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ABSTRACT In this paper, we investigate the cooperation of idle computation resources of nearby mobile
devices in mobile edge computing (MEC) systems, in which eachmobile device jointly offloads computation
tasks to a MEC node and a nearby mobile device by employing non-orthogonal multiple access (NOMA)
in a millimeter-wave (mmWave) heterogeneous network. In this setup, the nearby device acts as a helper
by performing local computation and offloading data simultaneously to the MEC system. We formulate an
optimization problem for joint taSk assignmenT, poweR allOcation and Node Grouping (STRONG) aiming
to minimize the energy consumption of devices (i.e., user and helper devices). To tackle this problem,
we present a two-step solution. First, we adopt a low complexity search-based algorithm for both helper
and MEC server selection. Next, considering the non-convex nature of the energy minimization problem,
we develop algorithms that provide sub-optimal solutions for power allocation to the helper andMEC server,
as well as the offloading task ratios between them.Numerical results are provided to validate the effectiveness
of our proposed algorithms. The results not only validate the efficiency of our approach but also demonstrate
the superiority of our cooperative NOMA-based MEC scenario compared to methods without cooperation
and other cooperation-based scenarios.

INDEX TERMS Mobile edge computing, distributed computing, NOMA, millimeter wave communication,
energy efficiency.

I. INTRODUCTION
In recent years, with the explosive emergence of mobile
computing services, e.g., virtual reality (VR) and aug-
mented reality (AR), limitations on battery and computation
capacities bring new challenges for mobile devices (MDs)
towards sixth generation (6G) networks. One solution to

The associate editor coordinating the review of this manuscript and

approving it for publication was Adamu Murtala Zungeru .

overcome these challenges is mobile-edge computing, or as
it has been renamed by ETSI, multi-access edge computing
(MEC). Among several techniques enabled through MEC,
computation offloading offers an ultra-low latency envi-
ronment with real-time access to network resources, and
enables MDs to extend their battery lifetime, by offload-
ing various computational tasks to edge servers deployed
at the small-cells, macro-cells, and Wi-Fi access points
(APs) [1]. Therefore, MEC offloading enhances both
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quality-of-experience (QoE) and quality-of-service (QoS)
of MDs [2].

However, the capacity of resources of MEC servers is
not infinite and, as a result, MEC-based systems may face
challenges dealing with a high volume of requests from
MDs. Moreover, the interaction between MDs and the MEC
server may be negatively affected by long distances, lead-
ing to a decrease in channel gain during data exchange.
One solution for these challenges is the implementation of
cooperative MEC. By leveraging nearby users as helpers,
the computational and radio resources of these neighboring
MDs can be utilized to assist far MDs in completing their
computation tasks. Thus, such cooperative MEC scenario not
only overcomes the limitations imposed by the MEC server
capacity and long-distance interactions, but also balances the
resources and workloads of MDs [3].

As a consequence of the development of sensor networks
and Internet of Things (IoT), machine-to-machine (M2M)
communications are expected to grow to billions in the next
few decades. Moreover, the data traffic demand of MDs is
expected to grow to 10 times. Thus, to support these demands,
the capacity and data rate of current wireless communication
networks should be enhanced [4]. To this end, millimeter-
wave (mmWave) communications and non-orthogonal mul-
tiple access (NOMA) attracted considerable attention both in
industry and academia [4].

The integration of mmWave communications and MEC
provides high capacity for nearby MDs and low latency
services, particularly those with high data-consuming appli-
cations [5]. To further increase data rates and provide
short-range communications, network densification through
mmWave small cells (SCs) have gained great attention. SCs
benefit from the unique features of mmWave communica-
tions including directionality and large bandwidth, resulting
in a considerable reduction of co-channel interference [6].

On the other hand, NOMA technology can effectively
enhance spectral efficiency (SE), connectivity, and reduce
access latency [7], [8]. In the context of MEC, a NOMA-
based MEC network has been proposed by using the super-
position coding in power domain to support multiple MDs
within the same resource block [9]. Therefore, leverag-
ing the advantages of high bandwidth and data rate, both
mmWave SCs and NOMA techniques are efficient methods
for MEC systems [10], [11]. Moreover, the rapid battery
life depletion remains a significant challenge in modern net-
works. To enhance the computation performance and reduce
energy consumption of mobile users, it is of great impor-
tance to investigate power allocation strategies for MEC
networks [12], [13].

Most of the current works focus on simple networks, where
their MEC models do not consider cooperative approaches,
and usually part of task computation is executed locally at
MDs and the rest is offloaded to the MEC servers [14],
[15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25].
Under the large number of users that are supported by 5G
and its beyond, the possibility of collaboratively exploiting

idle-state users with unused computation resources acting as
helpers can be considered to improve the performance of
MEC. Inspired by this fact, the helper-assisted cooperative
NOMA-MEC has been investigated. In [3] and [26], a basic
three-node system consisting of one MD, one helper, and one
AP is proposed, where the helper acts as a relay for offloading
a part of MD’s task to the AP. In [27], a novel multi-helper
cooperative NOMA for MEC was proposed and the total
offloading data was optimized.

However, when a large number of helpers andMEC servers
in ultra-dense networks participate in cooperative NOMA-
MEC, the performance of task offloading may degrade by
increasing the complexity and error propagation of successive
interference cancellation (SIC)-based detection. Therefore,
to further enhance the performance of NOMA-MEC systems
by utilizing the spatial diversity offered by cooperative com-
munication, the development of a node grouping algorithm
becomes essential. The focus of this paper is to propose
a node grouping algorithm and address the energy mini-
mization challenges in a cooperative mmWave-NOMAMEC
network. The contribution of this research is discussed in
Section A.

A. CONTRIBUTIONS
This paper addresses the cooperative edge computation
offloading in mmWave-NOMA heterogeneous network.
In this network, the helper can offload part of the task to the
MEC server while processing the remaining portion locally.
Although cooperation reduces the burden on the MEC server,
it leads to higher energy consumption of helper. Thus, we for-
mulate energy consumption minimization of the network
subject to various constraints including 1) the sum of the
offloading task ratios, 2) the offloading times for both user
and the helper, 3) the delays in completing the task locally
at the user, helper and the MEC server, 4) the total energy
consumed by the MDs for offloading and locally computing
the task, and 5) the total energy consumed by the helper for
offloading and local computing. Further, taSk assignmenT,
poweR allOcation and Node Grouping (STRONG) are jointly
optimized. As mentioned in Table 1, the proposed methods
are different from those developed in [3], [14], [15], [16],
[17], [18], [19], [26], [27], and [28], in the aspect of system
model, multiple access method, frequency type or investi-
gated objectives. The main contributions of this paper are
summarized as follows:

1. We investigate a MEC scheme that enables cooperative
NOMA-mmWave transmissions, in which the helper
can offload part of the task to the MEC server while
processing the remaining portion locally.

2. We propose a grouping scheme that facilitates the
selection of the helper and MEC server for cooperative
NOMA-mmWave transmission.

3. Task assignment and power allocation of nodes are
jointly designed aiming at improving the energy min-
imization within the MEC scheme. This problem is
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TABLE 1. Comparison between the proposed cooperative mmWave-NOMA heterogeneous network and the most related works.

proven to be non-convex and, later, is converted to
a convex problem for which the sub-optimal task
assignment and minimum power allocation values are
obtained.

4. We derive a closed-form expression for the successful
computation probability.We also discover that the loca-
tions ofMEC server and helper significantly impact the
successful computation probability. Motivated by this,
we derive the successful computation probability of the
proposed network.

5. Finally, through simulation results, we demonstrate that
the proposed system displays superior performance in
comparison to other benchmark schemes.

The rest of this paper is organized as follows. In Section II,
we review the state of the art related to works consider-
ing NOMA and mmWave in MEC system. In Section III,
we describe the system model. In Section IV, we derive
the successful computation probability. Section V introduces
the proposed solution for energy consumption minimization.
In Section VI, we present performance evaluation results and,
finally, Section VI concludes the paper.

II. RELATED WORKS
The fundamental concept of computation offloading in
MEC system involves transferring the latency-critical and
computation-intensive tasks of MDs to the MEC server [29].
The task offloading is operated in either partial or binary
modes [30]. In the binary offloading mode, the computation
tasks are entirely offloaded to the MEC server, whereas in the
partial offloading mode, the computation tasks can be shared
among several MEC servers and the offloader itself [31].

The deployment of MEC servers near the APs provides
cloud-like computing services for the MDs [32]. However,
supporting a massive number of requests fromMDs becomes
complex for APs due to their limited computational capaci-
ties. Therefore, to alleviate the workload of APs, cooperative
computing paradigms can be considered by exploiting the
computation capability of several neighboring MEC servers.
For example, in [33], an algorithm was proposed to encour-
age the MDs to offer their unused resources. In [34], the
authors considered a co-computing scenario in which an MD
offloads the computational data to a helper. The work in [35]
introduced a task offloading scheme based on D2D collab-
oration. It was shown in [36] that collaborative computation

offloading among MDs in an energy harvesting scenario can
prolong the network lifetime. Machine learning approaches
have also been extensively proposed in the literature for
computation offloading in MEC. An auction-based approach
was presented in [37] to incentivize MEC servers to partic-
ipate in resource sharing with MDs where the allocation of
computation resources to MDs is performed with a pair of
deep neural networks. In [38], both on-line and off-policy
solutions based onBandit theorywere proposed for allocating
the computation resources to the MDs in a highly dynamic
vehicular environment.

Recently, several studies have been devoted to investi-
gating the benefits of NOMA in MEC systems, especially
for enhancing energy efficiency (EE). In [14], authors intro-
duced an optimization framework that jointly optimizes the
transmit power, user clustering, and computing for minimiz-
ing energy consumption of a NOMA-based MEC system.
A similar problem was investigated in [15] by considering
the offloading tasks and power levels of each user. The
work in [16] considered NOMA-assistedMEC system, where
time allocation and power levels were optimized to minimize
the energy consumption of computation offloading. A joint
computational and radio resource allocation problem for
NOMA-assistedMEC system in heterogeneous networkswas
investigated in [17]. The authors in [18] considered NOMA
for task offloading and result downloading in the MEC sys-
tem, where transmit power, transmission time allocation,
and task offloading partitions were optimized to minimize
the total energy consumption. An energy-efficient multitask
multi-access scheme in NOMA-basedMEC systemwas stud-
ied in [19].

Besides [14], [15], [16], [17], [18], [19], several other
works [20], [21], [22], [23], [24], [25] focused on the
latency minimization in NOMA-based MEC system. The
minimization of overall delay for completing the computation
requirements of MDs by jointly optimizing users’ offloaded
workloads and NOMA transmission time was considered
in [20], while in [21] the authors aimed at minimizing the sum
of downloading, offloading, and execution times. The study
in [22] proposed the minimization of maximum task execu-
tion time across all devices for uplink NOMA-based MEC
system by jointly considering SIC ordering and computation
resource allocation. In [23], an optimal offloading policy
was presented to minimize the mean latency. The authors
in [24] proposed to maximize the probability of guaranteeing
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FIGURE 1. Proposed NOMA-mmWave based MEC heterogeneous network.

the latency requirements. In [25], the trade-off between the
communication performance (i.e., network coverage) and
latency was presented. Energy consumption and task process-
ing delay can sometimes be seen as two competing objec-
tives; hence, there exists a trade-off between them [1]. Some
works, such as [39], addressed this trade-off and studied
energy consumption optimization and task completion delay
simultaneously.

Unlike the existing works, [14], [15], [16], [17], [18],
[19], the promising gains of mmWave have motivated
us on integrating MEC and mmWave techniques. Given
the propagation characteristics of mmWaves, cooperative
NOMA communication emerges as an efficient approach
to increase the SE of the network. Although the authors
in [3] and [26] combined MEC with cooperative communi-
cation, the system models considered in these works differ
from ours. For instance, [26] focuses on OMA-based system
model, while [3] introduces cooperative computing within
a NOMA-based MEC system, which consists of a user,
a helper, and a MEC server deployed at an AP. However,
there are notable limitations in these prior works. In [3],
although the helper can receive and compute the user’s task
in addition to acting as a relay, the selection of helper was not
discussed, and the energy consumption and delay of theMEC
server were not considered. Also, in [3], mmWave band,
beamforming, and MIMO antennas were not incorporated.
Our approach addresses these limitations by integratingMEC
and cooperative NOMA communication in the context of
mmWave networks. By considering helper selection, energy
efficiency, delay constraints, and leveraging mmWave fea-
tures, we aim to provide an involved solution compared to
the previousworks. Also, the proposed techniques are distinc-
tively different from those developed in [14], [15], [16], [17],
[18], [19], [20], [21], [22], [23], [24], and [25], as summarized

in Table 1. To the best of our knowledge, the systematic
design of cooperative mmWave-NOMA MEC systems has
not been yet investigated. Moreover, node grouping as a key
aspect of achieving performance in NOMA, has not been
considered in the previous studies [3], [14], [15], [16], [17],
[18], [19], [20], [21], [22], [23], [24], [25]. Although [28]
explores helper selection, unlike our scenario, they assume a
fixedMEC server. while theMEC server has a more powerful
computing capacity and influences the successful computa-
tion probability. Also, the helper selection method in [28]
does not optimize the successful computation probability and
relies on the conventional channel gain method.

III. SYSTEM MODEL
We model partial offloading in a NOMA-mmWave based
MEC heterogeneous network, consisting of multiple MEC
servers, one macrocell base station (MBS), and multiple
MDs, where one is considered as the reference user and the
others are helpers. We suppose that the reference user gener-
ates a random beamforming vector, as shown in Fig. 1; only
the helpers that fall into the region DA with radius RSA and a
central angle 21 are considered. In addition, only the MEC
servers located within the region DB with a maximum radius
of RSB , a minimum radius of RSc , and a central angle of21,
can be scheduled. These assumptions ensure the maximal
angle difference1 between the selected helper orMEC server
and their associated beams. As depicted in Fig. 1, RSA <

RSc < RSB . It is assumed that all nodes operate in half-duplex
mode and are equipped with multiple antennas. Moreover,
the MBS utilizes channel state information (CSI) from all
nodes to determine parameters such as transmit powers and
offloading portions. Once determined, these parameters are
communicated to the user, helpers and the MEC server.
As depicted in Fig. 2, we assume that the user and helpers’
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FIGURE 2. Execution time for the proposed NOMA-mmWave based
partial offloading protocol.

computation tasks should be executed within a given time 2T
and T , respectively, while local computing and offloading can
be executed in parallel.

The two time slots used to perform the cooperative
NOMA-based partial offloading are shown in Fig. 2. Denote
LUβU ,h and LUβU ,W as the portions of the user’s task, with
a size of LU bits, offloaded to the selected helper and MEC
server, respectively. We define βU ,h = βU ,S + βh,M where
βU ,S is the portion of the user’s task computed by the selected
helper and βh,M is the portion of the user’s task offloaded
from helper to MEC server.

In the first time slot, having duration T , the user’s task is
offloaded in the uplink direction to both the selected helper
and MEC server, i.e., LU (βU ,S + βh,M ) bits, to the helper
and the other part, i.e., LUβU ,W bits, to the MEC server
for remote executions. The remaining portion of the task(
1− βU ,S − βU ,W − βh,M

)
LU , denoted as βU ,loc, is locally

executed within duration 2T . In the second time slot, the
selected helper partially offloads the task (LUβh,M ) to the
MEC system, while simultaneously executing the remaining
portion LU (βU ,S ) locally. We assume that the local computa-
tion of user can be done in both time slots.

A. OFFLOADING AWARE MMWAVE-NOMA
TRANSMISSION
During the task offloading phase, at the first time slot, the user
transmits its task with LU bits exploiting linear superposition
of data to the selected helper and MEC server simultaneously
as:

x =
√
PSxS +

√
PW xW (1)

where xS and xW are the unit power message signals of
the strong (i.e., highest channel gain node) and weak nodes
(i.e., lowest channel gain node), corresponding to the selected
helper and MEC server, respectively, while pS and pW denote
the transmission power levels allocated to the strong andweak
nodes, respectively. Hence, the received signals at the kth

strong and weak node can be written as:

yk,A = gk,Ax + nk,A (2)

where A ∈ {S,W }, S and W represent the strong and
weak nodes, respectively, and nk,A is the zero-mean additive
Gaussian noise with the variance N0. When yk,A contributes
to the strong nodes (i.e., A = S), k defines the index of
helpers, otherwise (i.e., A = W ), it corresponds to the index
of MEC servers. By applying SIC at the selected helper and
MEC server, the desired signal of each of them is detected.
Moreover, gk,A denotes the mmWave channel gain from the
user A to the helper or MEC server, k , which consists of
one line-of-sight (LOS) path and several non-line-of-sight
(NLOS) paths. To this end, the mmWave channel gain can
be expressed as [40]:

gk =
√
N

ρk,Lw
(
θk,L

)√
1+ dωL

k

+
√
N
∑NL

nl=1

ρnl,NLw
(
θnl,NL

)√
1+ dωNL

k

(3)

where θk,L and θnl,NL denote the normalized directions of
receiver for LOS and NLOS paths, respectively, ρk,L and
ρnl,NL represent the complex channel gain of receiver for LOS
and NLOS paths, respectively, and ωL and ωNL denote the
path loss exponents for LOS and NLOS paths, respectively.
Also, dk shows the distance between transceivers, NL is the
number of NLOS paths andN denotes the number of transmit
antennas of user, while we assume an array steering vector
ω(θ ) shown as [40]:

ω(θ ) =
1
√
N

[
1, e−jπθ , . . . , e−jπ (N−1)θ

]T
(4)

As described in [40] and [41], the effect of LOS path is
dominant in mmWave communication. Thus, the mmWave
channel model can be simplified as:

gk =
√
N

ρk,Lw
(
θk,L

)√
1+ dωL

k

(5)

One solution for node scheduling is to ask helpers and MEC
servers nearby an MD to provide feedback on their effective
channel gains to the MBS, and then the MBS considers the
nodes with the highest channel gains. However, if there are
many MDs in the network, it will incur in a considerable
system overhead to the MBS. Therefore, we consider ran-
dom beamforming to reduce system overhead [42]. Random
beamforming is exploited to serve NOMA nodes via one
randomly generated beam as follows [40]:

P = ω(θ̄ ) (6)

where θ̄ is uniformly distributed in the range [-1,1]. Then, the
effective channel gain of node k is defined as [40]:

∣∣∣gHk P∣∣∣2 = N |ρk |2
∣∣ω (θk)

H P
∣∣2

1+ dω
k

=

|ρk |
2
∣∣∣∑N−1

n=0 e
jπn(θ̄−θk)

∣∣∣2
N
(
1+ dω

k

)
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=

|ρk |
2 sin2

(
πN(θ̄−θk)

2

)
N
(
1+ dω

k

)
sin2

(
π(θ̄−θk)

2

)
=
|ρk |

2

(1+ dω
k )
FM (θ̄ − θk ) (7)

where FM (·) denotes the LV et al. [40] as follows:

FM (V ) =
sin2 (0.5πVN )

N sin2 (0.5πV )
(8)

B. FORMULATION OF SPECTRAL EFFICIENCY
In the proposed scenario of NOMA transmission, one helper
and one MEC server are selected. The SINR of MEC server
at the helper (γ xWS ) is calculated as [43]:

γ
xW
S =

PW |gS |2

PS |gS |2 + N0
(9)

where gS is the channel gain coefficient from the user to the
helper. The helper first decode the message of MEC server
if γ

xW
S > γ thW , where γ thW is the required SINR for successful

detection of themessage ofMEC server [43]. Then, the helper
detects its desired signal after removing the message of MEC
server known as SIC, with the following SINR (γ xSS ):

γ
xS
S =

PS |gS |2

N0
(10)

The received SINR at MEC server for detecting xW (γ xWW ) is
calculated as [43]:

γ
xW
W =

PW |gW |2

PS |gW |2 + N0
(11)

where gW denotes the channel gain coefficient from user to
MEC server. Then, by denoting the bandwidth of this system
as B Hz, the SE of helper (ηSSE ) and MEC server (ηWSE ) are
computed as:

ηSSE = B log2
(
1+ γ

xS
S

)
(12)

ηWSE = B log2
(
1+ γ

xW
W

)
(13)

The helper offloads LUβh,M bits with transmit power pM to
the MEC server at the second time slot. Similarly, the SNR
(γ h→M
M ) and SE (ηh→M

SE ) from helper to MEC server are
defined as:

γ h→M
M =

PM |gM |2

N0
(14)

ηh→M
SE = B log2

(
1+ γ h→M

M

)
(15)

where gM denotes the channel coefficient from helper to
MEC server.

C. OFFLOADING PHASE TIME AND ENERGY
CONSUMPTION
By utilizing the SE in (12)-(13) and (15), the task offloading
time from user to the helper and MEC server and from helper
to MEC server can be written as [11]:

TU ,S =
LU

(
βU ,h

)
ηSSE

(16)

TU ,W =
LUβU ,W

ηWSE
(17)

Th,M =
LUβh,M

ηh→M
SE

(18)

The total offloading energy consumption of the system is
obtained as:

Eoff = TU ,SPs + TU ,WPW + Th,MPM (19)

D. PROCESSING TIME AND ENERGY CONSUMPTION
Let us define the same CPU frequency at MD and helper as
floc (in cycles per second) and the number of CPU cycles to
compute one bit of their task as C . The local computation
time of user (T locU ) and helper (T loch ) are written as:

T locU =
βU ,locLUC

floc
(20)

T loch =
βU ,SLUC

floc
(21)

Thus, the total energy consumption of local computing can
be given by:

Eloc = kuβU ,locLUC(floc)2 + kuβU ,SLUC(floc)2 (22)

where ku is the effective capacitance coefficient of user or
helper for each CPU cycle. Unlike the previous works [3],
[14], [15], [16], [17], we consider execution latency (TMEC )
and energy consumption of MEC server (EMEC ) and define
them as

TMEC =
(βU ,W + βh,M )LUC

fMEC
(23)

EMEC = km(βU ,W + βh,M )LUC(fMEC )2 (24)

where fMEC denotes CPU frequency at MEC server. As the
processed tasks produce small-size results, time, and power
consumptions for downloading the computational results can
be ignored [3]. Finally, the total energy consumption is given
by:

ET = Eloc + Eoff + EMEC (25)

IV. SUCCESSFUL COMPUTATION PROBABILITY
The successful computation probability in the proposed sce-
nario is defined as the probability of completing the task
of the MD which includes 1) local computation by the MD
and the helper 2) all offloading phases, 3) and completion
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of the offloaded tasks. Accordingly, successful computation
probability can be written as:

Psc = P
(
TU ,S < T ,TU ,W < T ,Th,M < T ,T locU ≤ 2T ,T loch

≤ T ,TMEC ≤ td ) (26)

Proposition 1: By utilizing (7) and any given parameters,
i.e., βU ,S , βU ,W , βh,M , T , Ps, PW and PM , the closed-form
expression of (26) can be obtained as shown in (27), at the
bottom of the page.
Proof: The proof is given in Appendix A.
Successful computation probability of the proposed

network can be characterized through the closed-form expres-
sion of Proposition 1, which provides insight into understand-
ing the proposed network.Moreover, through the closed-form
expression, we will verify the results obtained in the
simulation.

V. PROPOSED STRONG ALGORITHM
In this section, the node grouping, joint task assignment
and power allocation problems to minimize the total energy
consumption of NOMA-based MEC system is formulated as:[

G∗P∗β∗
]
= argmin

G,P,β

ET (28)

subject to:

βU ,S + βU ,W + βh,M + βU ,loc = 1 (29)
LUβU ,S

ηSSE
< T ,

LUβU ,W

ηWSE
< T ,

LUβh,M

ηh→M
SE

< T (30)

βU ,SLUC
floc

< T ,
βU ,locLUC

floc
< 2T ,

(βU ,W + βh,M)LUC

fMEC
< td

(31)

kuβU ,locLUC(floc)2 + TU ,SPs + TU ,WPW < Emax,u (32)

Th,MPM + kuβU ,ALUC(floc)2 < Emax,h (33)

where G∗, P∗ and β∗ are the optimal grouping of helper and
MEC server, allocated power to helper and MEC server and
offloading task ratios of helper and MEC server, respectively.
Constraint (29) ensures that the sum of offloading task ratios
is equal to 1. Constraint (30) states that the offloading times
of user and helper are restricted to T . Constraint (31) ensures
that the delay for completing task locally in the user, helper
and MEC server cannot exceed delay limits 2T , T , and td ,
respectively, where it is assumed that td is lower than T .

Constraint (32) indicates that the sum of MD’s energies for
offloading and locally computing the task cannot exceed
its maximum energy shown by Emax,u. Finally, constraint
(33) ensures that the total energy of helper for offloading
and locally computing cannot exceed its maximum energy
denoted by Emax,h.

Due to the high computational complexity of optimization
problem in (28), we divide it into two independent sub-
problems. In the first sub-problem, we present a sub-optimal
solution for independently grouping MEC server with helper,
while in the second sub-problem, power allocation and
task assignment are jointly formulated aiming at minimiz-
ing the energy consumption of the proposed cooperative
NOMA-based MEC system.

A. NODE GROUPING
We consider random beamforming for the designed cooper-
ative NOMA-mmWave based MEC system, where a single
random beam is generated by the MD, thus the knowledge
of channel vectors of all nodes is not required. This can sig-
nificantly reduce system overhead in an ultra-dense network.
Also, sincemmWave transmission is highly directional, in the
proposed NOMA grouping algorithm, we avoid scheduling
those helpers and MEC servers that may have low signal
levels, which also reduces the search space; thus, reducing
system overhead. We assume that helper selection procedure,
which is performed by MBS, does not incur any significant
latency due to its short execution time [30], [44], [45].

The optimal grouping of helper andMEC server for imple-
mentation of NOMA is a discrete problem. It can be solved
by searching over all existing pairs of MEC servers and
helpers. However, this approach is computationally expen-
sive. To reduce the computational complexity and increase
the successful computation probability, we propose an intu-
itive algorithm for MEC server selection. First, we select
the highest channel gain MEC server and then search over
the helpers among the users and select the helper with the
minimum energy consumption. The selected helper node and
the MEC server are then used for NOMA implementation.
This scheme is executed at the MBS side and is described
in more detail in Algorithm 1. It should be noted that the
following algorithm has a very low execution time1; hence,
the impact of this latency on the system is negligible.

1The execution takes 1 ms in a modest hardware.

Psc =



exp

− N0 PW

2
LU βU ,W

BT −1

−PS


(
1+dα

U ,W

)
FM(v−θU ,W )

 · exp
(
−

(
2
LU (βU ,S+βU ,W )

BT − 1
)

N0
PS

(
1+dα

U ,S

)
FM(v−θU ,S)

)
·

exp

(
−

(
2
LU βh,M

BT − 1
)

N0
pM

(
1+dα

h,M

)
FM(v−θh,M)

)
, if T locU ≤ 2T ,T loch ≤ T ,TMEC ≤ td

0, otherwise

(27)
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Algorithm 1 Node Grouping Scheme
Input: The number of MEC servers as L and helpers as K
Channel gains: |gl |2 for l= 1, 2, . . . ,L
Output: Selected users, as l∗, k∗

1. Select MEC server
Calculate g =

[
|g1|2 , |g2|2 , . . . , |gL |2

]
[∼,order] = (sort(g),′descend ′) l∗ = order(1);
2. Select helper
Calculate ET =

[
E l
∗,1
T ,E l

∗,2
T , . . . ,E l

∗,K
T

]
[:,order] = min (ET )

k∗ = order
3. Return l∗ and k∗.

B. JOINT POWER ALLOCATION AND TASK ASSIGNMENT
After solving the first sub-problem, i.e., node grouping, the
second sub-problem which minimizes the total energy con-
sumption by allocating power and task portions, is formulated
as

[P∗β∗] = argmin
P,β

ET (34)

subject to (29)-(33).
The non-convexity of the objective function in (34) makes

the optimization problem hard to solve. Hence, we present
some mathematical solutions to transform (34) into a convex
problem as follows.
Proposition 2: The optimal offloading time for the energy

minimization problem (34) satisfies the following condition:

TU ,S = TU ,W = Th,M = T (35)

Proof: The proof is given in Appendix B.
Then, by utilizing (35), transmission powers can be equiv-

alently transformed to:

PM =
((

2
βh,MLU

TB − 1
)
N0

)/(
|gM |2

)
(36)

PS =
((

2
(βU ,S+βh,M )LU

TB − 1
)
N0

)/(
|gS |2

)
(37)

PW =
((

2
βU ,W LU

TB − 1
)(

PS · |gW |2 + N0

))/(
|gW |2

)
(38)

Proposition 2 provides transmission power of nodes, which
enables us to introduce the following proposition.
Proposition 3: Utilizing the optimal values of transmis-

sion powers (36)-(38), The objective function given by (34)
is convex.
Proof: The proof is given in Appendix C.
Then, due to the convexity of (34), the KKT conditions are

applied to solve the maximization problem. Therefore, the
Lagrangian of (34) considering the constraints (29)-(33) can
be derived as:

L
(
βU ,W , βU ,S , βh,M , βU ,loc, λ1, λ2, λ3, λ4, λ5

)
=

(
TPW + TPS + TPM + kuβU ,locLUC(floc)2

+kuβU ,SLUC(floc)2 + km(βU ,W + βh,M)LUC(fMEC )2
)

+ λ1

(
βU ,SLUC

floc
− T

)
+ λ2

(
βU ,locLUC

floc
− 2T

)
+ λ3

(
kuβU ,locLUC(floc)2 + TPS + TPW − Emax,u

)
+ λ4

(
kuβU ,SLUC(floc)2 + TPM − Emax,h

)
+ λ5

(
βU ,S + βU ,W + βh,M + βU ,loc − 1

)
+ λ6

(
(βU ,W + βh,M)LUC

fMEC
− td

)
(39)

where λ1, λ2, λ3, λ4, λ5, and λ6 are the Lagrange multipliers
of the constraints on delay for completing task locally in
MD, and delay for computation on helper, sum of user’s
energies for offloading and locally computing the task, total
energy of helper for offloading and locally computing, sum
of offloading task portions, and processing time of the MEC
server, respectively.

We can obtain the solution of (39) by a dual decomposition
method as follows:

max
λ1,λ2,λ3,λ4,λ5,λ6

min
βU ,W ,βU ,S ,βU ,l oc

L
(
βU ,W , βU ,S , βh,M , βU ,l oc, λ1, λ2, λ3, λ4, λ5, λ6

)
(40)

Partial derivative of (39) with respect to βU ,W , βU ,S , βh,M ,
and βU ,loc can be obtained as follows:

∂L
∂βU ,W

=
ln (2)LU

B
2

βU ,W LU
TB

(
PS +

N0

|gW |2

)
(1+ λ3)+ λ5

+ kmLUC(fMEC )2 + λ6
LUC
fMEC

(41)

∂L
∂βU ,S

= ln (2)(1+ λ3)

LUN02
(βU ,S+βh,M )LU

TB

(
2

βU ,W LU
TB

)
B |gS |2


+ kuLUC(floc)2(1+ λ4)+λ1

LUC
floc
+λ5 (42)

∂L
∂βh,M

=(1+ λ3)

 ln (2)LUN02
(βU ,S+βh,M )LU

TB

(
2

βU ,W LU
TB

)
B |gS |2


+
ln (2) 2

βh,MLU
TB LUN0

B |gM |2
(1+ λ4)

+ λ5 + kmLUC(fMEC )
2
+ λ6

LUC
fMEC

(43)

∂L
∂βU ,loc

= (1+ λ3)kuLUC(floc)2 + λ2
LUC
floc
+ λ5 (44)

The values of βU ,WβU ,S , βh,M and βU ,loc are obtained by
setting (41)-(43) to zero as in (45)–(48), shown at the bottom
of the next page, where [x]+ denotes (x, 0). Also, setting (44)
to zero yields:

λ5 = −(1+ λ3)kuLUC(floc)2 − λ2
LUC
floc

(49)
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To update Lagrange multipliers, gradient method is adopted
as follows:

λ1(i+ 1) =
[
λ1 (i)+ ξ (i)

(
βU ,S (i)LUC

floc
− T

)]+
(50)

λ2(i+ 1) =
[
λ2(i)+ ξ (i)

(
βU ,loc(i)LUC

floc
− 2T

)]+
(51)

λ3 (i+ 1) =
[
λ3(i)+ ξ (i)

(
kuβU ,loc(i)LUC(floc)2

+TPS2
βU ,W (i)LU

TB +

T
(
2

βU ,W (i)LU
TB − 1

)
N0

|gW |2

−Emax,u
)]+ (52)

λ4(i+ 1) =
[
λ4(i)+ ξ (i)(kuβU ,S (i)LUC(floc)2

+TPM − Emax,h)
]+ (53)

λ6(i+ 1) =
[
λ6(i)+ ξ (i)

(
(βU ,W + βh,M )LUC

fMEC
− td

)]+
(54)

where ξ (i) is a dynamically positive value step size updated as
ξ (i+1) =ξ (i)/i. Algorithm 2 shows the iterative method for
solving (39). The iterative algorithm continues until it con-
verges to the minimum energy consumption, which occurs
when the condition

((
Eloc + Eoff + EMEC

)
−
(
Eloc(l)+ Eoff (l)+ EMEC (l)

))
≤ ε for a maximum toler-

ance ε is satisfied or themaximum number of Lmax is reached.
By utilizing Algorithms 1 and 2, the problem of node

grouping and joint power allocation and task assignment
is solved. The computational complexity of the proposed
method consists of the complexities of node grouping
and task assignment scheme. The complexity of proposed
node grouping algorithm is O(KL). Also, the complex-
ity of proposed task assignment scheme is of the order
O(ImaxLmax) [46].Thus, the overall complexity of node
grouping, and task assignment scheme is O(ImaxLmax · KL).
This complexity is lower than some the grid search algorithm,
where node grouping and task assignment has a complexity
of O

(
(K + L)K+L · VK

S · V
L
W · V

L
h

)
where VK

S , V L
W and V L

h
are the number of possible values of task assignment values
of helper, MEC and helper to MEC, respectively. Moreover,

TABLE 2. Simulation parameters.

as shown in the next section, the performance of proposed
suboptimum algorithms is close to the grid search method
with much lower complexity than the grid search method.

VI. PERFORMANCE EVALUATION
In this section, numerical results obtained through computer
simulations are provided to verify the derived analytical
results and investigate the efficiency of the proposed solu-
tions for STRONG problem for cooperative offloading in
NOMA-mmWaveMEC system. The general network param-
eters are summarized in Table 2.

A. Psc WITH FIXED HELPER
In this sub-section, we evaluate the impacts of various param-
eters on the successful computation probability for the pro-
posed node grouping scenario, where a helper with a fixed
location is selected to group with MEC server.

Fig. 3(a) shows the successful computation probability
versus the distance between user and MEC server for dif-
ferent lengths of task. It is observed that analytical and
simulation results match very well, which verifies (27).
Meanwhile, we can see that the successful computation prob-
ability decreases with the increase of distance. The reason

β∗U ,S =

TB
LU

log2

−
(
kuLUC(f loc)

2 (1+ λ4)+ λ1
LUC
floc
+ λ5

)
B |gS |2

LUN02
(β∗U ,W+β∗h,M )LU

TB ln (2) (1+ λ3)

+ (45)

β∗U ,W =

TB
LU

log2

B
(
kuLUC(floc)2 (1+ λ4)+ λ1

LUC
floc
−

(
kmLUC(fMEC )2 + λ6

LUC
fMEC

))
(

1
|gW |2
−

1
|gS |2

)
ln (2) (1+ λ3)N0LU

+ (46)

β∗h,M =

TB
LU

log2

B |gM |2 (kuLUC(floc)2(1+ λ4)+ λ1
LUC
floc
−

(
kmLUC(fMEC )2 + λ6

LUC
fMEC

)
ln (2)LUN0 (1+ λ4)

+ (47)

β∗U ,loc =
[
1− β∗U ,S − β∗U ,W − β∗h,M

]+ (48)
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Algorithm 2 Task Assignment Scheme
1. Initialize Imax , ε,Lmax
2. For l = 1 : Lmax , do
3. Initialize λ1, λ2, λ3, λ4, λ5, λ6
4. For i = 1 : Imax , do
5. β̂U ,S (i)

←−

 TB
LU

log2(
−

(
kuLUC(f loc)

2(1+λ4
)
+λ1

LUC
floc
+λ5

)
B
∣∣gS ∣∣2

LUN02

(β∗U ,W+β∗h,M )LU
TB

(
1+λ3

) )


+

6. β̂U ,W (i)

←−

[
TB
LU

log2 B
(
kuLUC(floc)

2(1+λ4
)
+λ1

LUC
floc
−

(
kmLUC(fMEC )2+λ6

LUC
fMEC

))
(

1∣∣gW ∣∣2 − 1∣∣gS ∣∣2
)
ln(2)

(
1+λ3

)
N0LU



+

7. β̂h,M (i)

←−

[
TB
LU

log2 B|gM |
2(kuLUC(floc)

2(1+λ4)+λ1
LUC
floc
−

(
kmLUC(fMEC )2+λ6

LUC
fMEC

)
ln(2)LUN0

(
1+λ4

)


+

8. β̂U ,loc(i)←−
[
1− β̂U ,S (i)−β̂U ,W (i)−β̂h,M (i)

]+
9. Calculate Eoff

(
β̂U ,S (i) , β̂U ,W (i) , β̂h,M (i)

)
, Eloc

(
β̂U ,loc (i) , β̂U ,S (i)

)
and

EMEC (β̂U ,W (i) ,β̂h,M (i))

10. λ1(i+1)←−
[
λ1(i)+ ξ (i)(

β̂U ,S (i)LUC
floc

− T )
]+

11. λ2(i+1)←−
[
λ2(i)+ ξ (i)(

β̂U ,loc(i)LUC
floc

− 2T )
]+

12. λ3(i+1)←−

λ3(i)+ ξ (i)(kuβ̂U ,loc(i)LUC(floc)2

+T
(2

(β̂U ,S (i)+β̂h,M (i))LU
TB −1)2

β̂U ,W (i)LU
TB N0∣∣gS ∣∣2

+
T (2

β̂U ,W (i)LU
TB −1)N0∣∣gW ∣∣2 − Emax,u)


+

13. λ4(i+1)←−

λ4(i)+ ξ (i)(kuβ̂U ,S (i)LUC(floc)2

+T
(2

β̂h,M (i)LU
TB −1)N0
|gM |

2 − Emax,h)


+

14. λ5(i+1)←− −(1+λ3(i))kuLUC(floc)2 − λ2(i)
LUC
floc

15. λ6(i+1)←−
[
λ6(i)+ ξ (i)(

(β̂U ,W+β̂h,M)LUC
fMEC

− td )
]+

16. ξ (i+1)←−ξ (i)/i
17. end for
18. if

((
Eloc + Eoff + EMEC

)
−
(
Eloc(l)+ Eoff (l)+ EMEC (l)

))
≤ ε, then

19. β∗U ,S ←− β̂U ,S (i)

20. β∗U ,W←−β̂U ,W (i)

21. β∗h,M←−β̂h,M (i)

22. β∗U ,loc ←− β̂U ,loc(i)
23. Break
24. Else
25.

(
Eoff (l + 1)+ Eloc (l + 1)+ EMEC (l + 1)

)
←−(

Eoff (i)+ Eloc (i)+ EMEC (i)
)

26. i←− i+ 1
27. end if
28. end for
29. return β∗U ,S , β∗U ,W , β∗h,M andβ∗U ,loc

is that MEC server is assumed to be resource-rich, and by
increasing the distance, the performance of the proposed
cooperation scheme degrades due to the poor channel gain
for performing cooperative computing. It can also be seen that

FIGURE 3. Psc versus distance between user and MEC server (a) for
different LU , (b) for different transmit antenna numbers (N) , and (c) for
different transmit powers (P).

the performance decreases by increasing the task length LU ,
which is mainly due to the increasing of task offloading time.

In Fig 3(b), the impact of different number of trans-
mit antennas (N ) on the successful computation probability
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versus the distance between user andMEC server is depicted.
As expected, increasing the number of transmit antennas
results in higher successful computation probability since
transmission links between user, helper, and MEC server are
improved by providing higher directive gain resulting in less
task offloading time.

Fig. 3(c) shows Psc versus the distance between user and
MEC server for different transmit powers (P). As expected,
a higher transmit power leads to higher successful probability
since task offloading time decreases.

B. PERFORMANCE COMPARISON
To show the efficiency of the proposed solution for STRONG
problem, we provide a comparison with other benchmark
solutions as following. Please note that in the rest of the
paper we refer to our solutions to the joint problems as
STRONG.

• Reference [3]: In this approach, a NOMA-aided coop-
erative computing scheme with three-node MEC system
consisting of a helper, a user, and a MEC server is
considered, in which user simultaneously offloads data
to helper and MEC server by employing NOMA. Then,
the helper can locally compute data or offload data
to MEC server simultaneously, where the selection of
helper is not considered, and the network is a tradi-
tional cellular network without utilization of mmWave
band, beamforming, andMIMOantennas.Moreover, the
energy and delay of MEC server are ignored in this
work.

• Proposed approach without cooperation (PWC): In this
scheme, the user offloads data to helper and MEC server
simultaneously and the helper can only compute data
locally.

• Proposed approach without node grouping (PWNG): In
this scheme, the proposed system is considered with
constant helper and MEC system without any node
grouping scheme.

In Fig. 4, energy consumption as a function of input data of
user LU is demonstrated. It can be observed that the STRONG
scheme outperforms the other benchmarks. Energy consump-
tions of all methods increase with the increment of input
data (LU ). The difference between PWNG and STRONG
methods indicates the efficiency of proposed node grouping
scheme. Also, PWC scheme consumes more energy than
STRONG and the PWNG methods. The reason is that in
PWC scheme, the helper cannot offload data to MEC server
although it is near to MEC server, and offloading data to
MEC server is more efficient. Thus, the benchmarks with
cooperation phase such as STRONG and PWNG approach
outperform PWC. Moreover, although [3] and STRONG
scheme have some similarities, in [3], mmWave band, beam-
forming, and MIMO antennas were not implemented. Fur-
thermore, no node grouping algorithm was considered in [3].
In addition, in [3], the authors do not have any constraints
on the available energy of user and helper for offloading

FIGURE 4. Average energy consumption versus data size (LU ).

FIGURE 5. Average energy consumption versus T .

and local computation in the energy consumption minimiza-
tion problem. It should be noticed that the results for all
schemes in Figs. 4-7, are obtained by using the same param-
eter values used in our proposed solution for the sake of
fairness.

Fig. 5, depicts energy consumption as a function of latency
constraint T . As shown, all schemes experience reduction
of energy consumption by increasing the latency constraints,
since, for small T , user and helper need to offload input
bits at a high rate to satisfy latency constraint, which
leads to high energy consumption. It is seen that [3] has
the gentlest slope. This is due to the fact that mmWave
band, beamforming, MIMO antennas, and node grouping
were not implemented in [3] and nodes experience lower
channel gains. Therefore, for offloading, higher power is
required; so local computation is more preferred by system.
Whereas, in other schemes offloading leads to lower energy
consumption.

Fig. 6 represents the results of offloading data which
is defined as (1−βU ,loc)LU versus the latency constraint.
As observed, STRONG scheme achieves the best results
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FIGURE 6. Average offloading data versus latency constraint T.

FIGURE 7. Average offloading data versus data size (LU ).

FIGURE 8. Comparison between the performance of optimum and
proposed algorithm versus data size (LU ).

in comparison with other schemes. Also, in all methods,
offloading data increases with the increment of latency
constraint. This fact can be explained from the relation
between offloading parts of data (45)-(48) and time constraint
which is approximately linear.

FIGURE 9. Convergence speed of the proposed solution.

In Fig. 7, the impact of number of input computation
bits (LU ) on the offloading data is shown. We can observe
the effectiveness of STRONG scheme which provides a gap
with other benchmarks. The offloading data in all schemes
decrease as LU increases. This result can be explained from
(45)-(48) where larger LU leads to smaller offloading portion,
and local computation becomes more energy efficient than
offloading.

In Fig. 8, the small gap between the STRONG and grid
search shows the efficiency of proposed algorithm with low
complexity order. Moreover, by averaging the result of 105

simulations in Fig. 9, it can be observed that the proposed
solution converged after small iteration. Therefore, the pro-
posed algorithm leads to near optimal solution with low
complexity and small number of iterations.

VII. CONCLUSION
In this paper, we proposed joint task assignment, power
allocation, and node grouping for cooperative computing in
NOMA-mmWave MEC system, where each user offloads
computation tasks to MEC and an idle nearby MD. We stud-
ied energy consumption minimization problem under the
constraints on the energies, delays, and sum of offloading
task ratios. Despite the non-convexity of the formulated prob-
lem, we presented a two-step solution that decreased the
computation complexity. We proposed efficient algorithms
to compute sub-optimal solutions for powers allocated to
helper and MEC server, offloading task ratios of helper and
MEC, and node grouping. Also, we derived the expression
for the successful computation probability which provides
insight the proposed network. An extensive performance
evaluation was presented to validate our proposed algorithms.
The advantage of the proposed cooperative NOMA-assisted
offloading in terms of reducing energy consumption com-
pared to the existing works was shown. As a future work,
we plan to extend our single-user scenario to multi-user
cooperative NOMA-mmWave MEC system and incorporate
ML solutions into our approach.
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APPENDIX A
PROOF OF PROPOSITION 1
Proposition 1 is driven through law of total probability
and considering that the variables |gS |2, |gW |2 , and |gM |2

are not present in the T locU ≥ 2T ,T loch ≥ T ,TMEC≥td and
T locU ≤ 2T ,T loch ≤ T ,TMEC≤td we conclude that{

P(T locU ≥ 2T ,T loch ≥ T ,TMEC ≥ td ) = 1
P(T locU ≤ 2T ,T loch ≤ T ,TMEC ≤ td ) = 1

(55)

By utilizing the law of total probability and (55), the
successful computation probability in P(T locU ≥ 2T ,T loch ≥

T ,TMEC≥td ) = 1 equals zero. Thus, the successful compu-
tation probability for P(T locU ≤ 2T ,T loch ≤ T ,TMEC≤td ) = 1
can be rewritten as (56), shown at the bottom of the page.

APPENDIX B
PROOF OF PROPOSITION 2
In problem (34), the energy consumption for offloading the
task to helper can be expressed as:

ES,off =
PSLU (βU ,S+βh,M )

B log2
(
1+ pS |gS |2

N0

) (57)

The partial derivative of the above function with respect to PS
and task coefficient βU ,S and βh,M is obtained as (58), shown
at the bottom of the page. The above equation is more than
0. Thus, ES,off increases with the increase of transmit power.
Also, the offloading time can be expressed as:

TU ,S =
LU (βU ,S+βh,M )

ηSSE
(59)

By reducing the transmit power PS , offloading time will be
increased. Therefore, for an energy minimization problem,
the maximum possible transmission time T should be utilized
for each node. Also, in NOMA transmission, the transmission
times of both nodes should be the same. Hence, the offloading
time of both nodes is equal to T . Similarly, the offloading
time of helper in the second phase is equal to T too. Thus, the
Proposition 2 is proved.

APPENDIX C
PROOF OF PROPOSITION 3
The convexity of (34) is proved through positive semi-definite
Hessian matrix [47]. The Hessian matrix of the objective
function (34) can be shown as in (60), at the top of the next

page, where � =
N02

(βU ,S+βh,M+βU ,W )LU
TB

T |gS |2
. Then, we define a

non-zero column vector V = [V1V2V3]T to obtain:

V TH (EE)V

=

(
LU ln (2)

B

)2
N02

(βU ,S+βh,M+βU ,W )LU
TB

T |gS |2


× (V1 + V2 + V3)2

+

(
LU ln (2)

B

)2

2
βU ,W LU

TB N0V 2
1

(
1

T |gW |2
−

1

T |gS |2

)

+

(
LU ln (2)

B

)2

(
2

βh,MLU
TB

)
N0

T |gM |2
V 2
3

Psc = P

(
N0

/(
PW

2
LU βU ,W

BT − 1
− PS

)
< |gW |2 ,

(
2
LU (βU ,S+βh,M )

BT − 1
)
N0

PS
< |gS |2 ,

(
2
LU βh,M

BT − 1
)
N0

pM
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∂ES,off
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=
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(
ln
(
1+ pS |gS |2
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) (
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)
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H (EE) =
(
LU ln (2)

B

)2

·


2

βU ,W LU
TB


(
2
(βU ,S+βh,M )LU

TB −1

)
N0

T |gS |2
+

N0
T |gW |2

 � �

� � �

� �

(
�+

2
βh,MLU

TB N0
T |gM |2

)


(60)

Since |gS |2 > |gW |2, V1,V2 and V3 are non-zero, and all the
other parameters are positive, V TH (EE)V> 0; consequently,
the Hessian matrix of the objective function (34) is positive
semi-definite and the objective function (34) is convex.
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