

and target gradually changing later, the resource budget is

reallocated using the algorithms developed in Sections III-

A and III-B. UAV3 is then selected to be allocated more

resources, and the ranging error of UAV1 increases corre-

spondingly . The sacrificed resources of UAV1 are allocated to

the other two closer UAVs to obtain better joint localization

performance, in both cases. To conclude, the resources are

allocated such that each UAV can maintain communication

and sensing simultaneously, but the two that are advantageous,

which have better contributions to the localization CRLB, are

allocated more resources.

Finally, Fig. 10 compares the proposed scheme with three

alternative benchmark schemes in terms of the localization per-

formance with ηc = 15 Mbps. The D-optimality experimental

design is the most widely used criterion which maximizes the

determinant of the FIM [48]. It can first be seen that across all

the observation intervals, our proposed scheme based on the

derived CRLB can achieve the best localization performance.

What’s more, the D-optimality criterion scheme performs

slightly worse than the average bandwidth allocation scheme

for a period of time due to the superiority of our derived

evaluation criterion. However, since the D-optimality criterion

scheme only changes the objective function and employees our

proposed APRA algorithm, it can make up the performance

gap within 1.4 s, which validates the effectiveness of the

proposed algorithm. As for the effect of resource allocation

on localization accuracy, the scheme with average power

allocation has the worst performance, while the scheme with

average bandwidth allocation can achieve a similar but slightly

worse performance than the proposed scheme. It is consistent

with the analysis in Section IV-B that power allocation is

a determining factor for localization CRLB, and bandwidth

allocation also affects CRLB by decreasing the minimum pow-

er for communication requirements. Furthermore, although

the UAVs’ final locations achieved by the derived criterion

are not the closest to the target, they still achieve the best

localization accuracy. To explain this phenomenon, recall that

the localization performance during the tracking process is

affected by many factors, such as the initial locations, angular

spread, the previous trajectories of all UAVs, as well as

the moving angle and speed of the target. As expected, the

proposed optimization scheme significantly outperforms the

other three benchmark schemes with a good stability, and

the comparison will provide important insights to incorporate

UAVs into the efficient ISAC system design.

VI. CONCLUSION

This paper studied the CRLB minimization problem in a

UAV-enabled ISAC system, where the UAV trajectories, user

association, bandwidth, and transmission power are jointly

optimized. The derived CRLB metric allows us to illustrate the

impact of UAVs’ dynamic trajectory and resource allocation

on the sensing and communication performance trade-off. To

solve the formulated problem, the minimum power budget for

communication is first achieved by initializing the bandwidth

0.5 1 1.5 2 2.5 3 3.5 4

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

C
R

LB
 fo

r 
T

ar
ge

t L
oc

at
io

n 
(m

2
)

Joint optimization, Derived criterion
Joint optimization, D-optimality criterion
Average power allocation
Average bandwidth allocation

2.5 3 3.5 4
0

0.02

0.04

0.06

0.08

Fig. 10. Comparison of localization performance for different schemes versus
time, ηc = 15 Mbps.

allocation. Then, the pattern search, Hungarian algorithm, FP,

and SCA are employed to alternately optimize the decomposed

sub-problems. Numerical results validate that the proposed

APRA algorithm can converge to the global value with high

efficiency, and have a significant improvement in approaching

the performance limit of the cooperative ISAC UAV system.

Furthermore, the tracking process can make up for the weak-

ness of insufficient DoF for resource allocation and reduce the

localization performance gap caused by different throughput

constraints. The proposed scheme can obviously achieve the

best CRLB throughout the flight, compared to conventional

techniques. In the future work, a more generalized case with

3D trajectory planning for multi-UAV-assisted system will be

considered to enhance the ISAC performance. And a unified

resource allocation for different sensing services, such as

detection, localization, and tracking will be further designed.

APPENDIX A

PROOF OF LEMMA 1

According to (9), the elements of J(θi) can be expressed

as

J(θi) =

[
diag

(
αi
)

diag
(
γi
)

diag
(
γi
)

diag
(
βi
)

]

, (32)

where αi = [αi1, · · · , α
i
K ]T and the elements αik, γik and βik

are calculated as







αik =
∑

n∈N i
k

∑M−1
m=0

(2πaikn|ζik|fc,kn)
2

σ2

r,k

,

γik =
∑

n∈N i
k

∑M−1
m=0

(2πaikn|ζik|)
2
fc,knmT

σ2

r,k

,

βik =
∑

n∈N i
k

∑M−1
m=0

(2πaikn|ζik|)
2
m2T 2

σ2

r,k

.

(33)

Then the EFIM Je
(
θi1
)

can be calculated as

Je
(
θi1
)
= J

(
θi1,θ

i
1

)
− J

(
θi1,θ

i
2

)
J
(
θi2,θ

i
2

)−1
J
(
θi1,θ

i
2

)T
,

(34)
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Fig. 8. The resource allocation results versus time with different communication QoS requirements.
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Fig. 9. The achieved ranging performance of each UAV and the distance to the target versus time with different communication QoS requirements.

where

J
(
θim,θ

i
n

)
= E

{

−∆
θi
n

θi
m
ln f

(
Yi | θi

)}

= E

{

∇θi
m
h
(
θi
)
Φ−1

(
∇θi

n
h
(
θi
))H
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, (36)

and

h
(
θi
)
=
∑

k∈K

∑

n∈N i
k

M−1∑

m=0

aiknζ
i
ke

−j2πfc,knτ
i
kej2πf

i
D,kmT , (36)

with ∆
θi
n

θi
m

= ∇θi
m
∇T
θi
n

, Φ as the noise covariance matrix,

and ∇ as the operator of the first-order partial derivative.

Therefore, the elements of EFIM Je
(
θi1
)

can be calculated

as αik −
(γi

k)
2

βi
k

through (34). Then Je
(
θi1
)

is achieved as

Je
(
θi1
)
=

[

diag

(

M(M + 1)c20σRCS

32π(2M − 1)

P ik
(dik)

4σ2
r,k

)]

, (37)

by αik =
Mc2

0
σRCSP

i
k

16π(di
k
)4σ2

r,k

, γik ≈ M(M−1)Tc2
0
σRCSP

i
k

32π(di
k
)4σ2

r,k
fc,k

, and βik ≈

M(M−1)(2M−1)T 2c2
0
σRCSP

i
k

96π(di
k
)4σ2

r,k
f2

c,k

. The approximation fc,k here is

proper since its generating error is analyzed to be 10−8 of

the order of m2 in position localization accuracy.

As the EFIM with respect to θi1 is derived, J
(
ωi
)

can be

evaluated by the chain rule in [43] as J
(
ωi
)
= QiJe

(
θi1
)
QT
i ,

where Qi is the Jacobian matrix given by

Qi =
∂θi1
∂ωi

=
2

c0





xi
0
−xi

1

di
1

· · · x
i
0
−xi

K

di
K

yi
0
−yi

1

di
1

· · · y
i
0
−yiK
di
K



 . (38)

This completes the proof.

APPENDIX B

PROOF OF LEMMA 2

For the fixed ψim and dim (m ∈ Kk,Kk = {x|x 6= k ∩ x ∈
K}) , the total MSE of location estimation can be ob-

tained (given in (39) at the top of next page), where

Γ1 =
∑

m∈Kk

P i
k cos2 ψi

m

(dim)4σ2
r,m

, Γ2 =
∑

m∈Kk

P i
k sin2 ψi

m

(dim)4σ2
r,m

, and

Γ3 =
∑

m∈Kk

P i
k sinψi

m cosψi
m

(dim)4σ2
r,m

. Then, the first derivative of

tr
(

C̃i
x,y

)

with respect to z can be derived (given in (40) at

the top of next page), where z = dik
2
.
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Therefore, tr
(
Ci
x,y

)
can be proved to increase monotonous-

ly with dik, then, the optimum MSE is achieved at dik,min given

by

dik,min =

{

di−1
k cosψ+ −

√

r22 −
(
di−1
k sinψ+

)2
, r1 + r2 ≤ di−1

k

dmin, r1 + r2 > di−1
k .
(41)

where ψ+ =
∣
∣ψik − ψi−1

k

∣
∣, r1 = dmin, and r2 = vmaxδt. This

completes the proof.

APPENDIX C

PROOF OF LEMMA 3

First, the UAVs’ locations in the (n+1)-th iteration are not

updated unless the CRLB obtained in Algorithm 1 is lower

than the current value. Therefore, we have

C
({

qik(n+1)

}

,ni(n),p
i
(n)

)

≤ C
({

qik(n)

}

,ni(n),p
i
(n)

)

,

(42)

where C(·) denotes the CRLB expression with the correspond-

ing parameters. When the sub-problem of path planning is

solved, the UAV-BS association is updated accordingly. Then,

when solving the bandwidth allocation problem by Algorithm

2, ni(n+1) is not updated without power reduction. Thus, we

have

C
({

qik(n+1)

}

,ni(n+1),p
i
(n)

)

≤ C
({

qik(n+1)

}

,pi(n),n
i
(n)

)

.

(43)

Finally, the optimal power allocation pi(n+1) asymptotically

converges to a stationary point via the SCA technique. Then,

we have

C
({

qik(n+1)

}

,ni(n+1),p
i
(n+1)

)

≤ C
({

qik(n+1)

}

,ni(n+1),p
i
(n)

)

.

(44)

It should also be noted that the CRLB of the target location

estimation is lower-bounded by a finite value, so the non-

increasing sequence
{

C
({

qik(n)

}

,ni(n),p
i
(n)

)}

(due to the

equation (41), (42)) and (43)) will converge to a finite value.

This completes the proof.
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