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Abstract. A class of Fleming–Viot processes with decaying sampling rates and α-stable motions that correspond to distributions with
growing populations are introduced and analyzed. Almost sure long-time scaling limits for these processes are developed, addressing
the question of long-time population distribution for growing populations. Asymptotics in higher orders are investigated. Convergence
of particle location occupation and inhabitation time processes are also addressed and related by way of the historical process. The
basic results and techniques allow general Feller motion/mutation and may apply to other measure-valued Markov processes.

Résumé. Dans cet article, nous introduisons et analysons une classe de processus de Fleming–Viot, avec taux d’échantillonnage
décroissant et déplacement α-stable, correspondant à des distributions de populations croissantes. Les théorèmes limites en temps long
presque-sûr pour ces processus sont obtenus, répondant ainsi à la question de la distribution en temps long de la population dans le
cas de populations croissantes. Les asymptotiques d’ordres supérieurs sont aussi obtenues. Les convergences des processus de temps
d’occupation et d’habitation des particules sont considérées et reliées au moyen du processus historique. Les résultats et techniques
autorisent des processus de Feller de déplacement/mutation généraux et peuvent s’appliquer à d’autres processus de Markov à valeurs
mesures.
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1. Introduction

We consider an M1(R
d)-valued Fleming–Viot process X = (Xt , t ≥ 0) with mutation generator −(−�)

α
2 (α ∈ (0,2])

and sampling rate 1/φ(t) at time t for some positive function φ defined on R+ = [0,∞). Such Fleming–Viot processes
can be obtained by normalizing and conditioning the total mass of (possibly non-critical) Dawson–Watanabe processes
to have total mass φ(t) for all time t . This was established by Etheridge and March [18] for φ ≡ 1 and by Perkins [28] for
general nonnegative function φ. Herein, we investigate the long-time asymptotic of such Fleming–Viot processes when
1/φ satisfies an integrability condition at infinity. Examples of φ satisfying this integrability condition include t → eβt

for β > 0 and t → 1 + tN for N sufficiently large.
To be more precise, we let W = (Wt , t ≥ 0;Pm) be a Dawson–Watanabe process with motion generator −(−�)

α
2 on

R
d , linear growth β and critical branching rate η > 0 corresponding to the operator −(−�)

α
2 u + βu − η

2 u2 on R
d . Then,

W is a measure-valued Markov process starting at a finite measure m such that

MW
t (f ) := Wt(f ) − m(f ) −

∫ t

0
Ws

((−(−�)
α
2 + β

)
f
)

ds

is a continuous martingale with quadratic variation 〈MW(f )〉t = ∫ t

0 Ws(ηf
2)ds for all f ∈ C2

b(Rd). (The reader is re-
ferred to [23] for information about stable processes and to [26] as well as [3] for describing measure-valued processes
as martingale problems.) W ’s mass growth is subcritical, critical or supercritical if β < 0, β = 0 or β > 0 respectively.
The expected total mass is found to be m(1)eβt by substituting f = 1 into the above equation and taking expectations.
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Now, suppose a population is projected to grow according to a positive continuous function φ. Then, following Perkins
[28], one finds that the corresponding Fleming–Viot process attained by taking the angular part of W and conditioning
Wt(1) to have total mass φ(t) at every time t yields an M1(R

d)-valued process X = (Xt , t ≥ 0), the (α,φ) Fleming–Viot
superprocess, starting at μ = m

m(E)
∈ M1(E) and satisfying the martingale problem: For each f ∈F((−�)

α
2 ) (the domain

of −(−�)
α
2 ), the process

MX
t (f ) := Xt(f ) − μ(f ) −

∫ t

0
Xs

(−(−�)
α
2 f

)
ds (1.1)

is a continuous martingale with quadratic variation〈
MX(f )

〉
t
=
∫ t

0
ηφ(s)−1[Xs

(
f 2)− X2

s (f )
]

ds. (1.2)

The law of X is denoted by P
φ
μ. Technically, to get X from W , we condition on Wt(1) staying within ε of φ(t) up to T

and then let ε → 0 and T → ∞. Also, it does not matter whether the original Dawson–Watanabe process is supercritical,
critical or even subcritical as the resulting Fleming–Viot after normalizing by W·(1) and conditioning so that W·(1) = φ

(that is, after considering the angular part) satisfies the same martingale problem. If φ is increasing, X can be considered
as a Fleming–Viot process that gives the population distribution for growing populations.

Properly normalized supercritical superprocesses have recently been shown (see e.g. Wang [33], Kouritzin and Ren
[22], Liu et al. [25], Eckhoff et al. [16] as well as the more detailed review in Section 2.7 of [17]) to have almost sure long-
time scaling limits (often called strong laws of large numbers), generalizing the pioneering branching Markov process
work of Watanabe [34] and Asmussen and Hering [1]. Traditionally, superprocesses with ergodic and transient motion
models have been handled separately with different scalings in laws of large number results. However, while considering
strong laws of large numbers for supercritical, (possibly) non-Markov Gaussian branching processes, Kouritzin et al. [21]
showed that these two cases can be considered together. For α-stable Dawson–Watanabe processes, the result of [22]
states that with probability one, as t → ∞,

t
d
α

Wt

Wt(1)
↪→ 1

(2π)d

∫
Rd

e−|θ |α dθλd on
{

lim
t→∞ e−βtWt (1) > 0

}
,

where ↪→ denotes shallow convergence of measures and λd is the Lebesgue measure on R
d . Here and in the sequel, we

ease notation by reducing λd(dθ) to just dθ when appropriate. Shallow convergence is stronger than vague convergence
yet still allows convergence to non-finite measures like Lebesgue measure. It is defined in [22] as

νt ↪→ ν ⇐⇒ νt (f ) → ν(f ), ∀ continuous f : sup
x∈Rd

∣∣eε|x|2f (x)
∣∣< ∞ for some ε > 0.

1.1. Statement of main results

For notational simplicity, we will simply call an α-stable Fleming–Viot process with sampling rate 1/φ(t) an (α,φ)-FV
process. As explained previously, (α,φ)-FV processes corresponds to Wt/Wt(1) conditioned so that Wt(1) = φ(t) for
all t . For supercritical Dawson–Watanabe processes, the total mass Wt(1) has expected mean m(1)eβt for some β > 0.
This suggests that if φ(t) = eβt , then we should have the almost-sure, shallow-topology, long-time limit

t
d
α Xt

t→∞
↪−−−→ 1

(2π)d

∫
Rd

e−|θ |α dθλd . (1.3)

In fact, our first main result shows the above almost sure limit for a larger class of sampling functions φ.

Theorem 1.1. Assume that μ satisfies∫
Rd

|x|aμ(dx) < ∞ for some a > 0 (1.4)

and φ is a positive function on R+ such that∫ ∞

0
s

d
α
+1+ε0

ds

φ(s)
< ∞ for some ε0 > 0. (1.5)

Then, with P
φ
μ-probability one, the shallow limit (1.3) holds.
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In addition, if a test function f ∈ C2
c (Rd) is fixed, all higher order asymptotics of Xt(f ) can be identified. To state our

second main result, we prepare some notation. For each multi-index k = (k1, . . . , kd) ∈Nd and x = (x1, x2, . . . , xd) ∈Rd ,
we let

|k| = k1 + k2 + · · · + kd, k! = k1!k2! · · ·kd !, xk = x
k1
1 x

k2
2 · · ·xkd

d ,

and define the constant ϑk
d,α and the σ -finite signed measure λk

d on R
d respectively by

ϑk
d,α = 1

(2π)d

∫
Rd

e−|θ |α θk dθ and λk
d(dy) = 1

k!y
k dy. (1.6)

Obviously, λ0
d is the Lebesgue measure λd .

Theorem 1.2. Let N be a non-negative integer. Assume that μ satisfies (1.4) and φ satisfies∫ ∞

0
s

2N+d
α

+1+ε0
ds

φ(s)
< ∞ for some ε0 > 0. (1.7)

Let f be a function in bE(Rd) ∩ L2(Rd) satisfying∫
Rd

∣∣f (x)
∣∣|x|N dx < ∞ (1.8)

with its Fourier transform f̂ satisfying∫
Rd

∣∣f̂ (ξ)
∣∣|ξ |α dξ < ∞. (1.9)

Then, Pφ
μ-almost surely

lim
t→∞ t

N+d
α

∣∣∣∣Xt(f ) −
∑

k∈Nd :|k|≤N
|k| is even

(−1)
|k|
2 t−

d+|k|
α

(2π)dk!
∫
Rd

f (y)yk dy

∫
Rd

e−|θ |α θk dθ

∣∣∣∣= 0. (1.10)

Written another way, we have P
φ
μ-almost surely

t
d
α Xt (f ) =

∑
k∈Nd :|k|≤N
|k| is even

(−1)
|k|
2 t−

|k|
α ϑk

d,αλk
d(f ) + o

(
t−

N
α
)

as t → ∞. (1.11)

In the above statement, bE(Rd) denotes the space of real-valued bounded measurable functions on R
d . Theorem 1.2

gives flexible rate-of-convergence information on the convergence of t
d
α Xt to scaled Lebesgue measure, depending upon

the conditions assumed and the test function used. Some of our results herein were later obtained for Dawson–Watanabe
processes in [24].

The long-time behaviour of constant rate Fleming–Viot processes has been well studied. When φ ≡ 1 and α = 2, the
long-time behavior of Xt is discussed in Dawson and Hochberg [11]. They show that as time gets large, the measure-
valued process (Xt , t ≥ 0) concentrates within a random (but stationary) distance from a Brownian motion. The possible
long-time distributional limits of even multiple (critical) interacting Fleming–Viot processes are well-known. For exam-
ple, the stationary distributions were obtained in Shiga [29,30], Shiga and Uchiyama [31] for the two allele case and in
Dawson et al. [10], Dawson and Greven [9] for the general case. These results characterize the possible distributional
limits of interacting Fleming–Viot processes. However, Fleming–Viot processes that admit almost sure scaling limits do
not appear to have been considered.

The proofs of Theorems 1.1 and 1.2 are presented in Section 3.2. Our method, discussed in Section 2.2, improves
Asmussen and Hering’s technique in [1] and converts it to the language of martingales and stochastic integration. This
formulation provides a clear picture, which may be applicable for superprocesses of both Dawson–Watanabe type and
Fleming–Viot type with general Feller motions or mutation processes.
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To illustrate our method further, we consider long-time limits of the occupation time Yt = ∫ t

0 Xs ds and the inhabitation
time, defined for bounded f as Zt(f ) =Xt (�f ). Here,

�f (r, y) =
∫ r

0
f (ys)ds ∀r ≥ 0, y ∈ D

(
R

d
)
, f ∈ bE

(
R

d
)
, (1.12)

D(Rd) is the space of Rd -valued cadlag paths equipped with Skorohod J1 topology and X is the (α,φ) Fleming–Viot
historical process satisfying the martingale problem:

Mt (h) =Xt (h) − δ0 × μ∗(h) −
∫ t

0
Xs(Ah)ds (1.13)

is a continuous martingale starting at 0 such that

〈
M(h)

〉
t
=
∫ t

0

(
Xs

(
h2)−Xs(h)2) ds

φ(s)
(1.14)

for all h in the domain of bounded functions D(A) for the historical generator A. (We define X precisely and relate it to
our (α,φ)-FV process below. μ∗ will be a variant of μ, defined on the historical path space.) However, �f with f = 1O
(for an open O) is not bounded, hence �1O /∈ D(A). Still, the martingale problem (1.13,1.14) does hold for such natural
h = �f since

A�f = bp- lim
t→∞A�t

f (1.15)

exists and

Xt (�f ) =Xt

(
�u
f

)
and Xt (A�f ) =Xt

(
A�u

f

) ∀u ≥ t, (1.16)

where �u
f is the bounded variant of �f . Namely,

�u
f (r, y) =

∫ r∧u

0
f (ys)ds ∀r ≥ 0, y ∈ D

(
R

d
)
, f ∈ bE

(
R

d
)

for each fixed u that we will show is in D(A). (Herein, bp-lim denotes the bounded, pointwise limit.) The definition of
A�f through the limit (1.15) is established in Lemma 2.13 (to follow). To show (1.16), we let yt = y(· ∧ t) ∈ D(Rd) for
t > 0 and y ∈ D(Rd), consider E = {(r, yr ) : r ≥ 0, y ∈ D(Rd)} as a topological subspace of R+ ×D(Rd), and show that
Xt is supported on

E
t = {

(r, y) ∈ E : r = t
}
, (1.17)

which we do below (see Proposition 2.10 and Remark 2.11). Having observed (1.15) and (1.16), we can define Mt (�f )

by substituting h = �u
f in (1.13)

Mt (�f ) := Xt

(
�u
f

)− δ0 × μ∗(�u
f

)−
∫ t

0
Xs

(
A�u

f

)
ds ∀u ≥ t. (1.18)

It also follows from (1.16) that〈
M(�f )

〉
t
= 〈

M
(
�u
f

)〉
t

∀u ≥ t. (1.19)

Remark 1.3. The occupation time Yt (1O) counts the time in O of dead lineages i.e. times of particles that are not
ancestors of living particles, while the inhabitation time Zt(1O) counts the time of common ancestors multiple times.

Our third main result, connects these two time processes.

Theorem 1.4. Defining �f ,M(�f ) respectively as in (1.12), (1.18) and for all t > 0, f ∈ bE(Rd),

γd(t) =

⎧⎪⎨⎪⎩
t1− d

α if d < α,

ln(t ∨ 1) if d = α,

1 if d > α

and Nd(f ) =

⎧⎪⎨⎪⎩
‖f ‖L1(Rd ) if d < α,

‖f ‖L1(Rd ) + ∫
Rd |f̂ (θ)||θ |−α dθ if d = α,∫

Rd |f̂ (θ)||θ |−α dθ if d > α.

(1.20)
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One has that:

a: Mt (�f ) = Zt(f ) − Yt (f ) is a FX
t+-martingale for f ∈ bE(Rd).

b: M∞(�f ) := limt→∞ Mt (�f ) exists a.s. provided that Nd(f ) < ∞ and
∫∞

0 γ 2
d (s) ds

φ(s)
< ∞.

c: Z∞(f ) := limt→∞ Zt(f ),Y∞(f ) := limt→∞ Yt (f ) both exist a.s. in R and M∞(�f ) = Z∞(f ) − Y∞(f ) a.s. pro-
vided that M∞(�f ) exists, d > α and Nd(f ) < ∞.

The proof of parts a, b, and c follow respectively from Proposition 2.14, Proposition 4.4(i), and the proof of the high
dimensional case of Theorem 1.5 as well as Proposition 4.4.

Notice that the martingale {Mt (�f ), t ≥ 0} in Theorem 1.4 is with respect to the right continuous filtration of the (non-
historical) (α,φ)-FV process, which is possible when the (α,φ)-FV process is defined from the (α,φ)-historical process
through (2.37) below.

Hereafter, the cases d < α, d = α and d > α are respectively called low dimension, critical dimension and high
dimension. One can see from Theorem 1.4 that particle time behaviour is dimensionally dependent as one might expect
from the transition from recurrent to transient particle motion.

While in the context of Dawson–Watanabe processes, long-time asymptotics of occupation time processes have been
studied extensively starting from the work of Iscoe [20], the corresponding problem for Fleming–Viot processes seems
sparse in the literature. As is known in the context of Dawson–Watanabe processes, the limiting behavior of occupation
times depends on the relation between d and α. Our fourth main result shows the limiting behaviour of occupation and
inhabitation times for (α,φ)-Fleming–Viot processes will also be dimensionally dependent. Define

κd(α) =
{

(2π)−d α
α−d

∫
Rd e−|θ |α dθ if d < α,

(2π)−d
∫
Rd e−|θ |α dθ if d = α.

(1.21)

Theorem 1.5. Suppose φ satisfies∫ ∞

1

ds

φ(s)
< ∞. (1.22)

Then, in low and critical dimensions (d ≤ α), with P
φ
μ-probability one, scaled occupation and inhabitation times Yt

γd (t)

and Zt

γd (t)
both converge shallowly to κd(α)λd . While in high dimensions (d > α), with P

φ
μ-probability one, Yt and Zt

converge shallowly to some random measures.

This result relies on Proposition 4.1 (to follow) and is proved at the end of Section 4.2.

1.2. Explanation of sampling rate assumptions

We would like to thank an anonymous referee for inviting us to speculate around our sampling rate assumptions. Condition

(1.5) can be considered heuristically in two ways: Kouritzin and Ren [22] showed the (shallow) a.s. convergence of t
d
α

Wt

eβt

when W was a superstable process with growth factor β > 0. However, it is well known (see [2]) that e−βtWt (1) → F

a.s. for some non-trivial random variable F in this case and the limits of t
d
α

Wt

eβt and t
d
α

Wt

Wt (1)
will only differ by this factor

F (on the set where F > 0). Next, conditioning on Wt(1) to be close to eβt might not have a huge effect since their ratio
converges. Finally, Perkins [28]’s argument on Wt

Wt (1)
conditioned so Wt(1) is eβt has martingale problem (1.1,1.2) with

φ(t) = eβt . In this way, Theorem 1.1 loosely generalizes Kouritzin and Ren [22] from φ(t) = eβt to any φ satisfying (1.5).

Secondly, the factor t
d
α on the left of (1.3) is what is needed for a non-trivial limit in Theorem 1.1 but this factor blows

up Xt and its noise Mt . To have an almost sure limit the noise has to die out fast enough through the φ(s)−1 factor in

(1.2). We can think of the s
d
α factor within the integral of (1.5) as compensation for blowing Xt up by t

d
α and the integral

without this factor as a condition on the noise of X itself. The full force of (1.5) only comes to bear in Proposition 2.8
through conditions (2.18), (2.23). In the proofs of Theorems 1.1 and 1.2, we will decompose Xt(f ) as

Xρ(tn)(Ltn−ρ(tn)f ) + [
Xtn(Ttn+1−tnf ) − Xρ(tn)(Ltn−ρ(tn)f )

]+ [
Xt(f ) − Xtn(Ttn+1−tnf )

]
,

where Tt is the α-stable semigroup, Lt is an N th order approximation of Tt and ρ is a sublinear function. It follows from
Proposition 3.2 that Xρ(tn)(Ltn−ρ(tn)f ) satisfies the stated scaling limits using Fourier analysis under a lesser condition
on φ so the other two terms can be thought of as errors. The first error term, handled in (2.28), puts constraints on an
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auxiliary sequence {cn} while the second error term, handled in (2.29), forces a constraint on φ depending upon the {cn}.
The two constraints are then solved in (3.20) under (1.5). It would be interesting to know lesser conditions on φ under
which one has convergence in probability but not necessarily almost sure convergence.

1.3. Article outline

Section 2 discusses fundamental results of Fleming–Viot processes. Section 3 focuses on the long-time limit of α-stable
Fleming–Viot processes. In Section 4, long-time asymptotic of the occupation time process as well as the related inhabi-
tation time process of an α-stable Fleming–Viot process is investigated.

2. Fleming–Viot processes

We use ν(f ) and 〈f, ν〉 to denote
∫

f dν for a measure ν and integrable function f . Let (E,E(E)) be a Polish space
with its Borel σ -algebra E(E) and ((ξt )t≥0, (Px)x∈E) be an E-valued Borel strong Markov process with sample paths in
D(E). Hereafter, D(E) is the space of cadlag paths from R+ := [0,∞) to E equipped with the Skorohod J1 topology.
Define the semigroup on bE(E) (the space of real-valued bounded measurable functions on E) by

Ttf (x) = Pxf (ξt ),

and assume that Tt maps Cb(E) (the space of real continuous bounded functions on E) to itself. The right-continuity of
ξ implies bp-limt→0 Ttf = f for every f ∈ Cb(E). We also assume ξ is conservative, i.e. Tt1 = 1. Define

Af = bp-lim
t→0

Ttf − f

t

when the limit exists. The domain D(A) of A contains all functions in bE(E) such that the above limit exists, including the
constant function 1 for which A1 = 0. (A,D(A)) is the so-called weak generator of ξ . It is known ([27, Corollary II.2.3])
that D(A) is bp-dense in bE(E). We adopt the following standard notation:

• MF (E), M1(E) denote the spaces of finite, respectively probability measures.
• (�F ,F), (�,G) are the sample spaces of (compact-open) continuous mappings (C([0,∞),MF (E)) respectively

C([0,∞),M1(E)) with their respective Borel σ -fields.
• Wt(ω) = ωt , Xt(ω) = ωt denote the coordinate mappings on �F and � respectively.
• F0

t = σ(Ws : s ≤ t), Ft =F0
t+; G0

t = σ(Xs : s ≤ t), Gt = G0
t+.

2.1. Martingale problems

Let E = Rd . For each β ≥ 0, η > 0 and m ∈ MF (Rd), there is a unique probability Pm on (�F ,G) such that for all
f ∈ D(A)

MW
t (f ) = Wt(f ) − m(f ) −

∫ t

0
Ws(Af + βf )ds (2.1)

is a continuous (Ft )-martingale starting at 0 with quadratic variation

〈
MW(f )

〉
t
= η

∫ t

0
Ws

(
f 2)ds. (2.2)

Pm is the law of the critical or supercritical A-Dawson–Watanabe process with drift β and branching variance η.

Remark 2.1. There is substantial theory on the existence, uniqueness, path properties and high density limits for
Dawson–Watanabe superprocesses under conditions far more general than required here. However, the martingale prob-
lem and the connection to finite populations motivate the study of long-time behaviour of our model. Hence, we will
expand upon Example 10.1.2.2 in [8] and remind the reader of some basic points in the case E = R

d while neglecting
details similar to those handled in [8] and [19]. It follows from the proofs of Theorems 9.4.2 and 9.4.3 of [19] that the
local martingale problem:{

exp(−Wt(f )) + ∫ t

0 exp(−Ws(f ))Ws(Af + βf − η
2 f 2)ds

is a local martingale for all non-negative f ∈ D(A),
(2.3)
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is well posed. (Technically, one could first follow [19, Theorems 9.4.2 and 9.4.3] to get well-posedness of the
martingale problem. Then, for a potential local martingale solution W , we realize that Mλ

t
.= exp(−λWt(1)) +∫ t

0 exp(−λWs(1))(λβ − λ2η
2 )Ws(1) ds is actually a martingale and use the argument on p. 403 of [19] to show

Pm[Wt(1)] ≤ m(1) exp(βt). From there, it follows that any solution to the local martingale problem is a solution to
the martingale problem.) As part of justifying the use of these proofs, we note that (2.3) is the high density limit of finite
branching population models. For example, using the notation of [19] and letting c ∈ (0, 1

η
), we find that the popula-

tion starting with n individuals, undergoing independent A-motions with location-independent lifetime rates αn = n
c

and

having offspring probability generating function ϕn(z) = c(
η
2 − β

n
) + (

cβ
n

+ 1 − cη)z + cη
2 z2 is a well defined model

for large enough n and these populations converge (pathwise) to the solution of (2.3) as n → ∞. Next, it follows from
Corollary 2.3.3 of [19] that the local martingale problem in (2.3) is equivalent to the local martingale problem:{

exp(−Wt(f ) + ∫ t

0 Ws(Af + βf − η
2 f 2)ds)

is a local martingale for all non-negative f ∈ D(A).
(2.4)

However, to go further, we must ensure that W is continuous. This continuity is shown by following Theorem 4.7.2 of
[8] for the case β = 0 and the case β �= 0 is converted to the case β = 0 by Dawson’s Girsanov theorem (Theorem 7.2.2
and Lemma 10.1.2.1 of [8]) with r(μ,y) = β and Q(μ;dx,dy) = δx(dy)μ(dx). (This theorem is stated in terms of
a larger domain but we already have uniqueness for the smaller domain in (2.3).) Now, by this continuity, the local
martingale problem (2.4) is equivalent to the local martingale problem (2.1)–(2.2) by e.g. Theorem 6.2 [7]. Finally, we
show that each MW

t (f ) in (2.1) is a martingale for any continuous local martingale problem solution W by showing
Pm[Wt(1)] ≤ m(1) exp(βt) through stopping and Gronwall’s inequality.

The process {Wt(1)}t≥0 describes the evolution of total mass with life time

tW = inf
{
t > 0 : Wt(1) = 0

}
.

Even in the supercritical regime (β > 0), tW is finite with positive probability. Using the martingale structure of W , we
can describe the evolution of the normalized process W = { Wt

Wt (1)
,0 ≤ t < tW } as in the following result.

Lemma 2.2. Assume that m �= 0. Let F t =Ft ∨ σ(Ws(1) : s ≥ 0) and μ = m/m(1). For every f ∈ D(A)

MW
t (f ) = Wt(f ) − μ(f ) −

∫ t

0
1(s < tW )Ws(Af )ds, t ≥ 0

is a continuous (F t )-martingale starting at 0 such that〈
MW

t (f )
〉
t
= η

∫ t

0
1(s < tW )

(
Ws

(
f 2)− Ws(f )2) ds

Ws(1)
Pm-a.s.

Proof. The case when β = 0 is proved in Perkins [28] using Itô formula. If β > 0, the proof follows analogously, we
omit the details. �

Let C+ be the space of continuous functions φ : [0,∞) → [0,∞) such that φ(t) > 0 if t ∈ [0, tφ) and φ(t) = 0 if
t ≥ tφ for some tφ ∈ (0,∞]. Let Qm(1) be the law of W·(1), i.e.

Pm

(
W·(1) ∈ B

)= Qm(1)(B).

Theorem 2.3 (Perkins [28]). For every φ ∈ C+ and μ ∈ M1(E), there is a unique probability P
φ
μ on (�,G) such that

under Pφ
μ, for all f ∈D(A),

MX
t (f ) = Xt(f ) − μ(f ) −

∫ t

0
Xs(Af )ds, t < tφ (2.5)

is a continuous (Gt )-martingale starting at 0 and such that〈
MX(f )

〉
t
= η

∫ t

0

(
Xs

(
f 2)− Xs(f )2)φ(s)−1 ds ∀t < tφ (2.6)

and Xt = Xtφ for all t ≥ tφ .



2602 M. A. Kouritzin and K. Lê

Remark 2.4. We will use this theorem in Polish spaces E = R
d and E = E, defined just above (1.17). It is obtained

under the assumption that E is locally compact in Theorem 2 (a) of [28]. The proof in [28] uses detailed arguments, state
augmentation and worthy martingale measure representation to change the speed of the sampling martingale relative to
the particles motions. This martingale time change argument is then used to infer the existence and uniqueness of Pφ

μ from
that of the law of the classical Fleming–Viot process, i.e. P1

μ, which was only known on locally compact spaces. This
is the only place in [28] where locally compactness was used. The existence and uniqueness of Fleming–Viot processes
on Polish spaces have been since obtained by Donnelly and Kurtz in [13,14] based upon earlier ideas of Dawson and
Hochberg [11]. Therefore, Perkins’ argument carries through in the setting of Polish spaces.

The connection between Dawson–Watanabe processes and Fleming–Viot processes with time-varying sampling rates
φ is as follows.

Theorem 2.5 ([28, Theorem 3]). For every m ∈ MF (E) \ {0}, set μ = m/m(1). For Qm(1)-a.a. φ, we have

Pm

(
W

W·(1)
∈ A

∣∣∣W·(1) = φ

)
= P

φ
μ(A) ∀A ∈ G.

[28, Theorem 3] is in the setting of locally compact E, which is fine for our purposes as we only use this theorem in
the case of E =R

d to motivate our work.
Corollaries 4 and 5 of [28] further establish that for every φ ∈ C+, P

φ
μ is indeed the regular conditional law

Pm( W
W·(1)

∈ ·|W(1) = φ). Without loss of generality, we assume η = 1 hereafter.

2.2. Long term asymptotics

Let E = R
d , μ ∈ M1(E) and φ ∈ C+ with tφ = ∞. Let Pφ

μ be the probability law introduced in Theorem 2.3. Recall
{Tt }t≥0 is the semigroup generated by A. In practice, the semigroup Tt usually satisfies some asymptotical property. One
possibility is the following: for each t > 0, there exist a deterministic positive scaling c(t) and an operator Lt such that

lim
t→∞ c(t)‖Ttf − Ltf ‖L∞(E) = 0. (2.7)

(2.7) becomes trivial if we choose Ltf = Ttf . However, we can choose a different Ltf to our advantage. When Tt is the
symmetric stable semigroup considered in Section 3, Lt can be chosen as the projection onto a finite dimensional vector
space, whose basis are the partial derivatives of the kernel density pt (x) (see (3.4) and (3.9) to follow).

In the current section, we present a general procedure to study long term asymptotic for Xt(f ) given a test function
f ∈ bE(E). The method consists of two steps. One first shows that Xt(f ) and Xρ(t)(Tt−ρ(t)f ) have the same asymptotic
as t → ∞. Hereafter, ρ :R+ →R+ is an increasing sub-linear function, that is ρ satisfies

lim
t→∞

ρ(t)

t
= 0. (2.8)

This step requires a certain integrability condition of the function 1/φ over R+ (see Proposition 2.7 below). Next, by
(2.7), one can further deduce the asymptotic of Xρ(t)(Tt−ρ(t)f ) from that of Xρ(t)(Lt−ρ(t)f ). In this second step, having
chosen Lt in our favor, we find the asymptotic of Xρ(t)(Lt−ρ(t)f ) directly by other tools. In Section 3, we explain how
the procedure can be applied to study super stable processes and their occupation times.

In the context of Dawson–Watanabe processes with supercritical branching mechanisms, this method goes back to
[1] and has been extended to treat superprocesses with more general Markovian motions (see for instance [6,25]). Until
recently, it seemed that Asmussen and Hering’s method required a certain spectral gap assumption on the semigroup Tt .
However, in [21], the same procedure is applied for supercritical branching Gaussian processes. The treatment presented
here contains some simplifications and improvements.

Let us now develop a stochastic integration framework which is an essential tool in our approach. Letting MX
t (U) =

MX
t (1U), we note that for every U,V ∈ E(E),

〈
MX(U),MX(V )

〉
t
≤
∫ t

0
Xs(1U 1V )

ds

φ(s)
.

In particular, (MX
t )t≥0 is a worthy martingale measure (see [32, Chapter 2]). For every adapted process {g(r, z) = gr(z) :

r ≥ 0, z ∈ E} satisfying

P
φ
μ

∫ ∞

0
Xr

(
g2

r

) dr

φ(r)
< ∞,
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one can construct the stochastic integral
∫∞

0

∫
E

g(r, z)dMX(r, z) such that

P
φ
μ

(∫ ∞

0

∫
E

g(r, z)dMX(r, z)

)2

= P
φ
μ

∫ ∞

0

(
Xr

(
g2

r

)− Xr(gr)
2) dr

φ(r)
. (2.9)

We refer to [32, Chapter 2] for a detailed construction.
This worthy martingale measure representation allows us to extend the martingale problem (2.5), (2.6) by an inte-

gration by parts argument. In particular, for continuously differentiable ft in t that satisfies ft ∈ D(A) for all t and
P

φ
μ

∫∞
0 Xr(f

2
r ) dr

φ(r)
< ∞, we have that∫ t

0

∫
E

fr(z)dMX(r, z) = Xt(ft ) − μ(f0) −
∫ t

0
Xr(Afr)dr −

∫ t

0
Xr(∂rfr)dr (2.10)

is a continuous (Gt )-martingale starting at 0 and such that〈∫ ·

0

∫
E

fr(z)dMX(r, z)

〉
t

= η

∫ t

0

(
Xr

(
f 2

r

)− Xr(fr)
2)φ(r)−1 dr. (2.11)

The particular choice fs = ∫ t−s

0 Trf dr for t fixed and f ∈ bE(E) gives∫ t

s

Xr(f )dr = Xs

(∫ t−s

0
Trf dr

)
+
∫ t

s

∫
E

∫ t−r

0
Tr̄f (z)dr̄ dMX(r, z). (2.12)

Moreover, it follows from (2.5) (and fact tφ = ∞) that for every f ∈ bE(E),

Xt(f ) = μ(Ttf ) +
∫ t

0

∫
E

Tt−rf (z)dMX(r, z), (2.13)

which is called Green function representation in [27, p. 167]. The representation (2.13) and (2.9) play a central role in our
approach. A direct consequence of (2.13) is the following identity

Xt(f ) − Xs(Tt−sf ) =
∫ t

s

∫
E

Tt−rf (z)dMX(r, z), (2.14)

which holds for every 0 ≤ s ≤ t and f ∈ bE(E). Another consequence of (2.13) is

P
φ
μXt(f ) = μ(Ttf ). (2.15)

Lemma 2.6. For every f ∈ bE(E) and t ≥ s ≥ 0, we have

P
φ
μ

[(
Xt(f ) − Xs(Tt−sf )

)2]≤ ∥∥Tt

(
f 2)∥∥∞

∫ t

s

dr

φ(r)
(2.16)

and

P
φ
μ

[(∫ t

s

Xr(f )dr − Xs

(∫ t−s

0
Trf dr

))2]
≤
∫ t

s

∥∥∥∥∫ r

0
Tr̄f dr̄

∥∥∥∥2

∞
dr

φ(r)
. (2.17)

Proof. From (2.14), (2.9) and (2.15)

P
φ
μ

[(
Xt(f ) − Xs(Tt−sf )

)2]≤ P
φ
μ

∫ t

s

Xr

(
(Tt−rf )2) dr

φ(r)

≤
∫ t

s

〈
Tr(Tt−rf )2,μ

〉 dr

φ(r)
.

By Jensen inequality,

Tr(Tt−rf )2 ≤ TrTt−r

(
f 2)= Tt

(
f 2).
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Hence, 〈Tr(Tt−rf )2,μ〉 ≤ μ(Tt (f
2)) ≤ ‖Tt (f

2)‖∞. The estimate (2.16) follows. Showing (2.17) is similar so we omit
the detail. �

Convergence along lattice times. Suppose that f is a function in bE(E). Let {tn}n≥1 be an increasing sequence diverg-
ing to infinity such that

∑
n

c(tn)
∥∥Ttnf

2
∥∥∞

∫ tn

ρ(tn)

ds

φ(s)
< ∞ (2.18)

and

lim
n→∞

c(tn)

c(tn − ρ(tn))
= 1. (2.19)

Proposition 2.7. Assuming (2.7), (2.8), (2.18) and (2.19), the following limit holds

lim
n→∞ c(tn)

∣∣Xtn(f ) − Xρ(tn)(Ltn−ρ(tn)f )
∣∣= 0 P

φ
μ-a.s. (2.20)

Proof. From Lemma 2.6,

∑
n

P
φ
μc(tn)

2[∣∣Xtn(f ) − Xρ(tn)(Ttn−ρ(tn)f )
∣∣2]≤

∑
n

c(tn)
∥∥Ttnf

2
tn

∥∥∞
∫ tn

ρ(tn)

ds

φ(s)
< ∞

by condition (2.18). An application of Borel-Cantelli lemma yields

lim
n→∞

∣∣c(tn)Xtn(f ) − c(tn)Xρ(tn)(Ttn−ρ(tn)f )
∣∣= 0 P

φ
μ-a.s.

Moreover, noting that Xs(1) = 1 for every s > 0, we have

c(tn)
∣∣Xρ(tn)(Ttn−ρ(tn)f ) − Xρ(tn)(Ltn−ρ(tn)f )

∣∣
≤ c(tn)Xρ(tn)

(|Ttn−ρ(tn)f − Ltn−ρ(tn)f |)
≤ c(tn)‖Ttn−ρ(tn)f − Ltn−ρ(tn)f ‖∞,

which converges Pφ
μ-a.s. to 0 by (2.7), (2.8) and (2.19). The identity (2.20) follows. �

From lattice time to continuous time. If the cost of replacing c(tn) by c(t) for any t ∈ [tn, tn+1] is negligible as n → ∞,
then previous result can be transfered to continuous time limit. There are several ways to obtain this. One possibility is
the following result while Section 4 provides another way. Hereafter, cn denotes supt∈[tn,tn+1] c(t).

Proposition 2.8. In addition to the hypothesis in Proposition 2.7, we assume that

lim
n→∞ cn sup

t∈[tn,tn+1]
‖Ttn+1−t f − f ‖∞ = 0, (2.21)

lim
n→∞

cn

c(tn)
= 1, (2.22)

and ∑
n

cn

∥∥Ttn+1

(
f 2)∥∥∞

∫ tn+1

tn

ds

φ(s)
< ∞. (2.23)

Then

lim
n→∞ sup

t∈[tn,tn+1)

c(t)
∣∣Xt(f ) − Xρ(tn)(Ltn−ρ(tn)f )

∣∣= 0 P
φ
μ-a.s. (2.24)
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Proof. We adopt an argument from [25], which utilizes the properties of the semigroup Tt and the martingale MX
t at the

same time. For every t ∈ [tn, tn+1) we have∣∣Xt(f ) − Xt(Ttn+1−t f )
∣∣≤ Xt

(|f − Ttn+1−t f |)≤ sup
t∈[tn,tn+1]

‖Ttn+1−t f − f ‖∞.

It follows from (2.21) that

lim
n

sup
t∈[tn,tn+1)

c(t)
∣∣Xt(f ) − Xt(Ttn+1−t f )

∣∣= 0. (2.25)

Hence, to show (2.24), it suffices to prove

lim
n→∞ sup

t∈[tn,tn+1)

c(t)
∣∣Xt(Ttn+1−t f ) − Xρ(tn)(Ltn−ρ(tn)f )

∣∣= 0 P
φ
μ-a.s. (2.26)

From (2.14) we have

Xt(Ttn+1−t f ) = Xtn(Tt−tnTtn+1−t f ) +
∫ t

tn

∫
E

Tt−sTtn+1−t f (x)dMX(s, x)

= Xtn(Ttn+1−tnf ) +
∫ t

tn

∫
E

Ttn+1−sf (x)dMX(s, x). (2.27)

Similar to (2.25), we have

lim
n

sup
t∈[tn,tn+1)

c(t)
∣∣Xtn(Ttn+1−tnf ) − Xtn(f )

∣∣= 0.

Together with Proposition 2.7 and (2.22), this yields

lim
n

sup
t∈[tn,tn+1)

c(t)
∣∣Xtn(Ttn+1−tnf ) − Xρ(tn)(Ltn−ρ(tn)f )

∣∣= 0 P
φ
μ-a.s. (2.28)

Hence, (2.26) follows from (2.27) and (2.28) if we can show that

lim
n

cn sup
t∈[tn,tn+1]

∣∣∣∣∫ t

tn

∫
E

Ttn+1−sf (x)dMX(s, x)

∣∣∣∣= 0 P
φ
μ-a.s. (2.29)

Fixing ε > 0 and applying the martingale maximal inequality as well as Lemma 2.6 and (2.14), we have

P
φ
μ

(
cn sup

t∈[tn,tn+1]

∣∣∣∣∫ t

tn

∫
E

Ttn+1−sf (x)dMX(s, x)

∣∣∣∣> ε

)

≤ ε−2c2
nP

φ
μ

∣∣∣∣∫ tn+1

tn

∫
E

Ttn+1−sf (x)dMX(s, x)

∣∣∣∣2
≤ ε−2c2

n

∥∥Ttn+1f
2
∥∥∞

∫ tn+1

tn

ds

φ(s)
.

Using (2.18), we see that

∑
n

P
φ
μ

(
cn sup

t∈[tn,tn+1]

∣∣∣∣∫ t

tn

∫
E

Ttn+1−sf (x)dMX(s, x)

∣∣∣∣> ε

)
< ∞.

Applying Borel–Cantelli lemma, we find that (2.29) follows and the proof is complete. �

Remark 2.9. In view of Proposition 2.7, to study the long-time asymptotic of Xt(f ) for a test function f , we first
study the long-time asymptotic of Ttf and identify c(t) and Lt in (2.7). Then, we establish the long-time limit for
Xρ(t)(Lt−ρ(t)f ) for a suitable sublinear function ρ. This procedure will be applied throughout Sections 3 and 4.
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2.3. Finite particle motivation

The inhabitation time Zt discussed in the introduction counts the time spent (in sets) by all ancestors of all particles living
at time t . It counts common ancestors multiple times. It does not count time for particles with no living descendants. As
such it requires genealogical information that is not readily available from the Flemming-Viot process X itself. We need
to construct the historical process X associated with X.

To motivate historical processes and the difference between occupation and inhabitation times, we consider a fi-
nite particle approximation. Suppose that XN

t = 1
N

∑
α∼t δξα

t
is a (Moran particle system empirical measure) pre-high-

density limit of X. {ξα}α∈M are particles that undergo independent A-motions/mutations and are resampled at (time-
inhomogeneous) rate proportional to N(N − 1). At a resampling time one random particle is selected to move to another
random particle’s location. This moved particle disowns her ancestors and adopts those of the particle to which it jumped.
(This common convention is consistent with Fleming–Viot superprocesses providing distributional information about
Dawson–Watanabe superprocess populations. Sampling is simultaneous deaths and generation of offspring from some of
the dying particles.) Here, the set of multi-indices α keep track of all particles, whether they are living at t or not, and
α ∼ t means particle α is alive at time t . Naturally, there are N particles alive at any time so XN

t is a probability measure
but the actual particles that are alive is dependent upon which particles are sampled prior to t and multi-indices α are
used to keep track of ancestors. For example, particle (1,2,3) would be the parent ancestor of (1,2,3,1) and (1,2,3,2)

for random outcomes where they all exist. Now, let ξα
[0,t] denote the ancestral path of particle α as a D(Rd)-path held

constant after t so ξα
[0,t](u) = ξα

t for u ≥ t . Then, our times of interest are:

Occupation: YN
t (1O) = 1

N

∫ t

0

∑
α∼s 1O(ξα

s )ds so YN
t (f ) = ∫ t

0 XN
s (f )ds.

Inhabitation: ZN
t (1O) = 1

N

∫ t

0

∑
α∼t 1O(ξα

s )ds so ZN
t (f ) =∑

α∼t

∫ t

0 f (ξα
[0,t](s))ds.

for O ⊂ R
d and f ∈ B(Rd). Theorem 1.4 in the introduction states that these two times (after high density limits) only

differ by a martingale defined in terms of this function �f i.e. that the multiple counting of common ancestors is similar
to the counting of time spent by dead lineages. Whereas YN

t (f ) was immediately expressed in terms of the empirical
process XN , one can only easily express the inhabitation time in terms of the

Historical Process: X
N
t = 1

N

∑
α∼t δ(t,ξα[0,t]) in P(E) supported on E

t .

In particular, ZN
t (f ) =X

N
t (�f ), where �f (t, yt ) = ∫ t

0 f (yt
s)ds. (Here, E and E

t are defined around (1.17) and since XN
t is

supported on E
t we also have ZN

t (f ) =X
N
t (�t

f ), where �t
f (r, yr ) = ∫ t∧r

0 f (yr
s )ds).) To relate occupation and inhabitation

times, we express YN
t in terms of the historical process as well. For f ∈ B(Rd), we let j∗f (r, yr ) � f (yr

r ) ∈ B(E) and
find XN

t (f ) = X
N
t (j∗f ) so YN

t (f ) = ∫ t

0 XN
s (f )ds = ∫ t

0 X
N
s (j∗f )ds. Notice, t is included with ξα

[0,t] in the definition
of the historical process. This is to allow time-inhomogeneous generator and to make support properties obvious as will
be seen below. The developments of this motivating subsection survive the process of taking high density limits while
martingale problem formulation actually gets easier. We will use the historical martingale problem below to relate the
occupation and inhabitation times now that we have expressed them both in terms of the historical process. The first step
is to define the historical process when there are infinitely many particles.

2.4. Fleming–Viot historical processes

Historical superprocesses were first introduced by Dawson and Perkins [12]. To make our presentation manifest, we
assume that (ξt ,Px) is an R

d -valued Borel strong Markov process with sample path in D := D(Rd), the Skorohod space
defined at the beginning of Section 2. The weak generator of ξ is still denoted by (A,D(A)), μ ∈ M1(E) and φ ∈ C+
with tφ = ∞.

For each (r, y) ∈ E, we consider the process (�t )t≥0 in E defined by

�t = (
r + t, (y �r ξ )r+t

)
,

where for every w,w′ ∈ D(Rd), w �r w′ is the concatenation path

w �r w′(s) =
{

w(s) for s ∈ [0, r)

w(r) + w′(s − r) for s ∈ [r,∞).

The law of � is denoted by Pr,y , namely

Pr,y(O) = P0(� ∈O) ∀O ∈ E
(
D(E)

)
.
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((�t )t≥0,Pr,y) is called the historical process, associated to ξ , with initial position �0 = (r, y). ((�t )t≥0, (Pr,y)(r,y)∈E)

is a time-homogeneous Borel strong Markov process in E with semigroup

Tt : Cb(E) → Cb(E)

Tt f (r, y) = Pr,yf (�t ). (2.30)

(See [27, Proposition II.2.5] for a more general result.) It is more convenient to express T directly through ξ by

Tt f (r, y) = Pyr f
(
r + t, (y �r ξ )r+t

)
. (2.31)

We denote by A the (weak) generator of T. A function f ∈ bE(E) belongs to the domain of A, D(A), iff the limit

bp-lim
h↓0

1

h

(
Thf (r, y) − f (r, y)

)
exists. In such case, we denote the limit as Af (r, y).

Let τ ≥ 0 and χ be a measure in M1(D) such that χ({y ∈ D(Rd) : yτ = y}) = 1. Then, δτ ×χ is a probability measure
on E. By Theorem 2.3 there is a unique solution (X,P

φ
τ,χ (≡ P

φ
δτ ×χ )) on (�,G) (with E = E) to the A-martingale problem,

meaning

Mt (f ) =Xt (f ) − δτ × χ(f ) −
∫ t

0
Xs(Af )ds (2.32)

is a continuous (Gt )-martingale starting at 0 such that

〈
M(f )

〉
t
=
∫ t

0

(
Xs

(
f 2)−Xs(f )2) ds

φ(s)
(2.33)

for all f ∈ D(A). The process (Xt ,P
φ
τ,χ ) is called the (time-homogeneous) historical Fleming–Viot process. The relations

(2.13) and (2.14) in the current context become respectively

Xt (f ) = δτ × χ(Tt f ) +
∫ t

0

∫
E

Tt−sf (r, y)dM
(
s, (r, y)

)
, (2.34)

Xu(f ) −Xt (Tu−t f ) =
∫ u

t

∫
E

Tu−sf (r, y)dM
(
s, (r, y)

)
, (2.35)

which hold for every 0 ≤ t ≤ u and f ∈ bE(E). In particular,

P
φ
τ,χXt (f ) = δτ × χ(Tt f ) ∀t ≥ 0,∀f ∈ bE(E). (2.36)

It is possible to recover the Fleming–Viot process X from X. We just define the projection

j : E → R
d

j (r, y) = yr ,

and put Xt = Xt ◦ j−1, MX
t = Mt ◦ j−1, respectively the pushforward measures of Xt ,Mt via j . Each function f in

bE(Rd) induces the function j∗f in Cb(E) by j∗f (r, y) = f (yr). In addition, for each f ∈ bE(Rd) we have

Xt(f ) =Xt

(
j∗f

)
and MX

t (f ) =Mt

(
j∗f

) ∀t ≥ τ. (2.37)

If f belongs to the domain of A, then j∗f belongs to the domain of A and Aj∗f = Af . It follows from (2.32) and (2.33)
that (X,MX) is a Fleming–Viot process with law P

φ
μ, where μ = (δτ × χ) ◦ j−1.

We give a brief investigation on the support of Xt . Let � : E → D(Rd) be the projection �(r, y) = y and define an
M1(D)-valued process (Ht , t ≥ τ) by

Hτ+t =Xt ◦ �−1 ∀t ≥ 0.

Define Dt = �Et = {y ∈ D : yt = y} for each t ≥ 0 and note E = ⋃
t≥0 E

t . The following result is an analog of [27,
Lemma II.8.1].
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Proposition 2.10. Xt = δτ+t × Hτ+t and suppHτ+t ⊂Dτ+t for all t ≥ 0 P
φ
τ,χ -a.s.

Proof. We define

�(t) = {
(r, y) ∈ E : r �= τ + t

}
.

Then, by (2.34) and (2.31),

P
φ
τ,χXt (1�(t)) =

∫
D

Tt1�(t)(τ, y)dχ(y)

=
∫

D

E01�(t)

(
τ + t, (y �τ ξ)τ+t

)
dχ(y) = 0.

This shows Xt = δτ+t × Hτ+t P
φ
τ,χ -a.s. for each t ≥ 0 and hence for all t ≥ 0 by the right-continuity of both sides. The

later assertion in the proposition statement follows from the former. Indeed, for every O ∈ E(D),

Hτ+t (O) =Xt

(
�−1O

)= δτ+t × Hτ+t

({
(r, y) ∈ E : yr ∈ O

})= Hτ+t

({
y ∈O : yτ+t = y

})
,

which implies suppHτ+t ⊂D
τ+t . �

Remark 2.11. The process (Ht )t≥τ is time inhomogeneous and is called historical superprocess in literature ([12,15]).
In the current article, we use its time-homogeneous counter part (Xt )t≥0. It is evident from the previous result that under
P

φ
τ,χ , suppXt ⊂ E

τ+t . Consequently, for every bounded measurable function f on E
τ+t

Xt (f ) =
∫
E

f (r, y)dXt (r, y) =
∫
E

f (r, y)1(r=τ+t) dXt (r, y) (2.38)

and ∣∣Pφ
τ,χXt (f )

∣∣≤ ‖f ‖L∞(Eτ+t ). (2.39)

In addition, it is seen from (2.33) that suppMt ⊂ suppXt ⊂ E
τ+t .

Our interest is the superprocess (Xt )t≥0 starting from a specified initial measure X0 = μ. Hence, it is natural to simply
take τ = 0 for the historical process (Xt )t≥0. In such case, the measure χ can also be constructed (uniquely) from μ by

χ(O) = μ∗(O) = μ
({

y(0) : y ∈O
}) ∀O ∈ E(E).

2.5. Occupation times and inhabitation times

The occupation time process (Yt )t≥0 associated with (Xt )t≥0 is the measure-valued process defined by

Yt (O) =
∫ t

0
Xs(O)ds ∀O ∈ E

(
R

d
)
. (2.40)

In the context of critical Dawson–Watanabe processes, the occupation time process was introduced and studied by [20]
by means of Laplace functionals. Our other time of interest inhabitation time is defined through the historical process and
the counting function �f . It is natural to ask whether �f , defined in (1.12), is measurable when restricted to E.

Proposition 2.12. For every f ∈ bE(Rd), �f : (E,E(E)) → (R,E(R)) is measurable.

Proof. First, suppose f is continuous. Then, it follows by Ethier and Kurtz [19, Problems 3.11.13 and 3.11.26] that
D(E) � y → ∫ ·

0 f (ys)ds ∈ D(R) is continuous and so (r, y) → ∫ r

0 f (ys)ds is also continuous. Now, let O be a closed
set in R

d . Then, there exist continuous f n such that f n → 1O pointwise by Billingsley [4, Theorem 1.2] so for every
(r, y) ∈ E,

lim
n→∞�fn(r, y) =

∫ r

0
lim

n→∞fn(ys)ds =
∫ r

0
1O(ys)ds = �1O (r, y)
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by dominated convergence and �1O is measurable. Finally, the family H = {f ∈ bE(Rd) : �f is measurable} contains
1O ∈ H for every closed set O ⊂ R

d and is closed under additions, scalar multiplications and pointwise limits. Hence,
H = bE(Rd) by the monotone class theorem. �

Let (Xt )t≥0 be the historical Fleming–Viot process constructed in Section 2.4. The inhabitation time process (Zt )t≥0
associated with X is the measure-valued process defined by

Zt(O) =Xt (�1O ) ∀t ≥ 0,O ∈ E
(
R

d
)
.

Xt (�f ) makes sense at least for non-negative f since �f is measurable. As mentioned in the introduction Xt (�f ) satisfies
martingale problem (1.13), (1.14) once we know that each �t

f ∈D(A).

Lemma 2.13. Let f be a function in bE(Rd). Then, for every t, h > 0 and every (r, y) in E,

Th�
t
f (r, y) = �t

f (r, y) + 1(r<t)

∫ (r+h)∧t−r

0
Tsf (yr)ds. (2.41)

In addition, �t
f belongs to the domain of A and

A�t
f (r, y) = f (yr)1(r<t) and A�f (r, y) = bp- lim

t→∞A�t
f (r, y) = f (yr). (2.42)

Proof. We observe that for every path ω ∈ D(Rd)

�t
f

(
r + h,ωr+h

)=
∫ r∧t

0
f (ωs)ds + 1(r<t)

∫ (r+h)∧t

r

f (ωs)ds

= �t
f

(
r,ωr

)+ 1(r<t)

∫ (r+h)∧t−r

0
f (ωr+s)ds.

This implies that

Th�
t
f (r, y) = Pr,y�

t
f

(
r + h, (y �r ξ )r+h

)
= �t

f (r, y) + 1(r<t)Pyr

∫ (r+h)∧t−r

0
f (ξs)ds,

which yields (2.41). Equation (2.42) is obtained by differentiating (2.41) at h = 0 and then letting t → ∞. �

We observe that Z0 ≡ 0. In comparison with the occupation time process Y defined in (2.40), it is easy to derive from
(2.36) that for every f ∈ bE(E) and t ≥ 0, Yt (f ) and Zt(f ) have the same mean, that is

P
φ
μYt (f ) = P

φ
μZt (f ) = μ

(∫ t

0
Tsf ds

)
.

In fact, a deeper relation between Z and Y holds.

Proposition 2.14. For every f ∈ bE(Rd) and t ≥ 0

Zt(f ) =Mt (�f ) + Yt (f ), (2.43)

where the process (Mt (�f ))t≥0 is the continuous (Gt )-martingale defined in (1.18), with quadratic variation

〈
M(�f )

〉
t
=
∫ t

0

(
Xs

(
(�f )2)−Xs(�f )2) ds

φ(s)
∀t ≥ 0. (2.44)

Proof. Fix u > 0 and recall the bounded variant �u
f of �f is in D(A) so Xt (�f ) = Xt (�

u
f ), Xt (A�f ) = Xt (A�u

f ) and
〈M(�f )〉t = 〈M(�u

f )〉t for t ≤ u by (1.16) and (1.19). In addition, by definition Zt(f ) = Xt (�f ), hence we derive from
(1.18) that

Mt (�f ) = Zt(f ) −X0(�f ) −
∫ t

0
Xs(A�f )ds.
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We know X0(�f ) = 0 and have from (2.42), (2.37) that

Xs(A�f ) =
∫

E

f (yr)dXs(r, y) =Xs

(
j∗f

)= Xs(f )

for every s. This yields (2.43) and (Mt (�f ))t≥0 is a (Gt )-martingale with the required quadratic variation by (2.33) by the
arbitrariness of u. �

In relation (2.43), if the long term asymptotics of any two among the three quantities are known, then, this implies
the long term asymptotic of the other term. Since Mt (�f ) is a martingale, its analysis is subjected to martingale limit
theorems. Depending on the situation at hand, the asymptotic of one of Yt and Zt is easier than the other. This is the case
for α-stable Fleming–Viot process considered in Section 4 below.

3. Stable Fleming–Viot processes

Hereafter, we consider the specific case when A = −(−�)
α
2 on R

d for some α ∈ (0,2]. The historical α-stable generator
is still denoted by A. The motion of each particle has the law of the α stable process in R

d . The associated superpro-
cess (Xt )t≥0 constructed in Theorem 2.3 is called α-stable Fleming–Viot process. The associated historical superprocess
(Xt )t≥0 with law P

φ
0,μ∗ constructed in Section 2.4 is called historical α-stable Fleming–Viot process. The relation (2.37)

describes the connection between X and X. In this section, we develop several intermediate results following the guide-
line described in Remark 2.9. These considerations eventually lead to the proofs of Theorems 1.1 and 1.2 stated in the
Introduction.

3.1. The stable semigroup

Let Tt be the semigroup corresponding to a symmetric α-stable process. In particular, for each test function f ,

Ttf (x) =
∫
Rd

pt (x − y)f (y)dy, (3.1)

where

pt (x) = 1

(2π)d

∫
Rd

eix·θ e−t |θ |α dθ. (3.2)

Let f̂ be the Fourier transform of f , f̂ (θ) = ∫
Rd e−iθ ·xf (x)dx. Using Fourier transform, Ttf takes an alternative form

Ttf (x) = 1

(2π)d

∫
Rd

eix·θ−t |θ |α f̂ (θ)dθ. (3.3)

We have seen in Section 2.2 that the long term asymptotic of Xt(f ) depends upon that of Ttf . It is therefore
natural to study Ttf as t → ∞ for a given test function f . If k = (k1, . . . , kd) ∈ N

d is a multi-index, we define
∂kf = ∂

k1
1 ∂

k1
2 · · ·∂kd

d f .

Proposition 3.1 (Semigroup expansion). Let f be a bounded measurable function on R
d and N be a non-negative

integer such that (1.8) holds. Then, we have

lim
t→∞ t

N+d
α sup

x∈Rd

∣∣∣∣Ttf (x) −
∑

k∈Nd :|k|≤N

(−1)|k|

k!
∫
Rd

f (y)yk dy∂kpt (x)

∣∣∣∣= 0. (3.4)

Proof. We begin with a rescaled version of (3.3)

td/αTtf (x) = 1

(2π)d

∫
Rd

eit−1/αx·θ−|θ |α f̂
(
t−1/αθ

)
dθ. (3.5)
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The condition (1.8) ensures that the derivative ∂kf̂ exists and is continuous and bounded for every multi-index k such
that |k| ≤ N . Hence, we have the following Taylor’s expansion for f̂ (u) around u = 0,

f̂ (u) =
∑

|k|≤N

∂kf̂ (0)

k! uk + RN(u). (3.6)

The remainder term satisfies

lim
u→0

|u|−N
∣∣RN(u)

∣∣= 0 and sup
u∈Rd\{0}

|RN(u)|
|u|N = O(1). (3.7)

The second estimate in (3.7) comes from the first estimate, (3.6) and the fact that f̂ is bounded. Hence, we can rewrite
the right-hand side of (3.5) as follows:

∑
|k|≤N

∂kf̂ (0)

k!
1

(2π)d

∫
Rd

eit−1/αx·θ−|θ |α (t−1/αθ
)k dθ + 1

(2π)d

∫
Rd

eit−1/αx·θ−|θ |αRN

(
t−1/αθ

)
dθ.

Taking into account the facts that

1

(2π)d

∫
Rd

eit−1/αx·θ−|θ |α (t−1/αθ
)k dθ = i−|k|td/α∂kpt (x)

and

∂kf̂ (0) = (−i)|k|
∫
Rd

f (y)yk dy, (3.8)

we obtain

td/αTtf (x) = 1

(2π)d

∫
Rd

eit−1/αx·θ−|θ |α f̂
(
t−1/αθ

)
dθ

= td/α
∑

|k|≤N

(−1)|k|

k!
∫
Rd

f (y)yk dy∂kpt (x) + R̃N (x),

where

R̃N(x) = 1

(2π)d

∫
Rd

eit−1/αx·θ−|θ |αRN

(
t−1/αθ

)
dθ.

Hence, it remains to show limt→∞ t
N
α ‖R̃N‖∞ = 0. In fact, we have

t
N
α sup

x∈Rd

∣∣R̃N(x)
∣∣� ∫

Rd

e−|θ |α t
N
α

∣∣RN

(
t−

1
α θ
)∣∣dθ,

which converges to 0 as t → ∞ by dominated convergence theorem and (3.7). (Here and below, we use � in the standard
way: A� B means there exists a constant C > 0 such that A ≤ CB .) �

As an immediate consequence, the stable semigroup Tt satisfies (2.7) with c(t) = t (N+d)/α and

Ltf =
∑

|k|≤N

(−1)|k|

k!
∫
Rd

f (y)yk dy∂kpt . (3.9)

In view of Proposition 2.8 and (3.9), the long term asymptotic of Xt(f ) is reduced to the long term asymptotic along a
sequence of

Xρ(t)

(
∂kpt−ρ(t)

)
, k ∈N

d, |k| ≤ N,

which we will describe in Section 3.2.
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3.2. Limit theorems for super stable processes

For each θ ∈ R
d , we denote eθ (x) = eiθ ·x , cosθ (x) = cos(θ · x) and sinθ (x) = sin(θ · x) and recall the definition of ϑk

d,α
in (1.6).

Proposition 3.2. Let ρ be a sublinear function such that limt→∞ ρ(t)

t1−ε0
= 0 for some ε0 > 0. Suppose that φ satisfies∫ ∞

0

ds

φ(s)
< ∞ (3.10)

and μ satisfies (1.4). With P
φ
μ-probability one, we have for every k ∈N

d that

lim
t→∞ t

d+|k|
α Xρ(t)

(
∂kpt−ρ(t)

)=
{

0 if |k| is odd,

(−1)
|k|
2 ϑk

d,α if |k| is even.
(3.11)

Proof. We note that for every function f ∈ L1(Rd), by Fubini’s theorem,

Xt(f ) = 1

(2π)d

∫
Rd

Xt (eθ )f̂ (θ)dθ. (3.12)

Hence,

Xρ(t)

(
∂kpt−ρ(t)

)= 1

(2π)d

∫
Rd

e−(t−ρ(t))|θ |αXρ(t)(eθ )(iθ)k dθ.

In addition, from (2.5), we obtain

Xρ(t)(eθ ) = μ(eθ ) − |θ |α
∫ ρ(t)

0
Xs(eθ )ds + MX

ρ(t)(eθ ). (3.13)

It follows that

Xρ(t)

(
∂kpt−ρ(t)

)= I1 + I2 + I3,

where

I1 = 1

(2π)d

∫
Rd

e−(t−ρ(t))|θ |αμ(eθ )(iθ)k dθ,

I2 = − 1

(2π)d

∫
Rd

e−(t−ρ(t))|θ |α
∫ ρ(t)

0
Xs(eθ )ds|θ |α(iθ)k dθ,

I3 = 1

(2π)d

∫
Rd

e−(t−ρ(t))|θ |αMX
ρ(t)(eθ )(iθ)k dθ.

We will show that

lim
t→∞ t

d+|k|
α I1 = 1

(2π)d

∫
Rd

e−|θ |α (iθ)k dθ a.s., (3.14)

lim
t→∞ t

d+|k|
α I2 = 0 a.s. and lim

t→∞ t
d+|k|

α I3 = 0 a.s. (3.15)

By a change of variable, we see that

I1 = t−
d+|k|

α
1

(2π)d

∫
Rd

e−(1− ρ(t)
t

)|θ |αμ(et−1/αθ )(iθ)k dθ.

This, together with dominated convergence theorem yields (3.14). For I2, we observe that

|I2| � ρ(t)

∫
Rd

e−(t−ρ(t))|θ |α |θ ||k|+α dθ

� ρ(t)

t
t−

d+|k|
α

∫
Rd

e−(1− ρ(t)
t

)|θ |α |θ ||k|+α dθ,
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which due to sublinearity of ρ immediately implies the first assertion in (3.15). For I3, putting an = en and utilizing the
Borel-Cantelli lemma, we merely need to show∑

n≥1

P
φ
μ

(
sup

an≤t≤an+1

t
d+|k|

α |I3|
)2

< ∞. (3.16)

Set ρn = ρ(an) and note by a change of variables that∫
Rd

e−(an−ρn+1)|θ |α |θ ||k| dθ � a
− d+|k|

α
n .

By Jensen’s inequality, we have

P
φ
μ

(
sup

an≤t≤an+1

t
d+|k|

α |I3|
)2

�
(

a2
n+1

an

) d+|k|
α

∫
Rd

e−(an−ρn+1)|θ |α
P

φ
μ sup

an≤t≤an+1

∣∣MX
ρ(t)(eθ )

∣∣2|θ ||k| dθ. (3.17)

For each θ ∈ R
d , (Mt(eθ ))t≥0 is a complex valued martingale with quadratic variations satisfying

〈�M(eθ )
〉
t
=
∫ t

0

[
Xs

(
cos2

θ

)− X2
s (cosθ )

] ds

φ(s)
≤
∫ t

0
Xs

(
(1 − cosθ )

2) ds

φ(s)
,

〈�M(eθ )
〉
t
=
∫ t

0

[
Xs

(
sin2

θ

)− X2
s (sinθ )

] ds

φ(s)
≤
∫ t

0
Xs

(
sin2

θ

) ds

φ(s)
.

Hence, using the elementary identity 1 − cosθ = 2 sin2
θ/2, we obtain

P
φ
μ

∣∣MX
t (eθ )

∣∣2 � ∫ t

0
P

φ
μXs

(
sin4

θ/2 + sin2
θ

) ds

φ(s)

�
∫ t

0

〈
Ts

(
sin4

θ/2 + sin2
θ

)
,μ

〉 ds

φ(s)
.

Note that for every x ∈ R
d

2Ts sin2
θ (x) = 1 − cos2θ (x)e−s|2θ |α = (

1 − cos2θ (x)
)
e−s|2θ |α + 1 − e−s|2θ |α

�
(
1 ∧ |θ ||x|)2 + s|θ |α.

Similarly, 4Ts sin4
θ
2
(x) = Ts(1 − 2 cosθ + cos2

θ ) ≤ 2Ts(1 − cosθ ) � (1 ∧ |θ ||x|)2 + s|θ |α . Using (3.10) and (1.4), it follows

that

P
φ
μ

∣∣MX
t (eθ )

∣∣2 � |θ |2∧a + t |θ |α. (3.18)

By martingale maximal inequality

P
φ
μ sup

an≤t≤an+1

∣∣MX
ρ(t)(eθ )

∣∣2 � P
φ
μ

∣∣MX
ρn+1

(eθ )
∣∣2 � |θ |2∧a + ρn+1|θ |α. (3.19)

Applying the above estimate in (3.17) and a change of variables yields

P
φ
μ

(
sup

an≤t≤an+1

t
d+|k|

α |I3|
)2

�
(

a2
n+1

an

) d+|k|
α

∫
Rd

e−(an−ρn+1)|θ |α (|θ |2∧a + ρn+1|θ |α)|θ ||k| dθ

� e
d+|k|

α

∫
Rd

e
−(e−1− ρn+1

an+1
)|θ |α

(
a

−(2∧a)/α

n+1 |θ |2∧a + ρn+1

an+1
|θ |α

)
|θ ||k| dθ.

Observing that ρn

an
� a

−ε0
n and

∑
n a−ε

n < ∞ for any ε > 0, the above estimate implies (3.16).



2614 M. A. Kouritzin and K. Lê

Finally, combining (3.14) and (3.15) yields

lim
t→∞ t

d+|k|
α Xρ(t)

(
∂kpt−ρ(t)

)= i|k|

(2π)d

∫
Rd

e−|θ |α θk dθ.

The equality (3.11) follows from here, after observing that Xρ(t)(∂
kpt−ρ(t)) is a real number. �

Proof of Theorem 1.2. We are going to verify the hypotheses in Proposition 2.8. As we have seen previously, the
identity (3.4) verifies condition (2.7) with c(t) = t (N+d)/α and Lt defined in (3.9). We choose ρ(t) = tκ and tn = nδ with
κ, δ ∈ (0,1) such that

N + d

α
+ 1 + ε0 >

1

δ
>

N + d

α
+ 1 and

(
2N + d

α
+ 1 + ε0

)
κ >

N

α
+ 1

δ
. (3.20)

It is easy to verify conditions (2.8), (2.19) and (2.22). To check the condition (2.18), we note that ‖Ttf
2‖∞ � t−d/α‖f ‖2

L2 .
So we need to verify that

∞∑
n=1

nδ N
α

∫ nδ

nκδ

ds

φ(s)
< ∞.

By Tonelli’s theorem, the left-hand side above is at most a constant multiple of∫ ∞

1
s

1
κ

N
α

+ 1
κδ

ds

φ(s)
.

The ranges of κ, δ chosen in (3.20) ensures that 2N+d
α

+ 1 + ε0 > 1
κ

N
α

+ 1
κδ

. Hence, the above integral is finite due to
(1.7) and we have verified condition (2.18). The condition (2.23) is verified analogously. Finally, we verify (2.21). The
assumption (1.9) ensures that f ∈ D(A) and

∣∣Af (x)
∣∣= 1

(2π)d

∣∣∣∣∫
Rd

f̂ (ξ)eix·ξ |ξ |α dξ

∣∣∣∣≤ 1

(2π)d

∫
Rd

∣∣f̂ (ξ)
∣∣|ξ |α dξ.

It follows that

cn sup
t∈[tn,tn+1]

‖Ttn+1−t f − f ‖∞ � cn(tn+1 − tn) � nδ N+d
α

+δ−1

and, hence, (2.21) is satisfied because of our assumption on the range of δ in (3.20). Therefore, applying Proposition 2.8,

we find that (2.24) is valid with c(t) = t
N+d

α and Lt defined by (3.9). In particular, we have

lim
n

sup
t∈[tn,tn+1]

t
N+d

α

∣∣∣∣Xt(f ) −
∑

|k|≤N

(−1)|k|

k!
∫
Rd

f (y)yk dyXρ(tn)

(
∂kptn−ρ(tn)

)∣∣∣∣= 0.

The long-time limit of Xρ(tn)(∂
kptn−ρ(tn)) is given by Proposition 3.2. This implies (1.10). �

Proof of Theorem 1.1. The class of functions C2
c (Rd) strongly separates points in the sense of Ethier and Kurtz [19].

From [5, Lemma 2], there exists a countable subset M of C2
c (Rd) which strongly separates points and is closed under

multiplication. Set M̃ = {e−ε|·|2f : f ∈ M, ε > 0}. By Theorem 1.2, we see that with P
φ
μ-probability one, (1.10) with

N = 0 holds for every f ∈ M̃. An application of [22, Lemma 7] implies that with P
φ
μ-probability one, (1.10) with N = 0

holds for every continuous functions g such that eε|·|2g is bounded for some ε > 0. This yields almost-sure shallow

convergence of t
d
α Xt to 1

(2π)d

∫
Rd e−|θ |α dθλd as t → ∞. �

4. Occupation times of stable Fleming–Viot processes

Let (Xt )t≥0 be the (α,φ) Fleming–Viot superprocess and (Xt )t≥0 be the corresponding (α,φ) Fleming–Viot historical
process with martingale measure M. Then, we established the occupation time process Y and the inhabitation time
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process Z for X are connected through Zt(f ) − Yt (f ) = M(�f ), where �f is defined in (1.12). (See Theorem 1.4a
and Proposition 2.14.) Using this Z − Y relation and the method described in Section 2.2, we are able to obtain long
term asymptotics of both time processes. As we saw earlier at the beginning of Section 3, the (α,φ) Fleming–Viot
superprocess can be recovered from the (α,φ) Fleming–Viot historical process so we need only consider one probability
measure, P0,μ∗ , which we relabel Pμ to ease notation. Recall that Nd is defined in (1.20) and μ is a probability measure
on R

d . The following result, whose proof is presented in Section 4.2, is the key step in showing Theorem 1.5.

Proposition 4.1. Assume that φ satisfies (1.22). Let f be a function in bE(Rd) such that Nd(f ) < ∞. Then, the following
assertions hold P

φ
μ-a.s.

(i) (Low and critical dimensions, d ≤ α)

lim
t→∞

Yt (f )

γd(t)
= lim

t→∞
Zt(f )

γd(t)
= κd(α)

∫
Rd

f (x)dx. (4.1)

(ii) (High dimension, d > α) The limits Y∞(f ) := limt→∞ Yt (f ), Z∞(f ) := limt→∞ Zt(f ) and M∞(�f ) :=
limt→∞ Mt (�f ) exist and are finite random variables. In addition, we have the following relation

Z∞(f ) =M∞(�f ) + Y∞(f ).

Remark 4.2. The condition Nd(f ) < ∞ ensures that
∫ t

0 Tsf (x)ds is finite for every t > 0 and x ∈R
d . This can be seen

from the following identity, which is a consequence of (3.3),∫ t

0
Tsf (x)ds = 1

(2π)d

∫
Rd

eiθ ·x 1 − e−t |θ |α

|θ |α f̂ (θ)dθ. (4.2)

Indeed, when d < α, 1−e−t |θ |α
|θ |α is integrable over R

d , then the right-hand side above is bounded above by a multiple

constant of ‖f ‖L1(Rd ). When d ≥ α, 1−e−t |θ |α
|θ |α is not integrable as |θ | → ∞. However, the right-hand side of (4.2) is finite

if
∫
Rd |f̂ (θ)||θ |−α dθ is finite. The finiteness of

∫
Rd |f̂ (θ)||θ |−α dθ is also necessary to control

∫ 1
0 Tsf (x)ds when d = α.

The following lemma will be useful later.

Lemma 4.3. Let f be a function in bE(Rd) with Nd(f ) < ∞.

(i) If d ≤ α, then for every x ∈R
d ,

lim
t→∞

1

γd(t)

∫ t

0
Tsf (x)ds = κd(α)λd(f ), (4.3)

where we recall that κd is defined in (1.21) and λd is the Lebesgue measure on R
d .

(ii) If d > α, then

lim
t→∞ sup

x∈Rd

∣∣∣∣∫ t

0
Tsf (x)ds − 1

(2π)d

∫
Rd

eix·θ f̂ (θ)|θ |−α dθ

∣∣∣∣= 0. (4.4)

Proof. Consider first the case d < α. From (4.2), we have∫ t

0
Tsf (x)ds = t1− d

α
1

(2π)d

∫
Rd

eit−1/αθ ·x 1 − e−|θ |α

|θ |α f̂
(
t−

1
α θ
)

dθ. (4.5)

Using the facts that
∫
Rd

1−e−|θ |α
|θ |α dθ is integrable and limt→∞ f̂ (t−1/αθ) = f̂ (0) = λd(f ), we can derive (4.3) from the

dominated convergence theorem.
The case d = α is a bit more subtle. From (3.3), we have∫ t

1
Tsf (x)ds = 1

(2π)d

∫ t

1

∫
Rd

eix·θ−s|θ |d f̂ (θ)dθ ds = 1

(2π)d

∫ t

1

∫
Rd

eis−1/dx·θ−|θ |d f̂
(
s− 1

d θ
)

dθ
ds

s
,
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which implies∥∥∥∥∫ u

1
Tsf ds

∥∥∥∥∞
� ln(u)

∣∣f̂ (0)
∣∣ ∀u ≥ 1. (4.6)

Now, let ε be a positive number and choose K > 0 such that∫
|θ |>K

e−|θ |d dθ ≤ ε

and then u > 1 such that

sup
s≥u

sup
|θ |≤K

∣∣eis−1/dx·θ f̂
(
s− 1

d θ
)− f̂ (0)

∣∣≤ ε.

Such a choice is always possible because of the continuity of f̂ at 0. It follows that∥∥∥∥∫ t

u

Tsf (x)ds − f̂ (0)

∫ t

u

∫
Rd

e−|θ |d dθ
ds

s

∥∥∥∥∞

≤ 1

(2π)d

(∫ t

u

∫
|θ |≤K

+
∫ t

u

∫
|θ |>K

)
e−|θ |d ∣∣eis−1/dx·θ f̂

(
s− 1

d θ
)− f̂ (0)

∣∣dθ
ds

s

� ε

∫
Rd

e−|θ |d dθ ln

(
t

u

)
+ ε

∣∣f̂ (0)
∣∣ ln

(
t

u

)
.

Combining with (4.6), one has that

lim sup
t→∞

1

ln t

∥∥∥∥∫ t

1
Tsf (x)ds − f̂ (0)

∫ t

1

∫
Rd

e−|θ |d dθ
ds

s

∥∥∥∥∞
� ε.

Sending ε → 0, we obtain

lim
t→∞

1

ln t

∫ t

1
Tsf (x)ds = κd(α)λd(f ).

Finally, since | ∫ 1
0 Tsf (x)ds| � ∫

Rd |f̂ (θ)||θ |−α dθ , which is finite, the above implies (4.3).
In case d > α, from (4.2), we have∫ t

0
Tsf (x)ds − 1

(2π)d

∫
Rd

eix·θ f̂ (θ)|θ |−α dθ = −1

(2π)d

∫
Rd

eix·θ−t |θ |α f̂ (θ)|θ |−α dθ.

Hence,

sup
x∈Rd

∣∣∣∣∫ t

0
Tsf (x)ds − 1

(2π)d

∫
Rd

eix·θ f̂ (θ)|θ |−α dθ

∣∣∣∣≤ 1

(2π)d

∫
Rd

e−t |θ |α ∣∣f̂ (θ)
∣∣|θ |−α dθ,

which together with the dominated convergence theorem implies (4.4). �

From now on, we assume that f is a bounded measurable function on R
d such that Nd(f ) is finite. From the proof of

Lemma 4.3, it follows that in every dimension,∥∥∥∥∫ t

0
Tsf ds

∥∥∥∥∞
�Nd(f )

(
γd(t) ∨ 1

) ∀t ≥ 0. (4.7)

By the homogeneous Markov property of ξ , we also have

sup
x∈Rd

∣∣∣∣Px

(∫ t

0
f (ξu)du

)2∣∣∣∣= 2 sup
x∈Rd

∣∣∣∣∫ t

0

∫ t−u

0
Tu[f Tsf ](x)ds du

∣∣∣∣�N 2
d (f )

(
γd(t) ∨ 1

)2 (4.8)

for every t ≥ 0.
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4.1. Martingale corrector

We investigate the long time limit of the martingale difference Mt (�f ). For each q > 1 and n ∈ N0, define

tn = tn(q) =
{

q
α

α−d
n if d < α,

eqn
if d = α

so that γd(tn) = qn. (4.9)

Proposition 4.4. Let f be a bounded measurable function on R
d such that Nd(f ) < ∞. Then, (i) Mt (�f ) converges

P
φ
μ-a.s. and in L2(�) as t → ∞ if

∫∞
0

γ 2
d (s)

φ(s)
ds < ∞.

(ii) limt→∞
Mt (�f )

γd (t)
= 0 P

φ
μ-a.s. if (1.22) holds.

Proof. (i) By martingale convergence theorem, it suffices to show

sup
t≥0

P
φ
μ

[
Mt

(
�t
f

)2]
< ∞. (4.10)

Indeed, from (2.44) and (2.36) we have that

P
φ
μ

[
Mt

(
�t
f

)2]≤ P
φ
μ

∫ t

0
Xs

((
�s
f

)2) ds

φ(s)
=
∫ t

0

〈
Ts

((
�s
f

)2)
, δ0 × m

〉 ds

φ(s)
.

We observe that for every path ω ∈ D(Rd)

�s
f

(
r + s,ωr+s

)= �s
f

(
r,ωr

)+ 1(r<s)

∫ s−r

0
f (ωr+u) du.

Thus,

(
�s
f

(
r + s,ωr+s

))2 ≤ 2
(
�s
f

(
r,ωr

))2 + 1(r<s)2

(∫ s−r

0
f (ωr+u) du

)2

.

Together with (4.8), this implies that

Ts

(
�s
f

)2
(r, y) = Pyr

[(
�s
f

(
r + s, (y �r ξ )r+s

))2]
≤ 2

(
�s
f (r, y)

)2 + 1(r<s)2Pyr

(∫ s−r

0
f (ξu) du

)2

� r2‖f ‖2∞ + 1(r<s)N 2
d (f )

(
γd(s − r) ∨ 1

)2
. (4.11)

Therefore, we have∫ t

0

〈
Ts

(
�s
f

)2
, δ0 × m

〉 ds

φ(s)
�N 2

d (f )

∫ t

0

(
γd(s) ∨ 1

)2 ds

φ(s)
,

which is uniformly bounded in t by our assumptions on f and φ. The estimate (4.10) and the convergence of Mt (�
t
f )

follow.
(ii) Let {tn} be the sequence defined in (4.9). It suffices to show that∑

n

1

γ 2
d (tn)

P
φ
μ

[(
sup

t∈[tn−1,tn]
Mt

(
�t
f

))2]
< ∞.

By martingale maximal inequality and the computations in the previous case, we see that

P
φ
μ

[(
sup

t∈[tn−1,tn]
Mt

(
�t
f

))2]
� P

φ
μ

[(
Mtn

(
�
tn
f

))2]� ∫ tn

0

(
γd(s) ∨ 1

)2 ds

φ(s)
.
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It remains to show that∑
n

1

γ 2
d (tn)

∫ tn

0

(
γd(s) ∨ 1

)2 ds

φ(s)
< ∞. (4.12)

Since γd(tn) = qn,
∑

n q−2n < ∞ and
∫ 1

0 (γd(s)∨1)2 ds
φ(s)

< ∞, we can replace 0 in the lower limit of each integral above
by 1. Consider the case d < α. Interchanging the order of summation and integration, we see that

∑
n

1

γ 2
d (tn)

∫ tn

1

(
γd(s) ∨ 1

)2 ds

φ(s)
�
∫ ∞

1

∑
n:qn>s1− d

α

1

q2n

(
γd(s) ∨ 1

)2 ds

φ(s)
�
∫ ∞

1

ds

φ(s)
.

In the second estimate above, we use
∑

n:qn>s1− d
α

1
q2n � 1

γ 2(s)
. It is straightforward to verify that in the case d = α, we

have the same estimate. That is∑
n

1

γ 2
d (tn)

∫ tn

1

(
γd(s) ∨ 1

)2 ds

φ(s)
�
∫ ∞

1

ds

φ(s)
.

The integral on the right-hand side above is finite by our assumption. Hence, (4.12) follows and so does the result. �

4.2. Limit theorems for occupation times

We present the proofs of Proposition 4.1 and Theorem 1.5.

Proof of Proposition 4.1(ii). Without loss of generality, we assume that f is non-negative. The process Yt (f ) is non-
negative and increasing. Hence, the limit limt→∞ Yt (f ) exists. In addition, using Tonelli’s theorem, (2.15) and (4.4), we
have

lim
t→∞P

φ
μYt (f ) = lim

t→∞

∫ t

0
μ(Tsf )ds = 1

(2π)d

∫
Rd

μ(eθ )f̂ (θ)|θ |−α dθ.

Hence, by Fatou’s lemma and the fact that Nd(f ) < ∞,

P
φ
μ lim

t→∞Yt (f ) ≤ lim
t→∞P

φ
μYt (f ) < ∞.

It follows that limt→∞ Yt (f ) is a finite random variable. From Proposition 4.4, the limit limt→∞ Mt (�
t
f ) exists and is a

finite random variable. Together with the relation (2.43), these observations imply Proposition 4.1(ii). �

Proof of Proposition 4.1(i). Without loss of generality, we can assume f ≥ 0. Let q be at least 1 and {tn} = {tn(q)} be
the sequence defined in (4.9).

Step 1. Reduce to subsequence convergence: Suppose that

lim
n

Ytn(q)(f )

γd(tn(q))
= κd(α)

∫
Rd

f (x)dx a.s. (4.13)

for all q > 1. For every t ∈ [tn, tn+1), by monotonicity of Yt (f ), we see that

1

q
lim
n

Ytn(f )

γd(tn)
≤ lim inf

t

Yt (f )

γd(t)
≤ lim sup

t

Yt (f )

γd(t)
≤ q lim

n

Ytn+1(f )

γd(tn+1)
.

By sending q ↓ 1, one has limt→∞ Yt (f )
γd (t)

= κd(α)
∫
Rd f (x)dx. Now, Proposition 4.4 (ii) implies (4.1).

Step 2. Reduce to μ(
∫ tn

0 Tsf ds): From Lemma 2.6 and (4.7), we have

P
φ
μ

∣∣∣∣∫ tn

0
Xs(f )ds − μ

(∫ tn

0
Tsf ds

)∣∣∣∣2 �N 2
d (f )

∫ tn

0
γ 2
d (s)

ds

φ(s)
.
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It follows that

∞∑
n=1

1

γ 2
d (tn)

P
φ
μ

∣∣∣∣∫ tn

0
Xs(f )ds − μ

(∫ tn

0
Tsf ds

)∣∣∣∣2 � ∞∑
n=1

1

q2n

∫ tn

0
γ 2
d (s)

ds

φ(s)
.

The series on the right-hand side above appeared earlier in (4.12). The same reasoning as in the proof of Proposition 4.4
shows that the above series is finite under condition (1.22). Hence, the Borel-Cantelli lemma implies

lim
n

1

γd(tn)

∣∣∣∣∫ tn

0
Xs(f )ds − μ

(∫ tn

0
Tsf ds

)∣∣∣∣= 0.

Step 3. From Lemma 4.3, (4.6) and dominated convergence theorem, we deduce that

lim
n

1

γd(tn)
μ

(∫ tn

0
Tsf ds

)
= κd(α)λd(f ).

Combining previous steps, one has the result. �

Proof of Theorem 1.5. We note that each function in C2
c (Rd) satisfies the hypotheses of Proposition 4.1. Therefore, by an

analogous argument as in the proof of Theorem 1.1 on page 2614, we can easily deduce Theorem 1.5 from Proposition 4.1.
We omit the details. �
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