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Abstract—The increasing levels of software- and data-intensive
driving automation call for an evolution of automotive soft-
ware testing. As a recommended practice of the Verification
and Validation (V&V) process of ISO/PAS 21448, a candidate
standard for safety of the intended functionality for road vehicles,
simulation-based testing has the potential to reduce both risks
and costs. There is a growing body of research on devising test
automation techniques using simulators for Advanced Driver-
Assistance Systems (ADAS). However, how similar are the results
if the same test scenarios are executed in different simulators? We
conduct a replication study of applying a Search-Based Software
Testing (SBST) solution to a real-world ADAS (PeVi, a pedes-
trian vision detection system) using two different commercial
simulators, namely, TASS/Siemens PreScan and ESI Pro-SiVIC.
Based on a minimalistic scene, we compare critical test scenarios
generated using our SBST solution in these two simulators. We
show that SBST can be used to effectively generate critical test
scenarios in both simulators, and the test results obtained from
the two simulators can reveal several weaknesses of the ADAS
under test. However, executing the same test scenarios in the two
simulators leads to notable differences in the details of the test
outputs, in particular, related to (1) safety violations revealed by
tests, and (2) dynamics of cars and pedestrians. Based on our
findings, we recommend future V&V plans to include multiple
simulators to support robust simulation-based testing and to
base test objectives on measures that are less dependant on the
internals of the simulators.

Index Terms—search-based software testing, advanced driver-
assistance systems, automotive simulators, replication

I. INTRODUCTION

There is a growing trend to increase the level of vehicle

automation driven by the recent advances in technologies

such as, among others, Machine Learning (ML) and Deep

Neural Networks (DNN), computer vision, and sensor fusion.

However, in parallel with this technological growth, there is an

increase in the number of accidents and crashes that involve

self-driving cars and pedestrians [1]. Many of these accidents

are due to an interplay between software, often containing

complex ML-based components, and advanced electronics,

e.g., cameras and LiDAR technologies, that are used in today’s

modern vehicles. To prevent such accidents and crashes,

there is a need to perform Verification and Validation (V&V)

techniques for self-driving vehicles at system-level to ensure
that they are safe and reliable before letting them drive on

public roads [2].

Currently, in industry, the major bulk of system-level testing

of self-driving vehicles is carried out through on-road testing

or using naturalistic field operational tests. These activities,

however, are expensive, dangerous, and ineffective [3]. A

feasible and efficient complementary approach is to conduct

system-level testing through computer simulations that can

capture the entire self-driving vehicles and their operational

environment using effective and high-fidelity physics-based

simulators. There is a growing number of commercial and

public-domain simulators that have been developed over the

past few years to support realistic simulation of self-driving

systems [4], [5], [6]. In the ISO/PAS 21448 Safety of the

Intended Function (SOTIF) candidate standard [7], an ongoing

standardization initiative covering automotive ML, simulation

is recognized as one of the main V&V means for self-driving

cars. This has led to the development of a large number of

system-level testing approaches in the literature that rely on

such simulators.

Existing testing techniques are often focused on devising

algorithms and techniques to generate test cases [8], [9],

[10] or to generate test oracles [11]. There is, however, little

research on studying the role of simulators when testing is

based on a simulation environment. Recently, Sotiropoulos et

al. [12] provided an empirical study comparing testing results

of robot function models obtained based on a simulator with

those obtained from their physical field testing. Ul Haq et

al. [13] and Codevilla et al. [14] compare testing of DNN-

based automated driving systems based on real-world and

simulator-generated images and videos. We pose a cornerstone

question that has not been previously studied in the simulation-

based testing literature: Can we obtain similar or consistent

test results from different simulators? Answering this question

requires replicating testing techniques in different simulators

and studying the results. We refer to such studies as cross-

simulator (X-sim) replications.

Ben Abdessalem et al. have conducted several studies

on ADAS testing using the simulator TASS/Siemens PreS-

can [10], [15], [9]. These papers show how Search-Based

Software Testing (SBST) [16] can be used to effectively find



input values to generate test scenarios that stress individual

ADAS components [10]. The stress test scenarios, which are

also referred to as critical test scenarios, are obtained such that

they break or are close to breaking safety requirements of the

ADAS under test, and hence, result in a safety violation.

In this paper, we investigate if the results obtained from

ADAS testing are consistent across different simulators. To

this end, we present a X-sim replication study in which we

ported the solution by Ben Abdessalem et al. [10] to the ESI

Pro-SiVIC simulator [17] which is an alternative commercial

automotive simulator. The original study applies SBST to an

ADAS example, i.e., the Pedestrian Detection Vision based

system (PeVi). Specifically, the original study is focused on

testing PeVi using simulations capturing the ego car (i.e., the

car augmented with ADAS) driving on a straight urban street

and a pedestrian crossing the street from the right. We adhere

to the definitions of scene and scenario proposed by Ulrich et

al. [18], which are also used in SOTIF. A scene is “a snapshot

of the environment including the scenery, dynamic elements,

and all actor and observer self-representations, and the rela-

tionships between those entities”. A scenario describes “the

temporal development between several scenes in a sequence

of scenes”. In collaboration with the original authors, we

simplified the PreScan scene that was used for test generation

to support porting to Pro-SiVIC with minimal differences. By

controlling as many variables as possible related to the (initial)

scene, we focus this study to compare the scenarios generated

based on the initial scene. In addition, we ported PeVi to Pro-

SiVIC so that the replication and the original study use the

same ADAS under test.

In line with the terminology used by Cartwright [19] and

Gomez et al. [20], we refer to our work as a series of

reproductions. Three research questions guide our study:

RQ1 Is SBST an effective approach to ADAS testing if we

replace PreScan with Pro-SiVIC?

RQ2 Is the diagnostic information obtained by applying SBST

using PreScan reproducible if we use Pro-SiVIC?

RQ3 Given a minimalistic scene, to what extent can critical

test scenarios identified in PreScan be reproduced in Pro-

SiVIC, and vice versa?

Our results show that SBST can be used to effectively

generate critical test scenarios in both simulators, and the test

results obtained from the two simulators can reveal several

weaknesses of PeVi (the ADAS under test). However, the test

scenarios obtained by PreScan and Pro-SiVIC do not lead to

consistent and conclusive characterizations of safety violations

for PeVi. In particular, the only consistent diagnostic informa-

tion that we identify in our study is that, in both PreScan and

Pro-SiVIC, PeVi likely violates its safety requirement when

the car moves fast (more than 72 km/h). Finally, reproducing

critical scenarios between PreScan and Pro-SiVIC can result in

discrepancies that might not only be due to the implementation

of PeVi, but can originate in differences in the dynamic

models of the simulators or the off-the-shelf sensors available

in the simulators’ libraries. This research concludes by two
lessons-learned and recommendations that have the potential

to influence future simulation-based testing of ADAS.

Paper organization. Section II presents related work on

ADAS testing and introduces the original study. The process

of porting scenes to Pro-SiVIC is described in Section III.

Section IV explains the research method and Section V

presents the results. Finally, Section VI discusses the main

threats to validity, Section VII provides lessons learned, and

Section VIII concludes the paper.

II. BACKGROUND AND RELATED WORK

This section presents a brief overview of related work and

details about the original study reproduced in this paper.

A. Simulation-based CPS and ADAS Testing

Digital twins [21] are defined as digital and virtual repre-

sentations of physical assets enabled through data and simula-

tors for monitoring, controlling, optimization and verification

purposes. There is an increasing demand for fast, agile and

high fidelity digital twins in the domain of cyber physical

systems (CPS). For ADAS and self-driving systems, there

is even a higher demand for digital twins and simulators

since real-world testing and verification of such systems is

expensive, dangerous, and ineffective. Various simulators such

as those relying on physics-based modeling (e.g., Pro-SiVIC

and PreScan) or those that rely on game engines (e.g., [8],

[22]) have been used for testing of self-driving systems and

ADAS. Due to the large search space for ADAS and self-

driving systems, achieving any form of coverage over the

space of all possible simulation scenarios is rather infeasible.

Hence, search-based software testing has been advocated as

an effective and efficient strategy to generate test scenarios

for such systems when they are tested within a simulation

environment [8], [22], [10], [23]. While the focus of the current

research is on devising testing techniques, in this paper, we

evaluate the impact of simulators on the test results through

a replication study performed using two physics-based ADAS

simulators: PreScan and Pro-SiVIC.

B. Description and Definitions of the Original Study

The original study used SBST and PreScan to test PeVi as

part of an industrial ADAS case study [10]. In this section,

we provide details of the original work.

Study subject. Briefly, PeVi’s function is to determine

whether there is any pedestrian in a rectangular Acute Warning

Area (AWA) in front of the car, and if so, it shows a warning

message to the driver. The size of the AWA depends on the

speed of the car and the shape of the road. Figure 1 shows

the AWA for a car driving on a straight road. PeVi uses data

received from a sensor component to identify the position and

the speed of the objects in or near the AWA. It also receives

the Time To Collision (TTC) as computed by the sensor

component. TTC measures the time until impact between

the ego car and an object if both continue with the same

velocities [24]. When an object is detected in or near AWA

(≤ 0.2m from the boundaries), and when the TTC is below a

defined threshold, the object position is sent to the camera to



Fig. 1. Input variables in the initial scene.

detect object types and shapes after receiving their positions

from the sensor component. Specifically, the vision component

determines whether the object is a pedestrian. Then, PeVi will

show a warning message to the driver indicating that the car

may risk a collision with a pedestrian.

Safety Requirement. The test generation aims to verify

the following functional safety requirement of PeVi: “PeVi

shall detect pedestrians in or near AWA (≤ 0.2m from

the boundaries) when there is a risk of collision with the

pedestrians and when the pedestrians are close to the car”.

This requirement originated with customers (car manufac-

turers) where the statement “there is a risk of collision with

the pedestrians and when the pedestrians are close to the car”

was not detailed. As we describe later, the above requirement

is detailed and formalized using quantifiable fitness functions

through interactions with the engineers who developed PeVi.

Scope of Testing. A number of simulation-based testing

studies [9], [15], vary both static elements (e.g., different

weather conditions, different road shapes, and different back-

ground scenes) and dynamic elements of simulators (e.g., the

speed, the position, and the trajectory of cars and pedestrians).

The original study, however, fixed the initial scene to include

the ego car driving on a straight urban street and a pedestrian

crossing the street from the right. The test generation then

focuses on varying the dynamics, namely, the speed of the

car, and the speed, position and orientation of the pedestrian.

Replicating this study (using an even further simplified scene)

allows us to focus on comparing the generated scenarios within

a plain and simple scene.

Note that we have to include PeVi in a simulation environ-

ment and perform system-level testing to verify PeVi against

its safety requirement. However, the faults identified using

system-level testing may not necessarily be due to faults or

errors in PeVi’s implementation and may be due to errors in the

simulators or in third party models of hardware components

(e.g., sensors and cameras), or due to the real world and

physical constraints [15].

Input Representation. According to the original study, the

test input space of PeVi, which is also depicted in Figure 1,

consists of vectors (vc
0
, xp

0
, yp

0
, θp, vp

0
) where vc

0
is the car

speed, xp

0
and yp

0
specify the (initial) position of the pedestrian,

θp is the orientation of the pedestrian, and vp
0

is the pedestrian

speed. Note that the initial car position is fixed at (xc

0
, yc

0
).

The variables in the search space are further constrained as

follows: 1 ≤ vc
0
(m/s) ≤ 25; xc

0
+ 20 ≤ xp

0
(m) ≤ xc

0
+ 85;

yc
0
− 15 ≥ yp

0
(m) ≥ yc

0
− 2; 40 ≤ θp(◦) ≤ 160 and

1 ≤ vp
0
(m/s) ≤ 5. Each value assignment to the vector

(vc, x0, y0, θ, vp) represents a test input for PeVi.

Fitness Functions. SBST exercises PeVi with respect to its

requirement guided by minimizing three fitness functions:

FF1 The minimum distance between the ego car and the

pedestrian over the test scenario.

FF2 The minimum distance between the AWA and the pedes-

trian over the test scenario.

FF3 The minimum TTC between the ego car and the pedes-

trian over the test scenario.

The outputs of each test scenario (simulation) include a vector

of distances at each simulation time step between: the ego car

and the pedestrian and the AWA and the pedestrian, as well

as a vector of TTCs at each simulation time step between

the ego car and the pedestrian. We select the minimum value

of these vectors to compute the fitness functions. Note that

test scenarios do not stop upon detection by PeVi. We run

each test scenario for a time duration and stop them when

any of these conditions holds: (1) the car has driven 100 m

(i.e., the length of the road segment under analysis), or (2)

the pedestrian has crossed the road, or (3) the car has passed

the pedestrian (either there was a collision or the pedestrian

did not yet reach the road). The original study discusses how

minimizing the above three fitness functions pushes PeVi into

breaking its requirement.

The Computational Search Algorithm. The search algo-

rithm used to test PeVi is the Non-dominated Sorting Genetic

Algorithm version 2 (NSGA-II) [25], a well-known multi-

objective search algorithm that has been used in many different

domains. Note that we need to use a multi-objective search

algorithm to test PeVi, since breaking the safety requirement of

PeVi requires us to minimize the three fitness functions defined

above. The following summarizes the choice of operations and

parameters of NSGA-II used in the original study [10]:

• Selection. We use a binary tournament selection with

replacement that has been used in the original implemen-

tation of the NSGA-II algorithm.

• Crossover. We use the Simulated Binary Crossover opera-

tor (SBX). SBX creates two offsprings from two selected

parent individuals. The difference between offsprings and

parents is controlled by a distribution index (η): When η
is large, the offsprings are closer to the parents, while a

small η increases the difference. Analagous to the original

study, we chose a high value for η (i.e., η = 20) based

on the guidelines by Deb and Agrawal [25].

• Mutation. Mutation is applied after crossover to the genes

of the children chromosomes with a certain probability

(mutation rate). Given a gene x (i.e., any of the variables

vc
0
, xp

0
, yp

0
, θp, vp

0
), our mutation operator shifts x by



Fig. 2. Simulation setups used for PreScan and Pro-SiVIC. Dashed arrows
depict function calls that happen once per scenario, solid arrow show
read/write operations to shared variables, and the big arrow represents DDS
communication.

a value selected from a normal distribution with mean

µ = 0 and variance σ2. To avoid invalid offsprings from

crossover or mutation, we use cutoffs corresponding to

the end points of the ranges.

The NSGA-II search parameters were selected as follows:

the crossover rate was set to 0.9, the mutation rate to 0.5, and

the population size to 10. In this replication study, we reuse

the same search parameters as in the original study.

Testing Time Budget. In the original study, NSGA-II ran

within a restricted execution time budget of 150 min. The time

budget was selected in consultation with the supplier of PeVi.

The experiments reported in the original study show that the

time budget was sufficient to find failure revealing test scenar-

ios and also to demonstrate that NSGA-II outperforms random

search testing (the sanity check experiment in SBST [26]). We

use the same time budget for the replication study.

Critical and Safety Violation Scenarios. In this replication

study, we discuss critical scenarios and safety violations using

the following definitions. A critical scenario either results

in a collision between the ego car and the pedestrian or a

near miss. A near miss is defined as a scenario with FF1

≤ 1 m or FF3 ≤ 0.5 s. In addition, we define a safety

violation as a critical scenario where PeVi has failed to detect

the pedestrian. Note that in critical scenarios, PeVi may or

may not have detected the pedestrian. We are interested in

generating both critical and safety violation scenarios. While

safety violation scenarios indicate clear violations of the PeVi

requirement, critical scenarios represent situations where the

car and pedestrian may have a collision or a near miss. For

a critical scenario, even if there is a detection, it is important

to know the time gap between the detection and collision (or

near miss) to determine if the gap is sufficiently large so that

the driver can react and avoid the collision.

III. PORTING FROM PRESCAN TO PRO-SIVIC

Together with the lead developer of the original study [10],

we ported the SBST algorithm as well as the PeVi component

from PreScan to Pro-SiVIC. The process required considerable

engineering effort, made possible through physical co-location

during a two month research visit. This section describes

similarities and differences between the two simulation setups.

Figure 2 depicts the simulation setups used for ADAS

testing with PreScan and Pro-SiVIC, respectively. The figure

is organized into three layers:

• Application – MATLAB/Simulink implementations of

the SBST algorithm and PeVi.

• Interface – The interface between the simulator and both

the SBST algorithm and PeVi.

• Simulation – The simulator tool which includes mech-

anisms to construct initial scenes as well as physics-

based and mathematical models that simulate sensors and

dynamic objects such as cars and pedestrians.

For the Application layer, porting the original implemen-

tation of the SBST algorithm was straightforward. For both

PreScan and Pro-SiVIC, MATLAB scripts implement the
NSGA-II algorithm and call the Simulink model of PeVi to

initialize it with specific test inputs once per test scenario. The

PeVi model, in turn, calls the simulator to start generating the

output corresponding to the given test input (see links labelled

(1) and (2) in Figure 2). In the Application layer, there is a

one-to-one mapping between the elements used in the PreScan

setting and those used in the Pro-SiVIC setting. PeVi from

the original study was reused without modifications in the

replication study. Still some engineering work was needed,

primarily in relation to configuring the sensor model of Pro-

SiVIC and some data type conversion to ensure that Pro-SiVIC

could generate the input formats required by PeVi.

The main differences between the PreScan and Pro-SiVIC

setups are related to the Interface layer. PreScan uses Simulink

internally for both modeling the physics and the motion be-

havior of vehicles and pedestrians as well as sensor modeling

– a local Simulink installation is even a prerequisite to run

PreScan. As a result, external Simulink models (such as the

model of PeVi) can easily be integrated with PreScan since

they can read and write to shared variables in the same

MATLAB workspace (see the links labelled (3) in Figure 2).

In contrast, Pro-SiVIC does not depend on Simulink for in-

ternal modeling. In Pro-SiVIC, elements communicate through

the Data Distribution Service (DDS) [27], a message-based

middleware protocol implementing a publish-subscribe pattern

(see the link labelled (4) in Figure 2). Hence, PeVi commu-

nicates with the internal models of PreScan synchronously,

while the DDS-based communication between PeVi and Pro-

SiVIC is asynchronous. To initiate the communication, the

external Simulink model (PeVi) starts the Pro-SiVIC scenario,



Fig. 3. Crossing pedestrians in PreScan and Pro-SiVIC. Note that we later
disabled shadows in PreScan.

Fig. 4. Comparisons relevant to the RQs.

and then, each DDS enabled element in Pro-SiVIC (e.g., the

sensors and the car) begins broadcasting DDS messages to the

subscribing Simulink blocks of PeVi each 40 ms (25 Hz).

The Simulink simulation was not fast enough to receive

DDS messages at this frequency. We measured a uniform

packet loss of 20%, i.e., roughly every fifth DDS message

was not received by PeVi. This means that 20% of the DDS

messages corresponded to an 80 ms measurement interval

instead of 40 ms. To mitigate the risk of losing DDS messages

containing data with a minimum FF, each Pro-SiVIC scenario

was repeated 20 times and the mode of the FF measurements

(i.e., the most frequently generated outputs) were used for

the subsequent analysis. We found that this mitigation strat-

egy generated simulation results that were not impacted by

the packet loss. Indeed, in these scenarios, due to the high

frequency of the messages sent from Pro-SiVIC, the content

of the lost messages were redundant or were very similar to

the messages coming immediately before or after them and

processed by the Simulink model.

For the Simulation layer, there are inevitable differences

between the initial scenes in PreScan and Pro-SiVIC. As we

discussed in Section II-B, one of the reasons that we choose

the study of Ben Abdessalem [10] for replication is because

this study is mainly focused on varying simulation dynamics

(i.e., the position and speed of objects) and the background

scene is unchanged over different test scenarios. To mitigate

the potential threats to internal validity and to make sure that

we compare the dynamic behavior of simulators rather than

their motifs and initial scene construction abilities, we reduced

the complexity of the scene of PreScan used in the original

study [10], i.e., we created a novel minimalistic PreScan

scene with removed buildings along the road and no shadows

from the pedestrian. In PreScan, we built the minimalistic

scene from scratch. On the other hand, Pro-SiVIC scenes

are typically built using existing road snippets or adapted

from pre-made standard scenes. Thus, we implemented the

minimalistic scene using a straight road segment from the

standard scene “horsering-ground” with a similar skydome and

illumination settings as in the PreScan scene.

While we attempted to create equivalent initial scenes, some

differences are obvious, including the visual appearance of

approaching pedestrians as shown in Figure 3. We report three

major differences:

1) The default pedestrian in PreScan is male, whereas the

Pro-SiVIC pedestrian is female. The man runs with a

swinging arm movement while the woman pumps the

arms like a sprinter. Furthermore, the pedestrians wear

different clothes.

2) The horizon is visible in the PreScan scene, while in

Pro-SiVIC, it is occluded by mountains in the distance.

3) The road in the Pro-SiVIC scene has a narrow dirt

shoulder, but the PreScan scene has no shoulder at all.

Finally, we used the same test input characterization with

the same constraints and ranges when generating test scenarios

for both PreScan and Pro-SiVIC. However, as the coordinates

for the initial position of the car differ between the two scenes
in PreScan and Pro-SiVIC, we implemented a translation

function. Furthermore, similar translations were needed for the

orientation of the pedestrian and conversions between m/s and

km/h. All source code for the replication study is available on

GitHub under a BSD 2-Clause [28]. The source code and data

related to the original study is available on BitBucket [29].

IV. RESEARCH METHOD

This section describes the design of the empirical study.

A. Experimental Design

Figure 4 shows an overview of our experimental process.

While we describe our empirical work as sequential steps,

most experiments with PreScan and Pro-SiVIC were con-

ducted in parallel – typically running overnight due to long

execution times.

1) RQ1 – X-sim Reproduction of Principal Findings: RQ1

concerns the high-level replicability of the original study [10].

Can we show that SBST enabled by NSGA-II is an effective

approach to ADAS testing even if we replace PreScan with

another simulator?

To answer this question, we executed both the PreScan

and the Pro-SiVIC setups for 40 times to account for the

randomness in the NSGA-II algorithm. For each run of each

setup, we used the testing time budget of 150 min from the

original study. Note that each run of NSGA-II, being a multi-

objective algorithm, generates 10 solutions (i.e., equivalent to

the population size for NSGA-II provided in Section II-B).

Thus, we obtained 400 scenarios in total.



To answer RQ1, we analyze the outputs from the PreScan

and Pro-SiVIC setups to compare the quality of the generated

test cases. In particular, we want to determine if SBST can

generate fault revealing and critical test cases in both setups.

We use two types of metrics for this purpose: (1) The number

of test scenarios representing a critical or safety violation situ-

ation (see Section II-B for the definitions of critical and safety

violations). (2) An assessment of the NSGA-II outputs using

the hypervolume (HV) indicator [30]. The HV indicator has

been commonly used in the literature (including the original

study [10]) to evaluate multi-objective search algorithms since

their outputs create a Pareto front [25]. Briefly, HV represents

the size of the space covered by members of a Pareto front

generated by a search algorithm [30]. The higher the HV

values, the better the Pareto front outputs are. To compare

the statistical differences in HV values generated by PreScan

and Pro-SiVIC, we use the Mann–Whitney U test at α = 0.05.

2) RQ2 – X-sim Reproduction of Diagnosis Information:

While RQ1 is focused on the reproduction of test outputs in

the two simulators, RQ2 investigates the consistency of the

diagnostic information that can be derived from the test inputs

generated by the application of SBST in the two simulators.

In general, there is little research on producing diagnosis

or debugging support for self-driving systems and ADAS.

One proposed approach is to apply classification decision

trees to identify conditions on test inputs that best explain

and characterize failures [15]. Decision tree learning is a

supervised learning classification technique [31]. To answer

RQ2, we use the same results generated by the experiment we

performed for RQ1. But this time, we study the distributions

of the test inputs, and further, we use a decision tree classifier

to infer conditions on the test inputs that can best characterize

safety violations in the two simulators.

3) RQ3 – X-Sim Reproduction of Critical Test Scenarios:

RQ3 addresses the reproduction of test scenarios in another

simulator. If a scenario is found to be critical in PreScan, will

the same scenario also be critical in Pro-SiVIC and vice versa?

Recall that Section II-B provides the definitions for critical

scenarios and safety violations. Our goal is to understand to

what extent test inputs leading to critical scenarios or safety

violations in one simulator remain critical or yield safety

violations when executed in another simulator.

For this question, we converted the test inputs corresponding

to the 400 test scenarios generated in PreScan for RQ1 to their

Pro-SiVIC counterparts (as described under the Application

layer in Section III). The converted test scenarios were then

executed in Pro-SiVIC. Then, we repeated the analogous

procedure to re-execute the scenarios generated by Pro-SiVIC

in PreScan.

To answer RQ3, we analyze the outputs from PreScan and

Pro-SiVIC from two perspectives: (1) the fraction of safety

violations that remain after X-sim reproduction and if any new

appear, and (2) the absolute differences of the results from the

three fitness functions (FF1, FF2, and FF3) when reproducing

scenarios across simulators.

B. Hardware and Software Setups

The PreScan and Pro-SiVIC setups used standalone licenses

linked to the physical MAC addresses of specific devices. As

the simulator vendors granted licenses to different organiza-

tions, we were not able to install a license server accessible

over an internal network to execute PreScan and Pro-SiVIC on

the same device. As a result, we conducted the simulations on

separate computers. While this might introduce confounding

factors, we believe this does not have an impact on our

conclusions since our analysis is not focused on computational

performance. In particular, in our analysis, we do not com-

pare the time performance of the two simulator setups. The

setup used to run the PreScan experiments was a MacBook

Pro with a 2.5 GHz CPU and 16 GB RAM with PreScan

version 2019.1 and MS Windows 10. We conducted the Pro-

SiVIC experiments on a desktop PC running MS Windows 10

equipped with an Intel Core i7-3770 CPU @ 3.40 GHz, 32

GB RAM, and an Nvidia 1080Ti graphics card. The software

version used was ESI Pro-SiVIC 2018.0.

V. RESULTS AND DISCUSSION

This section presents results from the X-sim reproductions

and discuss their practical implications.

A. RQ1: X-sim Reproduction of Principal Findings

Figure 5 (the left part) presents the number of critical

scenarios and safety violations generated in PreScan and Pro-

SiVIC (see Section II-B for the definitions of safety violation

and critical scenarios). All 800 scenarios generated by SBST

are critical, i.e., FF1 ≤ 1 m or FF3 ≤ 0.5 s in all scenarios.

Among the 400 scenarios generated by PreScan and Pro-

SiVIC, 229 (57.3%) and 236 (59.0%) scenarios led to safety

violations, respectively. For the remaining 171 (42.8%) sce-

narios of PreScan and the remaining 164 (41.0%) scenarios

of Pro-SiVIC, the pedestrian was detected by PeVi. However,

in all those non-safety violation scenarios, the simulators still

recorded collisions between the car and the pedestrian. Note

that PeVi only provides a warning and does not apply any

braking. More precisely, we found that 396 out of 400 (99.0%)

of the PreScan scenarios resulted in collisions between the car

and the pedestrian. For Pro-SiVIC, the corresponding figure

was 345 (86.3%).

The right part of Figure 5 shows the distributions of the

HV indicators computed based on the Pareto front outputs

obtained from different runs of NSGA-II in PreScan and

Pro-SiVIC, respectively. There is no statistically significant

difference between the two HV distributions, indicating that

the quality of the Pareto front outputs obtained from PreScan

and Pro-SiVIC are comparable.

The principal findings from the original PreScan study

can be reproduced using Pro-SiVIC. SBST is an effective

approach to ADAS testing and the quality of the generated

scenarios is comparable across simulators.



Fig. 5. Overview of the 800 generated test scenarios by PreScan and Pro-
SiVIC. The boxplots show the hypervolume indicators, reflecting the quality
of the Pareto fronts.

B. RQ2: X-sim Reproduction of Diagnosis Information

Figure 6 depicts swarm plots for the input parameters

of the 800 test scenarios generated using SBST in PreScan

and Pro-SiVIC, respectively. The red points represent safety

violations (229 for PreScan and 236 for Pro-SiVIC). Note

that box plots are not an appropriate visualization format,

as some distributions are not only skewed but there are

also considerable gaps in the data resulting in multimodal

distributions. As Figure 6 shows, SBST found effective test

inputs (i.e., test inputs revealing critical behaviors of PeVi) in

most areas of the input space, but there is a notable exception.

Using PreScan, no effective test scenarios involved the car

driving slower than 10 m/s (vc
0
), i.e., 36 km/h. Moreover, for

both simulators, there are certain parameter ranges that are

considerably sparser compared to the rest the input space,

e.g., 55 ≤ x0(m) ≤ 68 in Pro-SiVIC and y0 ≤ 38(m) in

PreScan. Those ranges are not consistent between PreScan and

Pro-SiVIC, illustrating internal variations when generating test

scenarios using different simulators.

Further analysis of Figure 6 shows that diagnostic infor-

mation obtained by PeVi testing are different in the two

simulators. Specifically, in that figure, red points show test

inputs resulting in safety violations. The distribution of red

points show how the PeVi safety violations cluster for some

parameter ranges – but again, the results are not consistent

between the two simulators. For example, Pro-SiVIC testing

with 15 ≤ vc (m/s) ≤ 17 result in many safety violations,

for which the PreScan counterpart paints a different picture.

Another divergent example is visible at vp ≈ 4.4 m/s, where

Pro-SiVIC identifies safety violations but PreScan does not.

Figure 7 displays two decision trees that we have built

based on the 400 test inputs generated by PreScan (a) and

Pro-SiVIC (b). The test inputs for both simulators are labelled

by True (when they lead to a safety violation) and by False,

otherwise. For example, Figures 7(a) shows that in 181 safety

violation scenarios generated by PreScan, the speed of the car

was more than 18.92 m/s (68 km/h), and in 45 other safety

violation scenarios, the speed of the car was less than 18.92
m/s (68 km/h) but the orientation of the pedestrian was more

than 120.24◦. The latter conditions, however, characterize a

leaf of the tree with a mix of True and False-labelled output,

and hence, cannot be taken as a characterization of failures.

Similarly, Figure 7(b) shows that for Pro-SiVIC the majority

of safety violations are characterized by the conjunction of

two conditions: θ (≥ 100.52◦) and vp ≥ 1.17m/s.

Overall, based on the test results in Figure 6 and the

decision trees in Figures 7(a) and (b), we can identify only one

condition that can consistently characterize safety violations

identified by both Pro-SiVIC and PreScan. In particular, in

both PreScan and Pro-SiVIC, PeVi performs worse when the

car moves fast. More specifically, when vc ≥ 20 m/s (72

km/h), all test scenarios generated by PreScan and Pro-SiVIC

lead to safety violations. However, apart from this condition,

there are few patterns that can characterize safety violations

for PeVi.

The results obtained by PreScan and Pro-SiVIC do not gen-

erally lead to consistent and conclusive characterizations of

safety violations for PeVi. The only consistent conclusion

is that PeVi likely violates its safety safety requirement

when the car moves fast (≥ 72 km/h).

C. RQ3: X-Sim Reproduction of Critical Test Scenarios

Recall from Section V-A that all the 800 scenarios generated

by PreScan and Pro-SiVIC were critical but some led to safety

violations and some did not (see the definitions of critical and

safety violations in Section II-B). To simplify the discussion,

we refer to scenarios as either unsafe (when they lead to

a safety violation) or safe otherwise. Figure 8 displays the

results from X-sim reproduction of critical scenarios between

PreScan and Pro-SiVIC. Before discussing the figure, we

present the six possibilities that can happen when executing a

critical scenario generated by one simulator (SimA) in another

simulator (SimB). The references in parentheses below refer

to rows in Figure 8.

- An unsafe scenario in SimA can: (1a) also be unsafe in

SimB (the detection failed in both SimA and SimB); (1b) be

critical but become safe in SimB (the detection failed only in

SimA); and (1c) be non-critical in SimB (in SimB, neither FF1

nor FF3 is small enough to warrant the scenario as critical).

- A safe scenario in SimA can: (2a) be unsafe in SimB (the

detection failed only in SimB); (2b) be both critical and safe

in SimB (the detection works in both SimA and SimB); and

(2c) be non-critical in SimB (same reason as in 1c).

As shown in Figure 8, after reproducing the scenarios

generated by PreScan in Pro-SiVIC, we obtain the following

results: Out of the 229 unsafe scenarios generated by PreScan,

78 (34.1%) are unsafe (1a) and 151 are safe (65.9%) (1b+1c)

in Pro-SiVIC, but 45 of these 151 scenarios are still critical

(1b) in Pro-SiVIC and the remaining 106 scenarios turn out

to be non-critical and safe (1c) in Pro-SiVIC. Specifically,

in the 45 scenarios (1b), the PeVi detection fails in PreScan

but works in Pro-SiVIC, and in the 106 scenarios (1c), the

distances between the ego car and the pedestrian in time and

space in Pro-SiVIC are large enough to no longer constitute a

critical scenario.



Fig. 6. Distribution of input parameters (vc
0
, x

p

0
, y

p

0
, θp, and v

p

0
) for the 800 test scenarios generated by applying SBST in PreScan and Pro-SiVIC. Red

points denote safety violations (229 in PreScan and 236 in Pro-SiVIC).

Fig. 7. Decision trees explaining when safety violations occur in PreScan (a) and Pro-SiVIC (b), respectively.

Fig. 8. Results from X-Sim reproduction of critical scenarios between PreScan
and Pro-SiVIC.

Among the 171 safe but critical scenarios generated by

PreScan, 133 (78.8%) are safe (2b+2c), out of which 114

(2b) are still critical while 19 (2c) are no longer critical.

The remaining 38 scenarios (2a) change from being safe

(but critical) in PreScan to unsafe in Pro-SiVIC, indicating

that PeVi detected the pedestrian in PreScan but failed in

Pro-SiVIC. In short, the discrepancies in X-sim reproduction

of critical scenarios from PreScan and Pro-SiVIC were due

the following factors: (1) Inconsistencies in detecting the

pedestrian (for 45 scenarios, the PeVi detection worked in Pro-

SiVIC but failed in PreScan; and in 38 scenarios, the detection

worked in PreScan but not in Pro-SiVIC); (2) Changes in the

distances between the ego car and the pedestrian in time and

space. Specifically, 125 scenarios (1c+2c) that were critical in

PreScan turned out to be non-critical in Pro-SiVIC.

When reproducing the 400 Pro-SiVIC scenarios in PreScan,

among the 236 unsafe scenarios in Pro-SiVIC, 212 (89.8%)

are unsafe in PreScan (1a), and all the 164 safe scenarios

in Pro-SiVIC are safe in PreScan as well (2b+2c). Among

the 236 unsafe scenarios in Pro-SiVIC, 24 are safe (10.2%)
because the scenarios are no longer critical (1c). We observed

no discrepancies in PeVi’s pedestrian detection after X-sim



reproduction from Pro-SiVIC to PreScan (1b+2a). However,

we found that 100 of the 164 (61.0%) safe scenarios became

non-critical when reproducing in Pro-SiVIC (2c), indicating

changes in the distances between the ego car and the pedestrian

in time and space.

The X-sim reproductions show that the dynamic simulator

models can substantially influence the test results. First, crit-

ical scenarios often turned non-critical as distances changed

(1c+2c). Second, the PeVi detections are not necessarily

consistent between the simulators, i.e., the overall test verdicts

related to safety violations frequently differ when reproducing

scenarios in Pro-SiVIC (1b+2a). This might also be due to

the dynamic modeling of the pedestrian, but it can also be

explained by the implementation of PeVi or differences in the

off-the-shelf sensors available in the simulators’ libraries.

To know which fitness function (among FF1, FF2, and

FF3) contributes most to the discrepancies in the X-sim

reproduction results of critical scenarios between PreScan

and Pro-SiVIC, we measure how big the FF differences are

after the X-sim reproductions. Figure 9 shows distributions of

absolute differences for the three FFs. The top row shows the

results from reproducing the 400 critical Pro-SiVIC scenarios

in PreScan. For most scenarios, the difference in FF1 is less

than 4 m, i.e., FF1 ≤ 4 m. However, for 59 scenarios (14.8%),

the absolute difference in FF1 is ≥ 5 m. Furthermore, the

distribution of differences for FF2 resembles FF1 with an

absolute difference of ≤ 1m in 348 scenarios (87.0%).

The absolute differences in FF3 display a bimodal distribu-

tion. Due to a PeVi implementation choice, an FF3 value of 4

s either means that the sensor did not detect the pedestrian or

the pedestrian remained far away during the entire scenario.

Consequently, an absolute difference close to 4 s for equivalent

test scenarios in PreScan and Pro-SiVIC is the result of either

(1) large variations in how close the pedestrian gets to the car

(as shown for the absolute difference in FF1) or (2) conflicting

results of the sensors in PreScan and Pro-SiVIC. Reproduction

of 400 critical Pro-SiVIC scenarios in PreScan resulted in

156 scenarios with an absolute difference for FF3 of ≤ 0.5s
(41.3%) and 195 scenarios of ≥ 3.5s (48.8%).

The bottom row in Figure 9 depicts the results from re-

producing the 400 critical PreScan scenarios in Pro-SiVIC.

The results largely resembles the Pro-SiVIC to PreScan re-

production. For FF1, the absolute difference is ≥ 4m in 62

scenarios (15.5%). For FF2, the absolute difference is ≥ 1m in

48 scenarios (12.0%). Finally, a bimodal distribution is again

the result for FF3, the absolute difference is ≤ 0.5s in 214

scenarios (53.5%) and ≥ 3.5s in 118 scenarios (29.5%).

In short, FF2 values were the most consistent in the two

simulators; FF1 values were largely consistent with a few

outlier scenarios for which FF1 differences were large between

PreScan and Pro-SiVIC; but FF3 values were the most incon-

sistent between the two simulators where we observed large

FF3 differences in the results from PreScan and Pro-SiVIC for

several scenarios.

Reproducing critical scenarios between PreScan and Pro-

SiVIC frequently results in discrepancies regarding dis-

tances and PeVi detections. Among the three fitness func-

tions used for scenario generation, FF2 values were the

most consistent after X-sim reproductions whereas FF3

values differed substantially.

VI. THREATS TO VALIDITY

In this section, we discuss the most important threats to

internal and external validity [32].

Internal validity concerns inferences regarding casual re-

lationships. We designed our experiment setup in a way to

mitigate internal threats. For the X-sim reproductions, we

focused on controlling as many variables as possible, both in

the initial minimalistic scene and in the SBST setup. We used

the same NSGA-II parameters X-sim and carefully created

highly similar minimalistic scenes in PreScan and Pro-SiVIC.

As described in Section III, there are some minor visual

differences related to the initial scene. Furthermore, there are

several other variables embedded in the simulators whose

effects we study rather than control, e.g., the modeling of

the optics in the cameras, sensor resolution and the radar

cross-section of pedestrians. To mitigate this threat, we tried

to ensure that sensors used in PreScan and Pro-SiVIC were

configured the same to the extent possible. Finally, the packet

loss measured in the Pro-SiVIC setup might have influenced

the results, but as reported in Section IV-A3, we mitigated this

by repeating the Pro-SiVIC experiments.

External validity reflects generalizability and often contra-

dicts the internal validity of a study. As we carefully controlled

variables through a minimalistic scene, we have no evidence

regarding simulation of more complex environments or traffic

scenarios. Future work should explore X-sim reproduction

for more complex scenes, including variations in elevation

and curvature of roads as well as scenery and traffic density.

Another variable that deserves future study is how different

weather simulations influence the sensor models. However,

since we contribute evidence of prevalent X-sim discrepancies

for a minimalistic scene, we have no reason to believe they

would disappear for more complex scenes. Finally, as we

limited the study to X-sim reproduction between PreScan and

Pro-SiVIC, we cannot claim that the magnitude of differences

would be the same for other simulators such as CARLA [5].

VII. LESSONS LEARNED

Conducting X-sim reproductions between two commercial

simulators provided insights that go beyond the RQs. In this

section, we provide two important lessons learned.

Lesson 1. Validating ADAS testing results in multiple simu-

lators is beneficial. Automotive simulators are complex soft-

ware tools. Each simulator depends on the priorities, back-

ground and expertise of its vendor and is focused on certain

aspects of ADAS and self-driving systems. For example, while

PreScan is mostly focused on the fidelity of physics-based

and mechanical models of self-driving systems, Pro-SiVIC is

specialized in developing accurate sensor models. Typically,

one simulator alone may not be able to perfectly capture



Fig. 9. Absolute differences of the three FFs when reproducing 400 critical Pro-SiVIC scenarios in PreScan (top row) and 400 critical PreScan scenarios in
Pro-SiVIC (bottom row).

all the subtleties and complexities of ADAS and self-driving

systems. As a result, replicating simulations in multiple tools

with complementary strengths, identifying simulations that are

consistent and robust across tools, and using those simulations

for failure analysis and fault localization can help improve the

accuracy of ADAS V&V activities. If the ADAS performance

cannot generalize to another simulator, it would be overly

optimistic to expect generalization to the real world.

Lesson 2. Fitness functions (test objectives) should be

defined in such a way that they are minimally impacted by

variations, weaknesses or potential faults in the internals of

simulators. In our replication study, we observed different

results for the three fitness functions that were proposed in

the original study. Specifically, FF2 values were the most

consistent in the two simulators and FF1 values were largely

consistent with a few outlier scenarios; but FF3 values were the

most inconsistent between the two simulators. While FF1 and

FF2 largely depend on the physics-based models of simulators,

FF3 depends on their sensor models and could, at least in

part, explain the measured differences. Our observation is

that testing results might be more consistent across different

simulators if fitness functions do not depend on specific and

non-standard components (e.g., sensors) that likely vary across

different simulators. For example, we conjecture that if we

repeat our study where we use the same SBST method with

FF1 and FF2 only and remove FF3, we likely obtain more

consistent test outputs between PreScan and Pro-SiVIC.

VIII. CONCLUSION AND FUTURE WORK

We presented a replication study of applying a search-

based software testing (SBST) solution to an Advanced Driver-

Assistance System (ADAS) case study using two different

commercial simulators, namely, TASS/Siemens PreScan and

ESI Pro-SiVIC. Our results suggest that while SBST is ef-

fective in finding failure revealing test scenarios using both

simulators, there are considerable differences in the specific

details of the scenarios generated using the two simulators.

We present two recommendations for research and practice.

First, simulation-based ADAS testing should not rely on a sin-

gle simulator. Ideally, the test result analysis should primarily

be based on the ADAS testing results that generalize to mul-

tiple simulators. Second, SBST for ADAS testing should be

based on fitness functions (test objectives) that are minimally

impacted by the internals of simulators and in particular by

third party models of hardware components (e.g., sensors and

cameras) included in the simulators.

For future, we will elaborate on how our findings relate to

the evaluation of the residual risk as mandated in ISO/PAS

21448 Safety of the Intended Function (SOTIF). Specifically,

we will provide actionable recommendations for the stan-

dardization efforts related to SOTIF Part 11.2 – Method K

“Simulation of selected scenarios”. As our primary interests

relate to testing of SOTIF compliant perception systems that

use deep neural networks, our next step will be development

of testing recommendations tailored for machine learning.
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