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Abstract: In existing models with an unknown link function, the issue of predictors containing both
multiple functional data and multiple scalar data has not been studied. To fill this gap, we propose
a generalized partially functional linear model, which not only models the relationship between
multiple scalar and functional predictors and responses, but also automatically estimates the link
function. Specifically, we use the functional principal component analysis method to reduce the
dimensionality of functional predictors, estimate the regression coefficients using the maximum
likelihood estimation method, estimate the link function using the method of local linear regression,
iteratively obtain the final estimator, and establish the asymptotic normality of the estimator. The
asymptotic normality is illustrated through simulation experiments. Finally, the proposed model is
applied to study the influence of environmental, economic, and medical levels on life expectancy
in China. In the study, functional predictors are the daily air quality index, temperature, and
humidity of 58 cities in 2020, and scalar predictors are GDP and the number of beds in hospitals. The
experimental results indicate that the unknown link function model has a smaller prediction error
and better performance than both the model with the known link function and the model without a
link function.

Keywords: functional data analysis; unknown link function; generalized functional linear model
average life expectancy

MSC: 00A71

1. Introduction

In 1982, Ramsay [1] first proposed the definition of functional data, laying a foundation
for the development of functional data analysis. In 2005, Ramsay and Silverman provided
a detailed introduction to the general methods and steps of functional data analysis,
including functional principal component analysis and functional linear regression models
in their book [2]. In 2012, Horváth and Kokoszka [3] focused on the inferential methods in
functional data analysis.

In 2009, Shin [4] proposed a partial functional linear model (PFLM), which explores
the relationship between a scalar response variable and mixed-type predictors. In 2012,
Shin and Lee [5] derived the asymptotic prediction rate of PFLM and compared it with that
of other functional regression models.

In 2002, James [6] proposed generalized linear models with functional predictors and
applied them to standard missing data problems. In 2005, Müller and Stadtmüller [7]
proposed a generalized functional linear regression model where the response variable is a
scalar and the predictor is a random function. They also considered the situation where
the link and variance functions were unknown. In 2015, Shang and Cheng [8] proposed
a roughness regularization approach in making nonparametric inference for generalized
functional linear models with known link functions. In 2019, Wong et al. [9] investigated
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a class of partially linear functional additive models that predict a scalar response by
both the parametric effects of a multivariate predictor and the non-parametric effects of a
multivariate functional predictor.

In a generalized linear model, sometimes the link function may not be known exactly,
but can be assumed to be of some general ‘parametric’ form. In 1984, Scallan et al. [10] showed
how generalized linear models can be extended to fit models with such link functions.

In 1994, Weisberg and Welsh [11] used kernel smoothing estimation to estimate the link
function and estimated regression coefficients through the link function, then alternated
between these two steps, which effectively solves the fitting problem when the link function
is unknown. However, kernel smoothing estimation may have problems at the boundary,
so local polynomial fitting is introduced, which performs better near the boundary.

In 1998, Chiou and Müller [12] considered the condition of the link and the variance
functions to be unknown but smooth. Consistency results for the link and the variance
function estimators, as well as the sampling distribution of the regression coefficients, were
obtained. In 2005, Chiou and Müller [13] introduced a flexible marginal modeling approach
for statistical inference for clustered and longitudinal data under minimal assumptions.
The predictor was longitudinal data in the model. The estimated estimating equation
approach was semi-parametric. The semi-parametric model proposed was fitted by quasi-
likelihood regression. The consistency of the estimates of the link and variance functions
and the asymptotic limit distribution of regression coefficients were given. In addition,
there are other methods to estimate unknown functions. In 2009, Bai et al. [14] focused
on single-index models for longitudinal data. They proposed a procedure to estimate
the single-index component and the unknown link function based on the combination
of the penalized splines and quadratic inference functions. In 2012, Pang and Xue [15]
generalized the single-index models to the scenarios with random effects. The link function
was estimated by using the local linear smoother. A new set of estimating equations
modified for the boundary effects was proposed to estimate the index coefficients. In 2017,
Yuan and Diao [16] developed a sieve maximum likelihood estimation for generalized
linear models, in which the estimator of the unknown link function was assumed to lie in a
sieve space. Various methods of sieves including the B-spline and P-spline-based methods
were introduced.

In 2017, Kokoszka and Reimherr [17] wrote a book that introduced the basic concepts,
methods, and applications of functional data analysis. The book provided a clear and
systematic overview, covering key areas such as representation, smoothing, interpolation,
statistical modeling, and inference for functional data. It also included detailed explana-
tions of practical examples and computational methods. In 2023, Rao and Reimherr [18]
introduced a novel neural network-based nonlinear model of functional data designed to
exploit the structure of functional data and fit it with a derived function gradient optimiza-
tion algorithm, demonstrating the effectiveness of these methods in dealing with complex
functional models and providing new breakthroughs for deep learning applications in the
field of functional data analysis.

The relationship between environmental factors and human health has been a topic
of significant research interest in recent years. In 2012, Huang et al. [19] explored the
relationship between temperature and years of life lost (YLL). The study found that both
high and low temperatures lead to an increase in YLL, with high temperatures having a
greater impact. In 2020, Yang et al. [20] applied a generalized additive model to assess
the associations between daily PM2.5 exposure and YLL due to respiratory diseases in
96 Chinese cities during 2013–2016. They further estimated the avoidable YLL and potential
gains in life expectancy under the assumption that daily PM2.5 level met World Health Or-
ganization standards. In 2021, Deryugina and Molitor [21] explored the factors influencing
life expectancy across the United States. The study found that individuals living in areas
with severe air pollution, poor water quality, and inadequate healthcare facilities generally
had shorter life expectancy and poorer health conditions.
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In summary, the existing models with unknown link functions have not addressed the
issue of the generalized partially functional regression model, which involves regressing
the response variable on multiple functional and scalar predictors. To fill this gap, this study
proposes a generalized partially functional linear model with an unknown link function.
The proposed model avoids the problem of decreased model accuracy caused by selecting
an incorrect link function. The predictors in the proposed model include both multiple
functional data and multiple scalar data. It reveals the complex relationships between
variables and provides a flexible and effective modeling approach. It can achieve better
prediction and explanation.

The paper is organized as follows. All the published works and definitions that are
referred to in the process of theorem proving are introduced in Section 2. The abbreviations
used in the article are introduced in the Section 3.1. The generalized partial functional
linear model with unknown link function is proposed in Section 3.2. The estimation of
the regression coefficients and the link function is discussed in Section 3.3. In Section 4,
asymptotic normality of estimators are derived. Simulation results are reported in Section 5.
The average life expectancy study in 58 cities in China is given in Section 6. In Section 7,
a brief summary and limitations of the research are provided. Possible applications and
future directions are presented in Section 7.

2. Preliminaries

In this section, we provide an overview of the published works and definitions that
are relevant to our research. These preliminary concepts and references lay the foundation
for a better understanding of the subsequent discussion.

(1) In 1982, Mack and Silverman [22] provided a comprehensive analysis of the weak
and strong uniform consistency properties of kernel regression estimates, highlighted their
theoretical properties and practical significance in non-parametric regression modeling.
In this paper, we directly apply the results of Proposition 4 as Lemma 1 for Theorem 1 in
this paper.

(2) In 1995, Masry and Tjøstheim [23] discussed the estimation and identification
of nonlinear time series of ARCH type. They provided an estimation method to obtain
consistent estimates of the parameters and proved the asymptotic normality. They also
explored model identification methods. Their studies are of significant importance for
modeling and analyzing financial time series. Theorem 3.3 in their work is used to prove
Theorem 1 in this paper.

(3) In 1999, Chiou and Müller [24] focused on the study of non-parametric quasi-
likelihood methods. They provided the theoretical derivation process of this method, and
explored its applications in statistical inference. Theorem 4.1 in their paper is used to prove
Lemma 2 and Lemma 3 for Theorem 2 in this paper.

(4) In 2021, Xiao et al. [25] proposed a generalized partially functional linear regression
model where the response variable is 0 or 1 and the predictors were multiple functional
and scalar, and the asymptotic property of the estimated coefficients in the model was
established. The proof method of Theorem 1 in [25] is used to prove Theorem 2 in this work.

3. Model and Estimation

The data we observe for the i-th subject are {Yi, Xi1(t), Xi2(t), · · · , Xid(t), Zi},
i = 1, . . . , n. We assume that these data are independent, identically distributed (i.i.d) copies
of {Y, X1(t), · · · , Xd(t), Z}. For j = 1, · · · , d, the functional predictor Xj(t) is a random
curve. Xij(t), i = 1, 2, · · · , n are samples of Xj(t) and Xij(t) are square integrable on a real
bounded interval T, i.e., Xij(t) ∈ L2(T). L2(T) refers to the space of square integrable
functions defined on T. And the scalar predictor vector Z = (Z1, Z2, . . . , Zq)T is a q dimen-
sional random vector. The response Y is a real-valued random variable that may be binary
or count.
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3.1. Abbreviation Introduction

Table 1 is a list of the abbreviations we use in this work along with their corresponding
full forms:

Table 1. The abbreviations and their corresponding full forms.

Abbreviation Full Form

FPCA Functional principal component analysis
KL expansion Karhunen–Loeve expansion

RMISE Root Mean Integrated Square Error
SD Standard Deviation

GCV Generalized Cross Validation
MAE Mean Absolute Error
MSE Mean Squared Error
TP True Positive
TN True Negative
FP False Positive
FN False Negative

3.2. Model

We establish a model for the relationship between the response variable Yi and the
predictors Xij(t), j = 1, 2, · · · , d and Zi:

Yi = g(
d

∑
j=1

∫
T

Xij(t)β j(t)dt + Zi
Tγ) + εi, (1)

where β j(·) is the regression coefficient function that needs to be estimated for the functional
predictors Xij(t); γ is a q dimensional vector with the elements to be the regression coefficients
for the scalar predictors Zi that need to be estimated, i.e., γ = (γ1, γ2, . . . , γq)T. Here εi is i.i.d
copies of ε, which is the random error variable and ε = Y− g(η), E[ε

∣∣Xj(t), Z ] = 0, where

η =
d

∑
j=1

∫
T

Xj(t)β j(t)dt + ZTγ.

The relationship between the response variable Y and η is established through g(·), i.e.,
E[Y|Xj(T), Z] = µ = g(η). g(·) is the link function that is unknown and needs to be
estimated in this paper.

Let σ2(·) be a variance function that satisfies σ2(·) ≥ c > 0 for a constant c > 0,
such that

Var[Y|Xj(t), Z] = σ2(µ) = σ2(g(η)),

Var[ε] = E[ε2] = σ2(E[Y|Xj(t), Z]).

To reduce the dimensionality of the functional predictors Xij(t), we adopt the method
of FPCA in this paper. First, we need to standardize the original data by centering them, so
that E[Xij(t)] = 0, j = 1, · · · , d, and E[Zl ] = 0, l = 1, · · · , q.

By KL expansion and Mercer’s theorem, Xij(t) can be expanded as

Xij(t) =
∞

∑
k=1

ξijkρjk(t), (2)

where ξijk represents the functional principal component scores, and ρjk(·) are called
functional principal components, which are the eigenfunctions of the covariance operator
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of Xij(t). Notice that ρjk(·), k = 1, 2, · · · form an orthonormal basis for the function space
L2(T). Then regression coefficient function β j(t) ∈ L2(T) can be expanded as

β j(t) =
∞

∑
k=1

χjkρjk(t). (3)

where χjk represents the functional principal component scores.
After plugging the above two expansions into (1), we have

Yi = g

(
d

∑
j=1

mj

∑
k=1

ξijkχjk + Zi
Tγ

)
+ εi. (4)

In (4), we truncated the predictors at mj (depending on sample size n), and mj increases
asymptotically with n→ ∞.

3.3. Estimation

Define a parameter vector θ0, where

θ0 = (χ11, χ12, · · · , χ1m1 , · · · , χd1, χd2, · · · , χdmd
, γ1, · · · , γq)

T .

For the estimation of the parameter vector θ and the link function g, we use an iterative
estimation method to obtain the final estimates. Let there exist a constant c > 0; with this
c and n, we can define θn = {θ : ‖θ − θ0‖ ≤ cn−1/2}. The norm of finite dimensional
spaces used in this paper is the Euclidean norm. The overall iterative process is briefly
described below:

Step 1 To obtain the estimate θ(0) of θ0 by solving Equation (5), it is assumed that
the link function g(·) is known. The link function g(·) is required to be second-order
continuously differentiable to ensure the existence of the Hessian matrix, moreover, for the
variance function σ2(·) is defined on the range of link function and is strictly positive.

U(θ) =
n

∑
i=1

(Yi − µi)
g′(ηi)

σ2(µi)
∆i = 0, (5)

where ηi =
d
∑

j=1

mj

∑
k=1

ξijkχ̃jk + Ziγ̃, χ̃ near χ, γ̃ near γ, µi = g(ηi) and

∆i = (ξi11, ξi12, · · · , ξi1m1 , · · · , ξid1, ξid2, · · · , ξidmd
, zi1, · · · , ziq)

T .

Here, χ̃ and γ̃ represent the corresponding estimated value in step 1 but not the final estimate.
We introduce the following matrix:

D0 = Dn,q = (zil)1≤i≤n,1≤l≤q,

Dj = Dn,mj =
(

ξijk

)
1≤i≤n,1≤j≤d,1≤k≤mj

,

D = Dn,q+∑d
j=1 mj

= (D0, D1, . . . , Dd),

V = diag
(

σ2(µ1), σ2(µ2), . . . , σ2(µn)
)

,

G = diag
(

g′(ηi)
)

1≤i≤n,

Y = (Y1, Y2, . . . , Yn)
T ,

µ = (µ1, µ2, . . . , µn)
T .
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Then, Equation (5) can be expressed in matrix form, i.e.

DTV−1G(Y− µ) = 0.

We can solve it by the weighted least squares method. A Taylor expansion of g−1(Y),
where

g−1(Y) = g−1(µ) +
[

g−1(µ)
]′
(Y− µ)

= η + G−1(Y− µ),

and then we can get
DTW

(
g−1(Y)− η

)
= 0,

where W = V−1G2. Simplification yields estimates

χ̃
(0)
j = (DT

j WDj)
−1DT

j Wg−1(Y),

γ̃
(0)
j = (DT

0 WD0)
−1DT

0 Wg−1(Y),

where χ̃
(0)
j = (χ̃

(0)
j1 , · · · , χ̃

(0)
jm )T , j = 1, 2, · · · , d, γ̃(0) = (γ̃

(0)
1 , γ̃

(0)
2 , · · · , γ̃

(0)
q )T .

Let

θ̃(0) = (χ̃
(0)
11 , χ̃

(0)
12 , · · · , χ̃

(0)
1m1

, · · · , χ̃
(0)
d1 , χ̃

(0)
d2 , · · · , χ̃

(0)
dmd

, γ̃
(0)
1 , γ̃

(0)
2 , · · · , γ̃

(0)
q )T .

Step 2 By local linear regression, the estimates g(0), g′(0) of the link functions g, g′

are obtained.
Let the bandwidth b = bn of the kernel function k(·) converge to zero and define

kb(·) = b−1k(·
/

b). Since the convergence rates of g(·) and g′(·) are different, their
bandwidth choices should also be different. Let h0 = h0n denote the bandwidth of
g(·), and h1 = h1n denote the bandwidth of g′(·), but in this paper, for simplicity, the
bandwidth h = h0 = h1 is chosen. Let the distributions of both the functional predic-
tors Xj(t) and the scalar predictors Z belong to a compact support set U, and we have
Ω = {u = ηi

∣∣Xj(t), Z ∈ U }. To simplify the expression, we let g = g(u; θ), g′ = g′(u; θ).
For a fixed θ, apply the method of local linear regression to obtain an initial estimate of g̃(0)

and g̃′(0) for g and g′, respectively. We minimize the weighted sum of squares at any point
u, and the formula for calculating the weighted sum of squares is

n

∑
i=1

[Yi − g− g′(ηi − u)]2kh(ηi − u). (6)

Through minimizing (6), we can obtain g̃(0) and g̃′(0), and they can be represented as

g̃(0) =
n
∑

i=1
ωi(u; θ)Yi, g̃′(0) =

n
∑

i=1
ω̃i(u; θ)Yi, where

ωi(u; θ) =
kh(ηi − u)[ϕn,2(u; θ, h)− (ηi − u)ϕn,1(u; θ, h)]

ϕn,0(u; θ, h)ϕn,2(u; θ, h)− ϕ2
n,1(u; θ, h)

,

ω̃i(u; θ) =
kh(ηi − u)[(ηi − u)ϕn,0(u; θ, h)− ϕn,1(u; θ, h)]

ϕn,0(u; θ, h)ϕn,2(u; θ, h)− ϕ2
n,1(u; θ, h)

,

ϕn,l(u; θ, h) =
1
n

n

∑
i=1

(
ηi − u

h

)l
kh(ηi − u), l = 0, 1, 2.
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Step 3 Using the method of Step 1, the link function is replaced by the estimated link
functions g̃(α) and g̃′(α), where α = 0, 1, 2, . . .. To update θ̃(α), solve the estimation equation
(5) for θ. From this we can obtain the estimated value of θ̃(α)

θ̃(α) = (χ̃
(α)
11 , χ̃

(α)
12 , · · · , χ̃

(α)
1m1

, · · · , χ̃
(α)
d1 , χ̃

(α)
d2 , · · · , χ̃

(α)
dmd

, γ̃
(α)
1 , γ̃

(α)
2 , · · · , γ̃

(α)
q )T .

Step 4 Using the method in Step 2, the parameter vector is replaced by the estimated
θ̃(α) = (χ̃

(α)
j1 , χ̃

(α)
j2 , · · · , χ̃

(α)
jm , γ̃

(α)
1 , γ̃

(α)
2 , · · · , γ̃

(α)
q )T , where α = 1, 2, 3, . . . From this we obtain

the estimates g̃(α) and g̃′(α) for g and g′, where α = 1, 2, 3, . . .
Step 5 Repeat the above steps until

∣∣∣θ̃(α+1) − θ̃(α)
∣∣∣ converge, and stop the iteration.

Step 6 The final estimate of the regression coefficient θ is obtained as θ̂, and the
estimate of the link function g is obtained as ĝ.

4. Asymptotic Properties

To derive the asymptotics of the estimates of the link function ĝ and the regression
coefficients θ̂, some additional assumptions are required:

(C1) There exists b = max(4, c) for a constant c > 0, such that E[
∫

T

∥∥Xj(t)
∥∥bdt] < ∞,

j = 1, . . . , d, E[‖Z‖b] < ∞, E[ε] < ∞.
(C2) Let the density function f (·) of ηi be strictly positive, and f (·) satisfies the first-order

Lipschitz condition when θ → θ0.
(C3) The kernel function k(·) satisfies the first-order Lipschitz condition and is a bounded

and continuous symmetric probability density function and satisfies
∫ ∞
−∞ u2k(u)du 6= 0,∫ ∞

−∞ |u|
2k(u)du < ∞.

(C4) nh4/ log2 n→ ∞, nh5 = O(1). Here, h is the bandwidth of the kernel function.
(C5) For j = 1, . . . , d, mjn−1/4 → 0 as n→ ∞.

Remark 1. (C1) It is a necessary condition for the asymptotic normality of the estimator. (C2)
Ensures that g̃(α), g̃′(α) are far from 0 when θ̃(α) is close enough to θ. (C3) The usual assumptions
about the kernel function. (C4) The usual assumptions about the bandwidth. (C5) Some controls are
applied to m in order to make the convergence faster.

4.1. Asymptotic Convergence of g(α)

Lemma 1. Let (ζ1, ι1), . . . , (ζn, ιn) be independent and identically distributed random vectors. Fur-
thermore, assume that for any s > 0, there exist E|ιi|s < ∞, i = 1, . . . , n and sup

ζ

∫
|ι|s f (ζ, ι)dι < ∞

such that f (·, ·) is the joint density function of (ζ, ι). Let k(·) be a bounded and strictly positive kernel
function that satisfies the Lipschitz condition, we have

sup
ζ

∣∣∣∣∣ 1n n

∑
i=1

[kh(ζi − ζ)ιi − E[kh(ζi − ζ)ιi]]

∣∣∣∣∣ = Op

( log
(
1
/

h
)

nh

) 1
2
.

Proof. See Proposition 4 in Mack and Silverman (1982) [22].

Theorem 1. If we assume that (C1)–(C5) holds, for σ2 > 0, then we have

√
nh[g̃(α)(u; θ)− g(u)− I(u)] D−→ N(0, ϑ2(u))

where I(u) = 1
2 h2µ2g′′(u), ϑ2(u) = ν2σ2

/
∑d

j=1 f j(u), and for the kernel function, let

µl =
∫

ulk(u)du, νl =
∫

kl(u)du, l = 1, 2.
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Proof. (
g̃(α)(u; θ0), hg̃′(α)(u; θ0)

)T
= Γ−1

n (u; θ0)Φn(u; θ0), (7)

where

Γn(u; θ0) =

(
ϕn,0(u; θ0) ϕn,1(u; θ0)
ϕn,1(u; θ0) ϕn,2(u; θ0)

)
,

Φn(u; θ0) = (φn,0(u; θ0), φn,1(u; θ0))
T ,

ϕn,l(u; θ0) =
1
n

n

∑
i=1

(
ηi0 − u

h

)l
kh(ηi0 − u), l = 0, 1, 2,

φn,l(u; θ0) =
1
n

n

∑
i=1

Yi

(
ηi0 − u

h

)l
kh(ηi0 − u), l = 0, 1,

ηi0 =
d

∑
j=1

mj

∑
k=1

ξijkχjk + Zi
Tγ.

By expanding ϕn,l(u; θ), l = 0, 1, 2, 3, we obtain that

E[ϕn,l(u; θ)] = E

[
1
n

n

∑
i=1

(
ηi − u

h

)l
kh(ηi − u)

]

=
d

∑
j=1

f j(u)µl + O(h).

(8)

From Lemma 1, it can be proved that for l = 0, 1, 2, 3

ϕn,l(u; θ)− E[ϕn,l(u; θ)] = Op

( log
(
1
/

h
)

nh

) 1
2
. (9)

Taking (8) into (9), we can obtain that

ϕn,l(u; θ) =
d

∑
j=1

f j(u)µl + Op

( log
(
1
/

h
)

nh

) 1
2

+ h

.

Then

Γn(u; θ) = Γ(u) + Op

( log
(
1
/

h
)

nh

) 1
2

+ h

,

where Γ(u) =
d
∑

j=1
f j(u)⊗ diag(1, µ2), ⊗ indicates the Kronecker product.

Inverting the matrix Γn(u; θ), we get

Γ−1
n (u; θ) = Γ−1(u) + Op

( log
(
1
/

h
)

nh

) 1
2

+ h

.

Let

φ∗n,l(u; θ) =
1
n

n

∑
i=1

[Yi − g(ηi)]

(
ηi − u

h

)l
kh(ηi − u), (10)

where l = 0, 1, and
Φ∗n ≡ Φ∗n(u; θ) =

(
φ∗n,0(u; θ), φ∗n,1(u; θ)

)T .
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By expanding φ∗n,l(u; θ), we obtain when l = 0, 1, 2,

E
[
φ∗n,l(u; θ)

]
= E

[
1
n

n

∑
i=1

[Yi − g(ηi)]

(
ηi − u

h

)l
kh(ηi − u)

]
= O

(
n−

1
2

)
.

(11)

From Lemma 1, combined with (10) and (11), we can prove that

φ∗n,l(u; θ) = Op

( log
(
1
/

h
)

nh

) 1
2

+ n−1/2

.

The Taylor expansion of g(ηi) at u is

Φn −Φ∗n = Γn

(
g(u)

hg′(u)

)
+

1
2

h2
(

ϕn,2g′′(u)
ϕn,3g′′(u)

)
+ op(h2), (12)

where Γn = Γn(u; θ), ϕn,l = ϕn,l(u; θ), l = 2, 3.
Combining (7) and (12), we can obtain(

g̃(α) − g
h[g̃′(α) − g′]

)
= Γ−1

n Φ∗n +
1
2

Γ−1
n h2

(
ϕn,2g′′(u)
ϕn,3g′′(u)

)
+ op

(
h2
)

= Γ−1(u)Φ∗n +
1
2

h2

(
µ2g′′(u)
µ3
µ2

g′′(u)

)
+ op

(
h2 + n−1/2

)
,

where

g̃(α) − g = [
d

∑
j=1

f j(u)]−1φ∗n,0(u; θ) +
1
2

h2µ2g′′(u) + op(h2 + n−1/2). (13)

Since ‖θ − θ0‖ = O(n−1/2), (10) can be transformed into

φ∗n,0(u; θ) =
1
n

n

∑
i=1

[Yi − g(ηi0)]kh(ηi0 − u) + Op(n−1/2).

Taking it into (13) and combining it with Theorem 3.3 in Masry and Tjøstheim
(1995) [23], finally, Theorem 1 can be proved.

Corollary 1. If we further refine the condition in assumption (C4) such that nh5 → 0, then it
follows that √

nh[g̃(α)(u; θ)− g(u)] D−→ N(0, ϑ2(u)).

4.2. Asymptotic Convergence of θ̂

First, we need to provide some more specific explanations for the estimation iteration
process mentioned in “Estimation”, which makes some preparation for Theorem 2.

(1) solving U(θ) by Equation (5) given the assumption that the link function is known.
Assume Qθ0 = − ∂U(θ0)

∂µ
∂µ

∂θT
0

, then it follows that

Qθ0 =
n

∑
i=1

g′(ηi0)
2

σ2(µi0)
∆i∆T

i +
n

∑
i=1

(Yi − µi0)

[
g′(ηi0)[σ

2(µi0)]
′

[σ2(µi0)]
2 − g′′(ηi0)

σ2(µi0)

]
∆i∆T

i .
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Let θ̄ ∈ θn, where

θ̄ = (χ̄j1, χ̄j2, · · · , χ̄jpj , γ̄1, · · · , γ̄q)
T , j = 1, 2, · · · , d,

and satisfies η̄i =
d
∑

j=1

mj

∑
k=1

ξijkχ̄jk + Ziγ̄, µ̄i = g(η̄i). Similarly, we can obtain

Qθ̄ =
n

∑
i=1

g′(η̄i)
2

σ2(µ̄i)
∆i∆T

i +
n

∑
i=1

(Yi − µ̄i)

[
g′(η̄i)[σ

2(µ̄i)]
′

[σ2(µ̄i)]
2 − g′′(η̄i)

σ2(µ̄i)

]
∆i∆T

i .

(2) Solving U∗(θ) given the link function is unknown by

U∗(θ0) =
n

∑
i=1

(Yi − µ̃i0)
g̃′(α)(ηi0)

σ2(µ̃i0)
∆i = 0,

where µ̃i0 = g̃(α)(ηi0). Similarly, we can obtain

Q∗θ̄ =
n

∑
i=1

g̃′(α)(η̄i)
2

σ2(µ̄∗i )
∆i∆T

i +
n

∑
i=1

(yi − µ̄∗i )

[
g̃′(α)(η̄i)[σ

2(µ̄∗i )]
′

[σ2(µ̄∗i )]
2 − g̃′′(α)(η̄i)

σ2(µ̄∗i )

]
∆i∆T

i ,

where µ̄∗i = g(α)(η̄i).

Lemma 2. If the assumptions (C1)–(C5) hold, we have

sup
θ̄∈θn

1
n
∣∣Q∗θ̄ −Qθ̄

∣∣ = Op(1).

Proof. Let Mi = 1
σ2(µ̄∗i )

− 1
σ2(µ̄i)

, Ni =
[σ2(µ̄∗i )]

′

[σ2(µ̄∗i )]
2 −

[σ2(µ̄i)]
′

[σ2(µ̄i)]
2 , By Theorem 4.1 of Chiou and

Müller [24], we know that max
16i6n

|Mi| = op(1) and max
16i6n

|Ni| = op(1), then

1
n
∣∣Q∗θ̄ −Qθ̄

∣∣ = A + B + C, (14)

where A, B, and C can be expressed as

A =
1
n

n

∑
i=1

[
g̃′(α)(η̄i)

2

σ2(µ̄∗i )
− g′(η̄i)

2

σ2(µ̄i)

]
∆i∆T

i 6
1
n

max
16i6n

|Mi|,

B =
1
n

n

∑
i=1

(yi − µ̄i)

[
g̃′(α)(η̄i)

[
σ2(µ̄∗i )]′[

σ2
(
µ̄∗i
)]2 −

g′(η̄i)
[
σ2(µ̄i)

]′
[σ2(µ̄i)]

2

−
(

g̃′′(α)(η̄i)

σ2
(
µ̄∗i
) − g′′(η̄i)

σ2(µ̄i)

)]
∆i∆T

i

≤ 1
n

n

∑
i=1

(yi − µ̄i)

(
max

1≤i≤n
|Ni|+ max

1≤i≤n
|Mi|

)
,

C =
1
n

n

∑
i=1

(µ̄∗i − µ̄i)

[
g̃′(α)(η̄i)

[
σ2(µ̄∗i )]′[

σ2
(
µ̄∗i
)]2 − g̃′′(α)(η̄i)

σ2
(
µ̄∗i
) ]∆i∆T

i

= op(1).

Then. by (14) we can get
1
n
∣∣Q∗θ̄ −Qθ̄

∣∣ = op(1).
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Lemma 3. If the assumptions (C1)–(C5) hold, we have

(
1√
n
)|U∗(θ0)−U(θ0)| = op(1).

Proof. Combining Theorem 1 and max
16i6n

|Mi| = op(1) in Lemma 2, we can prove that

1√
n
(U∗(θ0)−U(θ0)) =

1√
n

[
(Yi − µi0)g′(ηi0)

(
1

σ2(µ̃i0)
− 1

σ2(µi0)

)
+

(Yi − µi0)

σ2(µ̃i0)
(g′(ηi0)− g̃′(α)(ηi0))+

g̃′(α)(ηi0)

σ2(µ̃i0)
(µ̃i0 − µi0)

]
∆i

=op(1).

Theorem 2. If we assume that (C1)–(C5) hold, we have

nd2
G
(

β̂1, β1
)
−m1√

2m1
...

nd2
G
(

β̂d, βd
)
−md√

2md√
no1(γ1 − γ̂1)

...
√

noq
(
γq − γ̂q

)



d−→ N(0, I),

In the case of truncated models for mj, let χ̂j be the estimator of χj = (χj1, χj2, · · · , χjmj)
T ,

Λ̃j =
(

λj,k1k2

)
, 1 ≤ k1, k2 ≤ mj, where λj,k1k2 = E

[
g′(η)2

σ2(µ)
ξ jk1 ξ jk2

]
. We define χ̄j = (χj(mj+1),

χj(mj+2), . . .)T . Therefore, we have the following expression:

d2
G(β̂ j, β j) = (χ̂j − χj)

TΛ̃j(χ̂j − χj) +
∞

∑
k1,k2=mj

λj,k1k2 χ̄2
j , j = 1, . . . , d.

Furthermore, let ol = E
[

g′(η)2

σ2(µ)
z2

il

]
, where l = 1, · · · , q. Here, I represents a (q +

d
∑

j=1
mj)× (q +

d
∑

j=1
mj) dimensional identity matrix.

Proof. By using the Taylor expansion with a suitable mean value θ̄, we can obtain

U∗(θ̂) = U∗(θ0)−Q∗θ̄ (θ̂ − θ0) = 0. (15)

Then, by Lemmas 2 and 3, (15) can be deformed as

U∗(θ̂) = U(θ0)−Qθ̄(θ̂ − θ0) + op(
√

n) = 0.

Then, we can get

θ̂ − θ0 = Q−1
θ̄

U(θ0) + op(
1√
n
).
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By combining the above equation with

U(θ̃(α)) = U(θ0)−Qθ̄(θ̃
(α) − θ0) = 0,

we can get √
n(θ̂ − θ0) =

√
n(θ̃(α) − θ0) + op(1). (16)

By (16), it can be seen that it transforms the relationship between θ̂ and θ0 in the case of
unknown link functions into the relationship between θ̃(α) and θ0 in the case of known
link functions, and then combined with Theorem 1 in [25], the proof of Theorem 2 can be
obtained.

4.3. Asymptotic Convergence of ĝ

Theorem 3. If we assume that (C1)-(C5) hold, for σ2 > 0, then we have

√
nh[ĝ(u; θ̂)− g(u)− I(u)] D−→ N(0, ϑ2(u)).

Proof.
√

nh[ĝ(u; θ̂)− g(u)− I(u)] =
√

nh
[

ĝ(u; θ̂)− ĝ(u; θ) + g̃(α)(u; θ)

− g(u)− I(u)]

≤
√

nh
[
ĝ′(u; θ)

∣∣θ̂ − θ
∣∣]

+
√

nh
[

g̃(α)(u; θ)− g(u)− I(u)
]

=
√

nh
[

g̃(α)(u; θ)− g(u)− I(u)
]
+ op(1).

The above expression transforms the relationship between ĝ and g into the relationship
between g̃(α) and g (i.e., Theorem 1). Therefore, by Theorem 1, we can get Theorem 3.

Corollary 2. If we further refine the condition in assumption (C4) such that nh5 → 0, then it
follows that √

nh[ĝ(u; θ̂)− g(u)] D−→ N(0, ϑ2(u)).

Remark 2. Let (e1, λ1), (e2, λ2), . . . , (emj , λmj) represent the eigenvalues and eigenvectors of
Ω, where

ek = (ej1, · · · , ejmj), wk(t) =
d

∑
j=1

ρjk(t)ejk, k = 1, 2, . . . , mj,

Ω =
1
n

E

(
ĝ′(η̂i)

2

σ2(µ̂i)
DT

j Dj

)
, i = 1, . . . , n, j = 1, . . . , d.

Then, the 95% confidence band for the regression coefficient function β̂ j(t) can be expressed as

β̂ j(t)±

√
r(α)∑

mj
k=1

wk(t)
2

ek
,

where r(α) = [mj +
√

2mjΦ(1− α)], α = 0.05, Φ(1− α) = 1.96.

5. Simulation

We consider a binary response and two functional predictors as well as three scalar
predictors. The functional predictors Xi1(t) and Xi2(t) (i = 1, . . . , n) are observed at
50 equal distant time points on the interval [0, 1].
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The sample sizes are n = 50, 100, 300. Let the score coefficients ξijk for each functional
predictor satisfy the following assumptions:

ξi1k ∼ N(0, λ1k), k = 1, 2, 3, 4,

where λ11 = 1, λ12 =
√

2
/

2, λ13 = 1/2, λ14 =
√

2
/

4.

ξi2k ∼ N(0, λ2k), k = 1, 2, 3,

where λ21 = 1, λ22 =
√

2
/

2, λ23 = 1/2.
We define the orthonormal basis functions ρ1k(t) and ρ2k(t),t ∈ [0, 1], which satisfy

ρ1k(t) =
√

2sin(2kπt), k = 1, 2, 3, 4,

ρ2k(t) =
√

2cos(2kπt), k = 1, 2, 3.

Then, Xij(t) can be represented through Karhunen–Loeve expansion as follows:

Xi1(t) =
4

∑
k=1

ξi1kρ1k(t),

Xi2(t) =
3

∑
k=1

ξi2kρ2k(t).

Figure 1 shows the 50 trajectories of the two functional predictors X1(t) and X2(t).

Figure 1. The predictors X1(t) and X2(t).

The scalar predictor Z = (Z1, Z2, Z3)
T satisfies the following assumption

Z1 ∼ N(0, 1), Z2 ∼ N(0,

√
3

3
), Z3 ∼ N(0,

√
5

5
).

We assume that the regression coefficient functions of the functional predictors satisfy the
following assumption

β1(t) =
4

∑
k=1

χ1kρ1k(t),

β2(t) =
3

∑
k=1

χ2kρ2k(t),
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where χ1k =
√

1
3k , k = 1, 2, 3, 4 and χ2k =

√
1
3k , k = 1, 2, 3. Moreover, we assume that

the regression coefficients γ = (γ1, γ2, γ3)
T of the scalar predictors satisfy γ1 =

√
2
/

2,

γ2 =
√

3
/

3, γ3 = 1/2.
Define

P(X, Z) = g(
2

∑
j=1

∫
T

Xj(t)β j(t) + ZTγ).

And we select the link function as

g(x) =
exp(x)

1 + exp(x)
.

We generate binary response

Y(X, Z) ∼ Binomial(P(X, Z), 1)

as pseudo random sequence.
We obtain a sample

(Yi, Xi1(t), Xi2(t), Zi), i = 1, . . . , n,

where n is the sample size. The number of functional principal components that explain
85% of cumulative variation contribution are m1 = 3, 3, 4, m2 = 2, 3, 3, respectively. We run
100 simulations.

Figure 2 shows the asymptotic behavior of the link function under different sample
sizes. The black lines in Figure 2 shows the relationship between η and µ, where

η =
2

∑
j=1

∫
T

Xj(t)β j(t)dt + ZTγ, µ = g(η) =
exp(η)

1 + exp(η)
∈ [0, 1].

The additional colored lines shown in Figure 2 represent the estimated link function ĝ
for different sample sizes. These lines are obtained through iterative processes, starting
with an initial value of g set to g(η) = η. The iterative process continues until one of
the following conditions is met: 100 iterations have been performed, or the error in the
regression coefficients is less than 0.01. The purpose of these lines is to illustrate the
relationship between η̂ and µ̂, where

η̂ =
2

∑
j=1

∫
T

Xj(t)β̂ j(t)dt + ZTγ̂, µ̂ = ĝ(η̂) ∈ [0, 1].

Since in this case, both η̂ and η are in [−2, 2], we denote the argument of g and ĝ by η, and
the x-axis in Figure 2 is denoted by η and is shown in the interval [0, 1]. Table 2 presents
the estimates of ĝ evaluated through RMISE under different sample sizes. The RMISE is
defined as follows:

RMISE =

√
1
Q

∫ 2

−2
(ĝ(η)− g(η))2dη,

where Q = 100 is the number of simulations here. In summary, Figure 2 and Table 2
demonstrate that as the sample size increases, the estimated link function ĝ becomes closer
and closer to the true link function g.
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Figure 2. Asymptotic properties of the link function g. The black line in the graph represents the true
link function g = exp(η)/(1 + exp(η)). The purple, yellow, and red lines in the graph represent the
estimated link functions ĝ under sample sizes of n = 50, n = 100, and n = 300, respectively.

Table 2. RMISE of g and ĝ for different sample size n.

n RMISE

50 0.3540
100 0.2734
300 0.1449

In Table 3, it can be seen that both the SD and RMISE of the estimated regression
coefficient functions β̂1(t) and β̂2(t) decrease as the sample size n increases.

Table 3. SD and RMISE of the estimated values of β̂1(t) and β̂2(t) for different sample sizes n.

n SD RMISE

50 0.2475 0.3405
β̂1(t) 100 0.1344 0.2517

300 0.0552 0.1204

50 0.2536 0.3232
β̂2(t) 100 0.1261 0.2863

300 0.0239 0.1033

Figure 3 displays the estimated functional regression coefficients β̂1(t) and β̂2(t), as
well as their 95% confidence intervals under different sample sizes. The red curve in the
figure represents the theoretical values of β1(t) and β2(t), while the blue curve represents
the estimated values β̂1(t) and β̂1(t). The gray shaded area represents the 95% confidence
interval of the estimates. It can be seen that as the sample size increases, the estimated
values become closer to the true values.
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Figure 3. Estimated values of regression coefficient function β̂1(t), β̂2(t) (blue curves) and their 95%
confidence intervals (grey area) for difference sample size, where the red curves are the theoretical
regression coefficient functions β1(t), β2(t).

Table 4 presents the estimated scalar regression coefficient γ̂ and corresponding stan-
dard deviation under different sample sizes. It can be seen that as the sample size n
increases, γ̂ = (γ̂1, γ̂2, γ̂3)

T becomes closer to the true values γ = (
√

2/2,
√

3/3, 1/2)T .
Moreover, as the sample size n increases, the SD becomes smaller, indicating that the
estimated values have more certainty.

Table 4. Estimated values of scalar regression coefficients γ̂ and their SD in brackets for different
sample sizes n.

n γ̂1 γ̂2 γ̂3

50 0.7298 (0.191) 0.5928 (0.177) 0.5307 (0.232)
100 0.6892 (0.092) 0.5832 (0.071) 0.4894 (0.096)
300 0.7105 (0.019) 0.5732 (0.018) 0.4988 (0.016)
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Table 5 presents the M1 and M2 values for different sample sizes, where M1 =
1
Q ∑Q

i=1 MAE, MAE= 1
n ∑n

i=1 |Yi − Ŷi|, M2 = 1
Q ∑Q

i=1 MSE, MSE = 1
n ∑n

i=1(Yi − Ŷi)
2, and Yi

and Ŷi represent the real and the predicted values of the response variable, respectively.
We can find that as the sample size increases, the values of M1 and M2 become smaller,
indicating that the predictive performance of the model improves.

Table 5. The M1 and M2 values for different sample sizes n.

n M1 M2

50 0.3182 0.1579
100 0.3028 0.1498
300 0.2921 0.1406

6. Application

As is well known, research on average life expectancy is crucial for social development,
health policies, and population management. Studies on average life expectancy can help
governments, health departments, and social institutions develop relevant policies and
plans to improve people’s quality of life and health conditions. By understanding people’s
life expectancy, the efficiency of healthcare systems and the effectiveness of social welfare
and public health policies can be evaluated, providing a basis for resource allocation and
planning. Additionally, research on average life expectancy can also help people understand
population structure and trends, providing references for social-economic development,
pension systems, and labor market planning. Therefore, in the application of our proposed
model, we investigate factors that influence average life expectancy, including air quality
index (AQI), temperature, GDP, and number of beds in hospitals.

6.1. Data Description

We collected average daily temperature (Temp) data for 58 cities in China in 2020 from
the National Meteorological Science Data Sharing Service Platform, and average daily Air
Quality Index (AQI) data from the National Environmental Monitoring Station. We also
collected GDP, number of beds in hospitals, and life expectancy data for each city from local
statistical bulletins and government documents. Among them, there are two functional
predictive variables, which are daily AQI and temperature from 1 January to 31 December
2020, for 366 days in 58 cities. There are also two scalar predictive variables, which are GDP
and number of beds in hospitals for the 58 cities in 2020. The response variable is the life
expectancy of residents in each city in 2020.

Figure 4 shows the daily AQI and temperature for 58 cities in 2020.

Figure 4. Daily AQI (left plot) and daily temperatures (right plot) for 58 cities in 2020; each curve
represents one city.
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6.2. Data Analysis

According to a report released by the National Health Commission, the average life
expectancy of Chinese residents in 2020 was 77.9 years. Therefore, we divide the response
variable as follows: when the life expectancy of a city is greater than 77.9 years, we represent
it as 1; otherwise, when the life expectancy is less than 77.9 years, we represent it as 0. For
the functional predictors, we first centralize the data. Second, we conduct FPCA and select
the number of functional principal components that explain 75% of the variation. The
number of components for AQI and temperature is pAQI = 10 and pTemp = 3, respectively.
We use GCV to demonstrate the predictive accuracy of the estimators. In this application,
GCV = 0.135.

6.3. Results Analysis

By inputting the data into the generalized partially functional linear model, we obtain
the regression coefficient function β̂(t) for the functional predictors and the regression
coefficients γ̂ for the scalar predictors. The results are shown in Table 6 and Figure 5,
respectively.

Table 6 presents the estimated values of the regression coefficient γ̂ for scalar predictor
variables. We can see that both GDP and number of beds in hospitals have a positive
relationship with life expectancy, and are significant at the 5% level. This means that when
a region has a higher GDP and more hospital beds, the life expectancy in that region is
longer. In other words, the better the economic development and medical resources of a
region, the longer the life expectancy.

Table 6. Regression coefficients γ̂ and their significance levels.

Estimate Std.Error t Value Pr(>|t|)
γ̂GDP 0.6776 0.339 1.9988 0.04639
γ̂Beds 0.7354 0.367 2.0038 0.04585

In Figure 5, we see the estimated values of the regression coefficient function β̂(t).
For AQI, we can find a negative relationship between AQI and life expectancy in general.
The higher the value of AQI, the more serious the air pollution is, and the lower the life
expectancy corresponding to it. However, there is a more obvious positive relationship
trend in February to April, which may be influenced by some other external factors. For
temperature, we can find that the effect of temperature on life expectancy varies with the
change of seasons. In spring, summer, and fall (March to October), the effect of temperature
on life expectancy is negatively correlated, and in winter (November to February), it is
positively correlated, which is consistent with the conclusion in Huang et al. [19].

Figure 5. Estimated values of regression coefficient function β̂(t) and their 95% confidence intervals.
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To confirm the necessity of considering the unknown link function model, we choose
models without a link function and with the logit link function (i.e., g(η) = eη

1+eη ) and
compare them with our proposed models with unknown link functions. In order to evaluate
the prediction performance of the three models, we use MAE, MSE, and R2. Additionally,
we calculate the accuracy using the confusion matrix, where we define TP as the number of
samples correctly classified as positive, TN as the number of samples correctly classified
as negative, FP as the number of samples incorrectly classified as positive, and FN as the
number of samples incorrectly classified as negative (missed detections). We obtain the
model’s accuracy using the formula

Accuracy =
TP + TN

TP + TN + FP + FN
.

When the values of MAE and MSE are smaller, it indicates that the model has a smaller
prediction error and better performance. When R2 is closer to 1, it indicates that the model
has a stronger ability to explain the response variable. The experimental results are shown
in Table 7. It can be seen that the model we proposed has the best performance.

Table 7. Comparison between Unknown Link Function Model, Logit Link Function Model, and
Model without a Link Function.

Link Function MAE MSE R2 Accuracy

Unknown 0.2584 0.1399 0.8916 81.03%
Logit 0.2872 0.2511 0.6673 75.86%

Without 0.4777 0.3146 0.4118 74.14%

7. Conclusions

This article proposes a generalized partially functional linear model for scalar response
and predictor variables that include both functional and scalar components, without
specifying a link function. We use functional principal component analysis to reduce the
dimensionality of functional data, estimate the regression coefficients using the maximum
likelihood estimation method, estimate the link function using the method of local linear
regression, iteratively obtain the final estimator, and establish the asymptotic normality of
the estimator. The accuracy of the proposed model is validated through simulation studies.

The article applies the proposed model to the study of average life expectancy. Using
daily AQI, temperature, GDP, and number of beds in hospitals for 58 cities in China in
2020, the study explores the impact of environmental, economic, and medical factors
on life expectancy. The results indicate that GDP and number of beds in hospitals have
a positive correlation with the life expectancy, while the AQI has an overall negative
correlation. Temperature has a negative correlation with the average life expectancy in
spring, summer, and autumn, and a positive correlation in winter. Overall, the study
concludes that the average life expectancy is higher in areas with better environmental,
economic, and medical development.

This model can be used in various fields, including economics, bio-medicine, engineer-
ing, etc. However, this model still has certain limitations. For example, the relationship
between air quality and temperature needs to be further considered. There is a certain
correlation between temperature and air quality. Generally, an increase in temperature can
lead to the intensified volatilization and diffusion of pollutants in the air, thereby causing
a decline in air quality. In the next phase of research, we will consider the interactions
between functional predictors to make results more accurate. In addition, the algorithms
and optimization methods of the model can be further improved to enhance computational
efficiency. Combining this model with other machine learning methods can further improve
predictive performance.
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